JP2009004671A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2009004671A
JP2009004671A JP2007165842A JP2007165842A JP2009004671A JP 2009004671 A JP2009004671 A JP 2009004671A JP 2007165842 A JP2007165842 A JP 2007165842A JP 2007165842 A JP2007165842 A JP 2007165842A JP 2009004671 A JP2009004671 A JP 2009004671A
Authority
JP
Japan
Prior art keywords
substrate
capacitor
resin
anode
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007165842A
Other languages
Japanese (ja)
Other versions
JP4817458B2 (en
Inventor
Takashi Mizukoshi
崇 水越
Katsuhiro Yoshida
勝洋 吉田
Koji Sakata
幸治 坂田
Kunihiko Shimizu
邦彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007165842A priority Critical patent/JP4817458B2/en
Publication of JP2009004671A publication Critical patent/JP2009004671A/en
Application granted granted Critical
Publication of JP4817458B2 publication Critical patent/JP4817458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which is a small lower face electrode-type and has a filet face subjected to plating capable of obtaining superior productivity and reliability. <P>SOLUTION: A capacitor element 1 has a cathode layer containing a solid electrolyte layer formed on a dielectric oxide film, in which the dielectric oxide film is formed on a surface of a porous valve action metallic body to be an anode. In a substrate, a crosstie-like anode connection 5 and a cathode connection 6 for the capacitor element are formed on the upper side of a plate-like insulative resin 4, an anode 7 for capacitor mounting face conducting to the crosstie-like anode connection 5 through a via 9 is formed on the lower side of the plate-like insulative resin 4, and a cathode 8 for capacitor mounting face conducting to the cathode connection 6 for the capacitor element through a via 9 is formed on the lower side. The capacitor element 1 is disposed on the substrate, is a solid electrolyte capacitor in which a periphery of it is packaged by a packaging resin 11, and a part of the substrate that is not applied with the resin coating is folded along the side of the packaging resin 11 to form filet faces 12, 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は基板実装面に直接引き出された電極を有する下面電極型の固体電解コンデンサに関する。   The present invention relates to a bottom electrode type solid electrolytic capacitor having an electrode directly drawn on a substrate mounting surface.

従来から弁作用金属として、タンタル、ニオブなどを用いた固体電解コンデンサは、小型で静電容量が大きく、周波数特性に優れ、CPUのデカップリング回路あるいは電源回路などに広く使用されている。また、携帯型電子機器の発展に伴い、特に下面電極型固体電解コンデンサの製品化が進んでいる。   Conventionally, solid electrolytic capacitors using tantalum, niobium or the like as a valve metal are small, have a large capacitance, are excellent in frequency characteristics, and are widely used in CPU decoupling circuits or power supply circuits. In addition, with the development of portable electronic devices, the commercialization of bottom electrode type solid electrolytic capacitors has been progressing.

このような下面電極型固体電解コンデンサを基板に実装する際には、下面電極型固体電解コンデンサの基板実装面の端子部分とともに、下面電極型固体電解コンデンサ側面のフィレット面と呼ばれる端子部分が重要になる。その理由は、はんだ付けの後にフィレット面におけるはんだの融けだし具合を観察することで、基板実装面を含めたはんだ付けの状態を検査するためである。このフィレット面で問題になるのは、融けたはんだが濡れあがるときに、陽極側と陰極側で均等に濡れあがらないと製品が傾いて実装されたり、フィレット面への濡れあがりが十分でないと、はんだが基板実装面である底面にのみ溜まり、製品が浮き上がってしまうことであり、これを防止するために通常フィレット面には、めっきが施される。   When mounting such a bottom electrode type solid electrolytic capacitor on a substrate, a terminal part called a fillet surface on the side surface of the bottom electrode type solid electrolytic capacitor is important together with a terminal part of the substrate mounting surface of the bottom electrode type solid electrolytic capacitor. Become. The reason is that the soldering state including the board mounting surface is inspected by observing the melting state of the solder on the fillet surface after soldering. The problem with this fillet surface is that when the melted solder gets wet, if the product does not get wet evenly on the anode side and the cathode side, the product will be mounted tilted or if the wett on the fillet surface is not enough, This means that the solder collects only on the bottom surface, which is the substrate mounting surface, and the product is lifted up. To prevent this, the fillet surface is usually plated.

その様子を、チップ型固体電解コンデンサで、製品の小型化、薄型化を目的とし、リードフレームの下面をコンデンサの電極とし、リードフレームの切断面をフィレット面として使用する下面電極型と呼ばれる構造について簡単に説明する。その詳細は特許文献1等に開示されている。   This is a chip-type solid electrolytic capacitor with a structure called a bottom electrode type that uses the lower surface of the lead frame as the capacitor electrode and the cut surface of the lead frame as the fillet surface for the purpose of reducing the product size and thickness. Briefly described. Details thereof are disclosed in Patent Document 1 and the like.

図8に製品寸法に切断する前の内部透視図を示した。また、図9に製品寸法に切断後の図を示してあり、図9(a)は陽極側の側面図、図9(b)は陰極側の側面図、図9(c)は図9(a)、図9(b)のB−B線に沿った断面図である。   FIG. 8 shows an internal perspective view before cutting into product dimensions. Further, FIG. 9 shows a view after cutting into product dimensions, FIG. 9 (a) is a side view on the anode side, FIG. 9 (b) is a side view on the cathode side, and FIG. 9 (c) is FIG. It is sectional drawing along the BB line of a) and FIG.9 (b).

図8のように、コンデンサ素子1から引き出された陽極リード線2は陽極のリードフレーム82に接合され、コンデンサ素子1の陰極層は、導電性接着剤10を介して陰極のリードフレーム83に接続されると共に絶縁性接着剤84を介して陽極のリードフレーム82に固定されている。   As shown in FIG. 8, the anode lead wire 2 drawn out from the capacitor element 1 is joined to the anode lead frame 82, and the cathode layer of the capacitor element 1 is connected to the cathode lead frame 83 via the conductive adhesive 10. At the same time, it is fixed to the lead frame 82 of the anode via an insulating adhesive 84.

