JP2008312391A - Battery control unit - Google Patents

Battery control unit Download PDF

Info

Publication number
JP2008312391A
JP2008312391A JP2007158997A JP2007158997A JP2008312391A JP 2008312391 A JP2008312391 A JP 2008312391A JP 2007158997 A JP2007158997 A JP 2007158997A JP 2007158997 A JP2007158997 A JP 2007158997A JP 2008312391 A JP2008312391 A JP 2008312391A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
state
battery
power
charge
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007158997A
Other languages
Japanese (ja)
Other versions
JP4987581B2 (en )
Inventor
Yoshinari Aoshima
Akihiko Emori
Takahiro Kawada
Yohei Kawahara
Hiroshi Sakabe
啓 坂部
隆弘 川田
昭彦 江守
洋平 河原
芳成 青嶋
Original Assignee
Hitachi Vehicle Energy Ltd
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1851Battery monitoring or controlling; Arrangements of batteries, structures or switching circuits therefore
    • B60L11/1861Monitoring or controlling state of charge [SOC]
    • B60L11/1862Target range for state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/02Electric propulsion with power supplied within the vehicle using engine-driven generators
    • B60L11/14Electric propulsion with power supplied within the vehicle using engine-driven generators with provision for direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1803Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells for vehicles propelled by ac-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1851Battery monitoring or controlling; Arrangements of batteries, structures or switching circuits therefore
    • B60L11/1853Battery monitoring or controlling; Arrangements of batteries, structures or switching circuits therefore by battery splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1851Battery monitoring or controlling; Arrangements of batteries, structures or switching circuits therefore
    • B60L11/1857Battery age determination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1851Battery monitoring or controlling; Arrangements of batteries, structures or switching circuits therefore
    • B60L11/1859Preventing deep discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1851Battery monitoring or controlling; Arrangements of batteries, structures or switching circuits therefore
    • B60L11/1864Control of a battery packs, i.e. of a set of batteries with the same voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1851Battery monitoring or controlling; Arrangements of batteries, structures or switching circuits therefore
    • B60L11/1864Control of a battery packs, i.e. of a set of batteries with the same voltage
    • B60L11/1866Balancing the charge of multiple batteries or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1851Battery monitoring or controlling; Arrangements of batteries, structures or switching circuits therefore
    • B60L11/187Battery temperature regulation
    • B60L11/1872Battery temperature regulation by control of electric loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration, power consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration, power consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration, power consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging several batteries simultaneously or sequentially
    • H02J7/0026Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging several batteries simultaneously or sequentially using safety or protection circuits, e.g. overcharge/discharge disconnection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies for applications in electromobilty
    • Y02T10/642Control strategies of electric machines for automotive applications
    • Y02T10/645Control strategies for dc machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7005Batteries
    • Y02T10/7011Lithium ion battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7005Batteries
    • Y02T10/7016Lead acid battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7038Energy storage management
    • Y02T10/7044Controlling the battery or capacitor state of charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7038Energy storage management
    • Y02T10/7055Controlling vehicles with more than one battery or more than one capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7038Energy storage management
    • Y02T10/7055Controlling vehicles with more than one battery or more than one capacitor
    • Y02T10/7061Controlling vehicles with more than one battery or more than one capacitor the batteries or capacitors being of the same voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • Y02T10/7077Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors on board the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7208Electric power conversion within the vehicle
    • Y02T10/7241DC to AC or AC to DC power conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7258Optimisation of vehicle performance
    • Y02T10/7275Desired performance achievement

Abstract

<P>PROBLEM TO BE SOLVED: To charge and discharge a storage battery reliably if the true deterioration state of the storage battery does not agree with the deterioration state recorded by a data processing device which manages the battery, in a control method and a control unit which control a maximum permissible current at the time of charging and discharging of the storage battery for a hybrid vehicle and the like by the state of the storage battery reflecting the deterioration state of the battery. <P>SOLUTION: A state detection means of an electricity-storing means transmits a signal for limiting a permissible current to a current control means, if a state is detected that the operation result of the deterioration state stored by the state detection means itself does not agree with the true deterioration state of the electricity-storing means. The deterioration state of the electricity-storing means is calculated based on the data of the electricity-storing means charged or discharged by the limited current. When convergence is detected in the calculation result, a signal for releasing the limit of the permissible current is transmitted to the current control means, and the current control means in turn releases the limit of currents to/from the electricity-storing means to control permissible charging and discharging currents. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉛電池、ニッケル水素電池、リチウムイオン電池などの蓄電池を対象とした電池制御装置に関する。 The present invention is a lead battery, a nickel hydrogen battery, a battery control device intended for the storage battery such as a lithium ion battery.

車両には鉛電池、ニッケル水素電池、リチウムイオン電池などの蓄電池が搭載されている。 Lead batteries in the vehicle, a nickel hydrogen battery, storage battery such as a lithium ion battery is mounted. この蓄電池は、車両のエンジン始動時や電装品の使用時に必要な電力に加えて、ハイブリッド自動車や電気自動車の走行に必要な電力を供給するものである。 This accumulator, in addition to the power required when using at the time of starting the engine of the vehicle and electrical equipment, and supplies the power required for driving the hybrid vehicle or an electric vehicle.

車両に搭載される蓄電池は、現在の状態(充電状態、電池の劣化状態、温度等)に応じて、最大に出し入れ可能な許容電流を持つ。 Battery mounted on a vehicle, the current state (state of charge, battery deterioration state, temperature, etc.) according to, with out Allowable current maximum. この最大許容電流を超えて蓄電池の充放電を行うと、電池電圧が通常制御範囲から外れてしまい、過充電・過放電となる可能性がある。 When charging and discharging of the battery exceeds the maximum allowable current, battery voltage deviates from the normal control range, there is a possibility that the overcharge, over-discharge. 一般的に、蓄電池のSOC(充電状態)が高いほど最大許容充電電流が小さくなり、最大許容放電電流が大きくなる。 Generally, the maximum allowable charging current as the battery of the SOC (state of charge) is higher is reduced, the maximum allowable discharge current is increased. また、蓄電池のSOCが低いほど最大許容放電電流が小さくなり、最大許容充電電流が大きくなる。 The maximum allowable discharge current is decreased as the SOC of the battery is low, the maximum allowable charge current is increased. 電池の劣化状態も関係があり、新品の電池では最大許容充放電電流が大きく、電池の劣化が進行するほど最大許容充放電電流が小さくなる。 Deterioration state of the battery is related, larger maximum available charge and discharge currents in new batteries, the maximum allowable charge and discharge currents as deterioration of the battery progresses decreases. 蓄電池を最適に使用するためには、蓄電池の状態に応じた最大許容充放電電流を正確に求め、これに基づいて充放電制御をすることが必要である。 In order to optimally use the storage battery accurately determine the maximum allowable charge and discharge current according to the state of the storage battery, it is necessary to charge and discharge control based on this.

特許文献1は、発明の名称を「2次電池の電池特性算出方法および電池制御装置」とする特許出願の公開公報であり、本発明の先行技術を開示するものである。 Patent Document 1 is a publication of the patent application for the entitled as "battery characteristic calculation method and a battery control device of the secondary battery" is intended to disclose the prior art of the present invention. 特許文献1には、容量劣化係数Aが100%で、かつ、出力劣化係数Bが60%となると、そのときの放電深度に関わらず、容量劣化係数Aを100%から60%へと変更し、2次電池の容量劣化係数Aが50%未満であるときにバッテリコントローラが新品と交換されたとき、1、2回の充放電によって正確な容量劣化係数Aを素早く算出する方法が提案されている。 Patent Document 1, at 100 percent capacity deterioration factor A, and the output degradation coefficient B is 60%, and change the regardless depth of discharge at the time, the capacity deterioration coefficient A from 100% to 60% , when the battery controller when capacity deterioration factor a of the secondary battery is less than 50% is replaced with a new one, once or twice charged and discharged by it is proposed a method to quickly calculate an accurate capacitance degradation factor a there.

特開2001−257009号公報 JP 2001-257009 JP

ハイブリッド自動車などでは、蓄電池を管理するための情報処理装置を搭載して、その充放電を制御している。 Etc. In the hybrid vehicle, equipped with a data processing apparatus for managing a battery, and controls the charging and discharging. 電池の劣化状態に基づき充放電制御を行う場合、該情報処理装置は電池の劣化状態を演算し、その演算結果を最大許容電流演算時に反映させ、また、該情報処理装置の電源がOFF(車両停止時など)の場合には、劣化状態の演算結果をメモリに書き込み、次回電源ON時(車両起動時など)に前回の劣化状態の演算結果をメモリから読み出して劣化状態の演算を開始することが一般的に行なわれている。 When performing charging and discharging control based on the deterioration state of the battery, the information processing apparatus calculates a deterioration state of the battery, to reflect the result of the operation at the maximum allowable current calculation, also, the power of the information processing apparatus is OFF (vehicle in the case of stop, etc.) writes the operation result of the deterioration state memory, initiating the operation of the operation result is read from the memory state of deterioration of the deteriorated state of the last at next power oN (the vehicle start-up, etc.) There has been generally performed. しかしながら、電池のみを取替えた場合や情報処理装置のみを取替えた場合などでは、メモリに書き込んだ劣化状態の演算結果と電池の真の劣化状態が一致しなくなるため、蓄電池を最適に制御できないことが考えられる。 However, in a case where replacing only and the information processing apparatus replaced only batteries, since the true deteriorated state of the operation result and battery deterioration state written in the memory will not match, may not be optimally control the battery Conceivable. 蓄電池の真の劣化状態と蓄電池を管理する情報処理装置が記録した劣化状態が不一致となった場合、この不一致の状況を制御に反映させ、適切に蓄電池を保護する必要が発生する。 When the deterioration state of the information processing apparatus is recorded to manage the true deteriorated state and battery of the battery becomes mismatched, it is reflected on the control status of this discrepancy, properly required is generated to protect the storage battery.

本発明の代表的なものは、蓄電手段を最適に制御できる電池制御装置及び電池制御方法を提供する。 Representative of the present invention is to provide a battery control device and a battery control method capable of optimally controlling the storage means.

ここに、本発明の代表的なものは、制御装置に記憶された蓄電手段の劣化状態が蓄電手段の真の劣化状態と異なる場合、蓄電手段の充放電許容電流又は充放電許容電力を制限し、制限された充放電許容電流又は充放電許容電力の下で充放電する蓄電手段の状態量の情報から検知された蓄電手段の劣化状態が蓄電手段の真の劣化状態に収束した場合、その制限を解除する、ことを特徴とする。 Here, typical of the present invention, when the deterioration state of the stored energy storage means in the control device is different from the true state of deterioration of the power storage means to limit the charge and discharge allowable current or discharge allowable power of the power storage means , if the deteriorated state of the restricted discharge allowable current or discharge allowable power state amount of the detected storage means from the information of the storage means for charging and discharging under converges to the true state of deterioration of the power storage unit, its limitations to release the, characterized in that. 或いは、制御装置の起動を検知した場合、蓄電手段の充放電許容電流又は充放電許容電力を制限し、制限された充放電許容電流又は充放電許容電力の下で充放電する蓄電手段の状態量から検知された蓄電手段の劣化状態の、蓄電手段の真の劣化状態に対する収束が確認できた場合、その制限を解除する、ことを特徴とする。 Alternatively, when detecting activation of the control device, charge and discharge allowable limits the current or charge and discharge allowable power, the state of restricted discharge allowable current or discharge allowable power charging and discharging power storage unit under the storage means the deteriorated state of the detected storage means from when the convergence to the true state of deterioration of the power storage means is confirmed, releasing the restriction, characterized in that.

本発明の代表的なものによれば、電池制御装置における蓄電手段の劣化状態が蓄電手段の真の劣化状態と異なっている場合には、蓄電手段の充放電許容電流又は充放電許容電力を制限して、制御装置における電手段の劣化状態を真の劣化状態に収束させることがでると共に、制御装置における電手段の劣化状態が真の劣化状態に収束した場合には、蓄電手段の充放電許容電流又は充放電許容電力の制限を解除し、収束した劣化状態に基づいて蓄電手段の充放電を制御できる。 According to the representative of the present invention, when the deterioration state of the electrical storage means in the battery control device is different from the true state of deterioration of the power storage means, limits the discharge allowable current or discharge allowable power of the power storage means to, the state of deterioration of conductive means in the control unit out be converged to the true deteriorated state, if the deteriorated state of the conductive means in the control device has converged to the true state of deterioration, the charge and discharge allowable power storage means releasing the limitation of the current or charge and discharge allowable power, it can control the charging and discharging of the power storage means based on the converged deteriorated state.

また、本発明の他の代表的なものは、前記電池制御装置を備えた蓄電装置、及びこの蓄電装置を搭載した車載電機システムを提供する。 Another representative of the present invention, the electric storage device provided with a battery control device, and provides a vehicle electric system with the power storage device.

本発明の代表的なものは、真の劣化状態に収束した劣化状態に基づいて蓄電手段の充放電を制御できるので、蓄電手段を最適に制御できる。 Representative of the present invention, it is possible to control the charging and discharging of the power storage means based on the deterioration state converged to the true state of deterioration can be optimally controlled storage means.

[実施例1] [Example 1]
図1−1は、本発明の一つの実施例である実施例1の構成を示す説明図である。 Figure 1-1 is an explanatory view showing the one embodiment of the configuration of the first embodiment of the present invention. 実施例1では、電気を蓄え放電可能な蓄電池101と、蓄電池101a〜dを複数直列接続して構成される電池モジュール102と、蓄電池101の充電状態や異常状態などを管理する管理手段103と、電池モジュール102の端子間の電圧を計測する電圧計測手段104と、電池モジュール102に出入りする電流を計測する電流計測手段105と、管理手段103、電圧計測手段104と電流計測手段105からの情報に基づいて、蓄電池101又は電池モジュール102の状態を検知する状態検知手段106と、状態検知手段106が行った状態検知結果に基づいて、電池モジュール102を使用するインバータ107と、インバータ107に接続されて動作を行うモータジェネレータ(M/G)108と、状態検知手段106から In Example 1, a dischargeable storage battery 101 stored electricity, a battery module 102 configured to battery 101a~d a plurality series, a management unit 103 for managing the state of charge and abnormal condition of the battery 101, a voltage measuring means 104 for measuring the voltage across the terminals of the battery module 102, a current measuring means 105 for measuring the current into and out of the battery module 102, the management unit 103, the information from the voltage measuring unit 104 and the current measuring unit 105 based on a state detection means 106 for detecting the state of the storage battery 101 or the battery module 102, based on state detection results state detection means 106 is performed, an inverter 107 that uses the battery module 102 is connected to an inverter 107 a motor generator (M / G) 108 to perform the operation, from the state detection means 106 信される情報に基づきインバータを動作させる電流制御手段109とを備える。 And a current control unit 109 to operate the inverter on the basis of the information signal.

