JP2009002278A - 過給機を有する内燃機関の制御装置 - Google Patents

過給機を有する内燃機関の制御装置 Download PDF

Info

Publication number
JP2009002278A
JP2009002278A JP2007165397A JP2007165397A JP2009002278A JP 2009002278 A JP2009002278 A JP 2009002278A JP 2007165397 A JP2007165397 A JP 2007165397A JP 2007165397 A JP2007165397 A JP 2007165397A JP 2009002278 A JP2009002278 A JP 2009002278A
Authority
JP
Japan
Prior art keywords
load
supercharger
exhaust
engine
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007165397A
Other languages
English (en)
Inventor
Akihide Okuyama
晃英 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007165397A priority Critical patent/JP2009002278A/ja
Publication of JP2009002278A publication Critical patent/JP2009002278A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】部分負荷時に十分な燃費向上効果を得ることが可能な内燃機関の制御装置を提供する。
【解決手段】プライマリターボのみを作動させる運転の際、部分負荷時の目標過給圧を全負荷時に比して高く算出する。算出された目標過給圧となるように部分負荷時のVN開度VNAを全負荷時に比して閉じ側にすることで、部分負荷時の過給圧PBが高められ、部分負荷時の筒内吸入空気量が増加する。部分負荷時の空燃比をリーン化することにより、燃費向上効果が得られる。
【選択図】図4

Description

本発明は、2つの過給機を並列に備えた内燃機関の制御装置に関する。
2つの過給機を並列に備え、1つの過給機による運転(以下「1過給機運転」という。)と、両方の過給機による運転(以下「2過給機運転」という。)とを切換可能な装置が知られている(例えば、特許文献1参照。)。この特許文献1の装置では、低回転域から高回転域への遷移時に、可変ノズルが絞られると共に、両方の過給機を作動させることで、機関背圧と過給圧の急低下を防止することができる。
特開2005−155356号公報 特開昭63−129120号公報
しかしながら、上記特許文献1の装置では、機関回転数を考慮して可変ノズルを制御することが記載されているものの、機関負荷が考慮されていない。このため、燃費悪化やエミッション悪化が生じる可能性がある。
本発明は、上述のような課題を解決するためになされたもので、部分負荷時に十分な燃費向上効果を得ることが可能な内燃機関の制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、第1過給機と第2過給機とを並列に有する内燃機関の制御装置であって、
前記第1過給機のみを作動させる運転と、前記第1過給機と前記第2過給機の両方を作動させる運転とを、機関回転数に応じて切り換える切換手段と、
機関負荷に基づいて目標過給圧を算出する目標過給圧算出手段とを備え、
前記目標過給圧算出手段は、前記第1過給機のみを作動させる運転の際に、部分負荷時の目標過給圧を全負荷時に比して高く算出することを特徴とする。
また、第2の発明は、第1の発明において、
前記第1過給機は、可変ノズルと、該可変ノズルの開度である可変ノズル開度を制御する可変ノズル開度制御手段とを有し、
前記可変ノズル開度制御手段は、前記第1過給機のみを作動させる運転の際に、部分負荷時の可変ノズル開度を全負荷時に比して閉じ側にすることを特徴とする。
また、第3の発明は、第1又は第2の発明において、
前記内燃機関から排出された排気ガスの一部を吸気系に環流させるEGR通路と、
前記第1過給機のタービン下流の排気通路に設けられ、該タービン下流の排気通路の開口面積を変更可能な排気絞り弁と、
前記機関負荷に応じて、前記排気絞り弁の開度を制御する排気絞り弁制御手段とを更に備え、