図中の一点鎖線部81a,81bで切断し、リードフレーム82,83の切断面にめっき処理をすることで、はんだ濡れ性のよいフィレット面12,13を形成している。しかし、この製造工程は、外装樹脂形成後にめっきをするため製造工程が複雑になり設備投資の額が大きくなる、生産コストが増加する、コンデンサの特性に影響が出る等の問題がある。   The fillet surfaces 12 and 13 with good solder wettability are formed by cutting along the alternate long and short dash lines 81a and 81b in the figure and plating the cut surfaces of the lead frames 82 and 83. However, in this manufacturing process, since plating is performed after forming the exterior resin, the manufacturing process becomes complicated, the amount of capital investment increases, the production cost increases, and the characteristics of the capacitor are affected.

また、小型化・薄型化するための方法として、特許文献2の技術がある。この技術は、電極端子としてリードフレームを使用するのではなく、基板(シート片)を用いた構造になっている。しかし、前記同様にフィレット面にはパッケージ体の切断後にめっき処理(端子電極膜形成)を施す必要があるので、同様の問題点がある。あるいは、端子電極膜を形成しない場合には、十分な視認性を有するフィレット面が得られないという問題点がある。   Further, as a method for reducing the size and thickness, there is a technique disclosed in Patent Document 2. This technique has a structure using a substrate (sheet piece) instead of using a lead frame as an electrode terminal. However, since the fillet surface needs to be subjected to a plating process (terminal electrode film formation) after cutting the package body as described above, there is a similar problem. Alternatively, when the terminal electrode film is not formed, there is a problem that a fillet surface having sufficient visibility cannot be obtained.

これらを解決する技術として、特許文献3がある。図10に製品寸法に切断する前の内部透視図を示した。リードフレーム104,105が凹状に加工されており、凹部内部はめっき処理をしてある。図中の一点鎖線部101a,101bで切断した際、凹部分のコンデンサ素子側の面が露出して、それぞれ、陽極、陰極のフィレット面102,103となる。図11に製品寸法に切断後の図を示してあり、図11(a)は陽極側の側面図、図11(b)は陰極側の側面図、図11(c)は図11(a)、図11(b)のC−C線に沿った断面図である。この方法では、凹部分を下面電極型固体電解コンデンサの外形内部に形成する必要があり、コンデンサ素子の体積効率の向上は難しい。また、めっきが形成された凹部で切断するためフィレットを安定して形成することが困難であり、さらに、ダイシングによる凹部の切断の精度が十分でない場合フィレット面が削られる可能性がある。   There exists patent document 3 as a technique which solves these. FIG. 10 shows an internal perspective view before cutting into product dimensions. The lead frames 104 and 105 are processed into a concave shape, and the inside of the concave portion is plated. When cut by the alternate long and short dash lines 101a and 101b in the figure, the capacitor element side surfaces of the concave portions are exposed to become anode and cathode fillet surfaces 102 and 103, respectively. FIG. 11 shows a view after cutting into product dimensions, FIG. 11 (a) is a side view on the anode side, FIG. 11 (b) is a side view on the cathode side, and FIG. 11 (c) is FIG. 11 (a). FIG. 12 is a cross-sectional view taken along the line CC of FIG. In this method, it is necessary to form the concave portion inside the outer shape of the bottom electrode type solid electrolytic capacitor, and it is difficult to improve the volume efficiency of the capacitor element. In addition, it is difficult to stably form a fillet because it is cut at the recessed portion where plating is formed, and the fillet surface may be scraped if the accuracy of cutting the recessed portion by dicing is not sufficient.

特開2004−228424号公報JP 2004-228424 A 特開2001−52961号公報JP 2001-52961 A 特開2005−197457号公報JP 2005-197457 A

小型、薄型化を目的とした下面電極型固体電解コンデンサは、特許文献1のように樹脂外装後にフィレット面部分をめっきする必要があり、フィレット面形成による製品特性劣化、生産性の低下、設備投資大、コストの増加という問題がある。また、特許文献2の技術についても同様の問題がある。   The bottom electrode type solid electrolytic capacitor for the purpose of miniaturization and thinning needs to be plated with the fillet surface part after the resin exterior as in Patent Document 1. Product characteristic deterioration, productivity reduction, and capital investment due to fillet surface formation There is a problem of an increase in cost. The technique of Patent Document 2 has the same problem.

さらに、電極端子に凹部を形成し、その内部にめっき処理面を設け、それを切断することで下面電極型固体電解コンデンサの側面にフィレット面を露出させる特許文献3では、リードフレームの曲げ精度、ダイシングによる凹部の切断の精度が十分でないなどの要因でフィレット面が削られる可能性が高く、小型化が進むと安定した生産が難しくなる。   Further, in Patent Document 3 in which a recess is formed in the electrode terminal, a plating treatment surface is provided therein, and the fillet surface is exposed on the side surface of the bottom electrode type solid electrolytic capacitor by cutting it, the bending accuracy of the lead frame, There is a high possibility that the fillet surface will be scraped due to factors such as insufficient cutting accuracy of the concave portion by dicing, and stable production becomes difficult as miniaturization progresses.

この状況にあって、本発明の課題は、小型の下面電極型であり、生産性および信頼性に優れるめっき処理されたフィレット面を有する固体電解コンデンサを提供することにある。   In this situation, an object of the present invention is to provide a solid electrolytic capacitor that is a small bottom electrode type and has a plated fillet surface that is excellent in productivity and reliability.

本願発明は上記課題を解決するための手段を提供するものであって、その構成は、陽極となる多孔質の弁作用金属体の表面に誘電体酸化皮膜が形成されこの誘電体酸化皮膜上に固体電解質層を含む陰極層が形成されてなるコンデンサ素子が、板状の絶縁性樹脂層の2つの主面の一方に前記コンデンサ素子と相対する第1の導電層が形成され他方には実装端子としての第2の導電層が形成され前記第1および第2の導電層が電気接続されてなる基板の上に配置され、前記コンデンサ素子の外周部が前記基板の一部分と共に樹脂外装された固体電解コンデンサにおいて、前記基板の樹脂外装されない部分が外装樹脂側面に沿って折り曲げられたことを特徴とする。   The invention of the present application provides means for solving the above-mentioned problems. The structure of the present invention is that a dielectric oxide film is formed on the surface of a porous valve metal body serving as an anode, and the dielectric oxide film is formed on the dielectric oxide film. A capacitor element in which a cathode layer including a solid electrolyte layer is formed has a first conductive layer opposite to the capacitor element formed on one of two main surfaces of a plate-like insulating resin layer, and a mounting terminal on the other A solid electrolysis in which a second conductive layer is formed and disposed on a substrate in which the first and second conductive layers are electrically connected, and an outer peripheral portion of the capacitor element is covered with a resin together with a part of the substrate The capacitor is characterized in that a portion of the substrate not covered with resin is bent along the side surface of the outer resin.

