JP2008312357A - Inductive power supply system - Google Patents

Inductive power supply system Download PDF

Info

Publication number
JP2008312357A
JP2008312357A JP2007158087A JP2007158087A JP2008312357A JP 2008312357 A JP2008312357 A JP 2008312357A JP 2007158087 A JP2007158087 A JP 2007158087A JP 2007158087 A JP2007158087 A JP 2007158087A JP 2008312357 A JP2008312357 A JP 2008312357A
Authority
JP
Japan
Prior art keywords
antenna
power
power supply
impedance
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007158087A
Other languages
Japanese (ja)
Other versions
JP2008312357A5 (en
JP5354874B2 (en
Inventor
Hideo Kikuchi
秀雄 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikuchi Hideo
Original Assignee
Kikuchi Hideo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikuchi Hideo filed Critical Kikuchi Hideo
Priority to JP2007158087A priority Critical patent/JP5354874B2/en
Publication of JP2008312357A publication Critical patent/JP2008312357A/en
Publication of JP2008312357A5 publication Critical patent/JP2008312357A5/ja
Application granted granted Critical
Publication of JP5354874B2 publication Critical patent/JP5354874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inductive power supply system using a resonant antenna system that matches at a relatively low impedance and efficiently transmits spacial power. <P>SOLUTION: At least either of a transmitting antenna and a receiving antenna transmits spacial energy via an endpoint having antenna obtained by winding a wire having both ends in a coil shape and connecting a feeder line to a midpoint of the wire. This makes it possible to match impedance with a slightly low value with which the impedance can be easily matched with the impedance of the power supply circuit of an electronic device connected to the antenna for energy transmission. The matched impedance can be controlled by adding an additional loop wire in parallel to the feeding point of the endpoint having antenna at which the feeder line is connected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力を無線誘導手段を介して空間を越えて電気装置に給電する誘導電力給電システムに関する。   The present invention relates to an inductive power supply system that supplies electric power to an electric device across a space via wireless induction means.

誘導電力給電システムは、空気中を、一次巻線を有する一つの装置から空間を隔てた他の装置へ、その装置に設置した二次巻線に電磁誘導を発生させることで電気エネルギーを伝達する。誘導電力給電システムは、空間を隔てて対向する一次巻線から二次巻線に電力を供給することで、それらの装置同士の電気端子同士を接触させずに電力を伝送するので、電気端子の接点の接触不良が発生しない利点がある。その利点を生かして、歯ブラシや携帯電話などに誘導電力給電システムが使用されている。   An inductive power supply system transmits electric energy in the air from one device having a primary winding to another device spaced apart by generating electromagnetic induction in a secondary winding installed in the device. . The inductive power supply system transmits power without bringing the electrical terminals of these devices into contact with each other by supplying power to the secondary winding from the primary winding that is opposed across the space. There is an advantage that contact failure does not occur. Taking advantage of this advantage, inductive power supply systems are used for toothbrushes and mobile phones.

従来の誘導電力給電システムは、特許文献1では、電源装置内のエネルギーを、電源装置に設置した一次巻線から、被給電装置に設置した二次巻線に、電磁誘導により伝達させる。被給電装置の二次巻線は、電源装置の一次巻線から物理的に間隔をあけて配置され、大気を通じて、誘導結合させる。被給電装置の二次巻線は両端を電子回路の端子に接続する閉路ループのコイルを用いていた。   In Patent Document 1, a conventional inductive power supply system transmits energy in a power supply device from a primary winding installed in a power supply device to a secondary winding installed in a power supplied device by electromagnetic induction. The secondary winding of the power supplied device is physically spaced from the primary winding of the power supply device and is inductively coupled through the atmosphere. The secondary winding of the power-supplied device uses a closed loop coil that connects both ends to the terminals of the electronic circuit.

また、特許文献2では、被給電装置に二次巻線の代わりにスパイラルアンテナを設置し、その長さの4倍の波長の電磁波を電源装置から供給し、それにスパイラルアンテナを共振させることでアンテナの実効面積を大きくし、電源装置から供給された電磁波の空間エネルギーを吸収させていた。   Further, in Patent Document 2, a spiral antenna is installed in a power-supplied device instead of a secondary winding, an electromagnetic wave having a wavelength four times the length is supplied from a power supply device, and the spiral antenna is resonated with the antenna. The effective area of was increased, and the spatial energy of the electromagnetic waves supplied from the power supply device was absorbed.

以下に公知文献を記す。
特表2006−517778号公報 特表2006−526979号公報
The known literature is described below.
JP-T-2006-517778 JP-T-2006-526979

しかし、特許文献1の技術では、一次巻線と二次巻線のコイルの巻線の中心位置が外れると、一次巻線が発生する磁束の一部が二次巻線を通過しないため、電子回路が一次巻線に供給する電力の全部は二次巻線を設置した被給電装置に供給できない問題があった。また、一次巻線のコイルと二次巻線のコイル間の距離が離れると、一次巻線が発生する磁束の一部が二次巻線を通過しなくなり、電力の全部は二次巻線を設置した被給電装置に供給できなくなる問題があった。   However, in the technique of Patent Document 1, when the center position of the primary winding and the secondary winding is deviated, a part of the magnetic flux generated by the primary winding does not pass through the secondary winding. There is a problem that the entire power supplied to the primary winding by the circuit cannot be supplied to the power-supplied device provided with the secondary winding. In addition, if the distance between the primary winding coil and the secondary winding coil is increased, a part of the magnetic flux generated by the primary winding does not pass through the secondary winding, and all of the electric power passes through the secondary winding. There is a problem that it becomes impossible to supply power to the installed power supplied device.