前記排気絞り弁制御手段は、前記第1過給機のみを作動させる運転の際に、低負荷時から中負荷時の前記排気絞り弁を全負荷時に比して閉じ側にすることを特徴とする。
第1の発明では、第1過給機のみを作動させる運転の際に、部分負荷時の目標過給圧が全負荷時に比して高く算出される。これにより、部分負荷時の過給圧が全負荷時に比して高められるため、筒内吸入空気量を増やすことができる。従って、第1の発明によれば、部分負荷時の空燃比をリーン化することができるため、部分負荷時に十分な燃費向上効果を得ることができる。
第2の発明では、第1過給機のみを作動させる運転の際に、部分負荷時の可変ノズル開度が、全負荷時に比して閉じ側にされる。これにより、部分負荷時の過給圧を全負荷時に比して高めることができるため、筒内吸入空気量を増やすことができる。
第3の発明では、第1過給機のみを作動させる運転の際に、低負荷時から中負荷時の排気絞り弁が全負荷時に比して閉じ側にされる。これにより、低負荷時から中負荷時の背圧を高めることができる。従って、第3の発明によれば、EGR効果を高めることができるため、第1又は第2の発明に比してNOx排出量を低減することができる。
以下、図面を参照して本発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1によるシステムの構成を説明するための図である。図1に示すシステムは、プライマリターボ過給機(以下「プライマリターボ」という。)20とセカンダリターボ過給機(以下「セカンダリターボ」という。)30とがエンジン1に対して並列に接続された、いわゆる可変容量型シーケンシャルターボシステムである。
図1に示すように、エンジン1は、複数の気筒2に対応して、複数のインジェクタ4を備えている。各インジェクタ4は、高圧の燃料を気筒2内に直接噴射するように構成されている。エンジン1は、エンジン回転数NEを検出する回転数センサ6を備えている。
エンジン1には、吸気マニホールド8が接続されている。吸気マニホールド8には、過給圧センサ10が設けられている。過給圧センサ10は、後述するコンプレッサ21,31によって過給された吸入空気の圧力(以下「過給圧」という。)PBを検出するように構成されている。
吸気マニホールド8には吸気通路12が接続されている。吸気通路12の途中には、スロットル弁14が設けられている。スロットル弁14は、スロットルモータ15により駆動される電子制御弁である。スロットル弁14は、アクセル開度センサ17により検出されるアクセル開度AA等に基づいて駆動されるものである。スロットル弁14の近傍には、スロットル開度TAを検出するスロットル開度センサ16が設けられている。スロットル弁14の上流には、過給された空気を冷却するインタークーラ18が設けられている。
インタークーラ18上流の吸気通路12には、プライマリターボ20のコンプレッサ21が配置されている。プライマリターボ20のタービン22は、後述する排気通路40に設けられている。タービン22には、可変ノズル(以下「VN」ともいう。)23が設けられている。すなわち、プライマリターボ20は、VN付きのターボ過給機(VNターボ過給機)である。可変ノズル23は、タービン22の開口面積を可変にすることで、タービン22の流量特性を可変にするように構成されている。可変ノズル23は、アクチュエータ24により駆動される。
プライマリターボ20のコンプレッサ21をバイパスするように、吸気通路12に吸気通路26が接続されている。すなわち、コンプレッサ21の下流に吸気通路26の一端が接続され、コンプレッサ21の上流に吸気通路26の他端が接続されている。吸気通路26には、セカンダリターボ30のコンプレッサ31が配置されている。セカンダリターボ30のタービン32は、後述する排気通路42に設けられている。コンプレッサ31下流の吸気通路26には、吸気制御弁28が設けられている。
コンプレッサ21上流の吸気通路12には、吸入空気量Gaを検出するエアフロメータ34が設けられている。エアフロメータ34の上流には、エアクリーナ36が設けられている。エアクリーナ36の上流は、大気解放されている。
また、エンジン1には、上記吸気マニホールド14と対向するように、排気マニホールド38が接続されている。排気マニホールド38には排気通路40が接続されている。排気通路40には、プライマリターボ20のタービン22が配置されている。タービン22は、排気通路40を流通する排気ガスのエネルギによって回転駆動される。