前記第1の導電層の厚みが前記第2の導電層に比べて厚いことは、基板に適度な厚みを確保しながらフィレット形成部を薄くするために、望ましい。   It is desirable that the thickness of the first conductive layer is thicker than that of the second conductive layer in order to make the fillet forming portion thinner while ensuring an appropriate thickness for the substrate.

前記基板での前記外装樹脂側面に沿って折り曲げられる部分には前記第2の導電層のみが形成されていることは望ましい。   It is desirable that only the second conductive layer is formed on a portion of the substrate that is bent along the side surface of the exterior resin.

本発明では、下面電極型固体電解コンデンサを形成する基板の一部をコンデンサ側面方向に折り曲げてフィレット面とすることで、従来のめっきでフィレット面を形成する方法に見られる製品特性劣化、生産性の低下、設備投資大、コストの増加といった問題が無く、さらに、リードフレームを凹状に加工し、その内部がめっきしてあるものを切断し露出させフィレット面とする方法に比べ安定した生産ができる。   In the present invention, a part of the substrate for forming the bottom electrode type solid electrolytic capacitor is bent into the side surface of the capacitor to form a fillet surface, thereby deteriorating product characteristics and productivity seen in the conventional method of forming the fillet surface by plating. There are no problems such as lowering of the cost, large capital investment, and cost increase. Furthermore, the lead frame is processed into a concave shape, and the inside is plated and cut to expose the fillet surface. .

また、第1の導電層が第2の導電層に比べて厚い基板を用いることで、基板が、製造工程中で破損しにくい十分な強度を持ち、かつ、フィレット形成部の厚みを薄くすることができる。   Further, by using a substrate in which the first conductive layer is thicker than the second conductive layer, the substrate has sufficient strength that is difficult to break during the manufacturing process, and the thickness of the fillet forming portion is reduced. Can do.

また、フィレット面となる部分の基板を第2導電層のみにすることで、フィレットを曲げたときの寸法精度を高くすることができ、さらなる小型化も可能になる。   In addition, by using only the second conductive layer as a portion of the substrate serving as the fillet surface, the dimensional accuracy when the fillet is bent can be increased, and further miniaturization is possible.

次に、本発明の実施の形態について、図を用いて説明する。まず、図1に本発明により作製した下面電極型固体電解コンデンサの構造を示す。図1(a)は陽極側端面の側面図であるが、陰極側端面も同形状である。図1(b)は図1(a)のA−A線に沿った断面図である。   Next, embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 shows the structure of a bottom electrode type solid electrolytic capacitor manufactured according to the present invention. FIG. 1A is a side view of the anode side end face, but the cathode side end face has the same shape. FIG.1 (b) is sectional drawing along the AA line of Fig.1 (a).

コンデンサ素子1の陽極リード線2と導電性の枕木3とをレーザー溶接もしくは抵抗溶接により接合し、枕木3と基板の枕木陽極接続部5を、導電性接着剤10、もしくはレーザー溶接、抵抗溶接により接合する。コンデンサ素子1の陰極部分は、基板のコンデンサ素子陰極接続部6に導電性接着剤10を用いて接着する。外装樹脂11は、液状エポキシ樹脂を用いて形成したり、インジェクションモールド、トランスファーモールドといった方法で、エポキシ樹脂、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)、LCP(液晶ポリマー)等、鉛フリーリフローに耐えられる耐熱性のある樹脂を用いて形成する。外装後、ダイシングによりフィレット面12,13となる基板部分を残し、外装樹脂とともに不要な部分を切断し、最後に基板のフィレット面12,13部分を曲げる。   The anode lead wire 2 of the capacitor element 1 and the conductive sleeper 3 are joined by laser welding or resistance welding, and the sleeper 3 and the sleeper anode connection portion 5 of the substrate are joined by the conductive adhesive 10 or laser welding or resistance welding. Join. The cathode portion of the capacitor element 1 is bonded to the capacitor element cathode connection portion 6 of the substrate using the conductive adhesive 10. The exterior resin 11 is formed using a liquid epoxy resin, injection molding, transfer molding, or the like, such as epoxy resin, PPS (polyphenylene sulfide), PEEK (polyether ether ketone), LCP (liquid crystal polymer), etc. It is formed using a heat-resistant resin that can withstand reflow. After the exterior packaging, the substrate portions to be the fillet surfaces 12 and 13 are left by dicing, unnecessary portions are cut together with the exterior resin, and finally the fillet surfaces 12 and 13 portions of the substrate are bent.

その基板部分について説明する。基板は、絶縁性樹脂4の両面に、それぞれ、コンデンサ素子接続面には、枕木陽極接続部5、コンデンサ素子陰極接続部6の導電性部分をもつパターン、すなわち第1の導電層が形成され、コンデンサ実装電極面は、コンデンサ実装面陽極7、コンデンサ実装面陰極8、陽極のフィレット面12、陰極のフィレット面13の導電性部分をもつパターン、すなわち第2の導電層が形成してある。コンデンサ素子接続面とコンデンサ実装電極面の陰極、陽極それぞれの導電性部分はビア9により電気的に接続されている。   The substrate portion will be described. The substrate is formed with a pattern having conductive portions of sleeper anode connection portion 5 and capacitor element cathode connection portion 6 on the both sides of the insulating resin 4 on the capacitor element connection surface, that is, a first conductive layer, The capacitor mounting electrode surface is formed with a pattern having a conductive portion of the capacitor mounting surface anode 7, the capacitor mounting surface cathode 8, the anode fillet surface 12, and the cathode fillet surface 13, that is, a second conductive layer. Conductive portions of the cathode and anode of the capacitor element connection surface and the capacitor mounting electrode surface are electrically connected by vias 9.