蓄電池101はリチウムイオン電池、鉛電池、ニッケル水素電池、電気二重層キャパシタ等の電気を蓄え放電可能な蓄電池デバイスである。 Battery 101 is dischargeable storage battery device stored lithium ion battery, a lead battery, a nickel hydride battery, electricity such as an electric double layer capacitor. 電池モジュール102は、蓄電池101を複数直列に接続して構成する。 The battery module 102 is constructed by connecting the battery 101 to a plurality series. なお、電池モジュール102は蓄電池101を並列接続して構成してもよいし、電流制御手段109に換えて電力制御手段を設ける構成としてもよく、その場合を図1−2に示す。 The battery module 102 may be configured by parallel connection of battery 101 may be configured to, instead of the current control means 109 providing a power control unit, showing the case in Figure 1-2.

管理手段103は、電池モジュール102に内蔵される蓄電池101を管理する。 Management means 103 manages the storage battery 101 incorporated in the battery module 102. 管理手段103が行う蓄電池101の管理とは、各蓄電池101の充電状態、電池モジュール102に内蔵される蓄電池101全体の充電状態のバランシング、異常の有無の検知等の電池モジュール102を使用する上で必要となる各蓄電池101の状態を管理することである。 Administration The battery 101 by the management unit 103 is performed, in order to use the state of charge, battery 101 balancing the overall state of charge, the battery module 102 of detection such as the presence or absence of abnormality to be built in the battery module 102 of the battery 101 it is to manage the state of each battery 101 required. 管理手段103は、蓄電池101の情報を計測し、演算や判定を行うことが可能な手段であれば何でもよい。 Management means 103 measures the information of the storage battery 101, it may be any means capable of performing a calculation and determination. 管理手段103が備えるID111については後述する。 Will be described later ID111 included in the management unit 103.

電圧計測手段104と電流計測手段105は、電池モジュール102の情報を計測できる電気回路やセンサで構成される。 Voltage measuring means 104 and the current measuring unit 105 is composed of an electric circuit and a sensor capable of measuring the information of the battery module 102. 電圧計測手段104と電流計測手段105が計測した電池モジュール102の情報は、状態検知手段106に送信される。 Information of the battery module 102 to which the voltage measuring unit 104 and the current measuring unit 105 measured is transmitted to the state detection means 106. 状態検知手段106は、管理手段103、電圧計測手段104、電流計測手段105からの情報に基づいて、蓄電池101と電池モジュール102の状態を検知する。 State detection means 106, the management unit 103, the voltage measuring unit 104, based on information from the current measurement means 105 detects the state of the storage battery 101 and the battery module 102. また、状態検知手段106は、蓄電池101又は電池モジュール102の温度を入力して状態検知を行なうようにしてもよい。 The state detection unit 106 may perform the state detection by entering the temperature of the battery 101 or the battery module 102. この場合、蓄電池101や電池モジュール102にはサーミスタや熱電対などの温度計測手段が設置されることとなるが、図1−1では省略してある。 In this case, the storage battery 101 and the battery module 102 becomes a possible temperature measuring means such as a thermistor or a thermocouple is installed, which are not shown in Figure 1-1.

状態検知手段106は、記憶装置やCPUなどで構成されるコントローラ、計算機システム、又はマイクロコンピュータであり、情報を入力して演算を行い演算した結果を出力することが可能な手段であればその他のものでもよい。 State detection means 106, the controller consists of such as storage device CPU, Main computer system, or a microcomputer, other if means capable of outputting the result of arithmetic operation performs an operation to input information it may be the one. また、電圧計測手段104、電流計測手段105及び状態検知手段106は、それぞれ独立した基板で実現してもよいし、同一デバイス上に構成してマイクロコンピュータとして実現してもよい。 The voltage measuring unit 104, the current measuring means 105 and the state detection unit 106 may be realized by independent substrates, it may be realized as a microcomputer constituted on the same device. 状態検知手段106が行う詳細な処理内容と状態検知手段106が備えるID´112については後述する。 It will be described later state detection means 106 is provided in the detailed processing and state detecting means 106 for ID'112.

インバータ107は、状態検知手段106が行った状態検知の結果に基づいて、電池モジュール102に出入りする電流や電力などを制御する。 Inverter 107, based on the result of the state detection of state detection means 106 is performed, which controls the current and power into and out of the battery module 102. また、モータジェネレータ108は、電池モジュール102から電力供給された場合に駆動し、回生時には逆に電池モジュール102に電力供給を行う。 The motor generator 108 is driven when it is powered from the battery module 102 and supplies power to the battery module 102 opposite to the time of regeneration. 電流制御手段109は、状態検知手段106からの情報に基づき電池モジュール102に出入りする電流値の制御を行う。 Current control means 109 controls the current value into and out of the battery module 102 based on the information from the state detection means 106. 電流制御手段109は、記憶装置やCPUなどで構成されるコントローラ、計算機システム又はマイクロコンピュータとして構成されたものでもよく、情報を入力して演算を行い演算した結果を出力することが可能なその他の手段でもよい。 Current control means 109, the controller consists of such as storage device CPU, Main computer system or may also be constructed as a microcomputer, other possible to output the results of calculation performed operation by entering information it may be a means. また、状態検知手段106に搭載するソフトウェアとして実現し、状態検知手段106の機能の一部とするように構成することもできる。 Further, it implemented as software installed in the state detection means 106 may be configured to be part of the functions of the state detection means 106. 電流制御手段109の詳細な処理内容については後述する。 Detailed processing will be described later the content of the current control means 109.

次に、図2を用いて、図1−1と図1−2の電池システムの構成を具体的に説明する。 Next, with reference to FIG. 2, it will be described in detail a configuration of the battery system of Figure 1-1 and Figure 1-2.
電池システム200は、組電池100、セルコントローラ120、バッテリコントローラ130及びセンサなどから構成されている。 Cell system 200, battery pack 100, the cell controller 120, and a like battery controller 130 and the sensor. 実際の製品では、組電池100及びセルコントローラ120は1つの電池モジュール102として構成され、バッテリコントローラ130、センサ及び冷却装置などの他の構成部品と共に1つの筐体内に収納されている。 In an actual product, the battery pack 100 and the cell controller 120 is configured as a single battery module 102, the battery controller 130 are accommodated in a single housing along with other components such as sensors and cooling device.

組電池100、特にハイブリッド自動車,電気自動車などの車載用電池システムに用いられる組電池100は、前述した電池のうち、ニッケル水素電池又はリチウムイオン電池からなる蓄電池(セル又は単電池)101の複数個を直列又は並列に接続することにより構成されている。 The battery pack 100, the battery pack 100, particularly use in board battery system of a hybrid vehicle, an electric vehicle, of the battery described above, the storage battery (cell or unit cells) consisting of nickel-hydrogen battery or a lithium ion battery 101 a plurality of It is constructed by connecting in series or in parallel. 図2に示した例では、リチウムイオン電池からなる48個の蓄電池101を備え、4個の蓄電池101−1〜101−4を直列に接続したセル接続体を1つの蓄電ユニット(単電池群)110として、12個の蓄電ユニット110−1〜110−12を構成した上で、蓄電ユニット110−1〜110−12を直列に接続して組電池100を構成している。 In the example shown in FIG. 2, with 48 of the storage battery 101 of lithium ion battery, four battery 101-1 to 101-4 one cell connection body connected in series with the energy storage unit (cell group) as 110, after constitute 12 of energy storage units 110-1~110-12 constitute the battery pack 100 by connecting the energy storage unit 110-1~110-12 in series. 1個の蓄電池101の公称電圧は約3.6Vであるので、組電池100の公称電圧は約172.8Vとなる。 Since the nominal voltage of a single battery 101 is approximately 3.6V, nominal voltage of the battery pack 100 is about 172.8V. 電動機の単独による駆動を可能としたハイブリッド自動車又は電気自動車では、バッテリに300Vを超える公称電圧が要求されることから、組電池100(第1組電池)と同じ構成の第2組電池を設け、第1組電池と第2組電池とを直列に接続して使用する。 In a hybrid vehicle or an electric vehicle to enable driving by a single motor, since a nominal voltage exceeding 300V is required to the battery, it provided the second assembled battery having the same structure as the battery pack 100 (first assembled battery), a first assembled battery and a second assembled battery are connected in series to use. これにより、公称電圧を約345.6Vとすることができる。 Thus, it is possible to a nominal voltage of about 345.6V.

本例では、1つの組電池100により電池システム200を構成した場合を例に挙げて、以下説明する。 In this example, it is taking the case where the battery system 200 by one of the battery pack 100 as an example will be described below.

組電池100(蓄電ユニット110−1〜110−12のうち、最高電位側に配置された蓄電ユニット110−1)の正極側(最高電位側)はインバータ107の電力変換回路107aの直流正極側に接続されている。 (Of energy storage unit 110-1~110-12, highest potential arranged energy storage unit side 110-1) assembled battery 100 positive electrode side of the (highest potential side) to the DC positive electrode side of the power conversion circuit 107a of the inverter 107 It is connected. インバータ107は直流電力を交流電力に変換する(回生時などの発電時には交流電力を直流電力に変換する)電力変換装置である。 Inverter 107 (converts AC power into DC power at the time of power generation, such as during regeneration) for converting DC power to AC power is a power converter. 電力変換回路107aは、2つのスイッチング半導体素子(IGBTやMOSFETなどのトランジスタ)が直列に接続された直列回路(アーム)が3相分、並列に接続された三相ブリッジ回路から構成されている。 Power conversion circuit 107a includes two switching semiconductor elements (transistors, such as IGBT or MOSFET) is a series circuit connected in series (arm) is three phases, and a three-phase bridge circuits connected in parallel. 組電池100(蓄電ユニット110−1〜110−12のうち、最低電位側に配置された蓄電ユニット110−12)の負極側(最低電位側)は電力変換回路107aの直流負極側に接続されている。 (Of energy storage unit 110-1~110-12 was placed on the lowest potential side battery unit 110-12) assembled battery 100 negative electrode side of the (lowest potential side) is connected to the DC negative side of the power conversion circuit 107a there. これにより、モータジェネレータ108をモータとして作動させる場合には組電池100から電力変換回路107aに直流電力が供給されると共に、交流電力に変換されてモータジェネレータ108に供給される。 Thus, when operating the motor-generator 108 as a motor with direct current power from the assembled battery 100 to the power conversion circuit 107a is supplied, is supplied to the motor generator 108 is converted into AC power. また、モータジェネレータ108をジェネレータとして作動させる場合にはモータジェネレータ108から電力変換回路107aに交流電力が供給されると共に、直流電力に変換されて組電池100に供給される。 Further, the AC power to the power conversion circuit 107a from the motor generator 108 is supplied when operating the motor-generator 108 as a generator, is supplied to the battery pack 100 is converted into DC power.

電力変換回路107aは、インバータ制御装置(回路)107bから出力された制御信号により6つのスイッチング半導体素子のスイッチング(オン・オフ)を制御することにより駆動される。 Power conversion circuit 107a is driven by controlling the switching (on-off) of the six switching semiconductor devices by the control signal outputted from the inverter control unit (circuit) 107 b. インバータ制御装置(回路)107bは、後述するバッテリコントローラ130から出力された充放電許容電流又は充放電許容電力の信号、及び上位制御装置から出力されたトルク指令信号などを受けて電力変換回路107aの駆動を制御する。 Inverter controller (circuit) 107 b is the charge and discharge allowable current or discharge allowable power output from the battery controller 130 to be described later signal, and receives and torque command signals output from the host controller of the power conversion circuit 107a to control the drive. これにより、電力変換回路107aは、充放電許容電流又は充放電許容電力の範囲内で、トルク指令信号に基づく交流電力をモータジェネレータ108に供給できるように、或いはトルク指令信号に基づいてモータジェネレータ108から得られた交流電力を直流電力に変換して供給できるように、組電池100を充放電させる。 Thus, the power conversion circuit 107a are, within the scope of the charge and discharge allowable current or discharge allowable power, so that it can supply AC power based on a torque command signal to the motor generator 108 or the motor-generator 108 based on the torque command signal as can be supplied to converting alternating current power to direct current power obtained from the battery pack 100 is charged and discharged. すなわちバッテリコントローラ130によるインバータ107の制御により組電池100の充放電が制御される。 That charge and discharge of the battery pack 100 is controlled by the control of the inverter 107 by the battery controller 130.

モータジェネレータ108は、車両の作動、例えば車輪の駆動やエンジン170の始動に必要な動力を発生したり、車輪やエンジン170から駆動力を受けて発電したりする。 Motor generator 108, operation of the vehicle, for example, to generate power required to start the wheels of the drive and the engine 170, or the generator receives a driving force from the wheels or the engine 170.

電池モジュール102のケースの内部には、組電池100の温度を検出するための温度センサ140を取り付けている。 Inside the case of the battery module 102, is mounted a temperature sensor 140 for detecting the temperature of the battery pack 100. 本例では、4個の温度センサ140を備え、モジュールケースの内部の温度分布に応じて、比較的高温になる領域付近に2個の温度センサ140を配置し、比較的低温になる領域付近にもう2個の温度センサ140を配置している。 In this example, provided with four temperature sensors 140, in accordance with the temperature distribution inside the module case, to place the relatively two temperature sensors 140 in the vicinity of the region where high temperatures, in the vicinity of the region where relatively low temperature It is arranged the other two temperature sensor 140. 4個の温度センサ140から出力された温度情報は、後述するバッテリコントローラ130に入力される。 Temperature information output from the four temperature sensors 140 is input to the battery controller 130 to be described later.

