JP2009000799A - Work management system - Google Patents

Work management system Download PDF

Info

Publication number
JP2009000799A
JP2009000799A JP2007166450A JP2007166450A JP2009000799A JP 2009000799 A JP2009000799 A JP 2009000799A JP 2007166450 A JP2007166450 A JP 2007166450A JP 2007166450 A JP2007166450 A JP 2007166450A JP 2009000799 A JP2009000799 A JP 2009000799A
Authority
JP
Japan
Prior art keywords
tool
work
arm
brake
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166450A
Other languages
Japanese (ja)
Inventor
Yasuichi Oshima
康市 尾島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEC Corp
Original Assignee
KEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEC Corp filed Critical KEC Corp
Priority to JP2007166450A priority Critical patent/JP2009000799A/en
Publication of JP2009000799A publication Critical patent/JP2009000799A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a work management system which can realize accurate work without interposing an active guide. <P>SOLUTION: The work management system comprises: a work management means which stores information about a work position and a work sequence and outputs a next work position for a tool; a tool position detecting means for, based on a relative angle and the effective length of each arm, detecting the horizontal position of the tool position and detecting the vertical position of the tool position; a moving direction detecting means for detecting the moving direction of the tool based on the difference in position between before the detection of the position and after the detection of the position detected by the tool position detecting means; a target direction detecting means for detecting the direction of the next work position from the tool position; an operating direction determining means for comparing the tool moving direction with the direction of the next work position to determine the proximity of the tool to the next work position; and an electric resistance regulating means which releases a brake in each connecting part when the tool is relatively close to the next work position and operates the brake in each connecting part when the tool is relatively away from the next work position. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ネジ締めや溶接等の組立作業等において、その作業具の軌道管理を以って作業手順を教授し監視するシステムに関する。   The present invention relates to a system for teaching and monitoring a work procedure by managing track of a work tool in assembly work such as screw tightening and welding.

産業用ロボットが普及する今日では、種々の製造作業が自動的に行おうとする傾向があるが、その中にあっても、人による組立作業等の重要性は欠かせないのが実情である。しかしながら、人による作業は、当然にミスが伴うという欠点があり、例えば、種々の機器を組み立てるに際して、ネジ締めや溶接といった作業が伴うが、ネジの閉め忘れや溶接漏れ等、或いはそれらの作業を行う為の適正な順序を徹底することは極めて困難であった。また、人による作業は、作業の経過を情報として残し難く、製品の品質維持並びに製造過程を事後管理検証する点でも大きな問題となっている。   Today, industrial robots tend to perform various manufacturing operations automatically. Even in such a situation, the importance of assembly work by humans is indispensable. However, human work has a drawback that it naturally involves mistakes.For example, when assembling various devices, work such as screw tightening or welding is involved, but forgetting to close screws, welding leakage, etc. It was extremely difficult to ensure the proper sequence to do. In addition, the work by humans is difficult to leave the progress of work as information, and is a major problem in terms of maintaining product quality and performing post-management verification of the manufacturing process.

そこで、各作業機器が備えるセンサー出力に基いて採取した作業状況と前記作業プログラムとを照合して、事後的に作業の良否を判別する作業システム(例えば、下記特許文献1参照。)や、ネジの締め忘れが発生した際に警告音を出すシステム(例えば、下記特許文献2参照。)や、前段の装置が首尾よくネジ締め付け作業が完了しない限り、後段の装置が動作しないシステム(例えば、下記特許文献3参照。)が紹介されている。   Therefore, a work system (for example, refer to Patent Document 1 below) or a screw that compares the work status collected based on the sensor output of each work device with the work program to determine the quality of the work afterwards. A system that emits a warning sound when a forgetful tightening occurs (see, for example, Patent Document 2 below), or a system in which a subsequent apparatus does not operate unless the preceding apparatus successfully completes the screw tightening operation (for example, the following Patent Document 3) is introduced.

特開2005−177919号公報JP 2005-177919 A 特開2005−34914号公報JP 2005-34914 A 特開2005−28551号公報JP 2005-28551 A 特開平7−1348号公報JP-A-7-1348

しかしながら、従来のシステムは、事後判断のみで作業者が操作する機器を適正な作業位置へ自然に誘導する措置が施されておらず、その作業の手順は専ら作業者の記憶によるものであった。また、仮に、作業者が機器を持つ手を能動的に誘導する手法を採るとすれば、更に、安全装置を付加して作業者の怪我を防止する措置を採らねばならないと言う問題があった。   However, in the conventional system, no measures are taken to naturally guide the device operated by the worker to an appropriate work position only by a subsequent judgment, and the procedure of the work is exclusively based on the memory of the worker. . In addition, if a method of actively guiding the hand holding the device is taken, there is a problem that a measure must be further taken to prevent the worker from being injured by adding a safety device. .

本発明は、上記実情に鑑みてなされたものであって、能動的な誘導を介すことなく正確な作業を実現できる作業管理システムの提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a work management system capable of realizing an accurate work without active guidance.

上記課題を解決する為になされた本発明による作業管理システムは、任意の基面に対して、水平方向又は垂直方向へ揺動自在又は進退自在に連結された複数のアームからなるフレームと、当該フレームの工具ベース(先部)に取り付けられた工具とを備え、各アームの連結部に相連結するアームの相対角度又は相対進退長(相連結するアームの一方に対して他方が水平方向又は垂直方向へ進退する距離。)を検出する揺動センサ又は進退センサ、及びその揺動抵抗又は進退抵抗を加減するブレーキを備えるものである。   The work management system according to the present invention, which has been made to solve the above-mentioned problems, includes a frame comprising a plurality of arms connected to an arbitrary base surface so as to be swingable or retreatable in a horizontal direction or a vertical direction, and A tool attached to the tool base (tip) of the frame, and the relative angle or relative advancement / retraction length of the arm connected to the connecting portion of each arm (the other is horizontal or vertical with respect to one of the connecting arms) A swing sensor or advancing / retracting sensor that detects a distance to advance and retreat in the direction), and a brake that adjusts the swinging resistance or the advancing / retreating resistance.