図2にコンデンサ素子接続面の導電性部分のパターンを平面図で示す。樹脂外装を、二点鎖線部22より外側のフィレット面となる基板上に外装樹脂を形成しないように行い、一点鎖線部21で基板および外装樹脂を切断後、二点鎖線部22でフィレット面となる基板部分を紙面の手前方向に折り曲げる。破線部23が図1のビア9部分に対応する。ビアの数は多い方が電気抵抗が小さくなるが、コスト等を考慮し1〜5個程度が適当である。   FIG. 2 is a plan view showing the pattern of the conductive portion on the capacitor element connection surface. The resin sheathing is performed so as not to form the exterior resin on the substrate that becomes the fillet surface outside the two-dot chain line portion 22, and after cutting the substrate and the exterior resin at the one-dot chain line portion 21, the two-dot chain line portion 22 The board portion to be bent is folded toward the front side of the paper. The broken line portion 23 corresponds to the via 9 portion in FIG. The larger the number of vias, the smaller the electrical resistance. However, about 1 to 5 is appropriate considering the cost and the like.

図3にコンデンサ実装電極面の導電性部分のパターンを底面図で示す。一点鎖線部21で基板および外装樹脂を切断後、二点鎖線部22でフィレット面12,13となる基板部分を紙面の奥方向に折り曲げる。このとき、絶縁性樹脂は、ガラスエポキシ、ポリイミドを使用するが、LCP、PEEK等を使用することも可能である。厚みは80〜10μmが適当である。導電性部分はコンデンサ素子接続面、コンデンサ実装電極面ともに、銅に金めっきをしたものである。従って、フィレット面12,13も同様である。厚みはめっき部分も含め60〜10μmが適当である。   FIG. 3 is a bottom view showing the pattern of the conductive portion on the capacitor mounting electrode surface. After the substrate and the exterior resin are cut at the alternate long and short dash line portion 21, the substrate portions that become the fillet surfaces 12 and 13 are bent at the two-dot chain line portion 22 in the depth direction of the paper surface. At this time, glass epoxy or polyimide is used as the insulating resin, but LCP, PEEK, or the like can also be used. The thickness is suitably 80 to 10 μm. The conductive portion is obtained by gold plating on copper on both the capacitor element connection surface and the capacitor mounting electrode surface. Therefore, the fillet surfaces 12 and 13 are the same. The thickness is suitably 60 to 10 μm including the plated part.

このようにして本実施の形態の固体電解コンデンンサを得るが、実際の作製工程では、多数個のコンデンサ素子を1つの基板上に接続した後、樹脂外装の工程を経て、切断および折り曲げの工程を行う。その詳細については、以下の実施例で説明する。   In this way, the solid electrolytic capacitor of the present embodiment is obtained. However, in an actual manufacturing process, after a large number of capacitor elements are connected on one substrate, a process of cutting and bending is performed through a resin sheathing process. Do. Details thereof will be described in the following examples.

(実施例1)
コンデンサ素子の作製については、公知の技術によるので簡略にして、タンタルを弁作用金属として用いた場合を説明する。タンタル線のまわりに、タンタル粉末をプレス機で成型し、高真空・高温度で焼結する。次にタンタル金属粉末の表面にTaの酸化皮膜を形成する。さらに、硝酸マンガンに浸漬した後、熱分解して、MnOを形成し、引き続き、グラファイトおよびAgによる陰極層を形成して、コンデンサ素子を得る。なお、陰極層のMnOに換えて、ポリチオフェンあるいはポリピロールなどの導電性高分子を用いると、コンデンサ素子単体として低ESRを得ることが容易になる。また、弁作用金属として、タンタルの他に、ニオブ、アルミニウム、チタンなどを用いることができる。
(Example 1)
Since the capacitor element is manufactured by a known technique, the case where tantalum is used as the valve metal will be described in a simplified manner. Around the tantalum wire, tantalum powder is molded with a press and sintered at high vacuum and high temperature. Next, an oxide film of Ta 2 O 5 is formed on the surface of the tantalum metal powder. Further, after being immersed in manganese nitrate, it is thermally decomposed to form MnO 2 , and subsequently a cathode layer made of graphite and Ag is formed to obtain a capacitor element. If a conductive polymer such as polythiophene or polypyrrole is used instead of MnO 2 in the cathode layer, it is easy to obtain a low ESR as a capacitor element alone. In addition to tantalum, niobium, aluminum, titanium, or the like can be used as the valve metal.

本実施例で使用した基板は、絶縁性樹脂にガラスエポキシ約60μm、導電性部分に銅の金めっき片面約20μm、合計厚み約100μm、コンデンサの取り数が20個×10列=200個、コンデンサ素子接続面、コンデンサ実装電極面のパターンは上述した図2、図3に示したものである。   The substrate used in this example is about 60 μm of glass epoxy for insulating resin, about 20 μm of gold-plated copper on the conductive part, total thickness of about 100 μm, 20 capacitors × 10 rows = 200 capacitors, The patterns of the element connection surface and the capacitor mounting electrode surface are the same as those shown in FIGS.

作製手順を順に説明する。まず、図1を参照して、コンデンサ素子1に接続されている陽極リード2を枕木3と抵抗溶接により接着した。本実施例では、枕木3は42アロイの銀めっき品を用いた。枕木3の母材として銅、ステンレス等、めっきとして金、スズ、パラジウム等を使用することも可能である。   The manufacturing procedure will be described in order. First, referring to FIG. 1, anode lead 2 connected to capacitor element 1 was bonded to sleeper 3 by resistance welding. In this embodiment, the sleeper 3 is a 42 alloy silver-plated product. It is also possible to use copper, stainless steel or the like as the base material of the sleeper 3 and gold, tin, palladium or the like as the plating.

基板の枕木陽極接続部5とコンデンサ素子陰極接続部6にディスペンサーを用いて銀を含むエポキシ系の導電性接着剤10を塗布し、その上に枕木3を溶接したコンデンサ素子をマウントし、150℃、30分間加熱し硬化させ基板と接着した。   The epoxy-based conductive adhesive 10 containing silver is applied to the sleeper anode connection part 5 and the capacitor element cathode connection part 6 of the substrate using a dispenser, and the capacitor element welded with the sleeper 3 is mounted thereon, and 150 ° C. Then, it was cured by heating for 30 minutes and adhered to the substrate.

図4にこれ以降の作製手順を、各工程で作製された物を正面側と右端側面から図示することで説明する。(1)接続工程では、前記したコンデンサ素子と基板を接続した状態を示した。今回使用した基板51は、正面方向にコンデンサ素子が10列、側面方向に20個並べることができるものである。   FIG. 4 illustrates the subsequent production procedure by illustrating the product produced in each step from the front side and the right end side. (1) In the connection step, the state in which the capacitor element and the substrate are connected is shown. The substrate 51 used this time can arrange 10 capacitor elements in the front direction and 20 in the side direction.