セルコントローラ120(管理手段103に相当)は、蓄電池101の状態を管理するための電子回路装置であり、蓄電ユニット110−1〜110−12に対応して設けられた12個のセル管理用集積回路(IC)素子120−1〜120−12、蓄電池101の蓄電状態を均一化するための回路素子、蓄電池101の電圧を検出するための回路、フォトカプラなどの絶縁素子、ノイズ除去回路を構成する回路素子、及び保護回路を構成する回路素子などが回路基板に実装される構成となっている。 (Corresponding to a management unit 103) the cell controller 120 is an electronic circuit device for managing the state of the battery 101, 12 cells management integrated provided corresponding to the power storage unit 110-1~110-12 component circuit (IC) devices 120-1~120-12, circuit elements for equalizing the state of charge of the storage battery 101, a circuit for detecting the voltage of the battery 101, an insulating element such as a photocoupler, a noise removing circuit such circuit elements constituting the circuit elements, and the protection circuit to have a configuration which is mounted on the circuit board. 回路基板は別ケースに収納されて、電池モジュールに搭載されている。 The circuit board is housed in a separate case, which is mounted on the battery module. これにより、回路基板は組電池100から隔てられる。 Thus, the circuit board is separated from the assembled battery 100.

セル管理用集積回路素子120−1〜120−12は、蓄電池の状態を管理する主機能として、対応する蓄電ユニット110−1〜110−12における4個の蓄電池101−1〜101−4の電圧を検出するための検出機能、及び対応する蓄電ユニット110−1〜110−12における4個の蓄電池101−1〜101−4の間の蓄電容量を均一化するための制御機能を備えている。 Cell management integrated circuit device 120-1~120-12 includes, as main function of managing the state of the battery, the corresponding voltage at the four battery 101-1 to 101-4 in the energy storage unit 110-1~110-12 and a control function for equalizing the storage capacity between the detecting function, and four in the corresponding power storage unit 110-1~110-12 battery 101-1 to 101-4 for detecting.

また、セル管理用集積回路素子120−1〜120−12は、対応する蓄電ユニット110−1〜110−12を動作電源として動作すると共に、対応する蓄電ユニット110−1〜110−12の負極側(最低電位側)の電位を基準電位(グランド電位)としている。 Also, the cell management integrated circuit device 120-1~120-12 is configured to operate the corresponding power storage unit 110-1~110-12 as an operation power supply, the negative side of the corresponding power storage unit 110-1~110-12 is a reference potential the potential of the (lowest potential side) (ground potential).

さらに、セル管理用集積回路素子120−1〜120−12は、基準電位の高いものから基準電位の低いものの順に直列に接続されている。 Furthermore, the cell management integrated circuit device 120-1~120-12 Although low reference potential from the highest reference potential are sequentially connected in series. すなわちセル管理用集積回路素子120−1〜120−12はそれぞれ入出力端子を備え、セル管理用集積回路素子120−1の出力端子がセル管理用集積回路素子120−2の入力端子に、セル管理用集積回路素子120−2の出力端子がセル管理用集積回路素子120−3の入力端子に、・・・、セル管理用集積回路素子120−11の出力端子がセル管理用集積回路素子120−12の入力端子にそれぞれ接続されるように構成されている。 That includes input and output terminals respectively cell management integrated circuit element 120-1~120-12 is the input terminal of the integrated circuit device 120-2 output terminal cell management cell management integrated circuit device 120-1, cell the input terminal of the management integrated circuit device an output terminal cell management integrated circuit device 120-3 of 120-2, ..., cell management for integrated circuit output terminal cell management integrated circuit device elements 120-11 120 It is configured to be respectively connected to the -12 input terminal. これにより、後述するバッテリコントローラ130からセルコントローラ120に入力された信号は、初めにセル管理用集積回路素子120−1の入力端子に入力され、基準電位の高いものから順番に基準電位の低いものの方に伝送され、最後にセル管理用集積回路素子120−12の出力端子から出力され、再びバッテリコントローラ130に戻る。 Thus, a signal input from the battery controller 130 to the cell controller 120 to be described later is input to the input terminal of the cell management integrated circuit element 120-1 at the beginning, although lower reference potentials in order from the highest reference potential is transmitted towards the last output from the output terminal of the cell management integrated circuit element 120-12, it returns to the battery controller 130. すなわち後述するバッテリコントローラ130、及び直列接続されたセル管理用集積回路素子120−1〜120−12がループ状に接続されて、信号の通信路(伝送路)が形成されている。 That battery controller 130, and a series-connected cell management integrated circuit element 120-1~120-12 was later is connected in a loop, the signal communication path (transmission path) is formed. なお、ループ状に接続された通信路はデイジーチェーン状に接続された通信路と呼ばれる場合もある。 The communication path connected in a loop may also be referred to as a communication path connected in a daisy chain.

セルコントローラ120とバッテリコントローラ130とを接続する接続回路にはフォトカプラなどの絶縁素子が設けられている。 The connection circuit for connecting the cell controller 120 and the battery controller 130 is provided with an insulating element such as a photocoupler. これは、セルコントローラ120とバッテリコントローラ130との動作電源の違いによって両者の基準電位が異なるからであり、両者間において信号を伝送する際、信号の基準電位を変位させる必要があるからである。 This is because both the reference potential by a difference in operating power and the cell controller 120 and the battery controller 130 is different, when transmitting signals between them, it is necessary to displace the reference potential of the signal.

セル管理用集積回路素子120−1〜120−12と、これに対応する蓄電ユニット110−1〜110−12との間には、蓄電ユニット110−1〜110−12のそれぞれにおける蓄電池101−1〜101−4のそれぞれの両端電圧(正極と負極との間の電圧)を検出するための電位入力回路が接続されている。 A cell management integrated circuit element 120-1~120-12, between the power storage unit 110-1~110-12 corresponding thereto, battery 101-1 in each energy storage unit 110-1~110-12 potential input circuit for detecting the (voltage between the positive and negative electrodes) each of the voltage across the ~101-4 is connected. セル管理用集積回路素子120−1〜120−12のそれぞれには、その電位入力回路を介して、対応する蓄電ユニットにおける蓄電池101−1〜101−4のそれぞれの両端(正極側及び負極側)の電位情報が入力される。 Each cell management integrated circuit element 120-1~120-12 through its potential input circuit, each of the two ends of the storage battery 101-1 to 101-4 in the corresponding power storage unit (positive side and negative side) potential information is input. セル管理用集積回路素子120−1〜120−12のそれぞれは、入力された電位情報に基づいて、対応する蓄電ユニットにおける蓄電池101−1〜101−4のそれぞれの両端電圧を検出する。 Each cell management integrated circuit element 120-1~120-12, based on the input voltage information, detecting each of the voltage across the storage battery 101-1 to 101-4 in the corresponding power storage unit.

蓄電ユニット110−1〜110−12のそれぞれには、蓄電池101の蓄電状態を均一化するための調整回路が設けられている。 Each of the power storage unit 110-1~110-12, the adjustment circuit for equalizing the state of charge of the storage battery 101 is provided. 調整回路は、スイッチと抵抗からなる直列回路であり、蓄電池101−1〜101−4のそれぞれの両極間(正極と負極との間)に接続されている。 Adjusting circuit is a series circuit composed of the switch and the resistor are connected between the respective poles of battery 101-1 to 101-4 (between the positive electrode and the negative electrode). スイッチは、対応するセル管理用集積回路素子からの駆動信号によりオン・オフ制御される。 Switches are on-off controlled by a drive signal from the corresponding cell management integrated circuit device. これにより、各蓄電池101の蓄電容量を調整できる。 Thus, it is possible to adjust the storage capacity of each storage battery 101. すなわち4個の蓄電池101のうち、1つの蓄電池の蓄電容量が他の蓄電池の蓄電容量よりも多い場合には、当該蓄電池に接続されたスイッチをオンし、当該蓄電池を放電状態にする。 That of the four battery 101, when the power storage capacity of one storage battery is larger than the storage capacity of the other storage battery, and turns on the switch connected to the battery and the battery in the discharge state. これにより、当該蓄電池から出力された電力は抵抗に供給され、熱として消費される。 Thus, power output from the battery is supplied to the resistor and dissipated as heat. なお、蓄電池101に接続されたスイッチは、セル管理用集積回路素子120に内蔵されていてもよい。 The switch connected to the battery 101, may be incorporated in the cell management integrated circuit element 120.

組電池100の正極側と電力変換回路107aの直流正極側との間には、組電池100から電力変換回路107aに供給される電流、或いは電力変換回路107aから組電池100に供給される電流を検出するための電流計測手段105が設けられている。 Between the DC positive electrode side of the positive electrode side and the power conversion circuit 107a of the battery pack 100, the current supplied from the assembled battery 100 to the power conversion circuit 107a, or the current supplied to the battery pack 100 from the power conversion circuit 107a current measuring means 105 for detecting are provided. 電流計測手段105から出力された電流情報はバッテリコントローラ130に入力される。 Current information output from the current measuring unit 105 is input to the battery controller 130. また、組電池100の両極間(正極と負極との間)には、組電池100の両端電圧を検出するための電圧計測手段104が設けられている。 Also, the between both electrodes of the battery pack 100 (between the positive electrode and the negative electrode), the voltage measuring means 104 for detecting the voltage across the battery pack 100 is provided. 電圧計測手段104から出力された電圧情報はバッテリコントローラ130に入力される。 Voltage information output from the voltage measuring unit 104 is input to the battery controller 130. バッテリコントローラ130にはセル管理用集積回路素子120−1〜120−12によって検出された各蓄電池の電圧値も入力される。 Voltage value of each battery detected by the cell management integrated circuit device 120-1~120-12 the battery controller 130 is also input.

バッテリコントローラ130は、組電池100の状態を管理し、セル管理用集積回路素子120−1〜120−12を制御し、そして組電池100の充放電を制御するための電子回路装置であり、演算器131、入出力回路132などを備えている。 Battery controller 130 manages the state of the battery pack 100, and controls the cell management integrated circuit device 120-1~120-12, and an electronic circuit apparatus for controlling the charging and discharging of the battery pack 100, operation vessel 131, and a input and output circuit 132. 演算器131、及び入出力回路132を構成する回路素子などは回路基板に実装されて蓄電装置の筐体内に収納されている。 Calculator 131, and the like circuit elements constituting the output circuit 132 is accommodated in the housing of the power storage device mounted on a circuit board.

演算器131は、マイクロコンピュータから構成され、セル管理用集積回路素子120−1〜120−12によって検出されたセル電圧値(蓄電ユニットの両端電圧値)、電流計測手段105から出力された電流情報、電圧計測手段104から出力された電圧情報、及び温度センサ140から出力された温度情報を入力する。 Calculator 131 is constituted by a microcomputer, detected cell voltage value by the cell management integrated circuit element 120-1~120-12 (across the voltage value of the power storage unit), the current information output from the current measurement means 105 and the input voltage information output from the voltage measuring unit 104, and the temperature information output from the temperature sensor 140. これにより、演算器131は、組電池100の充放電の電流と電圧及び組電池100の温度を検出する。 Thus, the computing unit 131 detects the current and voltage and temperature of the battery pack 100 of the charging and discharging of the battery pack 100. そして、演算器131は、検出された電流値と電圧値と温度値、入力されたセル電圧値及び予めメモリ内に記憶された組電池100の特性値に基づいて、組電池100の状態(例えば組電池100の劣化状態)を検知するための演算、セル管理用集積回路素子120−1〜120−12を制御するための演算、及び組電池100の状態検知結果に基づいて組電池100の充放電を制御するための演算を実行し、それらの演算結果に基づいて、組電池100の状態値に関する信号、セル管理用集積回路素子120−1〜120−12を制御するための信号、及び組電池100の充放電を制御するための信号などを生成して出力する。 Then, the arithmetic unit 131, the detected current and voltage values ​​and temperature values, based on the stored characteristic values ​​of the battery pack 100 to the input cell voltage value and the advance in the memory, the state of the battery pack 100 (e.g. operation for detecting the deterioration state) of the battery pack 100, operations for controlling the cell management integrated circuit elements 120-1~120-12, and the charge of the battery pack 100 based on the state detection result of the battery pack 100 performs an operation for controlling the discharge, based on their operation result, signals for controlling signal, the cell management integrated circuit device 120-1~120-12 about the state value of the battery pack 100, and a set and generates and outputs such signal for controlling the charging and discharging of the battery 100. すなわち演算器131は、図1で説明した状態検知手段106及び電流制御手段109を備え、図1−1で説明した或いは後述する状態検知手段106及び電流制御手段109の各機能を果たす。 That calculator 131 includes a state detection unit 106 and the current control unit 109 described in FIG. 1, it performs the functions of the state detection means 106 and the current control unit 109 described later or described in Figure 1-1.

入出力回路132は、演算器131と上位システムとの間で信号を変換する通信回路であり、組電池100の状態値に関する信号、組電池100の充放電を制御するための信号などの演算器131からの信号を上位システムを出力すると共に、上位システムからの信号を演算器131に出力する通信回路であり、上位システムとはLANケーブルを介して接続されている。 Output circuit 132 is a communication circuit for converting the signals between the operation unit 131 and the host system, calculator, such as a signal for controlling the signal, the charging and discharging of the battery pack 100 on the status value of the battery pack 100 the signal from 131 to output the higher-level system, a communication circuit that outputs a signal from the host system to the calculator 131 are connected via a LAN cable to the host system.

上位システムとは、車輪駆動用の動力を発生するエンジン170を制御するエンジン制御装置160、インバータ制御装置(回路)107b及びエンジン制御装置160並びにインバータ制御装置(回路)107bの上位制御装置であるハイブリッド自動車全体を統合制御する制御装置150などである。 The host system is an engine control unit 160, upper control unit of the inverter control device (circuit) 107 b and the engine control unit 160 and the inverter control unit (circuit) 107 b for controlling the engine 170 that generates power for driving wheels hybrid it is a control device 150 which generally controls the whole vehicle.