プライマリターボ20のタービン22をバイパスするように、排気通路40に排気通路42が接続されている。すなわち、タービン22の下流に排気通路42の一端が接続され、タービン22の上流に排気通路42の他端が接続されている。排気通路42には、セカンダリターボ30のタービン32が配置されている。タービン32は、排気通路42を流通する排気ガスのエネルギによって回転駆動される。タービン32下流の排気通路42には、排気制御弁44が設けられている。タービン22下流の排気通路40には、排気ガスを浄化するための触媒46が設けられている。
排気マニホールド38には、EGR通路48の一端が接続されている。EGR通路48の他端は、吸気通路12に接続されている。このEGR通路48により、排気ガスの一部を吸気通路12に環流させることが可能となる。EGR通路48の途中には、EGR通路48を流れる排気ガス(以下「EGRガス」という。)を冷却するEGRクーラ50が設けられている。EGRクーラ50よりも吸気通路12側のEGR通路48には、EGRガスの流量を制御するEGR弁52が設けられている。
本実施の形態1のシステムは、制御装置であるECU(Electronic Control Unit)60を備えている。ECU60の入力側には、回転数センサ6、過給圧センサ10、スロットル開度センサ16、アクセル開度センサ17、エアフロメータ34等が接続されている。ECU60の出力側には、インジェクタ4、スロットルモータ15、アクチュエータ24、吸気制御弁28、排気制御弁44、EGR弁52等が接続されている。
ECU60は、スロットル開度TAに基づいてエンジン負荷KLを算出する。ECU60は、エンジン負荷KLに基づいて軸トルクを算出する。さらに、ECU60は、軸トルクに基づいて燃料噴射量を算出する。また、ECU60は、アクチュエータ24を駆動制御することで、可変ノズル23の開度(以下「VN開度」という。)VNAを制御する。
[実施の形態1の特徴]
図2は、プライマリターボ20及びセカンダリターボ30の作動領域を示す図である。図2に示すように、エンジン回転数NEが所定値NEthより低い場合には、吸気制御弁28と排気制御弁44は共に閉弁され、プライマリターボ20のみが作動する。一方、エンジン回転数NEが所定値NEth以上である場合には、吸気制御弁28と排気制御弁44は共に開弁され、プライマリターボ20とセカンダリターボ30が共に作動する。
図中の実線L1は、プライマリターボとしてVNターボ過給機を用いた場合に達成される軸トルク曲線を示している。図中の一点鎖線L2は、プライマリターボとしてウェイストゲート(WG)型ターボ過給機を用いた場合に達成される軸トルク曲線を示している。
ところで、既述した特許文献1の可変容量型シーケンシャルターボシステムでは、エンジン回転数NEを考慮してVN開度が制御されている。
しかしながら、上記特許文献1のシステムでは、VN開度の制御に際して、エンジン負荷が考慮されていない。本発明者の検討により、エンジン負荷を考慮せずにVN開度を制御すると、燃費悪化やエミッション悪化が発生する可能性があることが分かった。
本実施の形態1では、図3に示すように、エンジン負荷KLを考慮して、目標過給圧PBtを算出する。図3は、本実施の形態1において、エンジン負荷KLに応じて定められた目標過給圧PBtを示す図である。図3は、プライマリターボ20のみが作動する運転時において、エンジン回転数NEが一定である場合の両者の関係を示している。
図3に示すように、全負荷時に比して使用頻度が高い部分負荷時の目標過給圧PBtが、全負荷時の目標過給圧PBt100に比して高く算出される。ピークの目標過給圧PBtpとなるエンジン負荷KLpは、例えば、50〜80%の間で設定される。
後述するように、VN開度VNAは、目標過給圧PBtに基づいて制御される。よって、本実施の形態1では、VN開度VNAが、エンジン負荷KLを考慮して制御されることとなる。
なお、低負荷時(例えば、KL≦40)は、中負荷及び全負荷時に比して排気エネルギが小さいため、VN開度を閉じたとしても過給圧PBが上昇しない。このため、低負荷時の目標過給圧PBtは、全負荷時の目標過給圧PBt100に比して低く算出されている。
このようにエンジン負荷KLを考慮して目標過給圧PBtを算出した場合に得られる燃費改善効果について、図4を参照して説明する。図4は、図2に示すエンジン回転数NE1における燃費改善効果を説明するための図である。より詳細には、図4(A)はエンジン負荷KLとVN開度VNAとの関係を、図4(B)はエンジン負荷KLと過給圧PBとの関係を、図4(C)はエンジン負荷KLと空燃比との関係を、図4(D)はエンジン負荷KLと燃費率との関係を、それぞれ示す図である。