また、特許文献2の技術では、スパイラルアンテナは、配線の両端に給電線を接続しているため、そのスパイラルアンテナの共振の際に、そのアンテナに給電線が接続する給電点のインピーダンスが高くなり、給電線に供給する電力の電圧が高くなるので、そのスパイラルアンテナで電力を伝送する誘導電力給電システムで用いる電子部品には大きな耐電圧特性を必要とする問題があった。   Further, in the technique of Patent Document 2, since the spiral antenna has a power supply line connected to both ends of the wiring, the impedance of the power supply point where the power supply line is connected to the antenna increases when the spiral antenna resonates. Since the voltage of the power supplied to the feeder line becomes high, there is a problem that an electronic component used in the inductive power feeding system that transmits power with the spiral antenna requires a large withstand voltage characteristic.

そのため、本発明の解決する課題は、比較的低いインピーダンスで整合して良い効率で空間電力を伝送する共振アンテナ系を用いた誘導電力給電システムを得ることにある。   Therefore, the problem to be solved by the present invention is to obtain an induction power feeding system using a resonant antenna system that transmits spatial power with an efficiency that can be matched with a relatively low impedance.

本発明は、この課題を解決するために、送信アンテナから受信アンテナまで空間をエネルギー伝送するシステムにおいて、少なくとも前記送信アンテナあるいは前記受信アンテナの何れかは、両端を有する配線をコイル状に巻いて、前記配線の中程に給電線を接続して成る端点保有アンテナを用いることを特徴とする誘導電力給電システムである。   In order to solve this problem, the present invention provides a system for transmitting energy from a transmitting antenna to a receiving antenna, and at least either the transmitting antenna or the receiving antenna has a wire having both ends wound in a coil shape. An inductive power feeding system using an end point holding antenna formed by connecting a feeding line in the middle of the wiring.

また、本発明は、上記端点保有アンテナの上記給電線の接続する給電点に並列に追加ループ配線を加えたことを特徴とする上記の誘導電力給電システムである。   Further, the present invention is the above inductive power feeding system, wherein an additional loop wiring is added in parallel to a feeding point to which the feeding line of the end point holding antenna is connected.

また、本発明は、上記端点保有アンテナの上記両端にコンデンサの両電極を接続したことを特徴とする上記の誘導電力給電システムである。   Further, the present invention is the above inductive power feeding system, wherein both electrodes of the capacitor are connected to the both ends of the end point holding antenna.

本発明は、両端を有する配線をコイル状に巻いて、その配線の中程に給電線を接続したアンテナを利用して空間エネルギーを伝送することで、そのアンテナに接続する電子装置の電源回路のインピーダンスに整合し易い低めのインピーダンスで整合したアンテナ間でエネルギーを伝送できる効果がある。また、本発明は、そのアンテナの給電線の接続部に並列に追加ループ配線を加えることで、そのアンテナが相手のアンテナと最大の効率でエネルギーを送受する整合インピーダンスを自由に調整できる効果がある。それにより、本発明のアンテナを用いたエネルギー伝送システムのインピーダンスを電子装置のインピーダンスに容易に整合できる効果がある。   The present invention provides a power supply circuit for an electronic device connected to an antenna by winding a wire having both ends in a coil shape and transmitting spatial energy using an antenna in which a feed line is connected to the middle of the wire. There is an effect that energy can be transmitted between antennas matched with a low impedance that is easily matched to the impedance. In addition, the present invention has an effect of freely adjusting the matching impedance at which the antenna transmits and receives energy with the maximum efficiency by adding an additional loop wiring in parallel to the connection portion of the feeder line of the antenna. . Thereby, there is an effect that the impedance of the energy transmission system using the antenna of the present invention can be easily matched with the impedance of the electronic device.

<第1の実施形態>
図1に、本発明の第1の実施形態の誘導電力給電システムのブロック図を示す。誘導電力給電システムは、送信アンテナ1に接続した電源回路2と、受信アンテナ3に接続した負荷回路4から成り、非接触電源回路2から負荷回路4に電力を供給する。図2に、送信アンテナ1と受信アンテナ3の形状と配置の構造を示す。図2では、送信アンテナ1として、縦横41mmの3巻のコイルの配線の両端点を開放し、そのコイルの配線の中心に電源回路2から給電する送信アンテナ1を用いる。送信アンテナ1のコイルの材質は銅で形成し、コイルの配線の幅が1mmで厚さが20μmのコイルを用いる。受信アンテナ3も送信アンテナ1と同じ形のコイルで形成し、そのコイルの配線の中心から負荷回路4に電力を取り出す。送信アンテナ1と受信アンテナ3は10mm離して平行に配置する。
<First Embodiment>
FIG. 1 shows a block diagram of an inductive power supply system according to a first embodiment of the present invention. The inductive power supply system includes a power supply circuit 2 connected to the transmission antenna 1 and a load circuit 4 connected to the reception antenna 3, and supplies power from the non-contact power supply circuit 2 to the load circuit 4. FIG. 2 shows the shapes of the transmitting antenna 1 and the receiving antenna 3 and the arrangement structure. In FIG. 2, as the transmission antenna 1, the transmission antenna 1 that feeds power from the power supply circuit 2 to the center of the wiring of the coil of the three-winding coil of 41 mm in length and width is opened. The coil of the transmission antenna 1 is made of copper, and a coil having a wiring width of 1 mm and a thickness of 20 μm is used. The receiving antenna 3 is also formed of a coil having the same shape as the transmitting antenna 1, and power is taken out from the center of the coil wiring to the load circuit 4. The transmitting antenna 1 and the receiving antenna 3 are arranged in parallel with a distance of 10 mm.