当該作業管理システムは、作業位置及び作業順序を備え工具の次作業位置を出力する作業管理手段と、前記相対進退長、又は前記相対角度及び各アームの有効長に基いて、前記基面に平行する面における工具位置の水平位置を導く工具位置検出手段と、前記次作業位置の周囲一定の平面領域に前記工具位置が含まれる事を条件として垂直方向へ揺動又は進退するアームの連結部のブレーキを解除し、当該平面領域に前記工具位置が含まれる事を条件として垂直方向へ揺動又は進退するアームの連結部のブレーキを作動させる昇降規制手段を備える事を特徴とする。   The work management system includes a work management means for outputting a next work position of a tool having a work position and a work order, and parallel to the base surface based on the relative advance / retreat length or the relative angle and the effective length of each arm. A tool position detecting means for deriving a horizontal position of the tool position on the surface to be moved, and a connecting portion of an arm that swings or moves back and forth in the vertical direction on condition that the tool position is included in a certain flat area around the next work position. Elevation regulation means for releasing the brake and operating the brake of the connecting portion of the arm that swings or retreats in the vertical direction on condition that the tool position is included in the planar area is provided.

また、別の形態を採る本発明による作業管理システムは、作業位置及び作業順序を備え工具の次作業位置を出力する作業管理手段と、前記相対進退長、又は前記相対角度及び各アームの有効長(各アームの両端に支持された揺動軸間の長さ)に基いて、前記基面に平行する面における工具位置の水平位置を導くと共に、当該基面に対する工具位置の垂直位置を導く工具位置検出手段と、当該工具位置検出手段により検出した前後の位置変化に基いて、前記工具の移動方向を導く移動方向検出手段と、前記工具位置検出手段により検出した工具位置を起点とする前記次作業位置の方向を導く目的方向検出手段と、前記工具の移動方向と前記次作業位置への方向との比較により当該工具の次作業位置への近接状況を判定する操作方向判定手段と、前記近接状況が近接傾向にある場合には各連結部のブレーキを解除(前記揺動抵抗又は進退抵抗を弱める様に動作させる。)し、前記近接状況が離隔傾向にある場合には各連結部のブレーキを作動(前記揺動抵抗を強める様に動作させる。)させる抵抗調整手段を備えることを特徴とするものである。   The work management system according to the present invention, which takes another form, includes a work management means for outputting a next work position of a tool having a work position and a work order, the relative advance / retreat length, or the relative angle and the effective length of each arm. A tool for guiding the horizontal position of the tool position on a surface parallel to the base surface and the vertical position of the tool position with respect to the base surface based on (the length between the swing shafts supported at both ends of each arm) Position detection means, movement direction detection means for guiding the movement direction of the tool based on a change in position before and after detected by the tool position detection means, and the next position starting from the tool position detected by the tool position detection means Target direction detection means for deriving the direction of the work position; operation direction determination means for determining the proximity of the tool to the next work position by comparing the movement direction of the tool and the direction to the next work position; When the proximity situation tends to be close, the brakes of each connecting part are released (actuate so as to weaken the rocking resistance or advance / retreat resistance), and when the proximity situation tends to separate, each connecting part And a resistance adjusting means for operating the brake (actuating so as to increase the rocking resistance).

当該作業管理システムの具体的構成としては、前記水平位置及び垂直位置を前記基面に平行する面の位置座標で算出する工具位置検出手段と、前記工具の移動方向をベクトルで算出する移動方向検出手段と、前記近接状況を、前記移動方向を示すベクトルが前記工具位置を原点とする相対座標系のうちで次作業位置が存在する象限(例えば、平面状において二つの直線が直交するとき、直線が分かつ平面の四つのそれぞれの部分をいう。)に向いていることを条件として近接方向にあると判定する操作方向判定手段とを備える構成が挙げられる。   As a specific configuration of the work management system, tool position detection means for calculating the horizontal position and the vertical position with position coordinates of a surface parallel to the base surface, and a movement direction detection for calculating the movement direction of the tool with a vector. A quadrant in which a next work position exists in a relative coordinate system whose origin is the tool position (for example, when two straight lines are orthogonal to each other in a plane shape) And an operation direction determination unit that determines that the object is in the proximity direction on the condition that it is directed to each of the four portions of the plane.

更に、前記次作業位置に対する工具の昇降を制御すべく、前記抵抗調整手段に、前記次作業位置の周囲一定の平面領域に前記工具位置が含まれる事を条件として垂直方向へ揺動又は進退するアームの連結部のブレーキを解除する昇降規制手段を備える作業管理システムとして構成することができる。   Further, in order to control the lifting and lowering of the tool with respect to the next work position, the resistance adjusting means swings or moves back and forth in the vertical direction on condition that the tool position is included in a certain flat area around the next work position. It can be configured as a work management system including a lifting control means for releasing the brake of the connecting portion of the arm.

また、工具の使用に関する作業経過及び作業内容を管理すべく、前記工具に稼動検出センサを備え、当該稼動検出センサの出力により当該工具が稼動した位置、及びその稼動時における作業量のデータを保存する作業履歴管理手段を備える作業管理システムとして構成することができる。   In addition, in order to manage the work progress and work contents related to the use of the tool, the tool is provided with an operation detection sensor, and the position of the tool operated by the output of the operation detection sensor and the data of the work amount at the time of operation are stored. It can be configured as a work management system including work history management means.

具体的には、前記工具として自動ネジ締め手段を備え、前記稼動検出センサとしてトルクにセンサを備え、当該工具が稼動した位置、及び稼動時に生じたトルクのデータを保存する作業管理手段を備える作業管理システムとして構成することができる。   Specifically, the work includes automatic screw tightening means as the tool, a torque sensor as the operation detection sensor, and a work management means for storing data on the position where the tool is operated and torque generated during operation. It can be configured as a management system.