本例では、前述のように、演算器131に記憶された組電池の劣化状態が組電池100の真の劣化状態と異なる場合、組電池100の充放電許容電流又は充放電許容電力を制限するための制御信号を演算器131からインバータ制御装置(回路)107bに送信する。 In this embodiment, as described above, if the deteriorated state of the battery pack stored in the arithmetic unit 131 is different from the true state of deterioration of the battery pack 100, to limit the charge and discharge allowable current or discharge allowable power of the battery pack 100 a control signal transmitted from the operation unit 131 to the inverter control unit (circuit) 107 b for. これにより、インバータ制御装置(回路)107bは、電力変換回路107aの駆動を制御し、制限された充放電許容電流又は充放電許容電力の範囲内で組電池100を充放電させる。 Thus, the inverter control unit (circuit) 107 b controls the drive of the power conversion circuit 107a, the battery pack 100 is charged and discharged within a limited charge and discharge allowable current or charge and discharge allowable power. この結果、組電池100の充放電量は小さく抑えられる。 As a result, the charge and discharge amount of the battery pack 100 is kept small. この後、演算器131は、前述のように、制限された充放電許容電流又は充放電許容電力の下で充放電する組電池100の状態量から検知された組電池100の劣化状態が組電池100の真の劣化状態に収束した場合、充放電許容電流又は充放電許容電力の制限を解除するための制御信号をインバータ制御装置(回路)107に送信する。 Thereafter, computing unit 131, as described above, restricted discharge allowable current or discharge allowable power degradation state of the battery pack 100 is detected from the state quantity of the battery pack 100 is charged and discharged under the assembled battery If it converged to the true state of degradation of 100 transmits a control signal for releasing the restriction of the charge and discharge allowable current or discharge allowable power to the inverter control unit (circuit) 107. これにより、インバータ制御装置(回路)107bは、電力変換回路107aの駆動を制御し、制限が解除された充放電許容電流又は充放電許容電力の範囲内で組電池100を充放電させる。 Thus, the inverter control unit (circuit) 107 b controls the drive of the power conversion circuit 107a, limits the battery pack 100 is charged and discharged within a is released discharge allowable current or charge and discharge allowable power. この結果、組電池100の充放電量は大きくなると共に、組電池100の正確な劣化状態に基づいて組電池100の充放電が制御される。 As a result, the charge and discharge amount of the battery pack 100, together with increased, the charge and discharge of the battery pack 100 is controlled based on a precise deterioration state of the battery pack 100. このように、本例では、組電池100の真の劣化状態に収束した劣化状態に基づいて組電池100の充放電を制御できるので、組電池100の充放電を最適に制御することができる。 Thus, in this example, it is possible to control the charging and discharging of the battery pack 100 based on the deterioration state converged to the true state of deterioration of the battery pack 100, it is possible to optimally control the charging and discharging of the battery pack 100.

次に、状態検知手段106が行う詳細な処理内容について説明する。 Next, the detailed processing contents of the state detection means 106 is performed. 状態検知手段106が行う蓄電池101又は電池モジュール102の状態検知とは、SOC(充電状態)、SOH(劣化状態)、現在充放電可能な最大許容電流、異常状態の検知などが挙げられる。 State and a state detection of the detection means storage battery 101 or the battery module 102 106 performed, SOC (state of charge), SOH (deteriorated state), the current rechargeable maximum allowable current, and the like detects an abnormal condition. 状態検知手段106が行う蓄電池101又は電池モジュール102の状態検知方法について説明する。 Described state detection method of the battery 101 or the battery module 102 state detection means 106 performs. SOCは、次の(1)式と(2)式により、電池モジュール102の情報に基づき求めることができる。 SOC is the following (1) and (2) can be obtained based on information of the battery module 102.

OCV=CCV−I×R−Vp (1) OCV = CCV-I × R-Vp (1)
SOC=MAP(OCV) (2) SOC = MAP (OCV) (2)
ここで、OCVは電池モジュール102の起電力、CCVは電圧計測手段104で取得した電池モジュール102の端子間電圧、Iは無負荷時又は充放電時に電流計測手段105で計測した電流値、Rは予め求めて状態検知手段106に持たせたか、又はリアルタイムに求めた電池モジュール102の内部抵抗、Vpは分極電圧である。 Here, OCV the electromotive force of the battery module 102, CCV voltage between terminals of the battery module 102 obtained by the voltage measuring means 104, I is the current value measured by the current measuring unit 105 at the time of no load or discharge, R represents or gave the state detection means 106 is previously obtained, or the internal resistance of the battery module 102 obtained in real time, Vp is the polarization voltage.

上記(1)式でOCVを求めた後に、図3に示すような予め抽出した電池モジュール102のOCVとSOCの関係からSOCを取得することができる。 After obtaining the OCV in the above (1), you can obtain the SOC from the pre-extracted OCV and SOC of the relationship between the battery module 102 as shown in FIG. なお、前記OCV、CCV、R、Vpは電池モジュール102のものとしているが、電池モジュール102に内蔵される蓄電池101の数で除算して蓄電池101の平均値を求め、これにより計算してもよい。 Incidentally, the OCV, CCV, R, although Vp is assumed in the battery module 102, the average value of the storage battery 101 is divided by the number of battery 101 incorporated in the battery module 102, thereby may be calculated . また、管理手段103を用いて各蓄電池101のCCVを計測することで、各蓄電池101のSOCをそれぞれ求めてもよい。 Also, by measuring the CCV of each battery 101 using the management unit 103, the SOC of each battery 101 may be obtained, respectively. この場合、RやVpは蓄電池101から抽出したものを使用する。 In this case, R and Vp is used which is extracted from the storage battery 101.

SOCを求める他の方法として、次の(3)式により、計測した電流値を積算する手段が挙げられる。 Another method of determining the SOC, by the following equation (3) include means for integrating the current value measured.
SOC=SOC0+100×∫I dt/Qmax (3) SOC = SOC0 + 100 × ∫I dt / Qmax (3)
ここで、SOC0は充放電開始時のSOCの初期値、Qmaxは蓄電池101又は電池モジュール102の満充電時の容量である。 Here, SOC 0 is the initial value of the SOC at the start of charge and discharge, Qmax is the capacity at the time of full charge of the storage battery 101 or the battery module 102.

本発明では、上記(1)式と(2)式によってSOCを求めてもよいし、上記(3)式により、出入りする電流を積算して求めてもよい。 In the present invention, the above (1) may be obtained the SOC by equation (2), the equation (3), may be obtained by integrating the current in and out.
SOHは、電池モジュール102の劣化状態を示す値である。 SOH is a value indicating the deterioration state of the battery module 102. 電池モジュール102が劣化すると、内部抵抗が上昇、又は満充電時の容量が低下するなど特性に変化が生じる。 When the battery module 102 is deteriorated, it increases the internal resistance, or full capacity during charging is changed to the characteristic such as decrease occurs. これら劣化で変化した特性又はこの変化した特性と初期特性との比率から、SOHを求める方法が一般的である。 From the ratio between the change characteristics or this changed characteristics and initial characteristics by these degradation, methods for determining the SOH is generally used. 演算したSOHは、他の演算に反映させて劣化情報を考慮に入れた電池モジュール102の状態検知を行うこともできるし、更に電池モジュール102の寿命を判定する際の指標として用いることもできる。 Computed SOH is to deterioration information by reflecting the other arithmetic may be detecting the state of the battery module 102 that takes into account, it can also be used as an index for further determining the life of the battery module 102. 本実施例では、電池モジュール102の劣化が進行するにしたがい、SOHの値は上昇するものとして定義する。 In this embodiment, in accordance with the deterioration of the battery module 102 progresses, the value of the SOH is defined to rise.

車両停止時などの状態検知手段106の電源がオフとなる場合は、最終的に求めたSOHを状態検知手段106が内蔵するEEPROMなどの記憶装置に書き込む。 If the power of the state detection means 106, such as when the vehicle stops is turned off, and writes the final obtained SOH in a storage device such as an EEPROM incorporated in the state detection means 106. 次回の車両起動時など状態検知手段106の電源がオンとなる場合には、前回記憶装置に書き込んだSOHを読み出して初期値とし、SOH演算を開始する。 When the power supply of the next vehicle start-up, such as state detection means 106 is turned on, an initial value by reading the SOH previously written in the storage device, starts the SOH calculation.

次に、状態検知手段106が求める最大許容電流について説明する。 Next, the maximum allowable current condition detector 106 is determined will be described. 最大許容電流とは、電池モジュール102が現在入出力できる最大の電流値のことである。 The maximum allowable current, is the maximum value of current battery module 102 can be input and output current. 一般的に、電池はその種類や性能に応じて、上限電圧Vmaxと下限電圧Vminが決定される。 Generally, the battery depending on the type and performance, the upper limit voltage Vmax and the lower limit voltage Vmin are determined. 最大許容電流は、上限電圧Vmax又は下限電圧Vminを超えない最大の電流値である。 Maximum permissible current is the maximum current value that does not exceed the upper limit voltage Vmax or the lower limit voltage Vmin. 車両は、最大許容電流の範囲内で電池モジュール102の充放電制御を行う必要がある。 Vehicle, it is necessary to charge and discharge control of the battery modules 102 within the maximum allowable current. 最大許容電流は充電側、放電側でそれぞれ演算を行うと、より適切に電池モジュール102を使用できるようになるものであり、最大許容充電電流(ICHG)の演算方法は次の(4)式、最大許容放電電流(IDIS)の演算方法は次の(5)式となる。 Maximum allowable current charging side and respectively the discharge side performs calculation, better are those made available the battery module 102, the maximum calculation method of allowable charging current (ICHG) is the following (4) equation, method of calculating the maximum allowable discharge current (IDIS) is represented by the following equation (5).
ICHG=(Vmax−OCV)/Rz (4) ICHG = (Vmax-OCV) / Rz (4)
IDIS=(OCV−Vmin)/Rz (5) IDIS = (OCV-Vmin) / Rz (5)
ここで、Rzは電池モジュール102のインピーダンスである。 Here, Rz is the impedance of the battery module 102. 図4に示すように、インピーダンスは電池モジュール102の温度又はSOCなどに応じて異なってくるため、電池モジュール102の状態に応じたRzを予め求めて使用するか、前記各種計測手段によって電池モジュール102のデータを取得し、Rzをリアルタイムに求めると、電池の状態に応じた精度の良い最大許容電流を得ることができる。 As shown in FIG. 4, since the impedance varies depending on the temperature or SOC of the battery module 102, to use previously seeking Rz corresponding to the state of the battery module 102, the battery module 102 by the various measuring means data acquires, when determining the Rz in real time, it is possible to obtain a good maximum permissible current precision in accordance with the state of the battery. 図5に示すように、求めた最大許容充電電流は高SOCとなるほど小さくなり、低SOCとなるほど大きくなる。 As shown in FIG. 5, the maximum allowable charging current obtained becomes smaller as the high SOC, the larger the low SOC. また、最大許容放電電流は高SOCとなるほど大きくなり、低SOCとなるほど小さくなる。 The maximum allowable discharge current increases as the high SOC, low SOC and indeed small. インバータ107は受信した最大許容充電電流の範囲内で電池モジュール102を充電し、最大許容放電電流の範囲内で電池モジュール102を放電する充放電制御を行う。 Inverter 107 charges the battery modules 102 within the maximum allowable charging current has been received, charging and discharging control that discharges the battery modules 102 within the maximum allowable discharge current.

電池モジュール102が劣化するにつれて、電池性能として出し入れ可能な最大許容電流が小さくなる。 As the battery module 102 is degraded, and out possible maximum permissible current decreases as the battery performance. すなわち、状態検知手段106は電池モジュール102の劣化を適切に捉えてSOHとして求め、SOHの値に応じて最大許容電流を小さくする方向へ制限する必要がある。 That is, the state detection unit 106 obtains the SOH properly capture the deterioration of the battery module 102, it is necessary to restrict the direction to reduce the maximum allowable current according to the value of the SOH. 電池モジュール102の劣化の進行を最大許容電流に反映させ、その結果をインバータ107に送信することで電池モジュール102の初期状態から寿命まで最適に充放電制御を行うことが可能となる。 The progress of deterioration of the battery modules 102 is reflected to the maximum allowable current, it is possible to perform the results optimally discharge control from the initial state of the battery module 102 by sending to the inverter 107 to life. 求めたSOHの結果に応じて最大許容電流を小さく制限する方法について、下記の(6)式と(7)式を用いて説明する。 How to restrict reduce the maximum allowable current according to the result of SOH obtained will be described with reference to equations (6) and the following equation (7). (6)式と(7)式は、それぞれSOHの変化に対応させた最大許容充電電流(ICHG)と最大許容放電電流(IDIS)を与えるものである。 (6) and (7) are those which provide respectively the maximum allowable charge current to correspond to the change in the SOH (ICHG) to the maximum allowable discharge current (IDIS).
ICHG=(Vmax−OCV)/(SOH×Rz) (6) ICHG = (Vmax-OCV) / (SOH × Rz) (6)
IDIS=(OCV−Vmin)/(SOH×Rz) (7) IDIS = (OCV-Vmin) / (SOH × Rz) (7)
SOHを求めた結果、SOHの値が上昇すると、上記の(6)式と(7)式の分母(SOH×Rz)が大きくなる。 Result of obtaining SOH, the value of SOH is increased, the above (6) and (7) of the denominator (SOH × Rz) is increased. このため、求まるICHG及びIDISは、SOHの上昇に応じて小さな値となり、電池モジュール102が劣化した場合でも確実にVmaxとVminを超えない範囲内の充電電流と放電電流を求めることができる。 Thus, obtained ICHG and IDIS becomes a small value in response to an increase in SOH, it is possible to obtain the charge and discharge current of not exceeding reliably Vmax and Vmin, even if the battery module 102 has degraded. これを最大許容電流としてインバータ107側に送信し、インバータ107は受信した最大許容電流の範囲内で電池モジュール102を使用することで、初期状態から劣化状態にかけて確実に電池モジュール102を充電又は放電させることができる。 This was sent to the inverter 107 side as the maximum allowable current, the inverter 107 by using the battery module 102 within the maximum allowable current received, to charge or discharge the positively battery module 102 from the initial state over the deteriorated state be able to. また、前述したSOH演算と最大許容電流演算は、管理手段103を用いて各蓄電池101のものを求め、これにより充電又は放電制御することも可能である。 Also, the SOH calculation and the maximum allowable current operation described above, determine the ones of each battery 101 using the management unit 103, it is possible to charge or discharge the control thereby.

以上のように、状態検知手段106は、逐次蓄電池101又は電池モジュール102のSOHを求め、求めたSOHが上昇するに従って、最大許容電流の値を小さく制限する。 As described above, the state detection unit 106 sequentially obtains the SOH of the storage battery 101 or the battery module 102 according to the determined SOH is increased, limiting decrease the value of the maximum permissible current. また、車両停止時ではSOHを状態検知手段106が内蔵する記憶装置に書き込み、車両起動時には記憶装置に書き込んだSOHを読み出してSOH演算開始の初期値とする。 Further, the time of vehicle stop writing to the storage device containing the status detecting unit 106 of the SOH, during vehicle launch and initial value of the SOH calculation start reading the SOH written in the storage device. こうして、状態検知手段106の電源をオフにしても、前回のSOHの履歴を使用することによって、蓄電池101又は電池モジュール102の充放電制御を確実に行うことができる。 Thus, even when the power is turned off in the state detection means 106, by using a history of previous SOH, the charge and discharge control of the storage battery 101 or the battery module 102 can be reliably performed.