図3に、この実施形態の、電源回路2から負荷回路4までの電力の伝送効率のシミュレーション結果のグラフを示す。電力の伝送効率はS21をdB(デシベル)であらわす。0dBの場合は、100%電力が伝送され、−3dBの場合は、50%、−10dBの場合は10%の電力が伝送されることをあらわす。図3では、電源回路2の出力インピーダンスZ1と、負荷回路4の入力インピーダンスZ2が等しいインピーダンスZの場合で、種々のインピーダンスZの場合について、電力の伝送効率のグラフを示す。本実施形態では、図3のグラフの2山のピークのうち、周波数が高い方のピークの周波数の258MHzで電力伝送を行う。この2山のピークの周波数は、送信アンテナ1と受信アンテナ3の間の距離を変えることで変わる。その周波数変化への対応は、送信アンテナ1の共振電流を送信アンテナ1へ供給する高周波の発振回路にフィードバックすることで、電源回路2が、アンテナ対の共振周波数に適合した周波数を発振して電力を供給するようにすることができる。シミュレーション結果のグラフから、周波数が258MHzのS21は、Zが5Ωの場合−1dBであり、約80%の電力を伝送できることがわかる。Zが20Ωの場合−0.2dBであり約95%、Zが100Ωの場合−0.4dBであり約91%の電力を伝送する。   FIG. 3 shows a graph of the simulation result of the power transmission efficiency from the power supply circuit 2 to the load circuit 4 in this embodiment. The power transmission efficiency represents S21 in dB (decibel). In the case of 0 dB, 100% power is transmitted. In the case of -3 dB, 50% power is transmitted. In the case of -10 dB, 10% power is transmitted. FIG. 3 shows a graph of power transmission efficiency for various impedances Z when the output impedance Z1 of the power supply circuit 2 and the input impedance Z2 of the load circuit 4 are equal. In the present embodiment, power transmission is performed at 258 MHz, which is the frequency of the higher peak of the two peaks in the graph of FIG. The frequency of these two peak peaks changes by changing the distance between the transmitting antenna 1 and the receiving antenna 3. The response to the frequency change is by feeding back the resonance current of the transmission antenna 1 to a high-frequency oscillation circuit that supplies the transmission antenna 1, so that the power supply circuit 2 oscillates the frequency that matches the resonance frequency of the antenna pair to generate power. Can be supplied. From the simulation result graph, it can be seen that S21 having a frequency of 258 MHz is −1 dB when Z is 5Ω, and can transmit about 80% of power. When Z is 20Ω, -0.2 dB is about 95%, and when Z is 100Ω, it is -0.4 dB and about 91% is transmitted.

(変形例1)
また、図4には、電源回路2の出力インピーダンスZ1が30Ωで、負荷回路4の入力インピーダンスZ2が60Ωで、電源回路2と負荷回路4のインピーダンスが異なる場合の電力伝送効率をあらわすグラフを示す。このように両者のインピーダンスが異なっても、周波数258MHzの場合のS21は−0.64dBであり約86%の電力を伝送できる。
(Modification 1)
FIG. 4 is a graph showing the power transmission efficiency when the output impedance Z1 of the power supply circuit 2 is 30Ω, the input impedance Z2 of the load circuit 4 is 60Ω, and the impedances of the power supply circuit 2 and the load circuit 4 are different. . Thus, even if both impedances differ, S21 in the case of frequency 258MHz is -0.64dB, and about 86% of electric power can be transmitted.

このように、この送信アンテナ1と受信アンテナ3を用いて、周波数が258MHzの高周波で電力を伝送すると、電源回路2および負荷回路4のインピーダンスZ1およびZ2が所定範囲内にあれば、電力を効率良く伝送できる。この効果は、アンテナが共振する波長に比べて十分短い距離で近接したアンテナ対間で電力を伝送する場合に得られる効果である。本実施形態では、周波数258MHzの電磁界の波長は約1.2mの波長であり、その周波数で共振するアンテナ対の間隔が10mmであり、その間隔は波長の約100分の1であり、波長に比べて十分短い間隔である。本実施形態では、10mmの間隙を隔てて非接触で電力を伝送できるので、例えば、生体の組織を隔てて、生体内に埋め込んだ受信アンテナ24と装置の負荷回路4に、生体外の電源回路2から10mmの厚さの生体組織を隔ててコードレスで生体内の装置に電力を供給できる効果がある。そして、生体内に埋め込む受信アンテナ24は、縦横41mmで厚さが20μmで薄いアンテナであるため、生体内で占有する体積が小さく、生体への親和性が良い効果がある。   As described above, when power is transmitted at a high frequency of 258 MHz using the transmitting antenna 1 and the receiving antenna 3, the power is efficiently used if the impedances Z1 and Z2 of the power supply circuit 2 and the load circuit 4 are within a predetermined range. It can be transmitted well. This effect is an effect obtained when power is transmitted between a pair of antennas that are close to each other at a sufficiently short distance compared to the wavelength at which the antenna resonates. In the present embodiment, the wavelength of the electromagnetic field having a frequency of 258 MHz is a wavelength of about 1.2 m, the distance between the antenna pair resonating at that frequency is 10 mm, and the distance is about 1/100 of the wavelength. The interval is sufficiently shorter than that. In the present embodiment, power can be transmitted in a non-contact manner with a gap of 10 mm. For example, an in vitro power supply circuit is connected to the receiving antenna 24 embedded in the living body and the load circuit 4 of the apparatus with the living tissue separated. There is an effect that power can be supplied to an in-vivo device cordlessly across a living tissue having a thickness of 2 to 10 mm. Since the receiving antenna 24 embedded in the living body is a thin antenna having a length and width of 41 mm and a thickness of 20 μm, the volume occupied in the living body is small and the affinity to the living body is good.