(2)樹脂外装工程では樹脂外装後の状態を示した。外装樹脂は正面側に示したように、フィレット面12,13となる部分の基板上に樹脂を形成しないようにする必要があるため、コンデンサ素子の列の間に外装樹脂の無い部分を設けてあり凸凹形状である。それに対し、側面では、外装樹脂が連続的に形成してある。本実施例では外装樹脂に液状エポキシ樹脂を使用し、金型に基板を取り付けた後、真空状態で液状エポキシ樹脂を金型に注入し、150℃、3分間加熱後、金型から基板を取り出し150℃、3時間加熱し液状エポキシ樹脂を硬化させた。   (2) In the resin sheathing process, the state after the resin sheathing is shown. As shown in the front side of the exterior resin, it is necessary to prevent the resin from being formed on the portion of the substrate that becomes the fillet surfaces 12 and 13, so a portion without the exterior resin is provided between the capacitor element rows. There is an uneven shape. On the other hand, the exterior resin is continuously formed on the side surface. In this embodiment, a liquid epoxy resin is used as the exterior resin, the substrate is attached to the mold, the liquid epoxy resin is injected into the mold in a vacuum state, heated at 150 ° C. for 3 minutes, and then the substrate is taken out from the mold. The liquid epoxy resin was cured by heating at 150 ° C. for 3 hours.

(3)切断工程ではダイシングにより基板と外装樹脂を切断した後の状態を示した。正面の図は、フィレット面部分を残し基板が切断され、側面の図では、外装樹脂と基板が目的の製品寸法に切断されている。   (3) In the cutting step, the state after cutting the substrate and the exterior resin by dicing is shown. In the front view, the substrate is cut leaving the fillet surface portion, and in the side view, the exterior resin and the substrate are cut to the desired product dimensions.

(4)折り曲げ工程では、金型を使用し基板を曲げた後の状態を示した。この状態で完成である。   (4) In the bending step, the state after bending the substrate using a mold is shown. It is completion in this state.

作製の手順として、外装樹脂で外装後の状態で、製品サイズに切断後一つ一つフィレット面部分の基板を曲げるのではなく、金型で基板上の全てのフィレット面部分を曲げてから製品サイズに切断する方法も考えられる。この方法では、あらかじめフィレット面部分を折り曲げられるように基板を加工しておく必要がある。   Instead of bending the fillet surface part of the substrate after it has been cut into product sizes, it is necessary to bend all the fillet surface parts on the substrate with a mold. A method of cutting into sizes is also conceivable. In this method, it is necessary to process the substrate in advance so that the fillet surface portion can be bent.

(実施例2)
本実施例で使用した基板は、実施例2の固体電解コンデンサの断面図である図5を参照すると、絶縁性樹脂4の厚みが約40μm、コンデンサ素子接続面の導電性部分(第1の導電層)の厚みが約40μm、コンデンサ実装電極面の導電性部分(第2の導電層)の厚みが約20μmと、導電性部分の厚みが異なる構造であり、フィレット面12,13の厚みが実施例1に比べ、コンデンサあたり合計で40μm薄くできる。導電性部分の厚みを両方薄くすることも可能であるが、基板が薄くなりすぎると、生産時に破損する確率が高くなるため適度な厚みが必要である。その他の部分に関しては実施例1と同様である。
(Example 2)
Referring to FIG. 5 which is a cross-sectional view of the solid electrolytic capacitor of Example 2, the substrate used in this example is approximately 40 μm in thickness of the insulating resin 4 and the conductive portion (first conductive material) on the capacitor element connection surface. Layer) has a thickness of about 40 μm, and the conductive part (second conductive layer) on the capacitor mounting electrode surface has a thickness of about 20 μm. The thickness of the conductive part is different, and the thickness of the fillet surfaces 12 and 13 is implemented. Compared to Example 1, the total thickness can be reduced by 40 μm per capacitor. Although it is possible to reduce both the thicknesses of the conductive portions, if the substrate is too thin, the probability of breakage during production increases, so an appropriate thickness is required. Other parts are the same as those in the first embodiment.

(実施例3)
本実施例で使用した基板のコンデンサ素子接続面を図6に平面図で示した。基板のフィレット面となる部分61a,61bには絶縁性樹脂4およびコンデンサ素子接続面の導電層が無く、コンデンサ実装電極面の導電層(第2の導電層)のみになっている。その他の部分に関しては、実施例1と同様である。作製した固体電解コンデンサの断面図を図7に示した。
(Example 3)
The capacitor element connection surface of the substrate used in this example is shown in a plan view in FIG. The portions 61a and 61b that become the fillet surfaces of the substrate do not have the insulating resin 4 and the conductive layer on the capacitor element connection surface, but only the conductive layer (second conductive layer) on the capacitor mounting electrode surface. Other parts are the same as those in the first embodiment. A cross-sectional view of the produced solid electrolytic capacitor is shown in FIG.

(実施例4)
実施例2では、図5を参照すると、導電性接着剤10で枕木3と枕木陽極接続部5を接続したが、本実施例ではレーザーで接続した。他は、実施例2と同様である。
Example 4
In Example 2, referring to FIG. 5, the sleeper 3 and the sleeper anode connection part 5 were connected by the conductive adhesive 10, but in this example, they were connected by a laser. Others are the same as in the second embodiment.

基板の枕木陽極接続部5はAuをめっきしてあるためレーザーのエネルギーを吸収し難く、基板内部の温度が上がり難く絶縁性樹脂4へのダメージが小さくなる。接続は枕木3と基板の枕木陽極接続部5の合金化ではなく、枕木3の一部分をレーザーで融かし、それが枕木3と基板の枕木陽極接続部5の界面、基板上面に流れ固まることで接続した。また、本実施例では実施例1に比べ基板のCu層(導電性部分)が厚いため熱拡散性が良く、絶縁性樹脂4に与える影響が小さい。   Since the sleeper anode connecting portion 5 of the substrate is plated with Au, it is difficult to absorb the energy of the laser, the temperature inside the substrate is difficult to rise, and the damage to the insulating resin 4 is reduced. The connection is not the alloying of the sleeper 3 and the sleeper anode connection part 5 of the substrate, but a part of the sleeper 3 is melted by a laser, and it flows and hardens on the interface between the sleeper 3 and the sleeper anode connection part 5 of the substrate and on the upper surface of the substrate. Connected with. Further, in this embodiment, since the Cu layer (conductive portion) of the substrate is thicker than in the first embodiment, the thermal diffusibility is good and the influence on the insulating resin 4 is small.