本発明による作業管理システムによれば、作業者による手作業でありながら、比較的簡単な構成を以って、事後判断のみならず、作業中においても作業者が操作する機器を適正な作業位置へ自然に誘導する措置が施され、予め、その作業の手順を作業者が記憶せずとも、正しい順序による正確な作業が保証される。また、作業者の操作を解析することによって、受動的に禁止されるべき作業を規制し、規制されない操作にあっては、その反動として明確に許容された旨の認識を得ることが出来るので、機器が作業者の身体に能動的に働くことによる事故を回避できるという効果を奏する。   According to the work management system according to the present invention, although it is a manual work by an operator, not only a post-judgment but also a device operated by the worker during the work can be properly operated with a relatively simple configuration. Measures are naturally guided to ensure accurate work in the correct sequence without the operator having to memorize the work procedure in advance. In addition, by analyzing the operation of the operator, it is possible to regulate the work that should be passively prohibited, and in the operation that is not restricted, you can get a recognition that it is clearly allowed as a reaction, There is an effect that it is possible to avoid an accident caused by the device actively working on the worker's body.

以下、本発明による作業管理システムの実施の形態を図面に基き説明する。
図に示す作業管理システムは、組立台の基面に対して水平方向又は垂直方向へ揺動自在に連結された複数のアームからなるフレーム2と、当該フレーム2の先部に取り付けられた工具3とを備え、各アームの連結部に相連結するアームの相対角度を量的に検出する揺動センサ4、及びその揺動抵抗を加減するブレーキ5を備えるものである。
Embodiments of a work management system according to the present invention will be described below with reference to the drawings.
The work management system shown in the figure includes a frame 2 composed of a plurality of arms connected to a base surface of an assembly table so as to be swingable in a horizontal direction or a vertical direction, and a tool 3 attached to a front portion of the frame 2. And a swing sensor 4 that quantitatively detects the relative angle of the arm phase-connected to the connecting portion of each arm, and a brake 5 that adjusts the swing resistance.

前記組立台の基面とは、位置検出処理上の基面を意味し、基面には組立対象物が常に同じ状態で固定される様な支持手段6を設定する。
当該例におけるフレーム2は、当該基面に基づいてベース(フレームベース)7に水平方向へ揺動する関節(水平関節)8を介して一本のアーム(水平揺動アーム)9を連結し、その先端部に、同じ長さの一対のアーム(垂直揺動アーム)10を具備する平行リンク機構の一方のベース(リンクベース)11を水平関節13を介して連設したものであって、当該平行リンク機構の先端部に設けられたベース(工具ベース)12に工具3として自動ネジ締め手段が装着されている。
The base surface of the assembly table means a base surface in position detection processing, and support means 6 is set on the base surface so that the assembly object is always fixed in the same state.
The frame 2 in this example connects one arm (horizontal swing arm) 9 to a base (frame base) 7 based on the base surface via a joint (horizontal joint) 8 that swings in the horizontal direction, One base (link base) 11 of a parallel link mechanism having a pair of arms (vertical swinging arms) 10 of the same length is connected to the distal end portion via a horizontal joint 13, An automatic screw fastening means is mounted as a tool 3 on a base (tool base) 12 provided at the tip of the parallel link mechanism.

前記フレームベース7と水平揺動アーム9とを連結する水平関節(第1関節)8と、前記水平揺動アーム9とリンクベース11とを連結する水平関節(第2関節)13と、平行リンク機構を構成する垂直揺動アーム10,10とリンクベース11との支持部には、前記揺動センサとブレーキがそれぞれ付設され、フレームにおける各アームの連結部について、相連結するアーム9,10の相対角度θ1,θ2,θ3を、その量に適した電気信号を以って量的に検出すると共に、所定の場合には、当該ブレーキ5を稼動させ作業者が十分に認識できる程度の揺動抵抗を発生させる。   A horizontal joint (first joint) 8 that connects the frame base 7 and the horizontal swing arm 9, a horizontal joint (second joint) 13 that connects the horizontal swing arm 9 and the link base 11, and a parallel link The swing sensor and the brake are respectively attached to the support portions of the vertical swing arms 10 and 10 and the link base 11 constituting the mechanism, and the connecting portions of the arms in the frame are connected to each other. The relative angles θ1, θ2, and θ3 are quantitatively detected with an electrical signal suitable for the amount, and, in a predetermined case, the brake 5 is operated so that the operator can sufficiently recognize the swing. Generate resistance.

前記揺動センサ4は、例えば、回転方向の判別が可能なパルス信号を発するロータリーエンコーダ等を用い、ブレーキ5は、空気圧等で関節部分において揺動軸16,17や相連結するアーム9,10の接触面を圧迫する等の手法等、目的に応じた公知手段を用いれば良い。当該例においては、特に平行リンク機構についてスプリング等の弾性部材19と、当該平行リンク機構を構成するアーム9,10を水平状態より上方へ揺動しない様に規制するストッパ(図示省略)を以って復元機構を構成している。   The swing sensor 4 uses, for example, a rotary encoder that generates a pulse signal capable of discriminating the rotational direction, and the brake 5 is a pneumatic shaft or the like, and the swing shafts 16 and 17 and the arms 9 and 10 connected to each other in the joint portion. Any known means according to the purpose may be used, such as a method of pressing the contact surface. In this example, an elastic member 19 such as a spring, and a stopper (not shown) for restricting the arms 9 and 10 constituting the parallel link mechanism from swinging upward from the horizontal state are used particularly for the parallel link mechanism. The restoration mechanism is configured.

当該作業管理システムは、コンピュータシステムを備え、そのハードウエア資源とソフトウエアとが協働した以下の具体的手段を具備する。   The work management system includes a computer system and includes the following specific means in which hardware resources and software cooperate.