状態検知手段106が行う状態検知は、前記したSOC、SOH、最大許容電流の演算の外に、蓄電池101又は電池モジュール102の異常状態の検知が挙げられる。 State detection state detecting means 106 performs the above-described SOC, SOH, the operation outside the maximum allowable current, and the detection of the abnormal state of the battery 101 or the battery module 102. 異常状態としては、過充電、過放電、更に複数の蓄電池を直列又は並列に接続して蓄電池101を構成している場合には、各蓄電池間のSOCのアンバランス、温度のアンバランス、蓄電池101の温度が全体的に所定値以上よりも高い等の温度異常などが挙げられる。 The abnormal state, the overcharge, overdischarge, if you are further configured to battery 101 by connecting a plurality of storage batteries in series or in parallel, unbalance, unbalance of temperature of SOC between the battery, the storage battery 101 temperature of generally like abnormal temperature higher such than a predetermined value or more. 蓄電池101又は電池モジュール102の異常状態の検知は、各異常状態を検知するための閾値を設け、蓄電池101又は電池モジュール102が閾値を超える状況となった場合に異常と判定する方法が一般的である。 Detection of the abnormal state of the battery 101 or the battery module 102, the threshold value for detecting the respective abnormal states provided, abnormality determines how when the storage battery 101 or the battery module 102 becomes a status exceeding the threshold value is common is there. 以上のように、状態検知手段106は電池の各種状態を検知し、結果をインバータ107などの上位システムに送信する。 As described above, the state detection means 106 detects the various states of the battery, and transmits the results to the host system, such as an inverter 107. 上位システムは、前記電池の各種状態を把握して電池の状態に応じて電池を使用することになる。 Top system will use a battery according to the state of the battery to grasp various states of the battery.

次に、状態検知手段106が故障した場合について述べる。 Next, description will be made of a case where the state detecting means 106 has failed. 長年にわたり使用された状態検知手段106が故障した際、これが独立した基板として実装されている場合には、新たな状態検知手段106に取り替えることが一般的な対策である。 When the state detection means 106 that was used for many years has failed, this is when it is implemented as a separate substrate, it is common measures to replace the new state detection means 106. しかし、新たな状態検知手段106は、長年にわたり使用された蓄電池101又は電池モジュール102のSOHをその記憶装置に記録していないため、電池を新品(SOH初期値)のものとして最大許容電流を求め、結果をインバータ107に送信する。 However, the new state detection means 106, because it does not record the SOH of the storage battery 101 or the battery module 102 used for many years in the storage device, obtains the maximum allowable current of the battery as brand new (SOH initial value) , and it transmits the result to the inverter 107. 図6は、状態検知手段106のみが故障した場合のSOH演算の結果の時間推移を示す。 Figure 6 shows the results of time course of SOH calculation when only condition detector 106 has failed. 時間T0で状態検知手段が故障により新品に交換されたとすると、時間T0までは電池モジュール102のSOHが逐次演算されて劣化状態を正しく捉えている。 When the state detection means at time T0 and is replaced with a new due to a failure, until time T0 has been computed SOH of the battery module 102 sequentially captures the deteriorated state correctly. 時間T0で新品の状態検知手段106に取り替えられる(図6では交換に要する時間は省略されている。)と、状態検知手段106はSOHの初期値を用いてSOH演算を開始する。 And is replaced by a state detection means 106 of new time T0 (the time required for replacement in FIG. 6 is omitted.), The state detecting means 106 starts the SOH calculation using the initial value of the SOH. この場合、劣化した電池モジュール102に対して初期状態のSOHを用いて最大許容電流を求めることになるため、電池モジュール102の性能を超える電流値の信号をインバータ107に送信して充放電制御を行わせる。 In this case, since that will determine the maximum allowable current using the SOH of the initial state with respect to the battery module 102 having deteriorated, the signal charge and discharge control is sent to the inverter 107 in the current value exceeds the performance of the battery module 102 to perform. インバータ107は大きな最大許容電流を用いて電池モジュール102の充放電を行い、状態検知手段106はその際に受信できる電圧や電流などを用いて電池モジュール102の真のSOHを求めるので、時間T1でSOHは真の値に収束する。 The inverter 107 performs charging and discharging of the battery module 102 with large maximum permissible current, the state detection unit 106 obtains the true SOH of the battery module 102 by using a voltage or current that can be received at that time, at time T1 SOH converges to the true value. すなわち、電池モジュール102の真のSOHを捉えた後に求まる最大許容電流が、現在の電池モジュール102の最適な最大許容電流であり、この時間T1以降、電池モジュール102の最適の充放電制御が実現される。 That is, the maximum permissible current which is obtained after capturing the true SOH of the battery module 102, a current optimum maximum allowable current of the battery module 102, after this time T1, the charge and discharge control of the optimal battery module 102 is implemented that.

図6では、SOHが徐々に更新される場合を示しているが、SOHが求まった瞬時に更新する手段も考えられる。 6 shows the case where the SOH is gradually updated, means for updating the instant that Motoma' is SOH also conceivable. この場合は、SOHを求めるためのデータを蓄えるまでの時間中は、電池モジュール102の性能を超える最大許容電流の信号をインバータ107に送信する。 In this case, during the time until the store data for determining the SOH transmits a signal of the maximum allowable current exceeding the performance of the battery module 102 to the inverter 107. SOHが求まった後は瞬時に値を更新し、その更新した時間以降に最適な充放電制御が実施される。 After SOH is Motoma' updates the instant value, the updated time after the optimum charge and discharge control is performed.

電池の真のSOHと状態検知手段106が記録するSOHとが不一致となる場合の対策について説明する。 True SOH and state detection unit 106 of the battery and SOH to be recorded will be described measures may become inconsistent. 実施例1では、管理手段103に外部から識別可能なID111を記録している。 In the first embodiment, it records the ID111 discernible from the outside to the management unit 103. 記録する方法としては管理手段103に記憶装置を内蔵してID111を記憶させる方法が一般的である。 As a method for recording the method of storing the ID111 a built-in storage device management unit 103 is generally used. 状態検知手段106は、車両起動時の毎に管理手段103のID111を読み出し、状態検知手段106が記憶するID´112と照合して、両者が一致している場合は記憶しているSOHをそのまま使用する。 State detecting means 106 reads the ID111 management unit 103 for each of the time the vehicle starts, against the ID'112 the state detection means 106 stores, If they match as a SOH stored therein use.

図7に示されたフローチャートを用いて、状態検知手段106が行う処理について説明する。 With reference to the flowchart shown in FIG. 7, a description will be given of a process state detection means 106 is performed. まず、状態検知手段106は、初期状態として管理手段103に絶対に割り当てられないID´112(例えば全て0、1など)を記録している。 First, the state detecting unit 106 records the ID'112 not absolutely assigned as an initial state management unit 103 (for example, all 0). 状態検知手段106が故障し新品のものに取り替えられて車両が起動された場合、取り替えた状態検知手段106は管理手段103が記録するID111を読み出し、状態検知手段106自身が記録するID´112と一致するか否かを確認する(S601)。 When the state detection means 106 vehicle replaced to those of the failed new is activated, replacement state detecting means 106 reads the ID111 the management unit 103 records, the status detecting unit 106 itself records ID'112 to confirm whether or not the match (S601). 状態検知手段106を新品に取り替えた直後は、両者のIDは必ず不一致という結果になる。 Immediately after replacing the state detection means 106 in the new, both ID will always result in a mismatch. IDが不一致となると、状態検知手段106は電流制限信号を電流制御手段109に送信し、電流制御手段109は最大許容電流を制限する処理を行う(S602)。 If ID is mismatched, the state detection unit 106 sends a current limit signal to the current control unit 109, the current control unit 109 performs a process of limiting the maximum allowable current (S602). 制限する方法としては、電池モジュール102が寿命となった場合に得られる最大許容電流まで下げるなど、確実に電池モジュール102が充放電可能な許容電流にするのがよい。 As restriction method for, such as reduced to the maximum allowable current of the battery module 102 is obtained when a life, certainly better to the battery module 102 to rechargeable allowable current. インバータ107は、前記小さく制限された最大許容電流を用いて充放電を行うので、電池モジュール102を確実に充放電制御できる。 Inverter 107, since the charge and discharge using the maximum permissible current which the are small limited and can reliably discharge control of the battery module 102. 状態検知手段106は電流制御手段109によって制限された最大許容電流の範囲内で電池モジュール102が充放電されるなか、電圧計測手段104や電流計測手段105などで取得した電池モジュール102の電圧や電流など、更に必要な場合は電池モジュール102の温度情報などを用いてSOHを演算する。 Some state detection means 106 that the battery modules 102 within the maximum permissible current limited by the current control means 109 is charged and discharged, the voltage of the battery module 102 obtained in such a voltage measuring means 104 and the current measuring unit 105 and the current etc., if further necessary to calculate the SOH by using a temperature information of the battery module 102. 徐々にSOHを更新する方法でSOHを演算する場合、SOHの値が収束した以降は電池モジュール102のSOHは把握できたと判断する(S603)。 Gradually the case of calculating the SOH in a way of updating the SOH, since the value of the SOH is converged is determined that can be grasped in SOH of the battery module 102 (S603). SOHの収束を確認した後、状態検知手段106は、管理手段103から読み出したID111により、初期状態のID´112に上書きする(S604)。 After confirming the convergence of SOH, the state detection means 106, by ID111 read from the management unit 103, and overwrites the ID'112 the initial state (S604). 最後に、状態検知手段106は、電流制限解除信号を前記電流制御手段109に発信し、電流制限解除信号を受信した電流制御手段109は最大許容電流の制限の解除を行い、インバータ107は、状態検知手段106が求めたSOHに基づく最大許容電流に応じて電池モジュール102の充放電を行う。 Finally, the state detection unit 106, transmits the current restriction release signal to the current control unit 109, the current control means receives the current restriction release signal 109 performs cancellation of the maximum allowable current limit, the inverter 107, state charging and discharging of the battery module 102 according to the maximum allowable current detecting means 106 is based on SOH obtained. 次回の車両起動時は、状態検知手段106は管理手段103のID111を記録しているので、IDの照合を行うと管理手段103のものと一致する結果となる。 Next vehicle start-up, since the state detection unit 106 records the ID111 management unit 103, a result consistent with that of the management unit 103 performs the matching ID. 状態検知手段106は、この場合には自身が記録するSOHが使用可能であると判断し、電流制御手段109に電流制限信号を送信しない。 State detecting means 106 determines that the SOH to which it recorded in this case is available, it does not transmit a current limit signal to the current control unit 109. 電流制御手段109は、最大許容電流の制限を行うことはないため、インバータ107は、状態検知手段106が記録するSOHに基づいて求めた最大許容電流に基づき電池モジュール102を充放電する。 Current control means 109, because never performed the limitation of the maximum allowable current, the inverter 107, the state detection unit 106 charges and discharges the battery module 102 based on the maximum allowable current determined based on the SOH to be recorded.

上記のものでは、SOHが徐々に更新される方式のため、SOHの収束を確認することとしているが、状態検知手段106がSOHを求め終わるとステップ的に変更させる方式の場合には、SOHがステップ的に更新されたことを確認した後に管理手段103のID111を状態検知手段106に記録し、電流制限解除信号を電流制御手段109に送信するとよい。 Those mentioned above, since the method SOH is gradually updated, although decided to check the convergence of the SOH, when the state detection means 106 is the method to change the stepwise finished seeking SOH, it SOH stepwise be updated after confirming the ID111 management unit 103 records the state detection means 106, and send the current restriction release signal to the current control unit 109.

以上が、状態検知手段106が故障して新品に取り替えられた場合に行う状態検知手段106と電流制御手段109の処理内容である。 The above is the processing of the state detection means 106 and the current control unit 109 to perform when the state detection means 106 is replaced with a new one failed. このように、管理手段103にID111を記録させ、状態検知手段106が記録するID´112と照合することで、状態検知手段106が記憶するSOHの使用可否を判断する。 Thus, the management unit 103 to record the ID 111, by the state detecting means 106 collates the ID'112 for recording, the state detection means 106 to determine the availability of SOH storing. 状態検知手段106の初期状態として管理手段103が記憶するIDとは一致しないIDを記録させることで、状態検知手段106が故障して新品に取り替えられた場合は、管理手段103のID111とは必ず一致しないので、状態検知手段106は電流制限信号を電流制御手段109に送信し、電流制御手段109は最大許容電流を小さく制限する。 By the ID stored by the management unit 103 as an initial state of the state detection means 106 to record the unmatched ID, if the state detection unit 106 has been replaced with a new faulty, always with ID111 management unit 103 does not match, the state detection unit 106 sends a current limit signal to the current control unit 109, the current control unit 109 limits reduce the maximum allowable current. このように制限された最大許容電流をインバータ107に送信することで、状態検知手段106が記録するSOHと電池モジュール102のSOHとが不一致の場合でも確実に充放電制御できる。 Thus a limited maximum allowable current by sending to the inverter 107, and SOH of SOH and the battery module 102 to the state detection means 106 records can reliably discharge control even in the case of disagreement. また、状態検知手段106が電池モジュール102のSOHが求め終わったことを検知した場合、電流制限解除信号を電流制御手段109に送信して電流制御手段109は最大許容電流の制限の解除を行い、インバータ107は状態検知手段106が求めたSOHに基づく最大許容電流の範囲内で電池モジュール102の充放電を行うので、電池モジュール102のSOHに応じて確実に充放電制御を行うことができる電池制御装置が実現される。 Also, if the state detection means 106 detects that the finished required SOH of the battery module 102, a current control unit 109 sends the current restriction release signal to the current control unit 109 performs the cancellation of the maximum allowable current limit, since the inverter 107 performs charging and discharging of the battery modules 102 within the maximum permissible current which the state detecting means 106 based on the SOH determined, battery control can be performed reliably discharge control in accordance with the SOH of the battery module 102 device can be realized.

実施例1を用いると、電池モジュール102が故障又は何らかの理由で取り替えられた場合についても対応可能である。 With Example 1, it is possible to correspond in the case where the battery module 102 has been replaced by the failure or for some reason. 電池モジュール102が故障した場合には、内部に備える管理手段103も同時に取り替えられる。 When the battery module 102 has failed, the management unit 103 provided in the interior is also replaced at the same time. 電池モジュール102が故障して、新品に取り替えられた場合は、新品の電池モジュール102に対して、状態検知手段106は故障した電池モジュール102のSOHを初期値として充放電制御を行わせる。 The battery module 102 has failed and when replaced with a new, the battery module 102 of the new, state detection means 106 to perform the charge and discharge control SOH of the battery module 102 failed as the initial value. そのため、電池モジュール102の性能よりも小さい最大許容電流をインバータ107に送信するため、この場合では電池モジュール102の性能を超えて充放電制御を行うことはない。 Therefore, in order to send a small maximum allowable current than the performance of the battery module 102 to the inverter 107, it is not possible to perform the charge and discharge control beyond the performance of the battery module 102 in this case. また、電池モジュール102が故障した際、故障した電池モジュール102よりも一層劣化した電池に取り替えられた場合では、状態検知手段106が記録するSOHでは電池モジュール102の性能を超えて充放電制御を行うことがあり得る。 Further, when the battery module 102 fails, in the case that has been replaced in more degraded cells than the battery modules 102 fails, charging and discharging control beyond the performance of the battery module 102 in the SOH status detecting unit 106 records There may be possible. 図8は、そのような場合の許容電流とSOHの時間推移を示す。 Figure 8 shows the time course of the allowable current and SOH of such cases. 電池モジュール102が備える管理手段103と状態検知手段106のIDの照合を行い、電池取替えのためにID不一致となった(時間T0)後は、電流制御手段109によって最大許容電流の制限を行い(時間T1)、電池モジュール102の劣化状態を捉えてSOH演算結果が収束すると、最大許容電流の制限の解除を開始し(時間T2)、その解除が完了する(時間T3)。 Matches with ID management unit 103 and the state detection means 106 for the battery module 102 is provided, after became ID mismatch for replacement battery (time T0) performs restriction of the maximum allowable current by the current control means 109 ( time T1), the SOH calculation result captures the deteriorated state of the battery module 102 is converged, and starts the release of the maximum allowable current limit (time T2), the release is completed (time T3). このように、実施例1は、前回よりも更に劣化した電池モジュール102に取り替えられた場合でも、確実に充放電制御を行うことができる。 Thus, Example 1, even when the replaced battery module 102 further degraded than the previous, it is possible to reliably perform discharge control.

なお、実施例1では、電池モジュール102に内蔵する管理手段103にID111を記録させているが、この手段と設置箇所に限定されるものではなく、電池モジュール102又は状態検知手段106のIDを照合させ、電池モジュール102又は状態検知手段106の取替えを検知できる手段と設置箇所であればよい。 In Example 1, although by record ID111 management means 103 incorporated in the battery module 102, is not limited to the installation location this means, matching the ID of the battery module 102 or state detecting means 106 it is allowed as long as it is a means and installation location that can detect the replacement of the battery module 102 or the state detection means 106. また、実施例1では、最大許容電流に基づき充放電制御を行っているが、最大許容電流に電圧を乗算した最大許容電力に基づいて制御を行ってもよい。 In Example 1, although subjected to a charge and discharge control based on the maximum allowable current may be controlled based on the maximum allowable power obtained by multiplying the voltage to the maximum allowable current. さらに、実施例1では、SOHが不一致な状況を検知した場合、電流制御手段109で最大許容電流を制限しているが、インバータ107や車両全体を制御可能なコントローラにSOHが不一致な状況を通知し、エンジンとモータの使用比率を従来よりもエンジン側にシフトさせるなどして、結果的に電池モジュール102に出入りする電流や電力を制限する方法でもよい。 Furthermore, in Example 1, when the SOH detects a mismatch situation, but limits the maximum allowable current in the current control means 109, SOH an inverter 107 and the entire vehicle controllable controller notifies the mismatched conditions and, the use ratio of the engine and the motor and the like is shifted to the engine side than the conventional, may be a result in a method for limiting the current and power into and out of the battery module 102. この場合、SOHが収束した情報もインバータ107や車両全体を制御可能なコントローラに通知し、かかる電池モジュール102の使用制限を解除する。 In this case, the information SOH converges also notify the inverter 107 and the entire vehicle controllable controller, to release the restriction of the use of such battery modules 102.

実施例1では、以上のとおり、電池の状態を検知する状態検知手段106が記録するSOHが電池の真のSOHと不一致になった場合でも、状況に応じて最大許容電流もしくは電力の制限又は制限解除を行うことによって、蓄電池を安全確実に充放電制御できる。 In Example 1, as described above, even when the SOH of the state detection means 106 for detecting the state of the battery is recorded becomes true SOH and mismatch of the battery, the maximum allowable current or power limit or limits in accordance with the situation by performing the releasing, it can secure charging and discharging control battery.

[実施例2] [Example 2]
図9は、本発明の実施例2の構成を示す説明図である。 Figure 9 is an explanatory view showing a configuration of a second embodiment of the present invention. 実施例2は、実施例1の管理手段103が備えるID111と状態検知手段106が備えるID´112とを用いることなく、最大許容電流又は電力を制御する電池制御装置である。 Example 2, without using a ID'112 contained in the management unit 103 comprises ID111 and state detecting means 106 of Example 1, a battery control device that controls the maximum permissible current or power.

実施例2における状態検知手段106´は、その電源オン時(車両起動時等)に電流制限信号を電流制御手段109に送信し、この電流制限信号を受信した電流制御手段109は、状態検知手段106´が送信する最大許容電流の制限を行う。 State detection means 106 'in the second embodiment, transmits a current limit signal to the current control unit 109 at the time of power-on (start of the vehicle or the like), a current control unit 109 receives the current limit signal state detecting means 106 'performs to limit the maximum allowable current to be transmitted. 制限方法は、実施例1の処理内容と同じである。 Limiting method is the same as the processing contents of Example 1. インバータ107は、制限された最大許容電流に基づき電池モジュール102に出入りする電流の制御を行う。 Inverter 107 controls the current into and out of the battery module 102 based on the maximum allowable current limited.

管理手段103、電圧計測手段104及び電流計測手段105は、制限された電流で充放電されている蓄電池101又は電池モジュール102の情報を計測し、その結果を状態検知手段106´に送信する。 Management means 103, the voltage measuring unit 104 and the current measuring unit 105, the information of the storage battery 101 or the battery module 102 is charged and discharged by the limited current is measured and transmits the result to the state detection means 106 '. 蓄電池101又は電池モジュール102の温度情報が必要な場合、蓄電池101又は電池モジュール102にサーミスタや熱電対などを設置し、その温度計測の結果を状態検知手段106´に送信して状態検知に反映させる(図示せず)。 If the temperature information of the battery 101 or the battery module 102 is required to install and thermistor or thermocouple to the battery 101 or the battery module 102, to be reflected in the state detection by sending the result of the temperature measurement in the state detection means 106 ' (not shown). 状態検知手段106´は、上記の計測結果に基づき蓄電池101又は電池モジュール102の劣化状態の演算を行う。 State detection means 106 'performs the calculation of the deterioration state of the battery 101 or the battery module 102 based on the above measurement results. 状態検知手段106´は、自身が行なう劣化状態の演算結果が収束した場合(又は劣化状態の演算結果をステップ的に変更する場合は該変更を確認した場合)、電流制限解除信号を電流制御手段109に送信し、この信号を受けて、電流制御手段109は、最大許容電流の制限を解除する。 State detection means 106 '(if when changing the operation result or degradation state in steps is confirming the changes) when the result of the deterioration state itself performs converges, the current control means a current restriction release signal sent to 109, it receives this signal, the current control means 109 releases the limitation of the maximum allowable current. 実施例2は、このように車両起動時の度に状態検知手段106´が求めた最大許容電流の制限を行い、状態検知手段106´が行う劣化状態の演算結果が収束していることを確認した後に、最大許容電流の制限を解除して電池モジュール102を最大限に使用するものである。 Example 2 confirm that performs limitation of the maximum allowable current in this way the state detection means 106 'each time when the vehicle starts is determined, the state detection means calculation result of the deterioration state 106' is performed is converged after, it is to use the battery module 102 to maximize release the restriction of the maximum allowable current.

なお、実施例2は、最大許容電流に基づく制御としたが、実施例1と同様に、最大許容電流に電圧を乗算した最大許容電力に基づいて制御を行うようにしてもよい。 In Examples 2, although the control based on the maximum allowable current, in the same manner as in Example 1, may be performed controlled based on the maximum allowable power obtained by multiplying the voltage to the maximum allowable current.

実施例2では、以上のとおり、状態検知手段106´の処理を行うことによって、実施例1のID111とID´112を使用することなく、安全かつ確実に電池モジュール102を充放電制御することができる。 In Example 2, as described above, by performing the process of the state detection means 106 ', without using ID111 and ID'112 in Example 1, be a charge and discharge control safely and reliably battery module 102 it can.

本発明は、充放電できる蓄電池と蓄電池を管理する情報処理装置を備える電池システムを搭載するハイブリッド自動車、電気自動車、電力貯蔵装置等の機器に幅広く利用することが可能である。 The present invention is a hybrid vehicle equipped with a battery system including an information processing apparatus for managing a battery and storage battery can be charged and discharged, electric vehicles, and can be used widely in devices such as power storage device.

本発明の実施例1の構成を示す説明図。 Explanatory view showing a configuration of a first embodiment of the present invention. 本発明の実施例1の変形例の構成を示す説明図。 Explanatory view showing a configuration of a modification of the first embodiment of the present invention. 本発明の実施例1の電池システムの具体的構成例を示す説明図。 Explanatory view showing a specific configuration example of a battery system according to the first embodiment of the present invention. 本発明の電池モジュールの起電力と充電状態(SOC)の関係を示す説明図。 Explanatory view showing a relationship between the electromotive force and the charge state of the battery module of the present invention (SOC). 本発明の電池モジュールの充電状態(SOC)に対するインピーダンスの関係を示す説明図(a)と、温度に対するインピーダンスの関係を示す説明図(b)。 Diagram showing the impedance relationship to state of charge (SOC) of the battery module of the present invention and (a), explanation diagram showing the impedance relationship to temperature (b). 本発明の電池モジュールの充電状態(SOC)に対する許容充電電流と許容放電電流の関係を示す説明図。 Explanatory view showing a relationship between the allowable charging current and allowable discharge current for state of charge (SOC) of the battery module of the present invention. 本発明の実施例1において状態検知手段が故障した場合の劣化状態(SOH)演算結果の推移を示す説明図である。 State detecting means in Embodiment 1 of the present invention is an explanatory diagram showing a transition of the case of failure deteriorated state (SOH) calculation results. 本発明の実施例1の状態検知手段の処理手順を示すフローチャート。 Flowchart showing a processing procedure of the state detecting means of the first embodiment of the present invention. 本発明の実施例1において故障した電池モジュールよりも一層劣化した電池に取り替えられた場合における許容電流と劣化状態(SOH)の時間推移を示す説明図。 Explanatory view showing a time transition of the allowable current and deteriorated state in a case where replaced the more degraded cells than the battery module failed (SOH) in Example 1 of the present invention. 本発明の実施例2の構成を示す説明図。 Explanatory view showing a configuration of a second embodiment of the present invention.

符号の説明 DESCRIPTION OF SYMBOLS

100…組電池、101…蓄電池、102…電池モジュール、103…管理手段、104…電圧計測手段、105…電流計測手段、106…状態検知手段、107…インバータ、107a…電力変換回路、107b…インバータ制御装置(回路)、108…モータジェネレータ、109…電流制御手段、110…蓄電ユニット、120…セルコントローラ(セル管理用集積回路素子)、130…バッテリコントローラ、131…演算器、132…入出力回路、140…温度センサ、150…ハイブリッド自動車全体の統合制御装置、160…エンジン制御装置、170…エンジン、200…電池システム 100 ... battery assembly, 101 ... battery, 102 ... battery module, 103 ... management unit, 104 ... voltage measuring unit, 105 ... current measuring means, 106 ... state detecting means, 107 ... inverter, 107a ... power conversion circuit, 107 b ... inverter controller (circuit), 108 ... motor-generator, 109 ... current control unit, 110 ... electric storage unit, 120 ... cell controller (cell management integrated circuit element), 130 ... battery controller, 131 ... arithmetic unit, 132 ... input-output circuit , 140 ... temperature sensor, 150 ... hybrid vehicle overall integrated control unit, 160 ... engine control unit, 170 ... engine, 200 ... cell system

Claims (15)

  1. 充放電可能な蓄電手段の状態量の情報を状態検知手段に取り込んで前記蓄電手段の状態を検知し、この検知の結果に基づいて充放電制限手段から、前記蓄電手段の充放電を制御する制御器に制御信号を送信し、前記蓄電手段の充放電を制御する電池制御方法において、 Detecting the state of the accumulator unit incorporated into state detection means state quantity of information of a rechargeable electric storage unit, a charging and discharging restriction means based on the result of this detection, control the charge and discharge of the accumulator unit control sends a control signal to the vessel, the battery control method for controlling the charging and discharging of the accumulator unit,
    前記状態検知手段に記憶された蓄電手段の劣化状態が前記蓄電手段の真の劣化状態と異なる場合には、前記蓄電手段の充放電許容電流又は充放電許容電力を制限するための制御信号を前記充放電制限手段から前記制御器に送信し、 If the deteriorated state of the power storage means stored in said state detecting means is different from the true state of deterioration of the accumulator unit, the control signal for limiting the charge and discharge allowable current or discharge allowable power of the power storage means transmitted to the controller from the charging and discharging restriction means,
    前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記蓄電手段の状態量の情報から検知された前記蓄電手段の劣化状態が前記蓄電手段の真の劣化状態に収束した場合には、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記充放電制限手段から前記制御器に送信することを特徴とする電池制御方法。 When the deterioration state of the restricted discharge allowable current or discharge allowable power said electric storage means is detected from the state of information of the storage means for charging and discharging under converges to the true state of deterioration of the accumulator unit the battery control method characterized by transmitting a control signal for canceling the charge and discharge allowable current or the charge and discharge allowable power limit to the controller from the charging and discharging restriction means.
  2. 請求項1に記載の電池制御方法において、 In the battery control method according to claim 1,
    前記状態検知手段に記憶された認識番号が、前記蓄電手段に記録された認識番号と異なる場合、前記劣化状態が異なると判断することを特徴とする電池制御方法。 Battery control method identification number stored in said state detecting means is different from the recorded identification number to said storage means, wherein the deterioration state is determined to differ.
  3. 充放電可能な蓄電手段の状態量の情報を状態検知手段に取り込んで前記蓄電手段の状態を検知し、この検知の結果に基づいて充放電制限手段から、前記蓄電手段の充放電を制御する制御器に制御信号を送信し、前記蓄電手段の充放電を制御する電池制御方法において、 Detecting the state of the accumulator unit incorporated into state detection means state quantity of information of a rechargeable electric storage unit, a charging and discharging restriction means based on the result of this detection, control the charge and discharge of the accumulator unit control sends a control signal to the vessel, the battery control method for controlling the charging and discharging of the accumulator unit,
    前記状態検知手段の起動を検知した場合には、前記蓄電手段の充放電許容電流又は充放電許容電力を制限するための制御信号を前記充放電制御手段から前記制御器に送信し、 When detecting the start of said state detecting means, it transmits a control signal for limiting the charge and discharge allowable current or discharge allowable power of the power storage unit to the controller from the charging and discharging control unit,
    前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記蓄電手段の状態量から検知された前記蓄電手段の劣化状態の、前記蓄電手段の真の劣化状態に対する収束が確認できた場合には、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記充放電制御手段から前記制御器に送信することを特徴とする電池制御方法。 The deteriorated state of the restricted discharge allowable current or discharge allowable power said electric storage means is detected from the state quantity of the power storage means for charging and discharging under, confirmed convergence to the true state of deterioration of the accumulator unit If the the battery control method characterized by transmitting a control signal for canceling the charge and discharge allowable current or the charge and discharge allowable power limit to the controller from the charging and discharging control unit.
  4. 充放電可能な蓄電手段、及び該蓄電手段の状態量の計測情報を出力する計測手段を備えた蓄電装置に搭載され、前記蓄電手段の充放電を制御する制御器を制御して、前記蓄電手段の充放電を制御する電池制御装置において、 Rechargeable power storage means, and is mounted on a power storage device provided with a measuring means for outputting the state quantity of the measurement information of the power storage means, and controls the controller for controlling the charging and discharging of the accumulator unit, said storage means in the battery control device for controlling the charging and discharging,
    前記計測情報を取り込んで前記蓄電手段の状態を検知する状態検知手段と、 A state detecting means for detecting a state of the accumulator unit captures the measurement information,
    該状態検知手段の検知結果に基づいて前記制御器に制御信号を送信する充放電制御手段と、を有し、 Anda discharge control means for transmitting a control signal to the controller based on a detection result of the state detection means,
    前記充放電制御手段は、前記状態検知手段に記憶された蓄電手段の劣化状態が前記蓄電手段の真の劣化状態と異なる場合、前記蓄電手段の充放電許容電流又は充放電許容電力を制限するための制御信号を前記制御器に送信すると共に、前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記蓄電手段の状態量から検知された前記蓄電手段の劣化状態が前記蓄電手段の真の劣化状態に収束した場合、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記制御器に送信することを特徴とする電池制御装置。 The charge and discharge control means, if the deteriorated state of the power storage means stored in said state detecting means is different from the true state of deterioration of the accumulator unit, for limiting the charge and discharge allowable current or discharge allowable power of the power storage means sends a control signal to the controller, the limited charge and discharge allowable current or discharge allowable power down in charging and discharging to the deterioration state power storage of the power storage means is detected from the state quantity of the power storage means If it converged to the true state of deterioration of unit, battery control apparatus and transmits a control signal for canceling the charge and discharge allowable current or the charge and discharge allowable power limit to the controller.
  5. 請求項4に記載の電池制御装置において、 In the battery control device according to claim 4,
    前記状態検知手段は、それ自身に記憶された認識番号が、前記蓄電手段に記録された認識番号と異なる場合、前記劣化状態が異なると判断することを特徴とする電池制御装置。 It said state detecting means, the identification number stored in itself, if different from the recorded identification number to said storage means, a battery control device, wherein the deterioration state is determined to differ.
  6. 充放電可能な蓄電手段、及び該蓄電手段の状態量の計測情報を出力する計測手段を備えた蓄電装置に搭載され、前記蓄電手段の充放電を制御する制御器を制御して、前記蓄電手段の充放電を制御する電池制御装置において、 Rechargeable power storage means, and is mounted on a power storage device provided with a measuring means for outputting the state quantity of the measurement information of the power storage means, and controls the controller for controlling the charging and discharging of the accumulator unit, said storage means in the battery control device for controlling the charging and discharging,
    前記計測情報を取り込んで前記蓄電手段の状態を検知する状態検知手段と、 A state detecting means for detecting a state of the accumulator unit captures the measurement information,
    該状態検知手段の検知結果に基づいて前記制御器に制御信号を送信する充放電制御手段と、を有し、 Anda discharge control means for transmitting a control signal to the controller based on a detection result of the state detection means,
    前記充放電制御手段は、前記状態検知手段の起動を検知した場合、前記蓄電手段の充放電許容電流又は充放電許容電力を制限するための制御信号を前記制御器に送信すると共に、前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記蓄電手段の状態量から検知された前記蓄電手段の劣化状態の、前記蓄電手段の真の劣化状態に対する収束が確認できた場合、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記制御器に送信することを特徴とする電池制御装置。 The charge and discharge control means, when detecting start of said state detecting means, transmits a control signal for limiting the charge and discharge allowable current or discharge allowable power of the power storage unit to the controller, is the restriction and the deteriorated state of the charge and discharge allowable current or discharge allowable power said electric storage means is detected from the state quantity of the power storage means for charging and discharging under a, if the convergence to the true state of deterioration of the accumulator unit is confirmed, the charge and discharge allowable current or battery control apparatus and transmits a control signal for canceling the charge and discharge allowable power limit to the controller.
  7. 複数個の単電池を直列に接続して構成した複数個の単電池群が直列に接続されて構成された組電池、該単電池群毎に当該単電池の状態を管理する単電池用制御装置、及び前記組電池の状態量の計測情報を出力する計測器を備えた蓄電装置に搭載され、前記組電池の充放電を制御する制御器を制御して、前記組電池の充放電を制御する電池制御装置であって、 A plurality of cell group is assembled battery formed by connecting in series, the single battery controller which manages the state of the single cell for each the unit cell group constituted by connecting a plurality of unit cells in series , and it is mounted on a power storage device provided with a measuring device for outputting the measurement information of the state of the battery pack, by controlling the controller for controlling the charging and discharging of the battery pack, for controlling charging and discharging of the battery pack a battery control device,
    前記計測情報を取り込んで前記組電池の状態を検知し、この検知の結果に基づいて前記制御器に制御信号を送信する演算器を有し、 The capture measurement information to detect the state of the battery pack, an arithmetic unit for transmitting a control signal to the controller based on the result of this detection,
    前記演算器は、それ自身に記憶された組電池の劣化状態が前記組電池の真の劣化状態と異なる場合、前記組電池の充放電許容電流又は充放電許容電力を制限するための制御信号を前記制御器に送信すると共に、前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記組電池の状態量から検知された前記組電池の劣化状態が前記組電池の真の劣化状態に収束した場合、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記制御器に送信することを特徴とする電池制御装置。 The arithmetic unit, when the deterioration state of the assembled battery stored in itself different from the true state of deterioration of the battery pack, a control signal for limiting the charge and discharge allowable current or discharge allowable power of the battery pack and transmits to the controller, the deterioration state of the assembled the battery pack sensed from the state of the battery to be charged and discharged under the restricted discharge allowable current or discharge allowable power is true of the battery pack If it converged in a degraded state, the battery control device and transmits a control signal for canceling the charge and discharge allowable current or the charge and discharge allowable power limit to the controller.
  8. 請求項7に記載の電池制御装置において、 In the battery control device according to claim 7,
    前記演算器は、それ自身に記憶された認識番号が、前記組電池に記録された認識番号と異なる場合、前記劣化状態が異なると判断することを特徴とする電池制御装置。 The arithmetic unit, a battery control device recognition numbers stored in itself, if different from the recorded identification number to said battery pack, wherein the deterioration state is determined to differ.
  9. 複数個の単電池を直列に接続して構成した複数個の単電池群が直列に接続されて構成された組電池、該単電池群毎に当該単電池の状態を管理する単電池用制御装置、及び前記組電池の状態量の計測情報を出力する計測器を備えた蓄電装置に搭載され、前記組電池の充放電を制御する制御器を制御して、前記組電池の充放電を制御する電池制御装置であって、 A plurality of cell group is assembled battery formed by connecting in series, the single battery controller which manages the state of the single cell for each the unit cell group constituted by connecting a plurality of unit cells in series , and it is mounted on a power storage device provided with a measuring device for outputting the measurement information of the state of the battery pack, by controlling the controller for controlling the charging and discharging of the battery pack, for controlling charging and discharging of the battery pack a battery control device,
    前記計測情報を取り込んで前記組電池の状態を検知し、この検知の結果に基づいて前記制御器に制御信号を送信する演算器を有し、 The capture measurement information to detect the state of the battery pack, an arithmetic unit for transmitting a control signal to the controller based on the result of this detection,
    前記演算器は、それ自身の起動を検知した場合、前記組電池の充放電許容電流又は充放電許容電力を制限するための制御信号を前記制御器に送信すると共に、前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記組電池の状態量から検知された前記組電池の劣化状態の、前記組電池の真の劣化状態に対する収束が確認できた場合、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記制御器に送信することを特徴とする電池制御装置。 The arithmetic unit, when detecting its own activation, transmits a control signal for limiting the charge and discharge allowable current or discharge allowable power of the battery pack to the controller, the charge and discharge allowable that is the restriction If the deteriorated state of the assembled the battery pack sensed from the state of the battery to be charged and discharged under a current or charge and discharge allowable power, the convergence to the true state of deterioration of the battery pack could be confirmed, the charge and discharge allowable battery control apparatus and transmits current or a control signal for canceling the charge and discharge allowable power limit to the controller.
  10. 複数個の単電池を直列に接続して構成した複数個の単電池群が直列に接続されて構成された組電池と、 A battery assembly having a plurality of cell group constituted by connecting a plurality of unit cells in series is configured by connecting in series,
    該単電池群毎に当該単電池の状態を管理する単電池用制御装置と、 A control device for a single cell to manage the state of the single cell for each the unit cell group,
    前記組電池の状態量の計測情報を出力する計測器と、 A measuring device for outputting the measurement information of the state of the battery pack,
    前記組電池の充放電を制御する制御器を制御して、前記組電池の充放電を制御する電池制御装置と、を有し、 By controlling the controller for controlling the charging and discharging of the battery pack has a battery control device that controls charging and discharging of the battery pack,
    前記電池制御装置は、前記計測情報を取り込んで前記組電池の状態を検知し、この検知の結果に基づいて前記制御器に制御信号を送信する演算器を備えており、 The battery control device, the detecting the state of the battery pack incorporating the measurement information comprises an arithmetic unit for transmitting a control signal to the controller based on the result of this detection,
    前記演算器は、それ自身に記憶された組電池の劣化状態が前記組電池の真の劣化状態と異なる場合、前記組電池の充放電許容電流又は充放電許容電力を制限するための制御信号を前記制御器に送信すると共に、前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記組電池の状態量から検知された前記組電池の劣化状態が前記組電池の真の劣化状態に収束した場合、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記制御器に送信することを特徴とする蓄電装置。 The arithmetic unit, when the deterioration state of the assembled battery stored in itself different from the true state of deterioration of the battery pack, a control signal for limiting the charge and discharge allowable current or discharge allowable power of the battery pack and transmits to the controller, the deterioration state of the assembled the battery pack sensed from the state of the battery to be charged and discharged under the restricted discharge allowable current or discharge allowable power is true of the battery pack If it converged in a degraded state, power storage device and transmits a control signal for canceling the charge and discharge allowable current or the charge and discharge allowable power limit to the controller.
  11. 請求項10に記載の蓄電装置において、 The electric storage device according to claim 10,
    前記演算器は、それ自身に記憶された認識番号が、前記組電池に記録された認識番号と異なる場合、前記劣化状態が異なると判断することを特徴とする蓄電装置。 The arithmetic unit, a power storage device recognition numbers stored in itself, if different from the recorded identification number to said battery pack, wherein the deterioration state is determined to differ.
  12. 複数個の単電池を直列に接続して構成した複数個の単電池群が直列に接続されて構成された組電池と、 A battery assembly having a plurality of cell group constituted by connecting a plurality of unit cells in series is configured by connecting in series,
    該単電池群毎に当該単電池の状態を管理する単電池用制御装置と、 A control device for a single cell to manage the state of the single cell for each the unit cell group,
    前記組電池の状態量の計測情報を出力する計測器と、 A measuring device for outputting the measurement information of the state of the battery pack,
    前記組電池の充放電を制御する制御器を制御して、前記組電池の充放電を制御する電池制御装置と、を有し、 By controlling the controller for controlling the charging and discharging of the battery pack has a battery control device that controls charging and discharging of the battery pack,
    前記電池制御装置は、前記計測情報を取り込んで前記組電池の状態を検知し、この検知の結果に基づいて前記制御器に制御信号を送信する演算器を備えており、 The battery control device, the detecting the state of the battery pack incorporating the measurement information comprises an arithmetic unit for transmitting a control signal to the controller based on the result of this detection,
    前記演算器は、それ自身の起動を検知した場合、前記組電池の充放電許容電流又は充放電許容電力を制限するための制御信号を前記制御器に送信すると共に、前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記組電池の状態量から検知された前記組電池の劣化状態の、前記組電池の真の劣化状態に対する収束が確認できた場合、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記制御器に送信することを特徴とする蓄電装置。 The arithmetic unit, when detecting its own activation, transmits a control signal for limiting the charge and discharge allowable current or discharge allowable power of the battery pack to the controller, the charge and discharge allowable that is the restriction If the deteriorated state of the assembled the battery pack sensed from the state of the battery to be charged and discharged under a current or charge and discharge allowable power, the convergence to the true state of deterioration of the battery pack could be confirmed, the charge and discharge allowable power storage device and transmits current or a control signal for canceling the charge and discharge allowable power limit to the controller.
  13. 車両に搭載され、少なくとも車両の作動に必要な動力を発生する車載回転電機と、 Mounted on a vehicle, the vehicle rotary electric machine for generating power required for operation of at least the vehicle,
    複数個の単電池を直列に接続して構成した複数個の単電池群が直列に接続されて構成された組電池、該単電池群毎に当該単電池の状態を管理する単電池用制御装置、前記組電池の状態量の計測情報を出力する計測器、及び前記組電池の充放電を制御する電池制御装置を備え、前記車載回転電機の電源を構成する蓄電装置と、 A plurality of cell group is assembled battery formed by connecting in series, the single battery controller which manages the state of the single cell for each the unit cell group constituted by connecting a plurality of unit cells in series , the battery pack of the state of the instrument which outputs the measurement information, and includes a battery control device that controls charging and discharging of the battery pack, a power storage device that constitutes a power source of the vehicle rotary electric machine,
    前記車載回転電機と前記組電池に接続された電力変換回路、及び該電力変換回路の駆動を制御するインバータ制御回路を備え、前記回転電機と前記電力変換回路との間の電力の授受、及び前記組電池と前記電力変換回路との間の電力の授受を制御するインバータ装置と、を有し、 The vehicle rotary electric machine and the battery pack connected to a power conversion circuit, and an inverter control circuit for controlling the driving of the power conversion circuit, supply and reception of electric power between said rotating electric machine wherein the power conversion circuit, and said It includes a battery pack and an inverter device that controls the transfer of power between the power conversion circuit,
    前記電池制御装置は、前記計測情報を取り込んで前記組電池の状態を検知し、この検知の結果に基づいて前記インバータ制御回路に制御信号を送信する演算器を備えており、 The battery control device, the detecting the state of the battery pack incorporating the measurement information comprises an arithmetic unit for transmitting a control signal to the inverter control circuit on the basis of the result of this detection,
    前記演算器は、それ自身に記憶された組電池の劣化状態が前記組電池の真の劣化状態と異なる場合、前記組電池の充放電許容電流又は充放電許容電力を制限するための制御信号を前記インバータ制御回路に送信すると共に、前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記組電池の状態量から検知された前記組電池の劣化状態が前記組電池の真の劣化状態に収束した場合、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記インバータ制御回路に送信しており、 The arithmetic unit, when the deterioration state of the assembled battery stored in itself different from the true state of deterioration of the battery pack, a control signal for limiting the charge and discharge allowable current or discharge allowable power of the battery pack and transmits to the inverter control circuit, a deterioration state of the assembled the battery pack sensed from the state of the battery to be charged and discharged under the restricted discharge allowable current or discharge allowable power is true of the battery pack If converged on the state of deterioration, and transmits a control signal for canceling the charge and discharge allowable current or the charge and discharge allowable power limit to the inverter control circuit,
    前記インバータ制御回路は、前記演算器からの制御信号に基づいて前記電力変換回路の駆動を制御し、前記組電池の充放電許容電流又は充放電許容電力の範囲内で前記組電池を充放電させることを特徴とする車載電機システム。 The inverter control circuit, based on the control signal from the arithmetic unit controls the drive of the power conversion circuit, charging and discharging the battery pack within the range of charge and discharge allowable current or discharge allowable power of the battery pack vehicle electric system, characterized in that.
  14. 請求項13に記載の車載電機システムにおいて、 The in-vehicle electric machine system according to claim 13,
    前記演算器は、それ自身に記憶された認識番号が、前記組電池に記録された認識番号と異なる場合、前記劣化状態が異なると判断することを特徴とする車載電機システム。 Vehicle electric system the arithmetic unit, the identification number stored in itself, if different from the recorded identification number to said battery pack, wherein the deterioration state is determined to differ.
  15. 車両に搭載され、少なくとも車両の作動に必要な動力を発生する車載回転電機と、 Mounted on a vehicle, the vehicle rotary electric machine for generating power required for operation of at least the vehicle,
    複数個の単電池を直列に接続して構成した複数個の単電池群が直列に接続されて構成された組電池、該単電池群毎に当該単電池の状態を管理する単電池用制御装置、前記組電池の状態量の計測情報を出力する計測器、及び前記組電池の充放電を制御する電池制御装置を備え、前記車載回転電機の電源を構成する蓄電装置と、 A plurality of cell group is assembled battery formed by connecting in series, the single battery controller which manages the state of the single cell for each the unit cell group constituted by connecting a plurality of unit cells in series , the battery pack of the state of the instrument which outputs the measurement information, and includes a battery control device that controls charging and discharging of the battery pack, a power storage device that constitutes a power source of the vehicle rotary electric machine,
    前記車載回転電機と前記組電池に接続された電力変換回路、及び該電力変換回路の駆動を制御するインバータ制御回路を備え、前記回転電機と前記電力変換回路との間の電力の授受、及び前記組電池と前記電力変換回路との間の電力の授受を制御するインバータ装置と、を有し、 The vehicle rotary electric machine and the battery pack connected to a power conversion circuit, and an inverter control circuit for controlling the driving of the power conversion circuit, supply and reception of electric power between said rotating electric machine wherein the power conversion circuit, and said It includes a battery pack and an inverter device that controls the transfer of power between the power conversion circuit,
    前記電池制御装置は、前記計測情報を取り込んで前記組電池の状態を検知し、この検知の結果に基づいて前記インバータ制御回路に制御信号を送信する演算器を備えており、 The battery control device, the detecting the state of the battery pack incorporating the measurement information comprises an arithmetic unit for transmitting a control signal to the inverter control circuit on the basis of the result of this detection,
    前記演算器は、それ自身の起動を検知した場合、前記組電池の充放電許容電流又は充放電許容電力を制限するための制御信号を前記インバータ制御回路に送信すると共に、前記制限された充放電許容電流又は充放電許容電力の下で充放電する前記組電池の状態量から検知された前記組電池の劣化状態の、前記組電池の真の劣化状態に対する収束が確認できた場合、前記充放電許容電流又は前記充放電許容電力の制限を解除するための制御信号を前記インバータ制御回路に送信しており、 The arithmetic unit, when detecting its own activation, transmits a control signal for limiting the charge and discharge allowable current or discharge allowable power of the battery pack to the inverter control circuit, the limited charge and discharge If the deteriorated state of the assembled the battery pack sensed from the state of the battery to be charged and discharged under the allowable current or discharge allowable power, the convergence to the true state of deterioration of the battery pack could be confirmed, the charge and discharge allowable current or a control signal for canceling the charge and discharge allowable power limit is sent to the inverter control circuit,
    前記インバータ制御回路は、前記演算器からの制御信号に基づいて前記電力変換回路の駆動を制御し、前記組電池の充放電許容電流又は充放電許容電力の範囲内で前記組電池を充放電させることを特徴とする車載電機システム。 The inverter control circuit, based on the control signal from the arithmetic unit controls the drive of the power conversion circuit, charging and discharging the battery pack within the range of charge and discharge allowable current or discharge allowable power of the battery pack vehicle electric system, characterized in that.
JP2007158997A 2007-06-15 2007-06-15 Battery control device Active JP4987581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158997A JP4987581B2 (en) 2007-06-15 2007-06-15 Battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158997A JP4987581B2 (en) 2007-06-15 2007-06-15 Battery control device

Publications (2)

Publication Number Publication Date
JP2008312391A true true JP2008312391A (en) 2008-12-25
JP4987581B2 JP4987581B2 (en) 2012-07-25

Family

ID=40239461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158997A Active JP4987581B2 (en) 2007-06-15 2007-06-15 Battery control device

Country Status (1)

Country Link
JP (1) JP4987581B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252592A (en) * 2009-04-20 2010-11-04 Hitachi Ltd Battery control system for vehicle
WO2011037257A1 (en) * 2009-09-28 2011-03-31 日立ビークルエナジー株式会社 Battery system
JP2011111268A (en) * 2009-11-26 2011-06-09 Murata Machinery Ltd Traveling vehicle system and noncontact power supply method to traveling vehicle
JP2011189768A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Control apparatus for hybrid vehicle
WO2011118711A1 (en) * 2010-03-26 2011-09-29 三菱重工業株式会社 Battery pack and battery control system
FR2975501A1 (en) * 2011-05-20 2012-11-23 Renault Sas Method for estimating the state of charge of an electric battery
WO2012169063A1 (en) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 Battery control device and battery system
JP2013013210A (en) * 2011-06-29 2013-01-17 Hitachi Ltd Secondary battery system
JP2013153594A (en) * 2012-01-25 2013-08-08 Ntn Corp Control device and control method for electric vehicle
US8760112B2 (en) 2010-08-27 2014-06-24 Denso Corporation Battery management apparatus
EP2671747A4 (en) * 2011-02-03 2015-08-12 Toyota Motor Co Ltd Vehicle and vehicle control method
EP3032690A1 (en) * 2013-08-09 2016-06-15 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
WO2017006668A1 (en) * 2015-07-08 2017-01-12 日立オートモティブシステムズ株式会社 Battery monitoring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316690B2 (en) * 2014-07-17 2018-04-25 日立オートモティブシステムズ株式会社 Battery state detecting device, the secondary battery system, the battery state detection program, battery status detecting method
JP6324248B2 (en) * 2014-07-17 2018-05-16 日立オートモティブシステムズ株式会社 Battery state detecting device, the secondary battery system, the battery state detection program, battery status detecting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325891A (en) * 2003-04-25 2004-11-18 Kyocera Mita Corp Image forming apparatus
JP2006279520A (en) * 2005-03-29 2006-10-12 Mitsubishi Electric Corp Transmission phase correction system
JP2006320069A (en) * 2005-05-11 2006-11-24 Toyota Motor Corp Control device for secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325891A (en) * 2003-04-25 2004-11-18 Kyocera Mita Corp Image forming apparatus
JP2006279520A (en) * 2005-03-29 2006-10-12 Mitsubishi Electric Corp Transmission phase correction system
JP2006320069A (en) * 2005-05-11 2006-11-24 Toyota Motor Corp Control device for secondary battery

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513918B2 (en) 2009-04-20 2013-08-20 Hitachi, Ltd. Vehicle battery control system having a voltage sensor that measures a voltage between a contactor and an inverter equipment
JP2010252592A (en) * 2009-04-20 2010-11-04 Hitachi Ltd Battery control system for vehicle
WO2011037257A1 (en) * 2009-09-28 2011-03-31 日立ビークルエナジー株式会社 Battery system
JP5529877B2 (en) * 2009-09-28 2014-06-25 日立ビークルエナジー株式会社 Battery system
US9203248B2 (en) 2009-09-28 2015-12-01 Hitachi, Ltd. Battery management system using non-volatile memory
CN102473878A (en) * 2009-09-28 2012-05-23 株式会社日立制作所 Battery system
JP2011111268A (en) * 2009-11-26 2011-06-09 Murata Machinery Ltd Traveling vehicle system and noncontact power supply method to traveling vehicle
JP2011189768A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Control apparatus for hybrid vehicle
CN102474118A (en) * 2010-03-26 2012-05-23 三菱重工业株式会社 Battery pack and battery control system
EP2555371A4 (en) * 2010-03-26 2015-10-07 Mitsubishi Heavy Ind Ltd Battery pack and battery control system
US8958934B2 (en) 2010-03-26 2015-02-17 Mitsubishi Heavy Industries, Ltd. Battery pack and battery control system
WO2011118711A1 (en) * 2010-03-26 2011-09-29 三菱重工業株式会社 Battery pack and battery control system
KR101323511B1 (en) * 2010-03-26 2013-10-29 미츠비시 쥬고교 가부시키가이샤 Battery pack and battery control system
US8760112B2 (en) 2010-08-27 2014-06-24 Denso Corporation Battery management apparatus
EP2671747A4 (en) * 2011-02-03 2015-08-12 Toyota Motor Co Ltd Vehicle and vehicle control method
WO2012160301A1 (en) * 2011-05-20 2012-11-29 Renault S.A.S. Method of estimating the state of charge of an electric battery
FR2975501A1 (en) * 2011-05-20 2012-11-23 Renault Sas Method for estimating the state of charge of an electric battery
WO2012169063A1 (en) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 Battery control device and battery system
JPWO2012169063A1 (en) * 2011-06-10 2015-02-23 日立ビークルエナジー株式会社 Battery control device, a battery system
US9252624B2 (en) 2011-06-10 2016-02-02 Hitachi Automotive Systems, Ltd. Battery control device and battery system
JP2013013210A (en) * 2011-06-29 2013-01-17 Hitachi Ltd Secondary battery system
JP2013153594A (en) * 2012-01-25 2013-08-08 Ntn Corp Control device and control method for electric vehicle
EP3032690A1 (en) * 2013-08-09 2016-06-15 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
EP3032690A4 (en) * 2013-08-09 2017-03-29 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
US9931959B2 (en) 2013-08-09 2018-04-03 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
WO2017006668A1 (en) * 2015-07-08 2017-01-12 日立オートモティブシステムズ株式会社 Battery monitoring device
JPWO2017006668A1 (en) * 2015-07-08 2018-01-25 日立オートモティブシステムズ株式会社 Battery monitoring device

Also Published As

Publication number Publication date Type
JP4987581B2 (en) 2012-07-25 grant

Similar Documents

Publication Publication Date Title
US8552686B2 (en) Battery control apparatus and method
US6014013A (en) Battery charge management architecture
US20070247106A1 (en) Hybrid vehicle control system and method
US20120256569A1 (en) Battery Control Device and Motor Drive System
US20080278115A1 (en) Battery Management System
US20100121511A1 (en) Li-ion battery array for vehicle and other large capacity applications
US20120139491A1 (en) Balancing Voltage for a Multi-Cell Battery System
US20070145954A1 (en) Battery management system
US20140312828A1 (en) Method and apparatus for creating a dynamically reconfigurable energy storage device
US20080156551A1 (en) Storage battery managing apparatus and vehicle controlling apparatus providing the same
US20060097700A1 (en) Method and system for cell equalization with charging sources and shunt regulators
JP2002101565A (en) Voltage regulation device for battery pack and method of voltage regulation for battery pack
JP2005318750A (en) Multi-serial battery control system
JP2009089488A (en) Vehicular dc power unit
JP2000092732A (en) Method for judging scattering of battery pack and battery device
JP2003257501A (en) Secondary battery residual capacity meter
JP2008220074A (en) Accumulator, storage battery controller, and motor driver
US20080054850A1 (en) Battery management system and driving method thereof
US20080091363A1 (en) Battery Management System (BMS) and driving method thereof
US20130110430A1 (en) Storage system and storage controller for storage system
JP2009168720A (en) Power storage unit and battery system
US7928691B2 (en) Method and system for cell equalization with isolated charging sources
JP2009089484A (en) Integrated circuit for battery and power system for vehicle using this integrated circuit for battery
KR20080032454A (en) Car battery management system
JP2008043188A (en) Input/output electric power control device and method for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350