この部分をレーザーで接続できることで、導電性接着剤10の使用量が枕木3と基板の枕木陽極接続部5の接続分だけ減り、製造スピードも大幅に向上する。   Since this portion can be connected with a laser, the amount of the conductive adhesive 10 used is reduced by the amount of connection between the sleeper 3 and the sleeper anode connection portion 5 of the substrate, and the manufacturing speed is greatly improved.

(比較例1)
本比較例での製造方法の詳細は、特許文献1に開示された技術に改良を加えたものである。図8は樹脂外装後の内部透視図で、図中の一点鎖線部81a,81bで製品寸法に切断したのが、図9である。図9(a)は陽極側の側面図、図9(b)は陰極側の側面図、図9(c)は、図9(a)、図9(b)のB−B線に沿った断面図である。特許文献1には、記載されていないが、通常はリードフレーム82,83の切断面にめっき処理をすることで、はんだ濡れ性のよいフィレット面12,13を形成する。本比較例では、Snめっき処理を行った。
(Comparative Example 1)
The details of the manufacturing method in this comparative example are obtained by improving the technique disclosed in Patent Document 1. FIG. 8 is an internal perspective view after the resin sheathing, and FIG. 9 is a cross-sectional view cut into product dimensions at the alternate long and short dash lines 81a and 81b. 9A is a side view of the anode side, FIG. 9B is a side view of the cathode side, and FIG. 9C is along the line BB in FIGS. 9A and 9B. It is sectional drawing. Although not described in Patent Document 1, the fillet surfaces 12 and 13 having good solder wettability are usually formed by plating the cut surfaces of the lead frames 82 and 83. In this comparative example, Sn plating treatment was performed.

(比較例2)
本比較例での製造方法の詳細は特許文献3に開示されている。図10は樹脂外装後の内部透視図で、リードフレーム82,83は凹状に加工したものを用い、図中の一点鎖線部101a,101bで切断した際、凹部分のコンデンサ素子側の面が露出して、それぞれ、陽極、陰極のフィレット面102,103となる。図11に製品寸法に切断後の図を示す。図11(a)は陽極側の側面図、図11(b)は陰極側の側面図、図11(c)は、図11(a)、図11(b)のC−C線に沿った断面図である。本比較例では、凹部の形状は直方体とし、内部はSnめっき処理を行った。
(Comparative Example 2)
Details of the manufacturing method in this comparative example are disclosed in Patent Document 3. FIG. 10 is an internal perspective view after the resin exterior, and the lead frames 82 and 83 are processed into a concave shape. When the lead frames 82 and 83 are cut along the one-dot chain line portions 101a and 101b in FIG. Thus, the fillet surfaces 102 and 103 of the anode and the cathode are formed, respectively. FIG. 11 shows a view after cutting into product dimensions. 11A is a side view of the anode side, FIG. 11B is a side view of the cathode side, and FIG. 11C is along the line CC in FIGS. 11A and 11B. It is sectional drawing. In this comparative example, the shape of the recess was a rectangular parallelepiped, and the inside was subjected to Sn plating.

表1に本発明の実施例1〜3、比較例1〜2の方法で、それぞれ100個下面電極型固体電解コンデンサを作製したときのフィレット外観不良発生数と、信頼性試験として耐湿試験を行ったときの不良発生数を示した。外観不良は、陽極フィレット、陰極フィレットの大きさが設計面積の2/3以下となったものを不良とした。耐湿放置試験はESRが初期値の1.5倍となったものを不良とした。   Table 1 shows the number of fillet appearance defects when 100 bottom surface electrode type solid electrolytic capacitors were produced by the methods of Examples 1 to 3 and Comparative Examples 1 and 2 of the present invention, and a moisture resistance test as a reliability test. The number of occurrences of defects was shown. Appearance defects were defined as those in which the size of the anode fillet and cathode fillet was 2/3 or less of the design area. In the moisture resistance leaving test, an ESR of 1.5 times the initial value was regarded as defective.

Figure 2009004671
Figure 2009004671

表1のように、実施例1〜3、比較例1では外観不良は無かったが、比較例2では、4個発生した。これは、比較例2では、フィレット面を切断する際、非常に高い位置精度が要求されることと、フィレット面102,103となるリードフレーム104,105の凹部分の強度が弱いためと考えられる。   As shown in Table 1, there were no appearance defects in Examples 1 to 3 and Comparative Example 1, but in Comparative Example 2, four occurred. This is probably because, in Comparative Example 2, when the fillet surface is cut, very high positional accuracy is required, and the strength of the concave portions of the lead frames 104 and 105 that become the fillet surfaces 102 and 103 is weak. .

耐湿放置試験(65℃、95%RH、1000hr)では、実施例1〜3、比較例2では不良は無かったが、製品寸法に切断後フィレット面をめっきした比較例1で不良が3個発生した。この結果は、めっき液につけることが、信頼性を低下させる原因になっていることを示している。   In the moisture resistance test (65 ° C., 95% RH, 1000 hr), there were no defects in Examples 1 to 3 and Comparative Example 2, but three defects occurred in Comparative Example 1 in which the fillet surface was plated after cutting into product dimensions. did. This result indicates that application to the plating solution causes a decrease in reliability.

また、実施例1に比べ、実施例2では40μm、実施例3では160μmだけフィレット形成部の厚みを薄くでき、体積効率を向上させることができる。   Further, compared to the first embodiment, the thickness of the fillet forming portion can be reduced by 40 μm in the second embodiment and 160 μm in the third embodiment, and the volume efficiency can be improved.

以上のように、本発明により作製した下面電極型固体電解コンデンサは、従来の下面電極型固体電解コンデンサに比べて、比較例1(特許文献1に対応)のように樹脂外装後にフィレット面部分をめっきする必要が無く、フィレット面形成による製品特性劣化、生産性の低下、コスト増加を改善できる。   As described above, the bottom electrode type solid electrolytic capacitor fabricated according to the present invention has a fillet surface portion after resin coating as in Comparative Example 1 (corresponding to Patent Document 1), as compared with the conventional bottom electrode type solid electrolytic capacitor. There is no need for plating, which can improve product characteristic deterioration, productivity reduction and cost increase due to fillet surface formation.