即ち、当該作業管理システムは、作業位置及び作業順序を備え工具の次作業位置を出力する作業管理手段20と、前記揺動センサで検出された相対角度θ1,θ2,θ3と、水平揺動アーム9の有効長R1、及び垂直揺動アーム10の有効長R2に基いて、前記基面に平行する面における工具位置(例えば、工具3における被加工物18との接点の位置)の水平座標を導くと共に、当該基面に対する工具位置の垂直座標を導く工具位置検出手段21と、当該工具位置検出手段21により検出した現在位置と直前位置の位置変化に基いて、前記工具の移動方向を導く移動方向検出手段22と、前記工具位置検出手段により検出した工具位置を起点とする前記次作業位置の方向を導く目的方向検出手段23と、前記工具の移動方向と前記次作業位置への方向との比較により当該工具3の次作業位置への近接状況を判定する操作方向判定手段24と、前記近接状況が近接傾向にある場合には各連結部のブレーキ5を解除し、前記近接状況が離隔傾向にある場合には各連結部(前記第1関節8、第2関節13、及び支持部15)のブレーキ5を作動させる抵抗調整手段14を備える。   That is, the work management system includes work management means 20 having a work position and a work order and outputting a next work position of the tool, relative angles θ1, θ2, θ3 detected by the swing sensor, and a horizontal swing arm. The horizontal coordinate of the tool position (for example, the position of the contact point with the workpiece 18 in the tool 3) on the surface parallel to the base surface is calculated based on the effective length R1 of 9 and the effective length R2 of the vertical swing arm 10. The tool position detecting means 21 for guiding the vertical coordinate of the tool position with respect to the base surface, and the movement for guiding the moving direction of the tool based on the position change between the current position and the previous position detected by the tool position detecting means 21 Direction detection means 22, target direction detection means 23 for deriving the direction of the next work position starting from the tool position detected by the tool position detection means, movement direction of the tool and the next work position The operation direction determination means 24 for determining the proximity situation of the tool 3 to the next work position by comparison with the direction of the tool, and when the proximity situation tends to be close, the brake 5 of each connecting portion is released, and the proximity In the case where the situation tends to be separated, a resistance adjusting means 14 for operating the brake 5 of each connecting portion (the first joint 8, the second joint 13, and the support portion 15) is provided.

前記作業管理手段20は、事前に登録された被加工物18における作業位置及び作業順序を順次出力し、一の被加工物18に要する作業が終了する毎に繰り返すものである。   The work management means 20 sequentially outputs the work position and work order in the workpiece 18 registered in advance, and repeats each time the work required for one workpiece 18 is completed.

当該例における前記工具位置検出手段21は、前記水平位置及び垂直位置を前記基面をXY平面とする三次元座標系における工具の位置座標(X,Y,Z)で算出するものである。当該位置座標の原点は適宜定め、例えば、前記フレームベース7の揺動軸16の中心を原点とする。その場合、水平揺動アーム9と垂直揺動アーム10とが、フレームベース7と工具ベース12との間が最も離隔する状態で、前記基面の基軸(X軸及びY軸)のいずれか一方上(此処では、X軸上。)で一直線となり、且つ垂直遥動アームが10水平となる時における工具位置を(R1+R2,0,0)とし、その際の角度をθ1=0,θ2=0,θ3=0(図3において下折れとなる場合を(+))とすると、(X,Y,Z)=(R1・cosθ1+R2・cosθ3・cos(θ1+θ2),R1・sinθ1+R2・cosθ3・sin(θ1+θ2),R2・sinθ3)となる。   The tool position detecting means 21 in this example calculates the horizontal position and the vertical position with the tool position coordinates (X, Y, Z) in a three-dimensional coordinate system in which the base surface is the XY plane. The origin of the position coordinates is appropriately determined, for example, the center of the swing shaft 16 of the frame base 7 is the origin. In that case, the horizontal swing arm 9 and the vertical swing arm 10 are either one of the base axes (X axis and Y axis) of the base surface in a state where the frame base 7 and the tool base 12 are most separated from each other. The tool position is (R1 + R2, 0, 0) when it is in a straight line above (here, on the X axis) and the vertical swing arm is 10 horizontal, and the angles at that time are θ1 = 0, θ2 = 0. , Θ3 = 0 ((+) in the case of a downward folding in FIG. 3) (X, Y, Z) = (R1 · cos θ1 + R2 · cos θ3 · cos (θ1 + θ2), R1 · sin θ1 + R2 · cos θ3 · sin (θ1 + θ2 ), R2 · sin θ3).

当該例における前記移動方向検出手段22は、移動前後(有効な最終2件のサンプリング座標)のX,Y,及びZの変位を算出し、移動直前の工具位置を起点とする前記工具3の移動方向を移動方向ベクトル(X−X0,Y−Y0,Z−Z0)として保存するものである。尚、有効なサンプリング座標とは、例えば、一定時間における移動量が一定距離以上であるものを対象とする。   The moving direction detection means 22 in this example calculates X, Y, and Z displacements before and after the movement (the last two valid sampling coordinates), and the movement of the tool 3 starting from the tool position immediately before the movement. The direction is stored as a moving direction vector (X-X0, Y-Y0, Z-Z0). The effective sampling coordinates are, for example, those whose movement amount in a certain time is a certain distance or more.

当該例における前記目的方向検出手段23は、前記作業管理手段20から次作業位置を取得し、前記工具位置検出手段21により検出した工具位置(X,Y,Z)を起点とする前記次作業位置(Xp,Yp,Zp)までのX,Y,及びZ成分の所要変異を算出し、当該工具位置(X,Y,Z)から次作業位置(Xp,Yp,Zp)までの方向を目的方向ベクトル(Xp−X,Yp−Y,Zp−Z)として保存するものである。   The target direction detection means 23 in the example acquires the next work position from the work management means 20, and the next work position starting from the tool position (X, Y, Z) detected by the tool position detection means 21. The required variation of X, Y, and Z components up to (Xp, Yp, Zp) is calculated, and the direction from the tool position (X, Y, Z) to the next work position (Xp, Yp, Zp) is the target direction. This is stored as a vector (Xp-X, Yp-Y, Zp-Z).