<第2の実施形態>
第2の実施形態は、送信アンテナ1として、縦横470mmの7巻のコイルの配線の両端点を開放し、そのコイルの配線の中心に電源回路2から給電する送信アンテナ1を用いる。このコイルは材質が銅で、コイルの配線の幅が10mmで厚さが50μmのコイルである。受信アンテナ3も送信アンテナ1と同じ形のコイルで形成し、そのコイルの配線の中心から負荷回路4に電力を取り出す。送信アンテナ1と受信アンテナ3は100mm離して平行に配置する。
<Second Embodiment>
In the second embodiment, as the transmission antenna 1, a transmission antenna 1 is used in which both end points of a wiring of seven coils of 470 mm in length and breadth are opened and power is supplied from the power supply circuit 2 to the center of the wiring of the coil. This coil is made of copper, and has a coil wiring width of 10 mm and a thickness of 50 μm. The receiving antenna 3 is also formed of a coil having the same shape as the transmitting antenna 1, and power is taken out from the center of the coil wiring to the load circuit 4. The transmitting antenna 1 and the receiving antenna 3 are arranged in parallel with a distance of 100 mm.

図5に、この実施形態の、電源回路2から負荷回路4までの電力の伝送効率のシミュレーション結果のグラフを示す。電力の伝送効率はS21をdB(デシベル)であらわす。図5では、電源回路2の出力インピーダンスZ1と、負荷回路4の入力インピーダンスZ2が等しいインピーダンスZの場合で、種々のインピーダンスZの場合について、電力の伝送効率のグラフを示す。本実施形態では、図5のグラフの2山のピークのうち、周波数が低い方のピークの周波数の10.6MHzで電力を伝送する。シミュレーション結果のグラフから、周波数が10.6MHzのS21は、Zが4Ωの場合−1dBであり約80%の電力を伝送できることがわかる。Zが30Ωの場合−0.2dBであり約95%、Zが120Ωの場合−1.06dBであり約78%の電力を伝送する。   FIG. 5 shows a graph of a simulation result of the power transmission efficiency from the power supply circuit 2 to the load circuit 4 in this embodiment. The power transmission efficiency represents S21 in dB (decibel). FIG. 5 shows a graph of power transmission efficiency for various impedances Z when the output impedance Z1 of the power supply circuit 2 and the input impedance Z2 of the load circuit 4 are equal. In the present embodiment, power is transmitted at 10.6 MHz which is the frequency of the lower peak of the two peaks in the graph of FIG. From the graph of the simulation result, it can be seen that S21 having a frequency of 10.6 MHz is −1 dB when Z is 4Ω, and can transmit about 80% of power. When Z is 30Ω, -0.2 dB is about 95%, and when Z is 120Ω, it is -1.06 dB and about 78% is transmitted.

本実施形態では、周波数10.6MHzの電磁界の波長は約28mの波長であり、その周波数で共振するアンテナ対の間隔が100mmであり、その間隔は波長の約300分の1であり、波長に比べて十分短い間隔である。本実施形態では、100mmの間隙を隔てて非接触で効率的に電力を伝送できる効果がある。例えば、家屋の壁に配線のための孔をあけずに、家屋の外の照明装置や表示装置などの屋外の装置の負荷回路4に、家屋内の電源回路2から100mm程度の厚さの壁を隔てて非接触で電力を供給できる効果がある。   In the present embodiment, the wavelength of the electromagnetic field having a frequency of 10.6 MHz is a wavelength of about 28 m, the distance between the antenna pair resonating at the frequency is 100 mm, and the distance is about 1/300 of the wavelength. The interval is sufficiently shorter than that. In this embodiment, there is an effect that power can be efficiently transmitted in a non-contact manner with a gap of 100 mm. For example, a wall having a thickness of about 100 mm from the power circuit 2 in the house is connected to the load circuit 4 of an outdoor device such as a lighting device or a display device outside the house without making a hole for wiring on the wall of the house. There is an effect that power can be supplied in a contactless manner.

<第3の実施形態>
第3の実施形態は、送信アンテナ1は、図6のように、37mm□の1巻コイルの配線の両端部を3pFのコンデンサで接続する。なお、送信アンテナ1のコイルの配線の中心部分を電源回路2に接続する。受信アンテナ3は、第1の実施形態と同じ、縦横41mmの3巻のコイルの配線の両端点を開放した受信アンテナ3を用いる。送信アンテナ1の1巻コイルは、受信アンテナ3の3巻コイルの配線長さより短いが、送信アンテナ1の両端を3pFのコンデンサで接続することで、受信アンテナ3と同じ周波数で共振する。そして、送信アンテナ1のコイルは1巻のコイルであり、受信アンテナ3のコイルが3巻であるので、送信アンテナ1側のインピーダンスよりも受信アンテナ3側の負荷回路4のインピーダンスが高い値でインピーダンスが整合する効果がある。
<Third Embodiment>
In the third embodiment, as shown in FIG. 6, the transmitting antenna 1 is configured by connecting both ends of a 37 mm □ one-turn coil wire with a 3 pF capacitor. The central portion of the wiring of the coil of the transmission antenna 1 is connected to the power supply circuit 2. The receiving antenna 3 is the same as the first embodiment, and uses the receiving antenna 3 in which both end points of the wiring of the three-winding coil of 41 mm in length and width are open. The one-turn coil of the transmission antenna 1 is shorter than the wiring length of the three-turn coil of the reception antenna 3, but resonates at the same frequency as the reception antenna 3 by connecting both ends of the transmission antenna 1 with 3 pF capacitors. Since the coil of the transmission antenna 1 is a single coil and the coil of the reception antenna 3 is three, the impedance of the load circuit 4 on the reception antenna 3 side is higher than the impedance on the transmission antenna 1 side. Has the effect of matching.

図7に、この実施形態の、電源回路2から負荷回路4までの電力の伝送効率のシミュレーション結果のグラフを示す。図7では、電源回路2の出力インピーダンスZ1と、負荷回路4の入力インピーダンスZ2を変えて、種々のインピーダンスの場合について、電力の伝送効率のグラフを示す。本実施形態では、図7のグラフの2山のピークのうち、周波数が高い方のピークの周波数の277MHzで電力を伝送する。シミュレーション結果のグラフから、周波数が277HzのS21は、Z1が0.2Ωの場合にZ2が1.6Ωの場合にインピーダンスが良く整合し、そのときのS21は−0.6dBであり約87%の電力を伝送できることがわかる。Z1が4Ωmの場合は、Z2が32Ωが良く整合し、S21が−0.07dBであり約98%の電力を伝送でき、Z1が25Ωの場合に整合するZ2は200Ωであり、そのときのS21は−0.63dBであり約86%の電力を伝送できる。このように、シミュレーションの結果、電源回路2の出力インピーダンスZ1と、負荷回路4の入力インピーダンスZ2の間には、Z2=Z1×8の場合に効率良くエネルギーを伝送できるが、その比率は概ねアンテナのコイルの巻数の二乗に比例する知見を得た。   In FIG. 7, the graph of the simulation result of the transmission efficiency of the electric power from the power supply circuit 2 to the load circuit 4 of this embodiment is shown. FIG. 7 shows a graph of power transmission efficiency for various impedances by changing the output impedance Z1 of the power supply circuit 2 and the input impedance Z2 of the load circuit 4. In the present embodiment, power is transmitted at 277 MHz, which is the frequency of the higher peak of the two peaks in the graph of FIG. From the simulation result graph, S21 having a frequency of 277 Hz has a good impedance match when Z1 is 0.2Ω and Z2 is 1.6Ω, and S21 at that time is −0.6 dB, which is about 87%. It can be seen that power can be transmitted. When Z1 is 4Ωm, Z2 matches 32Ω well, S21 is −0.07 dB and about 98% of power can be transmitted, and Z2 that matches when Z1 is 25Ω is 200Ω, and S21 at that time Is -0.63 dB, and about 86% of power can be transmitted. As described above, as a result of simulation, energy can be efficiently transmitted between the output impedance Z1 of the power supply circuit 2 and the input impedance Z2 of the load circuit 4 when Z2 = Z1 × 8. We obtained knowledge proportional to the square of the number of turns of the coil.

図8に、277MHzのS21の値を、横軸にインピーダンスZ2(それはZ1の8倍が良く整合する)を変えた場合のグラフであらわす。図8の記号(a)から(c)は、図7(a)から(c)の場合をあらわす。この図8のように、この誘導電力給電システムは、電源回路2および負荷回路4に、所定の範囲のインピーダンスを用いることで、効率良いエネルギー伝送が行える。   FIG. 8 is a graph showing the value of S21 at 277 MHz when the horizontal axis represents impedance Z2 (which matches 8 times Z1 well). Symbols (a) to (c) in FIG. 8 represent the cases of FIGS. 7 (a) to (c). As shown in FIG. 8, this inductive power feeding system can perform efficient energy transmission by using a predetermined range of impedance for the power supply circuit 2 and the load circuit 4.

本実施形態では、送信アンテナ1の両端をコンデンサで接続することで、共振周波数を低くし、アンテナの長さの短い送信アンテナ1を、受信アンテナ3と同じ周波数で共振させて用いることができる効果がある。受信アンテナ3についても、そのコイルの配線の両端をコンデンサで接続することで共振周波数を低くすることができる。このように、コイル状配線で形成したアンテナの両端にコンデンサを接続することで、そのアンテナの共振周波数を低くすることができる。本実施形態では277MHzの電磁界の誘導を利用して非接触で電源回路2から負荷回路4までエネルギーを伝送する場合を示したが、受信アンテナ3の両端をコンデンサで接続し、また、送信アンテナ1の両端を接続するコンデンサの容量を3pFよりも高くすることで、アンテナの共振周波数を一桁近く低くし、その低い周波数の電磁界でエネルギーを伝送できる効果がある。   In the present embodiment, by connecting both ends of the transmission antenna 1 with capacitors, the resonance frequency can be lowered, and the transmission antenna 1 having a short antenna length can be used by resonating at the same frequency as the reception antenna 3. There is. The resonance frequency of the receiving antenna 3 can also be lowered by connecting both ends of the coil wiring with capacitors. Thus, by connecting a capacitor to both ends of an antenna formed of coiled wiring, the resonant frequency of the antenna can be lowered. In this embodiment, the case where energy is transmitted from the power supply circuit 2 to the load circuit 4 in a non-contact manner using induction of an electromagnetic field of 277 MHz is shown. However, both ends of the reception antenna 3 are connected by a capacitor, and the transmission antenna By making the capacitance of the capacitor connecting both ends of 1 higher than 3 pF, the resonance frequency of the antenna is lowered by an order of magnitude, and there is an effect that energy can be transmitted by the electromagnetic field of the low frequency.

<第4の実施形態>
第4の実施形態は、図9のように、送信アンテナ1と受信アンテナ3として、縦横47mmの両面で14巻のコイルの配線の両端点を開放し、そのコイルの配線の中心に電源回路2から給電する送信アンテナ1と中心を負荷回路4に接続する受信アンテナを用いる。図9のように、送信アンテナ1と受信アンテナ3は横に20mm離して併設する。すなわち、両アンテナの中心の間隔は67mmあり、アンテナの寸法47mmより大きい。
<Fourth Embodiment>
In the fourth embodiment, as shown in FIG. 9, as the transmitting antenna 1 and the receiving antenna 3, both end points of 14-winding coil wiring are opened on both sides of 47 mm in length and width, and the power circuit 2 is arranged at the center of the coil wiring. A transmission antenna 1 that feeds power and a reception antenna whose center is connected to the load circuit 4 are used. As shown in FIG. 9, the transmitting antenna 1 and the receiving antenna 3 are provided side by side at a distance of 20 mm. That is, the distance between the centers of both antennas is 67 mm, which is larger than the antenna size of 47 mm.

本実施形態では、電源回路2の出力インピーダンスZ1と、負荷回路4の入力インピーダンスZ2が等しいインピーダンスZ=7Ωの場合に、共振周波数での電力伝送の効率が最大になる。図10に、その場合の、電源回路2から負荷回路4までの電力の伝送効率のシミュレーション結果のグラフを示す。本実施形態では、図10のグラフのピーク周波数は23.8MHzで電力を伝送する。シミュレーション結果のグラフからS21は−0.73dBであり約85%の電力を伝送できる。   In the present embodiment, when the output impedance Z1 of the power supply circuit 2 and the input impedance Z2 of the load circuit 4 are equal impedance Z = 7Ω, the efficiency of power transmission at the resonance frequency is maximized. FIG. 10 shows a graph of the simulation result of the power transmission efficiency from the power supply circuit 2 to the load circuit 4 in that case. In the present embodiment, power is transmitted at a peak frequency of 23.8 MHz in the graph of FIG. From the graph of the simulation result, S21 is -0.73 dB, and about 85% of power can be transmitted.

本実施形態では、周波数23.8MHzの電磁界の波長は約13mの波長であり、その周波数で共振するアンテナ対が横に20mm隔てて併設され、両アンテナの中心の間隔は67mmであり、波長の約190分の1であり、波長に比べて十分短い間隔である。本実施形態では、このようにコイル状アンテナ同士を併設して、また、アンテナの寸法より大きな距離を隔てても、電力を約85%の効率で伝送できる。また、アンテナ間の距離を離すにつれ、電力を効率良く伝送するには、電源回路2および負荷回路4のインピーダンスを下げて整合させる必要がある。インピーダンスを下げれば電力を効率良く伝送できる効果がある。   In this embodiment, the wavelength of the electromagnetic field having a frequency of 23.8 MHz is a wavelength of about 13 m, and an antenna pair that resonates at that frequency is provided 20 mm laterally, and the center distance between both antennas is 67 mm. The interval is approximately 1/190 of that of the wavelength, and is sufficiently shorter than the wavelength. In the present embodiment, even when the coiled antennas are provided side by side as described above and the distance is larger than the dimension of the antenna, power can be transmitted with an efficiency of about 85%. In addition, as the distance between the antennas increases, in order to efficiently transmit power, it is necessary to lower the impedances of the power supply circuit 2 and the load circuit 4 for matching. Lowering the impedance has the effect of efficiently transmitting power.

<第5の実施形態>
第5の実施形態は、図11のように、送信アンテナ1と受信アンテナ3として、第6の実施形態のアンテナの中央部において給電線が接続する給電点に、並列に13mm□の追加ループ配線を加える。この配線を追加することで、共振周波数で電力伝送の効率が最大になる電源回路2の出力インピーダンスZ1と、負荷回路4の入力インピーダンスZ2は16Ωになり、第6の実施形態の約2倍になる。この追加ループ配線の長さ(大きさ)を変えることで、電力伝送の効率を最大にするインピーダンスを自由に調整することができる。第4の実施形態では、電力伝送の効率を最大にするインピーダンスは7Ωであり、低めの値であったが、本実施形態では、送信アンテナ1と受信アンテナ3の給電点に並列に追加ループ配線を追加することで、電力伝送に整合するインピーダンスを、利用し易い適度な大きさにまで自由に高めることができる効果がある。
<Fifth Embodiment>
In the fifth embodiment, as shown in FIG. 11, as a transmitting antenna 1 and a receiving antenna 3, an additional loop wiring of 13 mm □ is connected in parallel to the feeding point where the feeding line is connected in the central portion of the antenna of the sixth embodiment. Add By adding this wiring, the output impedance Z1 of the power supply circuit 2 that maximizes the efficiency of power transmission at the resonance frequency and the input impedance Z2 of the load circuit 4 become 16Ω, which is about twice that of the sixth embodiment. Become. By changing the length (size) of the additional loop wiring, the impedance that maximizes the efficiency of power transmission can be freely adjusted. In the fourth embodiment, the impedance that maximizes the efficiency of power transmission is 7Ω, which is a low value. However, in this embodiment, an additional loop wiring is connected in parallel to the feeding points of the transmitting antenna 1 and the receiving antenna 3. By adding, there is an effect that the impedance matching with the power transmission can be freely increased to an appropriate size that is easy to use.

本発明は、ディスプレイ装置等に壁を隔てて誘導エネルギーを供給する用途に適用できる。また、生体への非侵襲なシステム構成で、生体内に埋め込んだ電子装置にエネルギーを供給する用途に適用できる。   The present invention can be applied to an application for supplying inductive energy across a wall to a display device or the like. In addition, the non-invasive system configuration for a living body can be applied to an application for supplying energy to an electronic device embedded in the living body.

本発明の第1の実施形態の誘導電力給電システムのブロック図である。1 is a block diagram of an inductive power supply system according to a first embodiment of the present invention. 本発明の第1の実施形態の誘導電力給電システムの送信アンテナと受信アンテナの平面図および側面図である。It is the top view and side view of a transmitting antenna and a receiving antenna of the induction power feeding system of the 1st Embodiment of this invention. 本発明の第1の実施形態の電力伝送効率の周波数特性のグラフである。It is a graph of the frequency characteristic of the power transmission efficiency of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例1の電力伝送効率の周波数特性のグラフである。It is a graph of the frequency characteristic of the power transmission efficiency of the modification 1 of the 1st Embodiment of this invention. 本発明の第2の実施形態の電力伝送効率の周波数特性のグラフである。It is a graph of the frequency characteristic of the power transmission efficiency of the 2nd Embodiment of this invention. 本発明の第3の実施形態の誘導電力給電システムの送信アンテナと受信アンテナの平面図および側面図である。It is the top view and side view of a transmitting antenna and a receiving antenna of the induction power feeding system of the 3rd Embodiment of this invention. 本発明の第3の実施形態の電力伝送効率の周波数特性のグラフである。It is a graph of the frequency characteristic of the power transmission efficiency of the 3rd Embodiment of this invention. 本発明の第3の実施形態の電力伝送効率のインピーダンス特性のグラフである。It is a graph of the impedance characteristic of the power transmission efficiency of the 3rd Embodiment of this invention. 本発明の第4の実施形態の誘導電力給電システムの送信アンテナと受信アンテナの平面図である。It is a top view of the transmitting antenna and receiving antenna of the induction power feeding system of the 4th Embodiment of this invention. 本発明の第4の実施形態の電力伝送効率の周波数特性のグラフである。It is a graph of the frequency characteristic of the power transmission efficiency of the 4th Embodiment of this invention. 本発明の第5の実施形態の誘導電力給電システムの送信アンテナと受信アンテナの平面図である。It is a top view of the transmitting antenna and receiving antenna of the induction power feeding system of the 5th Embodiment of this invention.

符号の説明Explanation of symbols

1・・・送信アンテナ
2・・・電源回路
3・・・受信アンテナ
4・・・負荷回路
DESCRIPTION OF SYMBOLS 1 ... Transmission antenna 2 ... Power supply circuit 3 ... Reception antenna 4 ... Load circuit

Claims (3)

送信アンテナから受信アンテナまで空間をエネルギー伝送するシステムにおいて、少なくとも前記送信アンテナあるいは前記受信アンテナの何れかは、両端を有する配線をコイル状に巻いて、前記配線の中程に給電線を接続して成る端点保有アンテナを用いることを特徴とする誘導電力給電システム。   In a system for transmitting energy from a transmission antenna to a reception antenna, at least one of the transmission antenna and the reception antenna is formed by winding a wire having both ends in a coil shape and connecting a feeding line in the middle of the wiring. An inductive power feeding system using an end-point holding antenna. 前記端点保有アンテナの前記給電線の接続する給電点に並列に追加ループ配線を加えたことを特徴とする請求項1記載の誘導電力給電システム。   The induction power feeding system according to claim 1, wherein an additional loop wiring is added in parallel to a feeding point to which the feeding line of the end point holding antenna is connected. 前記端点保有アンテナの前記両端にコンデンサの両電極を接続したことを特徴とする請求項1又は2に記載の誘導電力給電システム。   The induction power supply system according to claim 1, wherein both electrodes of a capacitor are connected to the both ends of the end point holding antenna.
JP2007158087A 2007-06-15 2007-06-15 Inductive power supply system Active JP5354874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158087A JP5354874B2 (en) 2007-06-15 2007-06-15 Inductive power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158087A JP5354874B2 (en) 2007-06-15 2007-06-15 Inductive power supply system

Publications (3)

Publication Number Publication Date
JP2008312357A true JP2008312357A (en) 2008-12-25
JP2008312357A5 JP2008312357A5 (en) 2010-11-11
JP5354874B2 JP5354874B2 (en) 2013-11-27

Family

ID=40239435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158087A Active JP5354874B2 (en) 2007-06-15 2007-06-15 Inductive power supply system

Country Status (1)

Country Link
JP (1) JP5354874B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239838A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Power transmission apparatus
JP2010239847A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Power transmission apparatus, power transmission reception apparatus, and power transmission method
WO2010131732A1 (en) * 2009-05-14 2010-11-18 日産自動車株式会社 Contactless electricity-supplying device
WO2013145080A1 (en) * 2012-03-26 2013-10-03 パイオニア株式会社 Short circuit testing device and short circuit testing method
JP2013240260A (en) * 2012-04-17 2013-11-28 Nitto Denko Corp Wireless power transmission apparatus
US9509166B2 (en) 2011-05-16 2016-11-29 Samsung Electronics Co., Ltd. Apparatus and method for wireless power transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145267A (en) * 1996-09-13 1998-05-29 Hitachi Ltd High efficiency antenna coil, radio card and information communication system using radio card
JP2000148932A (en) * 1998-11-13 2000-05-30 Hitachi Ltd Reader or/and writer, and ic card system using them
JP2007013757A (en) * 2005-07-01 2007-01-18 Nec Tokin Corp Radio tag and radio communication system using radio tag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145267A (en) * 1996-09-13 1998-05-29 Hitachi Ltd High efficiency antenna coil, radio card and information communication system using radio card
JP2000148932A (en) * 1998-11-13 2000-05-30 Hitachi Ltd Reader or/and writer, and ic card system using them
JP2007013757A (en) * 2005-07-01 2007-01-18 Nec Tokin Corp Radio tag and radio communication system using radio tag

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239838A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Power transmission apparatus
JP2010239847A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Power transmission apparatus, power transmission reception apparatus, and power transmission method
US8542018B2 (en) 2009-03-31 2013-09-24 Fujitsu Limited Power transmitting apparatus
WO2010131732A1 (en) * 2009-05-14 2010-11-18 日産自動車株式会社 Contactless electricity-supplying device
JP2010288441A (en) * 2009-05-14 2010-12-24 Nissan Motor Co Ltd Contactless electricity-supplying device
RU2487452C1 (en) * 2009-05-14 2013-07-10 Ниссан Мотор Ко., Лтд. Device of non-contact power supply
KR101375008B1 (en) 2009-05-14 2014-03-17 닛산 지도우샤 가부시키가이샤 Contactless electricity-supplying device
US8716976B2 (en) 2009-05-14 2014-05-06 Nissan Motor Co., Ltd. Contactless electricity-supplying device
US9509166B2 (en) 2011-05-16 2016-11-29 Samsung Electronics Co., Ltd. Apparatus and method for wireless power transmission
WO2013145080A1 (en) * 2012-03-26 2013-10-03 パイオニア株式会社 Short circuit testing device and short circuit testing method
JP2013240260A (en) * 2012-04-17 2013-11-28 Nitto Denko Corp Wireless power transmission apparatus
US9755698B2 (en) 2012-04-17 2017-09-05 Nitto Denko Corporation Wireless power transmission apparatus

Also Published As

Publication number Publication date
JP5354874B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5054113B2 (en) Inductive power transmission circuit
JP4911148B2 (en) Contactless power supply
JP5172050B2 (en) Wireless power transmission device
JP2010063324A (en) Induced power transmission circuit
JP6288519B2 (en) Wireless power transmission system
JP2011142748A (en) Wireless power supply system
JP5354874B2 (en) Inductive power supply system
KR20110049659A (en) Space-adaptive wireless power transmission system and method using resonance of evanescent waves
JP2009278837A (en) Induced-power transmission system
KR101875942B1 (en) Apparatus for receving wireless power and system for transmitting wireless power
WO2013080530A1 (en) Wireless power transmission device
Bhutkar et al. Wireless energy transfer using magnetic resonance
KR101369415B1 (en) Transmitter used in wireless power transfer and wireless power transfer system having the same
JP2012135066A (en) Inductive power transmission system
JP2016076645A (en) Planar coil
JP2014096872A (en) Coupled resonator type radio power transmission system, and power reception side resonator used for coupled resonator type radio power transmission system
KR102291717B1 (en) Wireless power transmitter and wireless power receiver
KR20160050445A (en) Wireless power charging apparatus
US20170149292A1 (en) Resonant coil, wireless power transmitter using the same, wireless power receiver using the same
JP6044865B2 (en) Inductive power transmission system
TW201707343A (en) Transmitter for magnetic resonance wireless power trasnfer system
JP2011072176A (en) Non-contact power transmitter
JP2015164270A (en) Antenna device and radio communication equipment
JP6265761B2 (en) Non-contact power supply system, power transmission device and power reception device
JP2017195707A (en) Wireless power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5354874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250