また、電極端子に凹部を形成し、その内部にめっき処理面を設け、それを切断することで下面電極型固体電解コンデンサの側面にフィレット面を露出させる比較例2(特許文献3に対応)では、ダイシングによる凹部の切断の精度が十分でない場合フィレット面が削られる可能性が高いが、本発明では、切断後に基板を曲げてフィレット面を形成するため削られる心配が無く不良が発生しづらい。このことは、下面電極型固体電解コンデンサが小型化した場合に大きな優位性を持つ。   Further, in Comparative Example 2 (corresponding to Patent Document 3) in which a recess is formed in the electrode terminal, a plating treatment surface is provided therein, and the fillet surface is exposed on the side surface of the bottom electrode type solid electrolytic capacitor by cutting it. If the accuracy of cutting the concave portion by dicing is not sufficient, the fillet surface is highly likely to be scraped. However, in the present invention, the substrate is bent after cutting to form the fillet surface, so that there is no fear of scraping and it is difficult for defects to occur. This has a great advantage when the bottom electrode type solid electrolytic capacitor is downsized.

以上、本発明の実施例を説明したが、本発明は、この実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更があっても、本発明に含まれる。すなわち、当業者であれば、なしえるであろう各種変形、修正を含むことはもちろんである。たとえば、上記実施例では、弁作用金属からなる陽極リードおよび粉末をプレスおよび真空焼結してなる多孔質焼結体を用いてコンデンサ素子を作製したが、板状または箔状の弁作用金属をエッチングにより拡面化した多孔質体を用いてコンデンサ素子を作製してもよいことは明らかである。   As mentioned above, although the Example of this invention was described, this invention is not limited to this Example, Even if there is a design change of the range which does not deviate from the summary of this invention, it is included in this invention. That is, it goes without saying that various modifications and corrections that can be made by those skilled in the art are included. For example, in the above example, a capacitor element was produced using an anode lead made of a valve metal and a porous sintered body obtained by pressing and vacuum-sintering powder, but a plate-like or foil-like valve metal was used. It is obvious that a capacitor element may be manufactured using a porous body whose surface is enlarged by etching.

本発明の実施の形態および実施例1に係る固体電解コンデンサを示し、図1(a)は陽極側端面の側面図、図1(b)は図1(a)のA−A線に沿った断面図。The solid electrolytic capacitor which concerns on embodiment and Example 1 of this invention is shown, Fig.1 (a) is a side view of an anode side end surface, FIG.1 (b) followed the AA line of Fig.1 (a). Sectional drawing. 本発明の実施の形態および実施例1に係る基板でのコンデンサ素子接続面の導電性部分のパターンをを示す平面図。The top view which shows the pattern of the electroconductive part of the capacitor | condenser element connection surface in the board | substrate which concerns on embodiment and Example 1 of this invention. 本発明の実施の形態および実施例1に係る基板での導電性部分のパターンを示す底面図。The bottom view which shows the pattern of the electroconductive part in the board | substrate which concerns on embodiment and Example 1 of this invention. 本発明の実施例に係るコンデンサ素子と基板接続後の固体電解コンデンサ製造工程を示す図。The figure which shows the solid electrolytic capacitor manufacturing process after the capacitor | condenser element which concerns on the Example of this invention, and board | substrate connection. 実施例2の固体電解コンデンサの断面図。Sectional drawing of the solid electrolytic capacitor of Example 2. FIG. 実施例3で使用した基板のコンデンサ素子接続面を示す平面図。6 is a plan view showing a capacitor element connection surface of a substrate used in Example 3. FIG. 実施例3の固体電解コンデンサの断面図。Sectional drawing of the solid electrolytic capacitor of Example 3. FIG. 従来例および比較例1の固体電解コンデンサの樹脂外装後の内部透視図。The internal perspective figure after the resin exterior of the solid electrolytic capacitor of a prior art example and the comparative example 1. FIG. 従来例および比較例1の固体電解コンデンサの切断後の図であり、図9(a)は陽極側の側面図、図9(b)は陰極側の側面図、図9(c)は図9(a)、図9(b)のB−B線に沿った断面図。FIGS. 9A and 9B are views after cutting the solid electrolytic capacitors of the conventional example and the comparative example 1, in which FIG. 9A is a side view on the anode side, FIG. 9B is a side view on the cathode side, and FIG. Sectional drawing along the BB line of (a) and FIG.9 (b). 従来例および比較例2の固体電解コンデンサの樹脂外装後の内部透視図。The internal perspective figure after the resin exterior of the solid electrolytic capacitor of a prior art example and the comparative example 2. FIG. 従来例および比較例2の固体電解コンデンサの製品寸法に切断後の図であり、図11(a)は陽極側の側面図、図11(b)は陰極側の側面図、図11(c)は、図11(a)、図11(b)のC−C線に沿った断面図。FIGS. 11A and 11B are views after cutting into product dimensions of the solid electrolytic capacitors of the conventional example and the comparative example 2, FIG. 11A is a side view on the anode side, FIG. 11B is a side view on the cathode side, and FIG. These are sectional drawings along CC line of Drawing 11 (a) and Drawing 11 (b).

符号の説明Explanation of symbols

1 コンデンサ素子
2 陽極リード線
3 枕木
4 絶縁性樹脂
5 枕木陽極接続部
6 コンデンサ素子陰極接続部
7 コンデンサ実装面陽極
8 コンデンサ実装面陰極
9 ビア
10 導電性接着剤
11 外装樹脂
12,13,102,103 フィレット面
21,81a,81b,101a,101b 一点鎖線部
22 二点鎖線部
23 破線部
51 基板
61a,61b フィレット面となる部分
82,83,104,105 リードフレーム
84 絶縁性接着剤
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode lead wire 3 Sleeper 4 Insulating resin 5 Sleeper anode connection part 6 Capacitor element cathode connection part 7 Capacitor mounting surface anode 8 Capacitor mounting surface cathode 9 Via 10 Conductive adhesive 11 Exterior resin 12, 13, 102, 103 fillet surface 21, 81a, 81b, 101a, 101b alternate long and short dash line portion 22 alternate long and two short dashes line portion 23 broken line portion 51 substrate 61a, 61b portions 82, 83, 104, 105 which become fillet surfaces lead frame 84 insulating adhesive