なお、図2において太い実線L1で示すように、エンジン回転数NE1ではVNターボ過給機により達成される軸トルクは最大トルクに達していない。
図4における太い実線L3は、本実施の形態1により得られる特性を表している。すなわち、実線L3は、図1に示すシステムを用い、かつ、エンジン負荷KLを考慮して目標過給圧PBtを算出する場合に得られる特性を表している。一方、図4における細い実線L4は、VN付きターボ過給機を1つ有するシステムにより得られる特性を表している。また、破線L5は、2つのWG型ターボ過給機を並列に有するシステムにより得られる特性を表している。
図3に示すようにエンジン負荷KLを考慮して目標過給圧PBtが算出されると、図4(A)において実線L3で示すようなVN開度VNAに制御される。すなわち、全負荷時に比して部分負荷時のVN開度VNAが絞り側にされる。そうすると、図4(B)において実線L3で示すような過給圧PBが実現される。すなわち、全負荷時に比して部分負荷時の過給圧PBが高くなる。
ここで、燃料噴射量が同じであるとすると、気筒内に吸入される空気量(以下「筒内吸入空気量」という。)が多いほど、図示出力が高くなる。よって、多量の筒内吸入空気量が得られる場合には、所望の図示トルクを得るための燃料噴射量を減らすことができる。これにより、図4(C)に示すように、部分負荷時に空燃比をリーン化することができる。よって、図4(D)に示すように、十分な燃費向上効果を達成することができる。
一方、従来の過給圧制御によれば、図4(B)において実線L4及び破線L5で示すように、エンジン負荷KLが高いほど過給圧PBが高くされていた。かかる従来の過給圧制御では、部分負荷時の過給圧PBがさほど高くされていないため、部分負荷時に筒内吸入空気量を増加させることができなくなる。このため、部分負荷時に所望の図示トルクを得つつ、燃料噴射量を減らすことができなくなる。そうすると、部分負荷時に空燃比をリーン化するどころか、逆に空燃比がリッチ化してしまうため、燃費悪化を招来する可能性がある。
[実施の形態1における具体的処理]
図5は、本実施の形態1において、ECU60が実行するルーチンを示すフローチャートである。本ルーチンは、プライマリターボ20のみが作動する領域、つまり、エンジン回転数NEが所定値NEth未満である場合に起動される。
図5に示すルーチンによれば、先ず、エンジン回転数NEとエンジン負荷KLを取得する(ステップ100)。
次に、エンジン負荷KLに応じた目標過給圧PBtを算出する(ステップ102)。ECU60は、エンジン回転数NE毎に、例えば、図3に示すマップのように、エンジン負荷KLと目標過給圧PBtとの関係が規定されたマップを記憶している。このステップ102では、上記ステップ100で取得されたエンジン回転数NEに応じたマップが読み出された後、該マップを参照して、上記ステップ100で取得されたエンジン負荷KLに応じた目標過給圧PBtが算出される。
次に、VN開度VNAと過給圧PBを取得する(ステップ104)。その後、上記ステップ104で取得された過給圧PBが、上記ステップ102で算出された目標過給圧PBt以上であるか否かを判別する(ステップ106)。このステップ106では過給圧PBが目標過給圧PBtに達したか否かが判別される。
上記ステップ106で過給圧PBが目標過給圧PBtに達していないと判別された場合には、VN開度VNAを所定量ΔVNAだけ閉じる(ステップ108)。このステップ108のVN開度VNAの閉じ制御により、過給圧PBが高められる。その後、上記ステップ104の処理に戻り、過給圧PBが取得される。その後、上記ステップ106の判別処理が再度実行される。これらのステップ104〜108の処理により、VN開度VNAがフィードバック制御される。このフィードバック制御によれば、部分負荷時のVN開度VNAが全負荷時に比して閉じ側にされる。
一方、上記ステップ106で過給圧PBが目標過給圧PBt以上であると判別された場合には、本ルーチンを終了する。
以上説明したように、本実施の形態1では、部分負荷時の目標過給圧PBtが全負荷時に比して高く算出される。この目標過給圧PBtを実現するため、部分負荷時のVN開度VNAが全負荷時に比して絞り側に制御される。これにより、部分負荷時の過給圧PBが全負荷時に比して高くされるため、部分負荷時に十分な筒内吸入空気量が確保される。そうすると、所望の図示トルクを得つつ、燃料噴射量を減らすことができる。これにより、部分負荷時に空燃比をリーン化することができるため、部分負荷時の燃費を大幅に向上させることができる。
ところで、本実施の形態1では、セカンダリターボ30のタービン32には可変ノズルが設けられていないが、プライマリターボ20のように可変ノズルが設けられていてもよい。
尚、本実施の形態1においては、プライマリターボ20が第1の発明における「第1過給機」に、セカンダリターボ30が第1の発明における「第2過給機」に、吸気制御弁28、排気制御弁44及びECU60が第1の発明における「切換手段」に、可変ノズル23が第2の発明における「可変ノズル」に、それぞれ相当する。また、本実施の形態1においては、ECU60が、ステップ102の処理を実行することにより第1の発明における「目標過給圧算出手段」が、ステップ108の処理を実行することにより第2の発明における「可変ノズル開度制御手段」が、それぞれ実現されている。
実施の形態2.
次に、図6及び図7を参照して、本発明の実施の形態2について説明する。
図6は、本実施の形態2によるシステムの構成を説明するための図である。図6に示すシステムは、図1に示す構成のほか、タービン22下流に排気絞り弁45を備えている。排気絞り弁45は、タービン22下流の排気通路40の開口面積を可変にするものである。この排気絞り弁45は、ECU60の出力側に接続されている。
ECU60は、後述するように、プライマリターボ20のみ作動する場合において、低負荷時〜中負荷時に排気絞り弁45を絞り側に制御する。
[実施の形態2の特徴]
将来的に、車両走行時の使用頻度の高い低負荷時〜中負荷時において、NOx排出規制が更に厳しくなることが想定される。
NOx排出量を低減するために、高EGR率(例えば、40%以上)にする手法が考えられる。この高EGR率を達成するために、背圧(排気マニホールド38内の圧力)を高める手法が考えられる。
ところが、従来のVN制御によれば、低速トルク性能要求から全負荷時の過給圧が最も高くなるように、VN開度VNAが制御されている。すなわち、図7(F)において一点鎖線L6で示すように、全負荷時のVN開度VNAが、最も絞り側(最小絞り開度)にされている。
しかし、この従来のVN制御では、低負荷〜中負荷時の過給圧が低くなってしまう。かかる過給圧が低い状態で、高EGR率を実現すべく背圧を高めると、スモークが発生する可能性や、空燃比のリッチ化に伴い燃費が悪化する可能性がある。また、ターボサージを回避するために、VN開度の閉じ量には限界がある。
そこで、本実施の形態2では、低負荷時〜中負荷時に、全負荷時に比して排気絞り弁45の開度が絞り側に制御される。かかる排気絞り弁45の制御により得られるNOx排出量低減効果について、図7を参照して説明する。
図7は、本実施の形態2において、排気絞り弁45を作動させることにより得られるNOx排出量低減効果を説明するための図である。より詳細には、図7(A)はエンジン負荷KLと過給圧PBとの関係を、図7(B)はエンジン負荷KLと背圧との関係を、図7(C)はエンジン負荷KLとEGR率との関係を、それぞれ示す図である。ここで、背圧は、排気マニホールド38内の排気圧力、すなわち、タービン22上流の排気圧力である。また、図7(D)はエンジン負荷KLとNOx排出量との関係を、図7(E)はエンジン負荷KLと筒内吸入空気量との関係を、図7(F)はエンジン負荷KLとVN開度VNAとの関係を、それぞれ示す図である。
図7における太い実線L3は、排気絞り弁45を絞ることなく、上記実施の形態1と同様にエンジン負荷KLを考慮して目標過給圧PBtを算出することにより得られる特性を表している。また、図7における破線L6は、本実施の形態2において、低負荷時から中負荷時に排気絞り弁45を絞ることにより得られる特性を表している。一方、図7における一点鎖線L7は、VN付き過給機を並列に2つ有するシステムを用い、かつ、エンジン負荷KLを考慮しない従来のVN制御を行うことにより得られる特性を表している。
図7(F)に示すように、従来のVN制御によれば、低速トルク性能要求の強い全負荷時の過給圧PBが最も高くなるように(図7(A)参照)、全負荷時のVN開度VNAが最も絞り側にされている。よって、低負荷時〜中負荷時には、図7(A)に示すように過給圧PBが低くなると共に、図7(B)に示すように背圧も低くなる。上述したように、過給圧PBが低い状態で背圧を高めると、スモークが発生する可能性がある。よって、図7(C)に示すように、従来のVN制御では、EGR率を高めることができない。
一方、上記実施の形態1のように、エンジン負荷KLを考慮して目標過給圧PBtを算出すると、図7(F)において実線L3で示すように、全負荷時に比して部分負荷時のVN開度VNAが絞り側にされる。その結果、図7(A)に示すように、部分負荷時の過給圧PBが高められる。これにより、図7(E)に示すように、部分負荷時の筒内吸気量を従来のVN制御時に比して増加させることができる。
さらに、従来のVN制御時に比して、図7(B)に示すように背圧を高めることができるため、図7(C)に示すようにEGR率を高めることができる。その結果、NOx排出量を、従来のVN制御時に比して減らすことができる。
さらなるNOx排出量の低減を実現すべく、本実施の形態2では、低負荷時〜中負荷時において、排気絞り弁45が絞り側に制御される。具体的には、エンジン負荷KLが所定範囲KL1〜KL2内で、排気絞り弁45が絞られる。なお、この所定範囲は、車種に応じて予め設定することができる。排気絞り弁45が絞られると、タービン22の膨張比が稼げなくなるため、排気絞り弁45を絞らない場合(実線L3参照)に比して、図7(E)に示すように筒内吸気量がやや減少する。よって、排気絞り弁45を絞らない場合に比して、燃費向上効果は若干減少する。
しかし、図7(B)に示すように、排気絞り弁45を絞ることで、絞らない場合よりも低負荷時〜中負荷時における背圧を更に高めることができる。ここで、図7(A)に示すように、排気絞り弁45を絞る場合には絞らない場合に比して過給圧PBがやや低くなっているものの、スモークの発生を抑制するためには十分な過給圧PBに達している。よって、図7(C)に示すように、排気絞り弁45を絞る場合には、背圧を高めても、スモークの発生を抑制することができる。さらに、空燃比のリッチ化を防止することができるため、燃費悪化を防止することができるという効果も得られる。
従って、本実施の形態2によれば、低負荷時〜中負荷時におけるEGR率を高めることができるため、低負荷時〜中負荷時におけるNOx排出量を上記実施の形態1よりも更に低減することができる。
尚、本実施の形態2においては、タービン22が第3の発明における「タービン」に、排気通路40が第3の発明における「排気通路」に、ECU60が第3の発明における「排気絞り弁制御手段」に、それぞれ相当する。
本発明の実施の形態1によるシステムの構成を説明するための図である。 プライマリターボ20及びセカンダリターボ30の作動領域を示す図である。 本実施の形態1において、エンジン負荷KLに応じて定められた目標過給圧PBtを示す図である。 図2に示すエンジン回転数NE1における燃費改善効果を説明するための図である。 本発明の実施の形態1において、ECU60が実行するルーチンを示すフローチャートである。 本発明の実施の形態2によるシステムの構成を説明するための図である。 本発明の実施の形態2において、排気絞り弁45を作動させることにより得られるNOx排出量低減効果を説明するための図である。
符号の説明
1 エンジン
2 気筒
10 過給圧センサ
20 プライマリターボ
22 タービン
23 可変ノズル(VN)
24 アクチュエータ
28 吸気制御弁
30 セカンダリターボ
40 排気通路
44 排気制御弁
45 排気絞り弁
60 ECU

Claims (3)

  1. 第1過給機と第2過給機とを並列に有する内燃機関の制御装置であって、
    前記第1過給機のみを作動させる運転と、前記第1過給機と前記第2過給機の両方を作動させる運転とを、機関回転数に応じて切り換える切換手段と、
    機関負荷に基づいて目標過給圧を算出する目標過給圧算出手段とを備え、
    前記目標過給圧算出手段は、前記第1過給機のみを作動させる運転の際に、部分負荷時の目標過給圧を全負荷時に比して高く算出することを特徴とする内燃機関の制御装置。
  2. 請求項1に記載の内燃機関の制御装置において、
    前記第1過給機は、可変ノズルと、該可変ノズルの開度である可変ノズル開度を制御する可変ノズル開度制御手段とを有し、
    前記可変ノズル開度制御手段は、前記第1過給機のみを作動させる運転の際に、部分負荷時の可変ノズル開度を全負荷時に比して閉じ側にすることを特徴とする内燃機関の制御装置。
  3. 請求項1又は2に記載の内燃機関の制御装置において、
    前記内燃機関から排出された排気ガスの一部を吸気系に環流させるEGR通路と、
    前記第1過給機のタービン下流の排気通路に設けられ、該タービン下流の排気通路の開口面積を変更可能な排気絞り弁と、
    前記機関負荷に応じて、前記排気絞り弁の開度を制御する排気絞り弁制御手段とを更に備え、
    前記排気絞り弁制御手段は、前記第1過給機のみを作動させる運転の際に、低負荷から中負荷時の排気絞り弁を全負荷時に比して閉じ側にすることを特徴とする内燃機関の制御装置。
JP2007165397A 2007-06-22 2007-06-22 過給機を有する内燃機関の制御装置 Pending JP2009002278A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165397A JP2009002278A (ja) 2007-06-22 2007-06-22 過給機を有する内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165397A JP2009002278A (ja) 2007-06-22 2007-06-22 過給機を有する内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2009002278A true JP2009002278A (ja) 2009-01-08

Family

ID=40318920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165397A Pending JP2009002278A (ja) 2007-06-22 2007-06-22 過給機を有する内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2009002278A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858646B2 (ja) * 2009-05-12 2012-01-18 トヨタ自動車株式会社 過給システム制御装置
JP2013194541A (ja) * 2012-03-16 2013-09-30 Yanmar Co Ltd エンジン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858646B2 (ja) * 2009-05-12 2012-01-18 トヨタ自動車株式会社 過給システム制御装置
JP2013194541A (ja) * 2012-03-16 2013-09-30 Yanmar Co Ltd エンジン

Similar Documents

Publication Publication Date Title
RU2718389C2 (ru) Способ (варианты) и система для управления наддувом
JP5187123B2 (ja) 内燃機関の制御装置
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
US20150135706A1 (en) Internal combustion engine and control method thereof
KR100962160B1 (ko) 과급압 제어
JP5136654B2 (ja) 内燃機関の制御装置
JP5169439B2 (ja) 内燃機関制御装置及び内燃機関制御システム
JP2008280923A (ja) エンジンの過給装置
JP2009191745A (ja) 内燃機関の制御装置
JP2013060914A (ja) 内燃機関の制御装置
CN107178444B (zh) 提供扭矩辅助的方法和系统
CN109661511B (zh) 内燃机的控制方法以及控制装置
JP4736969B2 (ja) ディーゼルエンジンの制御装置
JP2007085198A (ja) 内燃機関の過給圧制御システム
JP2006299892A (ja) 過給機付き内燃機関
JP6127906B2 (ja) 内燃機関の制御装置
JP2009002278A (ja) 過給機を有する内燃機関の制御装置
JP2009209887A (ja) 内燃機関の制御装置
CN110637150A (zh) 压缩天然气发动机的进气排气构造
JP2010168954A (ja) 内燃機関の制御装置
US11149666B2 (en) Control method and control device for vehicular internal combustion engine
WO2019198320A1 (ja) 内燃機関の制御装置、および、制御方法
JP4982712B2 (ja) 内燃機関の制御装置
JP2008075545A (ja) エンジンの過給装置
JP2014231821A (ja) 過給機付き内燃機関の制御装置