当該例における前記操作方向判定手段24は、前記移動方向を示す移動方向ベクトル(X−X0,Y−Y0,Z−Z0)が、前記三次元座標系における前記工具位置(X,Y,Z)=(X0,Y0,Z0)を原点とする相対座標系のうちで、次作業位置(Xp,Yp,Zp)が存在する象限に向いていること、例えば、目的方向ベクトル(Xp−X0,Yp−Y0,Zp−Z0)の各成分の正負状況が移動方向ベクトル(X−X0,Y−Y0,Z−Z0)の各成分の正負状況と一致することを条件として近接傾向にあると判定する。   In the example, the operation direction determination means 24 uses the movement direction vector (X-X0, Y-Y0, Z-Z0) indicating the movement direction as the tool position (X, Y, Z) in the three-dimensional coordinate system. = In the relative coordinate system having the origin of (X0, Y0, Z0), it is directed to the quadrant where the next work position (Xp, Yp, Zp) exists, for example, the target direction vector (Xp-X0, Yp) -Y0, Zp-Z0) are determined to be proximate on the condition that the positive / negative status of each component of the moving direction vector (X-X0, Y-Y0, Z-Z0) matches the positive / negative status. .

前記抵抗調整手段14は、前記近接状況が近接傾向にある場合には、油圧或いは空気圧の回路を各連結部のブレーキ5を解除する状態に切り替え、前記近接状況が離隔傾向(近接傾向以外)にある場合には前記回路を前記各連結部のブレーキ5を作動させる方向に切り替える。   When the proximity situation tends to be close, the resistance adjusting means 14 switches the hydraulic or pneumatic circuit to a state in which the brake 5 of each connecting portion is released, and the proximity situation changes to a separation tendency (other than the proximity tendency). In some cases, the circuit is switched to a direction in which the brakes 5 of the respective connecting portions are operated.

更に、当該例にあっては、前記次作業位置に対する工具の昇降を制御すべく、前記抵抗調整手段14に、前記次作業位置(Xp,Yp,Zp)の周囲一定の平面領域に前記工具位置が含まれる事を条件として垂直方向へ揺動する垂直揺動アーム10の連結部のブレーキ5を解除する(垂直)昇降規制手段25を備える作業管理システムとして構成することができる。この場合、その平面領域に入らない限り、Z成分の方向へ容易に下降しない様にロック機構を付設することも考慮され、その場合は、その平面領域に入るまでは、前記移動方向検出手段22、目的方向検出手段23、及び操作方向判定手段24における処理において、Z成分を無視することができる。   Further, in this example, in order to control the raising and lowering of the tool with respect to the next work position, the resistance adjustment means 14 causes the tool position to be in a constant plane area around the next work position (Xp, Yp, Zp). Can be configured as a work management system including a (vertical) lift restriction means 25 that releases the brake 5 of the connecting portion of the vertical swing arm 10 that swings in the vertical direction. In this case, it is also considered that a lock mechanism is provided so that it does not easily descend in the direction of the Z component unless it enters the plane area. In this case, the movement direction detecting means 22 is required until the plane area is entered. In the processing in the target direction detection unit 23 and the operation direction determination unit 24, the Z component can be ignored.

前記昇降規制手段25による前記次作業位置(Xp,Yp,Zp)の周囲一定の平面領域内の存在の確認は、例えば、現時点の工具位置(X,Y,Z)が、X,Yの各成分について、|Xp−X|<|規定値|を満たし、且つ|Yp−Y|<|規定値|を満たせば、当該平面領域内に存在するとする。当該一定の平面領域内に存在する場合には、前記支持部15のブレーキ5を解除する状態に回路を切り替え、工具の下降規制処理を解除する。尚、工具の下降規制処理は工具の高さ(Z成分)各々について機能するが、工具の上昇については規制を加えず、前記一定の平面領域外へ出た場合には、再び工具の下降規制処理を機能させる。   The presence / absence of the next work position (Xp, Yp, Zp) within the fixed plane area by the lifting / lowering restricting means 25 can be confirmed by checking whether the current tool position (X, Y, Z) is X, Y, for example. If a component satisfies | Xp−X | <| specified value | and satisfies | Yp−Y | <| specified value |, it is assumed that the component exists in the plane region. When it exists in the fixed plane area, the circuit is switched to a state in which the brake 5 of the support portion 15 is released, and the tool lowering restriction process is released. The tool lowering restriction process functions for each of the tool heights (Z components). However, when the tool goes out of the fixed plane area without restriction, the tool lowering restriction is performed again. Make the process work.

前記一定の平面領域は、隣接する作業を要しない位置と抵触しない様に設けることが望ましいが、予め作業位置を記憶していない場合に、作業位置の的を絞ることは容易ではないことから、当該一定の平面領域を当初は工具下降位置の検索に手間取らない程度に十分に広く設定し、次作業位置のZ成分と工具位置のZ成分が近接する(|Za−Z|が減少する)に従って狭小化させる処理を行う領域縮約手段26を備える構成を採っても良い。   The fixed plane area is preferably provided so as not to conflict with a position that does not require an adjacent work, but when the work position is not stored in advance, it is not easy to focus on the work position. The constant plane area is initially set sufficiently wide so that it does not take time to search for the tool lowering position, and the Z component of the next work position and the Z component of the tool position are close to each other (| Za−Z | decreases). Accordingly, a configuration may be adopted in which the area contracting means 26 for performing the narrowing process is provided.

尚、本発明による作業管理システムのフレームに、前記基面のX,Y,Z軸方向に進退する各アーム(X軸方向への進退アーム、Y軸方向への進退アーム、Z軸(上下)方向への進退アーム)を隣接するアームに対して水平及び垂直方向へ垂直に順次連結した構成を採用することができる。当該構成によれば、前記工具位置検出手段における位置検出に、各アームの相対進退長を前記基面のX,Y,Z座標として用いることが可能となり、移動方向検出手段、目的方向検出手段、操作方向判定手段、及び領域縮約手段の処理も、先に示した揺動する形態のアームと同様の処理を以って対応することができる。また、前記抵抗調整手段については、垂直揺動に対するブレーキをZ方向(垂直方向)への進退に対するブレーキと置き換えれば動揺の処理を以って対応することができる。   In addition, on the frame of the work management system according to the present invention, each arm that advances and retreats in the X, Y, and Z axis directions of the base surface (an advance / retreat arm in the X axis direction, an advance / retreat arm in the Y axis direction, a Z axis (vertical)) It is possible to adopt a configuration in which the arms (advancing and retreating in the direction) are sequentially connected to the adjacent arms vertically in the horizontal and vertical directions. According to this configuration, the relative advance / retreat length of each arm can be used as the X, Y, Z coordinates of the base surface for position detection in the tool position detection unit, and the movement direction detection unit, the target direction detection unit, The processing of the operation direction determination means and the area contraction means can be handled by the same processing as that of the swinging arm described above. Further, the resistance adjusting means can cope with the swing process by replacing the brake for vertical swing with the brake for advance / retreat in the Z direction (vertical direction).

また、簡易な処理が要求される場合には、前記移動方向検出手段、目的方向検出手段、及び操作方向判定手段を備えず、或いは機能させない形態で、前記作業管理手段、工具位置検出手段、並びに、前記次作業位置の周囲一定の平面領域に前記工具位置が含まれる事を条件として垂直方向へ揺動又は進退するアームの連結部のブレーキを解除し、当該平面領域に前記工具位置が含まれる事を条件として垂直方向へ揺動又は進退するアームの連結部のブレーキを作動させる昇降規制手段を備え、或いは機能させる構成としても良い。   When simple processing is required, the work management means, the tool position detection means, and the movement direction detection means, the target direction detection means, and the operation direction determination means are not provided or functioned. The brake of the connecting portion of the arm that swings or retreats in the vertical direction is released on condition that the tool position is included in a certain plane area around the next work position, and the tool position is included in the plane area. It is good also as a structure provided with the raising / lowering control means which act | operates the brake of the connection part of the arm which rock | fluctuates or advances / retreats to the vertical direction on condition of this, or makes it function.

本発明による作業管理システムは、前記抵抗調整手段14が機能することを以って、作業者に対して受動的に作業手順を知らせることとなり、間違った位置での作業が防止されることとなる。また、作業者のからだに対して能動的に物理的作用を加えることがないので、作業中における確実な事故防止が可能となる。   The work management system according to the present invention passively notifies the worker of the work procedure by the function of the resistance adjusting means 14, and the work at the wrong position is prevented. . Further, since no physical action is actively applied to the worker's body, it is possible to reliably prevent accidents during the work.

また、当該例は、工具の使用に関する作業経過及び作業内容を管理すべく、前記工具に稼動検出センサを備え、当該稼動検出センサの出力により当該工具3が稼動した位置、及びその稼動時における作業量のデータを保存する作業履歴管理手段を備えている。具体的には、前記工具3として自動ネジ締め手段を備え、前記稼動検出センサとしてトルクセンサ1を備え、当該工具3が稼動した位置、及び稼動時に生じたトルクのデータを作業内容として保存する作業管理手段を備えている。   Further, in this example, in order to manage the work progress and work contents related to the use of the tool, the tool is provided with an operation detection sensor, and the position at which the tool 3 is operated by the output of the operation detection sensor and the operation at the time of operation. Work history management means for storing a quantity of data is provided. Specifically, the tool 3 is provided with automatic screw tightening means, the operation detection sensor is provided with the torque sensor 1, and the work position is stored as the work position and the torque data generated during the operation. Management means are provided.

尚、前記工具3が半田コテである場合には、半田付けすべき箇所との接触を検出する圧電センサと、当該接触によるコテ温度の変化を検出する温度センサを備え、当該工具3が稼動した位置、及びか同時に生じた温度データを作業内容として保存する作業履歴管理手段27を備えれば良い。   When the tool 3 is a soldering iron, the tool 3 is provided with a piezoelectric sensor for detecting contact with a portion to be soldered and a temperature sensor for detecting a change in the iron temperature due to the contact. What is necessary is just to provide the work history management means 27 which preserve | saves the position and the temperature data produced simultaneously as work content.

前記作業履歴管理手段27は、各被加工物18について、当該対象物とデータとで1:1に対応する符号、作業位置(座標)、及び作業内容、並びに作業年月日時等を管理情報として記憶手段に保存する。保存された情報は、行われた作業の事後判定に有効に利用される。   The work history management means 27 uses, as management information, a code, work position (coordinates), work content, work date and time, etc. corresponding to 1: 1 for the work object and data for each workpiece 18. Save to storage means. The stored information is effectively used for the post-judgment of the work performed.

本発明による作業管理システムは、理論的には作業の用途は問わないものの、人による作業を前提とすることに鑑みれば、人の可動エリアの観点から自動車等のミッション、スタータ、インバータ、ブレーキ、ランプ等、人体よりも小さな物の組み立てや分解等の補助具的な位置づけで利用できる。   Although the work management system according to the present invention is theoretically not limited to the use of work, in view of assuming work by humans, from the viewpoint of human movable areas, missions such as automobiles, starters, inverters, brakes, It can be used as an auxiliary tool for assembling and disassembling lamps and other items smaller than the human body.

本発明による作業管理システムの一例を示す機能構成図である。It is a functional block diagram which shows an example of the work management system by this invention. 本発明による作業管理システムの構造の一例を示す側面図である。It is a side view which shows an example of the structure of the work management system by this invention. 本発明による作業管理システムの構造の一例を示す平面図である。It is a top view which shows an example of the structure of the work management system by this invention. 本発明による作業管理システムの昇降規制手段の一例を示す説明図である。It is explanatory drawing which shows an example of the raising / lowering control means of the work management system by this invention. 本発明による作業管理システムで行われる処理の一例を概説するフローチャートである。It is a flowchart which outlines an example of the process performed with the work management system by this invention.

符号の説明Explanation of symbols

1 トルクセンサ,2 フレーム,3 工具,4 揺動センサ,5 ブレーキ,
6 支持手段,7 フレームベース,8 水平関節(第1関節),
9 水平揺動アーム,10 垂直揺動アーム,11 リンクベース,
12 工具ベース,13 水平関節(第2関節),
14 抵抗調整手段,15 支持部,16 揺動軸,17 揺動軸,
18 被加工物,19 弾性部材,
20 作業管理手段,21 工具位置検出手段,22 移動方向検出手段,
23 目的方向検出手段,24 操作方向判定手段,
25 昇降規制手段,26 領域縮約手段,27 作業履歴管理手段,
1 Torque sensor, 2 frame, 3 tool, 4 swing sensor, 5 brake,
6 support means, 7 frame base, 8 horizontal joint (first joint),
9 Horizontal swing arm, 10 Vertical swing arm, 11 Link base,
12 tool base, 13 horizontal joint (second joint),
14 resistance adjusting means, 15 support portion, 16 swing shaft, 17 swing shaft,
18 work piece, 19 elastic member,
20 work management means, 21 tool position detection means, 22 movement direction detection means,
23 target direction detection means, 24 operation direction determination means,
25 lift control means, 26 area contraction means, 27 work history management means,

Claims (6)

水平方向又は垂直方向へ揺動自在又は進退自在に連結された複数のアームからなるフレームと、
当該フレームの工具ベースに取り付けられた工具とを備え、
各アームの連結部に相連結するアームの相対角度又は相対進退長を検出する揺動センサ又は進退センサ、及びその揺動抵抗又は進退抵抗を加減するブレーキを備え、
作業位置及び作業順序を備え工具の次作業位置を出力する作業管理手段と、
前記相対進退長、又は前記相対角度及び各アームの有効長に基いて、前記基面に平行する面における工具位置の水平位置を導く工具位置検出手段と、
前記次作業位置の周囲一定の平面領域に前記工具位置が含まれる事を条件として垂直方向へ揺動又は進退するアームの連結部のブレーキを解除し、当該平面領域に前記工具位置が含まれる事を条件として垂直方向へ揺動又は進退するアームの連結部のブレーキを作動させる昇降規制手段を備える作業管理システム。
A frame composed of a plurality of arms that are swingably or reciprocally movable in a horizontal direction or a vertical direction;
A tool attached to the tool base of the frame,
A swing sensor or advance / retreat sensor for detecting the relative angle or relative advance / retreat length of the arm connected to the connecting portion of each arm, and a brake for adjusting the swing resistance or advance / retreat resistance;
Work management means for outputting the next work position of the tool with the work position and work order;
Tool position detecting means for deriving a horizontal position of a tool position on a surface parallel to the base surface based on the relative advance / retreat length or the relative angle and the effective length of each arm;
On condition that the tool position is included in a certain plane area around the next work position, the brake of the connecting portion of the arm that swings or retreats in the vertical direction is released, and the tool position is included in the plane area. A work management system comprising an elevating restriction means for operating a brake of a connecting portion of an arm that swings or retreats in the vertical direction on the condition of
水平方向又は垂直方向へ揺動自在又は進退自在に連結された複数のアームからなるフレームと、
当該フレームの工具ベースに取り付けられた工具とを備え、
各アームの連結部に相連結するアームの相対角度又は相対進退長を検出する揺動センサ又は進退センサ、及びその揺動抵抗又は進退抵抗を加減するブレーキを備え、
作業位置及び作業順序を備え工具の次作業位置を出力する作業管理手段と、
前記相対進退長、又は前記相対角度及び各アームの有効長に基いて、前記基面に平行する面における工具位置の水平位置を導くと共に、当該基面に対する工具位置の垂直位置を導く工具位置検出手段と、
当該工具位置検出手段により検出した前後の位置変化に基いて、前記工具の移動方向を導く移動方向検出手段と、
前記工具位置検出手段により検出した工具位置を起点とする前記次作業位置の方向を導く目的方向検出手段と、
前記工具の移動方向と前記次作業位置への方向との比較により当該工具の次作業位置への近接状況を判定する操作方向判定手段と、
前記近接状況が近接傾向にある場合には各連結部のブレーキを解除し、前記近接状況が離隔傾向にある場合には各連結部のブレーキを作動させる抵抗調整手段を備える作業管理システム。
A frame composed of a plurality of arms that are swingably or reciprocally movable in a horizontal direction or a vertical direction;
A tool attached to the tool base of the frame,
A swing sensor or advance / retreat sensor for detecting the relative angle or relative advance / retreat length of the arm connected to the connecting portion of each arm, and a brake for adjusting the swing resistance or advance / retreat resistance;
Work management means for outputting the next work position of the tool with the work position and work order;
Based on the relative advance / retreat length, or the relative angle and the effective length of each arm, a tool position detection for deriving a horizontal position of a tool position in a plane parallel to the base surface and deriving a vertical position of the tool position with respect to the base surface Means,
Based on the change in position before and after detected by the tool position detection means, a movement direction detection means for guiding the movement direction of the tool;
Target direction detection means for deriving the direction of the next work position starting from the tool position detected by the tool position detection means;
An operation direction determination means for determining a proximity state of the tool to the next work position by comparing the movement direction of the tool and the direction to the next work position;
A work management system comprising resistance adjusting means for releasing a brake of each connecting portion when the proximity state tends to be close and operating a brake of each connecting portion when the proximity state tends to be separated.
前記水平位置及び垂直位置を前記基面に平行する面の位置座標で算出する工具位置検出手段と、
前記工具の移動方向をベクトルで算出する移動方向検出手段と、
前記近接状況を、前記移動方向を示すベクトルが前記工具位置を原点とする相対座標系のうちで次作業位置が存在する象限に向いていることを条件として近接方向にあると判定する操作方向判定手段とを備える前記請求項2に記載の作業管理システム。
Tool position detecting means for calculating the horizontal position and the vertical position by a position coordinate of a surface parallel to the base surface;
A moving direction detecting means for calculating the moving direction of the tool as a vector;
Operation direction determination for determining that the proximity state is in the proximity direction on the condition that the vector indicating the moving direction is in a quadrant where the next work position exists in the relative coordinate system having the tool position as the origin. The work management system according to claim 2, further comprising: means.
前記抵抗調整手段に、前記次作業位置の周囲一定の平面領域に前記工具位置が含まれる事を条件として垂直方向へ揺動又は進退するアームの連結部のブレーキを解除する昇降規制手段を備える前記請求項2又は3のいずれかに記載の作業管理システム。   The resistance adjusting means includes an elevating restriction means for releasing a brake of a connecting portion of an arm that swings or retreats in a vertical direction on condition that the tool position is included in a certain flat area around the next work position. The work management system according to claim 2. 前記工具に稼動検出センサを備え、当該稼動検出センサの出力により当該工具が稼動した位置、及びその稼動時における作業量のデータを保存する作業履歴管理手段を備える前記請求項1乃至請求項4のいずれかに記載の作業管理システム。   The said tool is equipped with the operation | movement detection sensor, The work history management means which preserve | saves the position which the said tool operated by the output of the said operation detection sensor, and the work amount data at the time of the operation | movement is provided. The work management system according to any one of the above. 前記工具として自動ネジ締め手段を備え、前記稼動検出センサとしてトルクにセンサを備え、当該工具が稼動した位置、及び稼動時に生じたトルクのデータを保存する作業履歴管理手段を備える前記請求項5に記載の作業管理システム。   6. The automatic screw tightening means as the tool, a torque sensor as the operation detection sensor, and a work history management means for storing data on the position where the tool was operated and torque generated during operation. The work management system described.
JP2007166450A 2007-06-25 2007-06-25 Work management system Pending JP2009000799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166450A JP2009000799A (en) 2007-06-25 2007-06-25 Work management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166450A JP2009000799A (en) 2007-06-25 2007-06-25 Work management system

Publications (1)

Publication Number Publication Date
JP2009000799A true JP2009000799A (en) 2009-01-08

Family

ID=40317742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166450A Pending JP2009000799A (en) 2007-06-25 2007-06-25 Work management system

Country Status (1)

Country Link
JP (1) JP2009000799A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850510A (en) * 2009-03-30 2010-10-06 平田机工株式会社 Workpiece assembly device and control method thereof
JP2011000669A (en) * 2009-06-18 2011-01-06 Yaskawa Electric Corp Robot system and article aligning method
EP2353796A2 (en) 2010-02-03 2011-08-10 Kabushiki Kaisha Yaskawa Denki Robot system and method of manufacturing product
EP2390065A2 (en) 2010-05-28 2011-11-30 Kabushiki Kaisha Yaskawa Denki Robot system and method of manufacturing processed product
EP2436603A1 (en) 2010-10-04 2012-04-04 Kabushiki Kaisha Yaskawa Denki Processing system and product manufacturing method
CN102981468A (en) * 2012-11-14 2013-03-20 广东工业大学 Robot transport and dispatching and manufacturing system and method integrating machining and assembling and method
KR101300476B1 (en) * 2013-02-12 2013-09-02 (주)디케이엔지 Automobile underbody screw driver
JP2021154473A (en) * 2020-03-30 2021-10-07 川田テクノロジーズ株式会社 Working robot

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850510A (en) * 2009-03-30 2010-10-06 平田机工株式会社 Workpiece assembly device and control method thereof
JP2010234454A (en) * 2009-03-30 2010-10-21 Hirata Corp Workpiece assembling device and method of controlling the same
JP2011000669A (en) * 2009-06-18 2011-01-06 Yaskawa Electric Corp Robot system and article aligning method
EP2353796A2 (en) 2010-02-03 2011-08-10 Kabushiki Kaisha Yaskawa Denki Robot system and method of manufacturing product
JP2011245602A (en) * 2010-05-28 2011-12-08 Yaskawa Electric Corp Robot system and processing system, as well as method of manufacturing processed product
KR20110131075A (en) 2010-05-28 2011-12-06 가부시키가이샤 야스카와덴키 Robot system and method of manufacturing processed product
EP2390065A2 (en) 2010-05-28 2011-11-30 Kabushiki Kaisha Yaskawa Denki Robot system and method of manufacturing processed product
US8651160B2 (en) 2010-05-28 2014-02-18 Kabushiki Kaisha Yaskawa Denki Robot system and method of manufacturing processed product
EP2436603A1 (en) 2010-10-04 2012-04-04 Kabushiki Kaisha Yaskawa Denki Processing system and product manufacturing method
CN102556383A (en) * 2010-10-04 2012-07-11 株式会社安川电机 Processing system and product manufacturing method
US9037289B2 (en) 2010-10-04 2015-05-19 Kabushiki Kaisha Yaskawa Denki Processing system, robot, and product manufacturing method
CN102981468A (en) * 2012-11-14 2013-03-20 广东工业大学 Robot transport and dispatching and manufacturing system and method integrating machining and assembling and method
KR101300476B1 (en) * 2013-02-12 2013-09-02 (주)디케이엔지 Automobile underbody screw driver
JP2021154473A (en) * 2020-03-30 2021-10-07 川田テクノロジーズ株式会社 Working robot

Similar Documents

Publication Publication Date Title
JP2009000799A (en) Work management system
CN108297056B (en) Robot-coordinated robot system having function of ensuring safety of robot and performing work
JP5820013B1 (en) Robot safety monitoring device that grips and transports workpieces
US20150120055A1 (en) Robot control device, robot system, and robot
US10195744B2 (en) Control device, robot, and robot system
JP2008188722A (en) Robot controller
CN104057456A (en) Robot picking system and method of manufacturing a workpiece
US20110301758A1 (en) Method of controlling robot arm
JP2015217451A (en) Workpiece transporting method system having external force monitoring function
US10512980B2 (en) Wire electrical discharge machining system and relative positional relationship calculating method
CN110919627B (en) Robot control method and control device
JP2010142910A (en) Robot system
US11833687B2 (en) Robot apparatus, control method for the robot apparatus, assembly method using the robot apparatus, and recording medium
US20220297321A1 (en) Device, method and program for estimating weight and position of gravity center of load by using robot
JP5228783B2 (en) Robot origin return device
KR20170125088A (en) Robot, control method of robot, mounting method of work, and method of returning work
JP2016043455A (en) Robot and robot system
JP6011089B2 (en) Robot system and robot control apparatus and method
JP6445114B2 (en) Work conveying method system having external force monitoring function
JPWO2017175340A1 (en) Optimization device and vertical articulated robot having the same
JP2016209936A (en) Robot device, method of controlling robot, program and recording medium
JP3948092B2 (en) Torch position detection method
US20220347852A1 (en) Robot control device and direct teaching method for robot
KR101968751B1 (en) Collision sensing apparatus, end effector having the same, robot, and collision detection method using the same
JP2017072500A (en) Work dimension checking device