Claims (3)

陽極となる多孔質の弁作用金属体の表面に誘電体酸化皮膜が形成されこの誘電体酸化皮膜上に固体電解質層を含む陰極層が形成されてなるコンデンサ素子が、
板状の絶縁性樹脂層の2つの主面の一方に前記コンデンサ素子と相対する第1の導電層が形成され他方には実装端子としての第2の導電層が形成され前記第1および第2の導電層が電気接続されてなる基板の上に配置され、
前記コンデンサ素子の外周部が前記基板の一部分と共に樹脂外装された固体電解コンデンサにおいて、
前記基板の樹脂外装されない部分が外装樹脂側面に沿って折り曲げられたことを特徴とする固体電解コンデンサ。
A capacitor element in which a dielectric oxide film is formed on the surface of a porous valve action metal body serving as an anode and a cathode layer including a solid electrolyte layer is formed on the dielectric oxide film,
A first conductive layer facing the capacitor element is formed on one of the two main surfaces of the plate-like insulating resin layer, and a second conductive layer as a mounting terminal is formed on the other, and the first and second A conductive layer is disposed on a substrate formed by electrical connection,
In the solid electrolytic capacitor in which the outer periphery of the capacitor element is resin-coated with a part of the substrate,
A solid electrolytic capacitor, wherein a portion of the substrate not covered with resin is bent along a side surface of the outer resin.
前記第1の導電層の厚みが前記第2の導電層に比べて厚いことを特徴とする請求項1記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein a thickness of the first conductive layer is thicker than that of the second conductive layer. 前記基板での前記外装樹脂側面に沿って折り曲げられる部分には前記第2の導電層のみが形成されていることを特徴とする請求項1記載の固体電解コンデンサ。   2. The solid electrolytic capacitor according to claim 1, wherein only the second conductive layer is formed on a portion of the substrate that is bent along the side surface of the exterior resin.
JP2007165842A 2007-06-25 2007-06-25 Solid electrolytic capacitor Expired - Fee Related JP4817458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165842A JP4817458B2 (en) 2007-06-25 2007-06-25 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165842A JP4817458B2 (en) 2007-06-25 2007-06-25 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009004671A true JP2009004671A (en) 2009-01-08
JP4817458B2 JP4817458B2 (en) 2011-11-16

Family

ID=40320708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165842A Expired - Fee Related JP4817458B2 (en) 2007-06-25 2007-06-25 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4817458B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225606A (en) * 2009-03-19 2010-10-07 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
JP2011040700A (en) * 2009-08-12 2011-02-24 Samsung Electro-Mechanics Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2013084826A (en) * 2011-10-12 2013-05-09 Nec Tokin Corp Solid electrolytic capacitor
US11688554B2 (en) * 2020-09-23 2023-06-27 Samsung Electro-Mechanics Co., Ltd. Tantalum capacitor and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817686A (en) * 1994-04-28 1996-01-19 Rohm Co Ltd Structure of packaged solid electrolytic capacitor
JP2000114102A (en) * 1998-09-29 2000-04-21 Nippon Chemicon Corp Chip-type capacitor and its manufacture
JP2006093343A (en) * 2004-09-22 2006-04-06 Tdk Corp Solid electrolyte capacitor
JP2006278875A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817686A (en) * 1994-04-28 1996-01-19 Rohm Co Ltd Structure of packaged solid electrolytic capacitor
JP2000114102A (en) * 1998-09-29 2000-04-21 Nippon Chemicon Corp Chip-type capacitor and its manufacture
JP2006093343A (en) * 2004-09-22 2006-04-06 Tdk Corp Solid electrolyte capacitor
JP2006278875A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Solid electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225606A (en) * 2009-03-19 2010-10-07 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
JP2011040700A (en) * 2009-08-12 2011-02-24 Samsung Electro-Mechanics Co Ltd Solid electrolytic capacitor and method of manufacturing the same
US8411417B2 (en) 2009-08-12 2013-04-02 Samsung Electro-Mechanics Co., Ltd. Solid electrolytic condenser with enhanced volumetric efficiency
JP2013084826A (en) * 2011-10-12 2013-05-09 Nec Tokin Corp Solid electrolytic capacitor
US11688554B2 (en) * 2020-09-23 2023-06-27 Samsung Electro-Mechanics Co., Ltd. Tantalum capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP4817458B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4878103B2 (en) Manufacturing method of chip-type solid electrolytic capacitor
US7835138B2 (en) Solid electrolytic capacitor and method of manufacturing same
TWI247323B (en) Thin surface mounted type solid electrolytic capacitor
US20080106854A1 (en) Lead frame, method of manufacturing a face-down terminal solid electrolytic capacitor using the lead frame, and face-down terminal solid electrolytic capacitor manufactured by the method
JP2009099913A (en) Multi terminal type solid-state electrolytic capacitor
KR20080007874A (en) Chip type solid electrolytic capacitor
US20060126273A1 (en) Solid electrolytic capacitor with face-down terminals, manufacturing method of the same, and lead frame for use therein
JP2006040938A (en) Solid electrolytic capacitor, laminated capacitor using the same and its manufacturing method
JP4817458B2 (en) Solid electrolytic capacitor
JP2005079357A (en) Chip type solid electrolytic capacitor, its manufacturing method, and lead frame used therefor
US7525790B2 (en) Solid electrolytic capacitor with face-down terminals
KR20110132199A (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP2017092237A (en) Solid electrolytic capacitor and manufacturing method thereof
US20070230091A1 (en) Solid electrolytic capacitor and method of making same
JP3806818B2 (en) Chip type solid electrolytic capacitor
JPH08115855A (en) Lamination-type solid electrolytic capacitor
KR102127816B1 (en) Tantalum capacitor and method of preparing the same
JP2002025858A (en) Solid-state electrolytic capacitor and its manufacturing method
JP2008311583A (en) Solid electrolytic capacitor, and its manufacturing method
JP2007013043A (en) Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
JP5469960B2 (en) Bottom electrode type solid electrolytic capacitor and manufacturing method thereof
JP4276774B2 (en) Chip-shaped solid electrolytic capacitor
JP4767275B2 (en) Solid electrolytic capacitor
JP5201684B2 (en) Chip type solid electrolytic capacitor
JP4285346B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees