JP2008297969A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2008297969A
JP2008297969A JP2007144844A JP2007144844A JP2008297969A JP 2008297969 A JP2008297969 A JP 2008297969A JP 2007144844 A JP2007144844 A JP 2007144844A JP 2007144844 A JP2007144844 A JP 2007144844A JP 2008297969 A JP2008297969 A JP 2008297969A
Authority
JP
Japan
Prior art keywords
amount
oil dilution
regeneration
oil
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007144844A
Other languages
Japanese (ja)
Inventor
Tsukasa Kuboshima
司 窪島
Shigeto Yabaneta
茂人 矢羽田
Tsutomu Soga
力 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007144844A priority Critical patent/JP2008297969A/en
Priority to US12/149,333 priority patent/US20080295491A1/en
Priority to DE102008002125A priority patent/DE102008002125A1/en
Publication of JP2008297969A publication Critical patent/JP2008297969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/18Indicating or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • F01M2001/165Controlling lubricant pressure or quantity according to fuel dilution in oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/11Oil dilution, i.e. prevention thereof or special controls according thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine compatibly materializing suppression of oil dilution quantity and inhibition of deterioration of fuel economy by post injection. <P>SOLUTION: In a DPF (Diesel Particulate Filter) collecting particulate matters such as soot and un-burned component from exhaust gas of a diesel engine, oil dilution quantity which is quantity of fuel diluting engine oil is calculated from operation conditions and regeneration time of the DPF. Suppression of oil dilution quantity and inhibition of deterioration of fuel economy due to post injection can be compatibly materialized by relaxing increase of oil dilution quantity by using regeneration method reducing oil dilution quantity further when oil dilution quantity exceeds a predetermined value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は排気管に排気浄化のためのディーゼル・パティキュレート・フィルター(以下、DPFとも称する)を装着した内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine in which a diesel particulate filter (hereinafter also referred to as DPF) for exhaust gas purification is mounted on an exhaust pipe.

従来技術として、エンジンの排気中に含まれる煤や未燃焼物質などの粒子状物質であるパティキュレート・マター(以下、PMとも称する)のDPFへの堆積量が所定値を超えた場合、DPF内のPMを効果的に燃焼させるためにエンジンのメイン噴射後の膨張行程で追加燃料を噴射して、追加燃料を直接DPFへ送り込むポスト噴射という技術が開示されている(特許文献1、特許文献2)。   As a conventional technique, when the amount of particulate matter (hereinafter also referred to as PM), which is particulate matter such as soot and unburned material, contained in the exhaust of the engine exceeds a predetermined value, In order to effectively burn the PM of the engine, a technique called post injection in which additional fuel is injected in the expansion stroke after the main injection of the engine and the additional fuel is directly fed to the DPF is disclosed (Patent Document 1, Patent Document 2). ).

特願平8−42326号公報Japanese Patent Application No. 8-42326

特願2005−307746号公報Japanese Patent Application No. 2005-307746

しかし、ポスト噴射は、膨張行程で噴射するため、噴射燃料が蒸発しにくく、シリンダの壁面に付着しやすくなる。シリンダの壁面に付着した燃料はピストンリングとシリンダとの隙間から下降し、エンジンオイルを希釈するという問題があった。   However, since the post injection is performed in the expansion stroke, the injected fuel is difficult to evaporate and easily adheres to the wall surface of the cylinder. There is a problem that the fuel adhering to the cylinder wall descends from the gap between the piston ring and the cylinder and dilutes the engine oil.

さらに、ポスト噴射を長期にわたり繰り返し、オイルを希釈する燃料の量(以下、オイル希釈量とも言う)が過大になると、ピストンの潤滑不良を起こしたり、蒸発燃料が吸気側に回り込みエンジン回転が上昇するなどの問題が起こる可能性があった。   Furthermore, if post-injection is repeated over a long period of time, and the amount of fuel that dilutes oil (hereinafter also referred to as oil dilution amount) becomes excessive, poor lubrication of the piston will occur, or evaporated fuel will enter the intake side and engine rotation will increase There was a possibility of problems such as.

本発明の課題は、オイル希釈抑制とポスト噴射による燃費悪化抑制とを両立する内燃機関の排気浄化装置を提供することにある。   An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that achieves both oil dilution suppression and post-injection fuel consumption deterioration suppression.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決する為に、本発明における内燃機関の排気浄化装置は、エンジンの排気中に含まれる粒子状物質を捕集するディーゼルパティキュレートフィルターを備えた内燃機関の排気浄化装置であり、内燃機関の排気浄化装置の動作を制御する制御部と、ディーゼルパティキュレートフィルター内における粒子状物質の堆積量を測定する粒子状物質堆積量測定部と、粒子状物質堆積量測定部において測定された粒子状物質の堆積量が第1の所定値を超えているか否かを判定する粒子状物質堆積量判定手段と、エンジンオイルの中に希釈される燃料の量であるオイル希釈量を導出するために必要なオイル希釈関係データを測定するオイル希釈関係データ測定手段と、オイル希釈関係データ測定手段によって測定されたオイル希釈関係データが、第2の所定値を超えているか否かを判定するオイル希釈関係データ判定手段と、粒子状物質を燃焼させ、ディーゼルパティキュレートフィルターを再生させる再生手段と、を備え、再生手段は、第1の再生手段とその第1の再生手段よりオイル希釈量が低く、燃料消費率の高い第2の再生手段との2つの再生手段であり、制御部は、粒子状物質堆積量判定手段によって、第1の所定値を超えた粒子状物質がディーゼルパティキュレートフィルターに堆積していると判定され、かつオイル希釈関係データ判定手段によって測定されたオイル希釈関係データが第2の所定値より低いと判定された場合、2つの再生手段から第1の再生手段を選択し、また、粒子状物質堆積量判定手段によって、第1の所定値を超えた粒子状物質がディーゼルパティキュレートフィルターに堆積していると判定され、かつ測定されたオイル希釈関係データが第2の所定値より高いと判定された場合、2つの再生手段から第2の再生手段を選択する選択手段を備えることを特徴とする。   In order to solve the above problems, an exhaust purification device for an internal combustion engine in the present invention is an exhaust purification device for an internal combustion engine provided with a diesel particulate filter that collects particulate matter contained in the exhaust of the engine, Measured by a control unit that controls the operation of the exhaust gas purification device of the internal combustion engine, a particulate matter accumulation amount measurement unit that measures the amount of particulate matter accumulated in the diesel particulate filter, and a particulate matter accumulation amount measurement unit Particulate matter accumulation amount determination means for determining whether or not the accumulation amount of particulate matter exceeds a first predetermined value, and an oil dilution amount that is the amount of fuel diluted in engine oil Oil dilution relation data measurement means for measuring the oil dilution relation data necessary for the operation, and oil dilution relation data measured by the oil dilution relation data measurement means. Is provided with oil dilution relation data determination means for determining whether or not the second predetermined value is exceeded, and regeneration means for burning the particulate matter and regenerating the diesel particulate filter. 1 regeneration means and two regeneration means having a lower oil dilution amount than the first regeneration means and a second regeneration means having a high fuel consumption rate, and the control unit uses the particulate matter accumulation amount determination means, It is determined that particulate matter exceeding the first predetermined value is deposited on the diesel particulate filter, and the oil dilution relationship data measured by the oil dilution relationship data determination means is determined to be lower than the second predetermined value. In this case, the first regeneration means is selected from the two regeneration means, and particulate matter exceeding the first predetermined value is detected by the particulate matter accumulation amount judgment means. A selection means for selecting the second regeneration means from the two regeneration means when it is determined that the oil is accumulated on the particulate filter and the measured oil dilution relation data is determined to be higher than the second predetermined value; It is characterized by providing.

この特徴により本発明に記載の内燃機関の排気浄化装置は現在のエンジンにおけるオイル希釈量によって「オイル希釈は多いが燃費悪化が小さい第1の再生手段」と「オイル希釈は少ないが燃費悪化が大きい第2の再生手段」とを選択して用いることが可能となり、オイル希釈量を所定値以下とした上で、燃費悪化を抑制できる。すなわち、DPF再生時のオイル希釈の抑制と燃費悪化抑制を両立できるという効果を奏する。   Due to this feature, the exhaust gas purification apparatus for an internal combustion engine according to the present invention has a "first regeneration means with a large amount of oil dilution but a small deterioration in fuel consumption" according to the amount of oil dilution in the current engine. The “second regeneration means” can be selected and used, and the deterioration of fuel consumption can be suppressed while the oil dilution amount is set to a predetermined value or less. That is, there is an effect that it is possible to achieve both suppression of oil dilution during DPF regeneration and suppression of deterioration in fuel consumption.

また、第1の再生手段は、膨張行程において燃料噴射を行うポスト噴射を実施し、第2の再生手段は、前記膨張行程中のより進角した噴射時期において前記ポスト噴射を実施するとしてもよい。   Further, the first regeneration means may perform post injection for performing fuel injection in an expansion stroke, and the second regeneration means may perform the post injection at a more advanced injection timing during the expansion stroke. .

これにより特別な外部装置を設けることなく「オイル希釈は多いが燃費悪化が小さい第1の再生手段」と「オイル希釈は少ないが燃費悪化が大きい第2の再生手段」という2つの再生手段を設けることができる。すなわち、余分なコストを必要とせず、2種類の再生手段を設けることができるという効果を奏する。   As a result, there are provided two regeneration means, “a first regeneration means with a large amount of oil dilution but a small deterioration in fuel consumption” and “a second regeneration means with a small amount of oil dilution but a large deterioration in fuel consumption” without providing a special external device. be able to. That is, there is an effect that two kinds of reproducing means can be provided without extra cost.

また、ポスト噴射は、膨張行程時に複数回に分けて噴射することを特徴とすることができる。   Further, the post-injection can be characterized by being injected in a plurality of times during the expansion stroke.

この特徴により、同じポスト噴射量であっても1噴射あたりのポスト噴射量を減らすことが可能となる。これによって、シリンダに付着する燃料の量を低減し、オイル希釈量を減らすことができるという効果を奏する。   With this feature, it is possible to reduce the post injection amount per injection even with the same post injection amount. As a result, the amount of fuel adhering to the cylinder can be reduced and the amount of oil dilution can be reduced.

また、オイル希釈関係データ測定手段は、第1の再生手段、もしくは第2の再生手段のいずれかを実行している間の車速と走行距離、または第1の再生手段、もしくは第2の再生手段のいずれかを実行している間の車速と走行時間から測定されるとしてもよい。   The oil dilution relationship data measuring means is a vehicle speed and a travel distance during execution of either the first regeneration means or the second regeneration means, or the first regeneration means or the second regeneration means. It may be measured from the vehicle speed and the running time during the execution of either of the above.

この特徴により、車速が低く排気温度が低い場合には、DPF再生時間が長くなるためオイル希釈量が増加する。この関係からオイル希釈量を求めることができるという効果を奏する。   Due to this feature, when the vehicle speed is low and the exhaust temperature is low, the DPF regeneration time becomes long, and the oil dilution amount increases. From this relationship, there is an effect that the oil dilution amount can be obtained.

また、オイル希釈関係データ測定手段は、第1の再生手段、もしくは第2の再生手段のいずれかを実行している間の継続時間から測定されるとすることができる。   In addition, the oil dilution related data measuring means can be measured from the duration during which either the first regeneration means or the second regeneration means is being executed.

一般的にDPF再生時間が長くなると、オイル希釈量が増加する。上記の特徴により、本発明における内燃機関の排気浄化装置において、DPF再生時間からオイル希釈量を導出することができるという効果を奏する。   Generally, when the DPF regeneration time becomes longer, the oil dilution amount increases. With the above feature, the exhaust gas purification apparatus for an internal combustion engine according to the present invention has an effect that the oil dilution amount can be derived from the DPF regeneration time.

また、オイル希釈量測定手段は、オイル希釈量とオイル内から蒸発する燃料の量であるオイル蒸発量との差から導出することを特徴とすることができる。   Further, the oil dilution amount measuring means can be derived from a difference between the oil dilution amount and the oil evaporation amount that is the amount of fuel evaporated from the oil.

この特徴により、オイル希釈量とオイル蒸発量との差から、オイル希釈量をより正確に導出することができるという効果を奏する。   With this feature, there is an effect that the oil dilution amount can be more accurately derived from the difference between the oil dilution amount and the oil evaporation amount.

以下、添付の図面を参照しつつ、本発明の実施形態について説明する。図1は本発明の実施形態に係る内燃機関1の排気浄化装置のシステム図である。まず、原動機であるディーゼルエンジン2がある。また、ディーゼルエンジン2の状態を知るためのセンサとして、ディーゼルエンジン2の吸気側における空気の流量を測定するエアフローメータ3、ディーゼルエンジン2の回転を測定するエンジン回転センサ4、ドライバーのアクセルの開度を測定するアクセル開度センサ5が備え付けられている。ディーゼルエンジン2には燃料を噴射する燃料噴射弁を備えたインジェクターが備え付けられており、制御部であるECU(エンジン・コントロール・ユニット)10に電気的に接続されている。インジェクターが燃料を噴射するための燃料噴射弁の開度とタイミングはECU10によって管理される。また、エアフローメータ3とエンジン回転センサ4とアクセル開度センサ5も制御部であるECU10に電気的に接続され、測定値をECU10に送信する。この測定値に基づき、ECU10はエンジンの状態を把握し、管理する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a system diagram of an exhaust emission control device for an internal combustion engine 1 according to an embodiment of the present invention. First, there is a diesel engine 2 which is a prime mover. Further, as sensors for knowing the state of the diesel engine 2, an air flow meter 3 that measures the flow rate of air on the intake side of the diesel engine 2, an engine rotation sensor 4 that measures the rotation of the diesel engine 2, and the opening degree of the accelerator of the driver An accelerator opening sensor 5 is provided for measuring. The diesel engine 2 is provided with an injector provided with a fuel injection valve for injecting fuel, and is electrically connected to an ECU (engine control unit) 10 which is a control unit. The opening degree and timing of the fuel injection valve for the injector to inject fuel are managed by the ECU 10. The air flow meter 3, the engine rotation sensor 4, and the accelerator opening sensor 5 are also electrically connected to the ECU 10 that is a control unit, and transmit measured values to the ECU 10. Based on this measured value, the ECU 10 grasps and manages the state of the engine.

次に、エンジンからの排気の情報を得る為のセンサとして排気温度を測定する排気温センサ6、ディーゼルエンジン2とPMを取り除く為のDPF9との間の排気の酸素濃度を測定する酸素濃度センサ7、DPF9前後の排気の圧力差を測定する差圧センサ8(粒子状物質堆積量測定部)がある。排気温センサ6、酸素濃度センサ7、差圧センサ8もエンジン回転センサ4とアクセル開度センサ5と同様、制御部であるECU10に接続され、測定値をECU10に送信する。送信された測定値はエンジンの状態を把握する為に用いられる。また、差圧センサ8によって測定される差圧はDPF9のPM堆積量を調べる為に用いられる。   Next, an exhaust temperature sensor 6 for measuring the exhaust temperature as a sensor for obtaining information on exhaust from the engine, and an oxygen concentration sensor 7 for measuring the oxygen concentration of exhaust between the diesel engine 2 and the DPF 9 for removing PM. , There is a differential pressure sensor 8 (particulate matter accumulation amount measuring unit) that measures the pressure difference between the exhaust gas before and after the DPF 9. The exhaust temperature sensor 6, the oxygen concentration sensor 7, and the differential pressure sensor 8 are also connected to the ECU 10, which is a control unit, similarly to the engine rotation sensor 4 and the accelerator opening sensor 5, and transmit measured values to the ECU 10. The transmitted measurement value is used to grasp the state of the engine. Further, the differential pressure measured by the differential pressure sensor 8 is used for examining the PM accumulation amount of the DPF 9.

図2は本発明の実施形態に係るECU10の構成例を示した図である。ECU10は各構成部を制御するCPU20と、制御プログラムや種々のデータ等を格納するROM21と、CPU20による演算の作業領域となるRAM22と、不揮発性のメモリであり各種設定を保存するEEPROM23とで構成されており、それぞれがバス50を介することでデータのやり取りを行う。各センサ類などの外部との電気的な接続はバス50を介し、I/O51を経由することで実現される。   FIG. 2 is a diagram illustrating a configuration example of the ECU 10 according to the embodiment of the present invention. The ECU 10 includes a CPU 20 that controls each component, a ROM 21 that stores a control program, various data, and the like, a RAM 22 that is a work area for operations performed by the CPU 20, and an EEPROM 23 that is a non-volatile memory and stores various settings. Each exchanges data via the bus 50. Electrical connection to the outside of each sensor or the like is realized through the bus 50 and the I / O 51.

ROM21は、差圧センサ8で測定された差圧からDPF9に堆積されたPMの量を算出するPM堆積量算出プログラム31(粒子状物質堆積量判定手段)と、DPF9の再生中の温度をポスト噴射によって制御するDPF温度制御プログラム32と、オイル希釈量を算出するためのデータとして車速と走行距離と走行時間を測定する運転状態測定プログラム34(オイル希釈関係データ測定手段)と、エンジン冷却水温とオイル希釈量からオイル内から蒸発する燃料の量であるオイル蒸発量算出プログラム35(オイル希釈関係データ測定手段)と、エンジン回転数とエンジン出力トルクからオイル希釈量を算出するオイル希釈量算出プログラム36(オイル希釈関係データ測定手段)と、DPF9の再生時間を測定するDPF再生時間測定プログラム37(オイル希釈関係データ測定手段)とで構成される。CPU20はROM21の内容をRAM22に展開することによって各種処理を行う。また、処理に必要な各種設定の値をEEPROM23からRAM22に展開することで各種処理を行い、設定に変更があった場合、EEPROM23にその値を書き込むことで設定を保存する。   The ROM 21 posts a PM deposition amount calculation program 31 (particulate matter deposition amount determination means) for calculating the amount of PM deposited on the DPF 9 from the differential pressure measured by the differential pressure sensor 8, and the temperature during regeneration of the DPF 9. DPF temperature control program 32 controlled by injection, driving state measurement program 34 (oil dilution relation data measuring means) for measuring vehicle speed, travel distance and travel time as data for calculating the oil dilution amount, engine coolant temperature, An oil evaporation amount calculation program 35 (oil dilution relation data measuring means) that is the amount of fuel evaporated from the oil from the oil dilution amount, and an oil dilution amount calculation program 36 that calculates the oil dilution amount from the engine speed and the engine output torque (Oil dilution related data measuring means) and DPF regeneration time measurement for measuring the regeneration time of DPF 9 Constructed out program 37 (the oil dilution related data measurement means). The CPU 20 performs various processes by expanding the contents of the ROM 21 onto the RAM 22. Also, various processing values necessary for processing are expanded from the EEPROM 23 to the RAM 22 to perform various processing, and when the settings are changed, the settings are saved by writing the values in the EEPROM 23.

以下、フローチャートを参照して、本発明におけるDPF9の再生時におけるポスト噴射の制御について説明する。なお、DPF9の再生処理とは、DPF9が捕集したPM堆積量が所定値を超えた場合、DPF内のPMを燃焼除去させる処理を言う。本例では、メイン噴射後にポスト噴射を実行し、その燃料の燃焼による燃焼等によって、DPF9に堆積しているPMを除去し、DPF9を再生させる。   Hereinafter, with reference to the flowchart, the post-injection control during the regeneration of the DPF 9 in the present invention will be described. The regeneration process of the DPF 9 refers to a process for burning and removing PM in the DPF when the amount of accumulated PM collected by the DPF 9 exceeds a predetermined value. In this example, post injection is performed after main injection, PM accumulated in the DPF 9 is removed by combustion or the like by combustion of the fuel, and the DPF 9 is regenerated.

図3は、本発明の第1の実施形態に係るDPF9の再生処理を示したフローチャートである。まず、ECU10はDPF9へのPM堆積量がDPF9の再生が必要な第1の所定値を超えているか否かの判定を行う(S100)。判定方法は、公知の技術を用いて判定を行う。公知の技術として、例えば、DPF9の入口と出口の圧力差を差圧センサ7で測定し、PM堆積量を推測する方法が挙げられる。まず、PM堆積量が多い場合、差圧センサに計測される差圧は大きくなる。この差圧が所定の値を超えた場合に、DPF9へのPM堆積量がDPF9の再生が必要な第1の所定値を超えていると判定する。一方、S100において、PMの堆積量が第1の所定値を下回った場合(S100:NO)、ECU10は次にPMの堆積量がDPF9の再生が必要となる第1の所定値を超えているか否かの判定を行うまで、ウェイティング状態に入る。   FIG. 3 is a flowchart showing the regeneration process of the DPF 9 according to the first embodiment of the present invention. First, the ECU 10 determines whether or not the amount of PM deposited on the DPF 9 exceeds a first predetermined value that requires regeneration of the DPF 9 (S100). The determination method is performed using a known technique. As a known technique, for example, there is a method in which the pressure difference between the inlet and the outlet of the DPF 9 is measured by the differential pressure sensor 7 to estimate the PM deposition amount. First, when the PM accumulation amount is large, the differential pressure measured by the differential pressure sensor increases. When this differential pressure exceeds a predetermined value, it is determined that the PM accumulation amount on the DPF 9 exceeds a first predetermined value that requires regeneration of the DPF 9. On the other hand, in S100, when the PM accumulation amount falls below the first predetermined value (S100: NO), the ECU 10 next determines whether the PM accumulation amount exceeds the first predetermined value that requires regeneration of the DPF 9. The wait state is entered until a determination is made.

PM堆積量がDPF9の再生が必要な第1の所定値を超えていた場合(S100:YES)、ECU10はDPF9の再生を開始する(S110)。DPF9の再生時にポスト噴射を行うことにより、未燃の燃料を排気ガスと共にDPF9へ送り、DPF9に担持されている酸化触媒の酸化熱によって、DPF9内のPMを燃焼させ、これにより、DPF9に堆積しているPMが減少する。多量のPMの堆積は排気の抜けが悪くなることからエンジン出力の低下を招くことになるため、DPF9にとって再生は必要不可欠である。なお、PMが燃焼を始める温度は約550℃である。   When the PM accumulation amount exceeds the first predetermined value that requires regeneration of the DPF 9 (S100: YES), the ECU 10 starts regeneration of the DPF 9 (S110). By performing post-injection during regeneration of the DPF 9, unburned fuel is sent to the DPF 9 together with the exhaust gas, and the PM in the DPF 9 is combusted by the oxidation heat of the oxidation catalyst carried on the DPF 9, thereby accumulating on the DPF 9. The PM you are doing decreases. Accumulation of a large amount of PM leads to a decrease in engine output because exhaust emissions deteriorate, so regeneration is indispensable for the DPF 9. Note that the temperature at which PM starts burning is about 550 ° C.

再生時にポスト噴射を行うということは、上死点を過ぎてピストンが下降した状態において燃料をシリンダ内に噴射するということであり、シリンダ壁に燃料が付着するということでもある。シリンダ壁に付着した燃料は段落0005、0006で述べたようにオイル希釈の原因となり、ピストンの潤滑不良や、蒸発燃料が吸気側に回り込みエンジン回転が上昇するといった現象を引き起こす可能性がある。   Post-injection at the time of regeneration means that fuel is injected into the cylinder in a state where the piston descends after passing through the top dead center, and also means that fuel adheres to the cylinder wall. As described in paragraphs 0005 and 0006, the fuel adhering to the cylinder wall may cause oil dilution and may cause a phenomenon such as poor lubrication of the piston and a phenomenon in which the evaporated fuel flows to the intake side and the engine speed increases.

上記の現象を避ける為に、続いて、ECU10はエンジンオイルに希釈された燃料の量であるオイル希釈量が所定の量を超えているか否かの判定を行う(S120)。オイル希釈量を直接測定することは難しいため、オイル希釈量が所定の量を超えているか否かの判定は、運転状況によって判断する。例えば、低速運転が所定の時間以上の期間にわたって継続された場合、低温の排気が継続されていることとなる。これはシリンダ壁に未燃焼の燃料が多く付着することにつながり、オイル希釈が進行することとなる。そのため、低速運転が所定の時間以上の期間にわたって継続された場合、オイル希釈量が所定の量を超えていると判定される(S120:NO)。例えば、本実施例では、車速20km/h以下の運転が60分以上継続した場合を条件にしている。もちろん、オイル希釈量が所定の量を超えているか否かの条件はこの条件に限定されるものではない。   In order to avoid the above phenomenon, the ECU 10 subsequently determines whether or not the oil dilution amount, which is the amount of fuel diluted in engine oil, exceeds a predetermined amount (S120). Since it is difficult to directly measure the oil dilution amount, whether or not the oil dilution amount exceeds a predetermined amount is determined according to the driving situation. For example, when the low speed operation is continued for a period of a predetermined time or more, the low temperature exhaust is continued. This leads to a large amount of unburned fuel adhering to the cylinder wall, and oil dilution proceeds. Therefore, when low-speed driving | running is continued over the period more than predetermined time, it determines with the oil dilution amount exceeding the predetermined amount (S120: NO). For example, in this embodiment, the condition is that the operation at a vehicle speed of 20 km / h or less continues for 60 minutes or more. Of course, the condition of whether or not the oil dilution amount exceeds a predetermined amount is not limited to this condition.

また、オイル希釈量が所定の量を超えているか否かの判定条件として、低速運転が所定以上の距離にわたって継続された場合、としても良い。本実施例では、例えば、車速20km/h以下の運転が20km以上継続した場合を条件とする。もちろん、オイル希釈量が所定の量を超えているか否かの条件はこの条件に限定されるものではない。   Moreover, it is good also as a case where low speed driving | running is continued over a predetermined distance or more as judgment conditions whether the oil dilution amount exceeds the predetermined amount. In the present embodiment, for example, the condition is that the operation at a vehicle speed of 20 km / h or less continues for 20 km or more. Of course, the condition of whether or not the oil dilution amount exceeds a predetermined amount is not limited to this condition.

ECU10が低速運転が継続されていない、すなわち、オイル希釈量が所定の量を超えていないと判定した場合(S120:NO)、続いて、ECU10は、オイル希釈量が所定の量を超えているか否かのもう一つの判定条件として、再生継続時間が第2の所定値を超えたか否かの判定を行う(S130)。DPF9の再生中はポスト噴射を継続して行っており、オイル希釈量が増加し続ける状態にあるため、この判定によって、オイル希釈量が所定値に達しているか否かを判定する基準とすることができる。再生時間が長時間継続している場合は、オイル希釈量が大幅に増加している可能性があるため、オイル希釈量が増加しないように再生手段の切替を行う。   When the ECU 10 determines that the low speed operation is not continued, that is, the oil dilution amount does not exceed the predetermined amount (S120: NO), the ECU 10 subsequently determines whether the oil dilution amount exceeds the predetermined amount. As another determination condition for determining whether or not the reproduction duration has exceeded a second predetermined value, it is determined (S130). Since the post-injection is continuously performed during regeneration of the DPF 9 and the oil dilution amount continues to increase, this determination should be used as a reference for determining whether or not the oil dilution amount has reached a predetermined value. Can do. If the regeneration time is continued for a long time, the oil dilution amount may be significantly increased. Therefore, the regeneration means is switched so that the oil dilution amount does not increase.

もし、S130において、再生継続時間が第2の所定値を超えていなかった場合(S130:NO)、ECU10はオイル希釈量が所定の量を超えていないと判定して、DPF9内のPMの燃焼を効率良く進めるために、第1の再生手段を実施する(S140)。   If the regeneration continuation time does not exceed the second predetermined value in S130 (S130: NO), the ECU 10 determines that the oil dilution amount does not exceed the predetermined amount, and burns the PM in the DPF 9 In order to proceed efficiently, the first reproduction means is implemented (S140).

第1の再生手段におけるクランク角度と燃料噴射弁の開度との関係を表した図が図4Aである。燃料噴射弁が開いている部分は左から順に、着火の前に空気と燃料を混合させ、エンジンの動作音を抑えるパイロット噴射61、動力を得る為のメイン噴射62、爆発後にDPF9に堆積したPMを燃焼させる為の燃料としてDPF9に未燃焼燃料を送り込むために行うポスト噴射A63、ポスト噴射B64を表している。上死点を過ぎてピストンが下降した状態においてポスト噴射を一度に大量に行うと、所定の量を超えた未燃の燃料はシリンダ壁に付着することとなり、オイル希釈量が増加する原因となる。しかし、ポスト噴射を分割することにより、1噴射当たりのポスト噴射量を減らすことが可能となり、燃料に対するシリンダ容積が増えることとなる。これは、シリンダ壁に付着する未燃の燃料を減少させ、オイル希釈量を減少させることにつながる。TDC(Top Dead Center)はピストンの上死点を表していて、本例では上死点の直後にメイン噴射が始まることが図4Aからわかる。   FIG. 4A shows the relationship between the crank angle and the opening of the fuel injection valve in the first regeneration means. The parts where the fuel injection valve is open are, in order from the left, air and fuel are mixed before ignition, pilot injection 61 that suppresses engine operation noise, main injection 62 for obtaining power, and PM accumulated in the DPF 9 after explosion The post-injection A63 and the post-injection B64, which are performed to send unburned fuel to the DPF 9 as the fuel for burning the fuel, are shown. If a large amount of post-injection is performed at a time with the piston descending past the top dead center, unburned fuel that exceeds a predetermined amount will adhere to the cylinder wall, causing an increase in the amount of oil dilution. . However, by dividing the post-injection, it becomes possible to reduce the post-injection amount per injection and increase the cylinder volume for the fuel. This reduces unburned fuel adhering to the cylinder wall and reduces the amount of oil dilution. TDC (Top Dead Center) represents the top dead center of the piston. In this example, it can be seen from FIG. 4A that the main injection starts immediately after the top dead center.

図4Aではポスト噴射A、ポスト噴射Bがメイン噴射62からかなり遅れたタイミングで実行されている。噴射のタイミングを遅らせることによって、未燃焼のままDPF9へ到達する燃料が増加するため、比較的少ないポスト噴射量で効率よくDPF9内のPMを燃焼させることができる。その反面、シリンダ内の温度が比較的低い状態で噴射される為、シリンダ壁に到達する未燃焼燃料が増加し、オイル希釈量増加の原因となる。   In FIG. 4A, the post injection A and the post injection B are executed at a timing considerably delayed from the main injection 62. By delaying the injection timing, the amount of fuel that reaches the DPF 9 without being burned increases, so that the PM in the DPF 9 can be burned efficiently with a relatively small post-injection amount. On the other hand, since the fuel is injected while the temperature in the cylinder is relatively low, the amount of unburned fuel that reaches the cylinder wall increases, causing an increase in the amount of oil dilution.

また、DPF9へ到達する未燃焼の燃料が増加することは、すなわち一定量の燃料をDPF9に到達させるまでのポスト噴射の噴射量あるいは噴射回数が少なくなるということであり、燃費の悪化が軽減される。   Further, the increase in unburned fuel reaching the DPF 9 means that the injection amount or the number of injections until the fixed amount of fuel reaches the DPF 9 is reduced, and the deterioration of the fuel consumption is reduced. The

続いて、ECU10はDPF9の再生によってPMの堆積量が充分減少したか否かの判定を行う(S160)。判定はS100のときと同様に、公知の技術を用いて行う。PMの堆積量が充分減少した場合、ECU10はDPF9の再生を終了する(S160:YES)。PMの堆積量が減少していない場合、ECU10はS120に戻りDPF9の再生を行う(S160:NO)。   Subsequently, the ECU 10 determines whether or not the amount of accumulated PM has been sufficiently reduced by the regeneration of the DPF 9 (S160). The determination is performed using a known technique as in S100. When the amount of accumulated PM is sufficiently reduced, the ECU 10 ends the regeneration of the DPF 9 (S160: YES). If the amount of accumulated PM has not decreased, the ECU 10 returns to S120 and regenerates the DPF 9 (S160: NO).

一方、S120において、オイル希釈量が所定の量を超えていると判断された場合(S120:YES)、ECU10はオイル希釈量の増加を緩和させるために、第2の再生手段の実施を行う(S150)。   On the other hand, when it is determined in S120 that the oil dilution amount exceeds the predetermined amount (S120: YES), the ECU 10 performs the second regeneration means in order to mitigate the increase in the oil dilution amount (S120: YES). S150).

第2の再生手段のクランク角度と燃料噴射弁の開度との関係を表したのが図4Bである。図4Aと比較するとポスト噴射の時期が早くなっていることがわかる。ポスト噴射の時期を早めることで、第1の再生手段と比較して、シリンダ内の圧力が高いうちにポスト噴射を行うことになるため、シリンダ壁に到達する燃料も少なくなり、オイル希釈量の増加が緩和される。   FIG. 4B shows the relationship between the crank angle of the second regeneration means and the opening of the fuel injection valve. Compared to FIG. 4A, it can be seen that the post injection timing is earlier. By advancing the timing of the post injection, the post injection is performed while the pressure in the cylinder is high as compared with the first regeneration means, so that the fuel reaching the cylinder wall is reduced, and the oil dilution amount is reduced. The increase is mitigated.

しかし、噴射時期が早く、ポスト噴射時のシリンダ内温度が高いうちに燃料を噴射するため、ポスト噴射燃料が一部燃焼する。この燃焼はエンジン出力となるが上死点から遅く離れた時期での燃焼となるため燃焼効率が低下し燃費が悪化する。この燃焼効率低下分は熱エネルギとしてエンジンから排気へと排出されるが、DPF9に到達するまでに排気管から外気へと一部の熱が逃げてしまう。従って、ポスト噴射燃料のうちDPF9の温度を上昇させるのに有効に使われる燃料の割合は第1の再生手段と比較して少なくなり、燃費を悪化させる原因となる。第1の再生手段と第2の再生手段とのシリンダ内の温度を比較した図を図5A、オイル希釈量を比較した図を図5B、燃費を比較した図を図5Cで表す。この図からわかるように、シリンダ内の温度、燃料の消費は第1の再生手段より第2の再生手段の方が多く、オイル希釈量は第1の再生手段の方が第2の再生手段より多い。   However, since the fuel is injected while the injection timing is early and the temperature in the cylinder at the time of post-injection is high, part of the post-injected fuel is combusted. Although this combustion is engine output, it is combustion at a time away from the top dead center, so the combustion efficiency is lowered and the fuel consumption is deteriorated. This reduced combustion efficiency is discharged as heat energy from the engine to the exhaust, but some heat escapes from the exhaust pipe to the outside air before reaching the DPF 9. Therefore, the proportion of the fuel that is effectively used to raise the temperature of the DPF 9 in the post-injected fuel is smaller than that in the first regeneration means, which causes the fuel consumption to deteriorate. FIG. 5A is a diagram comparing the temperatures in the cylinders of the first regeneration unit and the second regeneration unit, FIG. 5B is a diagram comparing the oil dilution amounts, and FIG. 5C is a diagram comparing fuel consumption. As can be seen from this figure, the temperature and fuel consumption in the cylinder are greater in the second regeneration means than in the first regeneration means, and the oil dilution amount is greater in the first regeneration means than in the second regeneration means. Many.

再生を実施したECU10はS160へ移動し、ECU10はPMの堆積量が充分減少したか否かの判定を行う。ECU10がPMの堆積量が充分減少したと判定した場合(S160:YES)、ECU10はDPF9の再生を終了する。また、ECU10がPMの堆積量が充分減少していないと判定した場合(S160:NO)、ECU10はS120へ戻り、オイル希釈量から再生手段を選択する。   The ECU 10 that has performed the regeneration moves to S160, and the ECU 10 determines whether or not the PM accumulation amount has decreased sufficiently. When the ECU 10 determines that the PM accumulation amount has sufficiently decreased (S160: YES), the ECU 10 ends the regeneration of the DPF 9. If the ECU 10 determines that the PM accumulation amount has not decreased sufficiently (S160: NO), the ECU 10 returns to S120 and selects the regeneration means from the oil dilution amount.

一方、S130において再生継続時間が第2の所定値を超えていた場合(S130:YES)、ECU10はオイル希釈量が増大していると判断し、オイル希釈量の増加を緩和させるために第2の再生手段を実施する(S150)。   On the other hand, when the regeneration continuation time exceeds the second predetermined value in S130 (S130: YES), the ECU 10 determines that the oil dilution amount has increased, and the second operation is performed to mitigate the increase in the oil dilution amount. The reproducing means is implemented (S150).

以上が第1の実施例である。次に、本発明における第2の実施例について説明する。   The above is the first embodiment. Next, a second embodiment of the present invention will be described.

図6は本発明の第2の実施形態に係るDPF9の再生処理を示したフローチャートである。まず、ECU10はオイルの蒸発量の算出を行う(S200)。オイルの蒸発量はエンジンの暖気状態(エンジン冷却水温などによって知ることが出来る)と現在のオイル希釈量によって変化する。この三者の関係は予め実験的に求められており、ECU10に記憶されている。エンジン冷却水温が高くなるということは、エンジン内部の温度が上昇するということなので、オイル内の燃料も蒸発しやすくなり、オイル蒸発量の上昇につながる。また、オイル希釈量が増加するということは、オイル内の蒸発する燃料も増えることになるため、オイル蒸発量も上昇することになる。エンジン冷却水温とオイル希釈量によるオイル蒸発量の増加を示した図を図7Aに示す。図7Aでは、その線上でオイル蒸発量が等しい当オイル蒸発量線が引かれており、エンジン冷却水温、またはオイル希釈量の少なくともどちらか一方が増加することによって、オイル蒸発量は増加する。   FIG. 6 is a flowchart showing the regeneration process of the DPF 9 according to the second embodiment of the present invention. First, the ECU 10 calculates the amount of oil evaporation (S200). The amount of oil evaporation varies depending on the warm-up state of the engine (which can be determined by the engine coolant temperature, etc.) and the current oil dilution amount. The relationship between the three has been experimentally obtained in advance and stored in the ECU 10. An increase in the engine coolant temperature means that the temperature inside the engine rises, so that the fuel in the oil also easily evaporates, leading to an increase in the amount of oil evaporation. Further, when the oil dilution amount increases, the fuel evaporated in the oil also increases, so that the oil evaporation amount also increases. FIG. 7A shows an increase in the amount of oil evaporation due to the engine coolant temperature and the amount of oil dilution. In FIG. 7A, the oil evaporation amount line having the same oil evaporation amount is drawn on the line, and the oil evaporation amount increases by increasing at least one of the engine cooling water temperature and the oil dilution amount.

続いて、ECU10はDPF9へのPM堆積量がDPF9の再生が必要な第1の所定値を超えているか否かの判定を行う(S210)。この処理は第1実施例と同じであり、PM堆積量がDPF9の再生が必要な第1の所定値を超えていた場合(S210:YES)、ECU10はポスト噴射を実行し、DPF9の再生を開始する(S220)。また、PMの堆積量が第1の所定値を下回った場合(S210:NO)、ECU10は次にPMの堆積量がDPF9の再生が必要な第1の所定値を超えているか否かの判定を行うまで、ウェイティング状態に入る。PMの堆積量は公知の技術で測定し、その例は段落0025に記載されている。   Subsequently, the ECU 10 determines whether or not the amount of PM deposited on the DPF 9 exceeds a first predetermined value that requires the regeneration of the DPF 9 (S210). This process is the same as in the first embodiment. When the PM accumulation amount exceeds the first predetermined value that requires regeneration of the DPF 9 (S210: YES), the ECU 10 executes post injection and regenerates the DPF 9. Start (S220). Further, when the PM accumulation amount falls below the first predetermined value (S210: NO), the ECU 10 next determines whether or not the PM accumulation amount exceeds a first predetermined value that requires regeneration of the DPF 9. Enter the waiting state until The amount of PM deposited is measured by a known technique, an example of which is described in paragraph 0025.

続いて、ECU10はDPF9の再生を開始する(S220)。この処理は第1実施例と同じであり、段落0026に記載されている。   Subsequently, the ECU 10 starts regeneration of the DPF 9 (S220). This process is the same as in the first embodiment and is described in paragraph 0026.

続いて、ECU10はオイル希釈量の算出を行う(S230)。オイル希釈量はエンジンの回転数と出力トルクに関係する。また、ポスト噴射量に大きく影響される。エンジン出力トルクとエンジン回転数によるオイル希釈量の増加を示した図を図7Bに示す。その線上でオイル希釈量が等い等オイル希釈量線が引かれており、そのオイル希釈量はエンジン出力トルク、またはエンジン回転数の少なくともどちらか一方が増加することによって減少する。エンジンの回転数やエンジン出力トルクが低い場合には排気温度が低いため、DPF9の再生にはポスト噴射によって多量の燃料をDPF9に送り込む必要がある。これはシリンダに多くの燃料が付着することにつながり、オイル希釈量を増加させる原因となるためである。   Subsequently, the ECU 10 calculates the oil dilution amount (S230). Oil dilution is related to engine speed and output torque. Further, it is greatly influenced by the post injection amount. FIG. 7B shows an increase in the amount of oil dilution with engine output torque and engine speed. An oil dilution amount line having equal oil dilution amounts is drawn on the line, and the oil dilution amount decreases as at least one of the engine output torque and the engine speed increases. When the engine speed and the engine output torque are low, the exhaust temperature is low. Therefore, for regeneration of the DPF 9, it is necessary to send a large amount of fuel to the DPF 9 by post injection. This is because a large amount of fuel adheres to the cylinder, causing an increase in the amount of oil dilution.

続いて、ECU10はオイル希釈量とオイル蒸発量から現時点でエンジンオイルを希釈している燃料の量を求める。オイル希釈量は蒸発前にエンジンオイルを希釈している燃料の量を表しているので、希釈後に蒸発した燃料の量(オイル蒸発量)も含まれている。希釈後に蒸発した燃料の量をオイル希釈量から引くことにより、現在エンジンオイルを希釈している燃料の量を求めることができる。ECU10はこうして求めたエンジンオイルを希釈している燃料の量が第3の所定値を超えているかどうかの判定を行う(S240)。こうすることにより、第1の実施例と比較して、より正確にエンジンオイルを希釈している燃料の量を求めることができ、ECU10は、再生手段の選択をさらに的確に行うことができる。エンジンオイルを希釈している燃料の量(オイル希釈量とオイル蒸発量の差)の走行距離(走行時間)による推移を表した図を図8に示す。再生時はポスト噴射を実行する為、エンジンオイルに希釈した燃料の量が上昇する。また、非再生時はポスト噴射を行わない為、エンジンオイルを希釈している燃料は蒸発するのみとなり、エンジンオイルを希釈している燃料の量は減少する。エンジンオイルを希釈している燃料の量が閾値Aを越えたとき、ECU10は、再生手段を第1の再生手段から第2の再生手段へ切り替え、エンジンオイルを希釈している燃料の量の増加が緩和する。   Then, ECU10 calculates | requires the quantity of the fuel currently diluting engine oil from the oil dilution amount and the oil evaporation amount. Since the oil dilution amount represents the amount of fuel diluted with engine oil before evaporation, the amount of fuel evaporated after dilution (oil evaporation amount) is also included. By subtracting the amount of fuel evaporated after dilution from the oil dilution amount, the amount of fuel currently diluting the engine oil can be obtained. The ECU 10 determines whether or not the amount of fuel diluted in the engine oil thus obtained exceeds a third predetermined value (S240). By so doing, the amount of fuel in which the engine oil is diluted can be determined more accurately than in the first embodiment, and the ECU 10 can more accurately select the regeneration means. FIG. 8 shows a transition of the amount of fuel diluted with engine oil (difference between the oil dilution amount and the oil evaporation amount) according to the travel distance (travel time). During regeneration, post-injection is performed, so the amount of fuel diluted in engine oil increases. In addition, since post-injection is not performed during non-regeneration, the fuel diluted with engine oil only evaporates, and the amount of fuel diluted with engine oil decreases. When the amount of fuel diluting the engine oil exceeds the threshold A, the ECU 10 switches the regeneration means from the first regeneration means to the second regeneration means, and increases the amount of fuel diluting the engine oil. Relaxes.

段落0046で求めたエンジンオイルを希釈している燃料の量が第3の所定値を超えていない場合(S240:NO)、ECU10は、燃費悪化抑止を優先してDPF9内のPMの燃焼を効率良く進めるために、第1の再生手段を実施する(S250)。第1の再生手段については第1の実施例と同じであり、段落0032、0033に記載されている。   If the amount of fuel diluted in engine oil obtained in paragraph 0046 does not exceed the third predetermined value (S240: NO), the ECU 10 prioritizes the suppression of fuel consumption deterioration and efficiently burns PM in the DPF 9 In order to proceed well, the first reproduction means is implemented (S250). The first reproducing means is the same as that of the first embodiment, and is described in paragraphs 0032 and 0033.

続いて、ECU10は、DPF9の再生によってPMの堆積量が充分減少したか否かの判定を行う(S270)。判定は第1の実施例のときと同様に、公知の技術を用いて行う(段落0025の記載と同様の手法を用いる)。PMの堆積量が充分減少した場合、ECU10はDPF9の再生を終了する(S270:YES)。PMの堆積量が減少してない場合、ECU10はS230に戻りDPF9の再生を行う(S170:NO)。   Subsequently, the ECU 10 determines whether or not the PM accumulation amount has sufficiently decreased due to the regeneration of the DPF 9 (S270). The determination is performed using a known technique (using a method similar to that described in paragraph 0025) as in the first embodiment. When the amount of accumulated PM is sufficiently reduced, the ECU 10 ends the regeneration of the DPF 9 (S270: YES). If the amount of accumulated PM has not decreased, the ECU 10 returns to S230 and regenerates the DPF 9 (S170: NO).

一方、段落0046で求めたエンジンオイルを希釈している燃料の量が第3の所定値を超えていた場合(S240:YES)、ECU10はオイル希釈量が増大していると判断し、オイル希釈量の増加を緩和させるために第2の再生手段を実施する(S260)。第2の再生手段については第1の実施例と同じであり、段落0037、0038に記載されている。   On the other hand, if the amount of fuel diluted in the engine oil obtained in paragraph 0046 exceeds the third predetermined value (S240: YES), the ECU 10 determines that the oil dilution amount has increased, and the oil dilution In order to mitigate the increase in the amount, the second regeneration means is implemented (S260). The second reproducing means is the same as that in the first embodiment, and is described in paragraphs 0037 and 0038.

なお、本発明における粒子状物質堆積量判定手段は、図3におけるS100と図6におけるS210であり、オイル希釈関係データ測定手段は、図3におけるS120、S130と図6におけるS200、S220である。   The particulate matter accumulation amount determination means in the present invention is S100 in FIG. 3 and S210 in FIG. 6, and the oil dilution relation data measurement means is S120 and S130 in FIG. 3 and S200 and S220 in FIG.

本発明は上記の実施形態に限定されずに、その技術的思想の範囲内において、変更がなしうることは明らかである。例えば、オイルレベルセンサーや粘度センサーまたはそれに値する部品を用いてエンジンオイルの粘度から直接オイル希釈量を求めるような構成をとってもよい。   The present invention is not limited to the above-described embodiment, and it is obvious that changes can be made within the scope of the technical idea. For example, a configuration may be adopted in which the oil dilution amount is obtained directly from the viscosity of the engine oil using an oil level sensor, a viscosity sensor, or a component equivalent thereto.

本発明の実施形態に係る内燃機関の排気浄化装置のシステム図。1 is a system diagram of an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention. 本発明の実施形態に係るECU10の構成例を示した図。The figure which showed the structural example of ECU10 which concerns on embodiment of this invention. 本発明の第1の実施形態に係るDPF9の再生処理を示したフローチャート。The flowchart which showed the reproduction | regeneration processing of DPF9 which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る第1の再生手段のクランク角度と燃料噴射弁の開度との関係を表した図。The figure showing the relationship between the crank angle of the 1st reproduction | regeneration means which concerns on the 1st Embodiment of this invention, and the opening degree of a fuel injection valve. 本発明の第1の実施形態に係る第2の再生手段のクランク角度と燃料噴射弁の開度との関係を表した図。The figure showing the relationship between the crank angle of the 2nd reproduction | regeneration means which concerns on the 1st Embodiment of this invention, and the opening degree of a fuel injection valve. 本発明の第1の実施形態に係る第1の再生手段と第2の再生手段とのシリンダ内の温度を比較した図。The figure which compared the temperature in the cylinder of the 1st reproduction | regeneration means which concerns on the 1st Embodiment of this invention, and the 2nd reproduction | regeneration means. 本発明の第1の実施形態に係る第1の再生手段と第2の再生手段とのオイル希釈量を比較した図。The figure which compared the oil dilution amount of the 1st reproduction | regeneration means and 2nd reproduction | regeneration means which concern on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る第1の再生手段と第2の再生手段との燃費悪化を比較した図。The figure which compared the fuel consumption deterioration of the 1st reproduction | regeneration means and 2nd reproduction | regeneration means which concern on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るDPF9の再生処理を示したフローチャート。The flowchart which showed the reproduction | regeneration processing of DPF9 which concerns on the 2nd Embodiment of this invention. エンジン冷却水温とオイル希釈量によるオイル蒸発量の増減を示した図。The figure which showed increase / decrease in the amount of oil evaporation by engine cooling water temperature and oil dilution amount. エンジン出力トルクとエンジン回転数によるオイル希釈量の増減を示した図。The figure which showed increase / decrease in the oil dilution amount by an engine output torque and an engine speed. オイル希釈量からオイル蒸発量を引いたものと走行時間(走行距離)との関係を表した図。The figure showing the relationship between what subtracted the amount of oil evaporation from the amount of oil dilution, and travel time (travel distance).

符号の説明Explanation of symbols

1 内燃機関
2 ディーゼルエンジン
3 エアフローメータ
4 エンジン回転センサ
5 アクセル開度センサ
6 排気温センサ
7 酸素濃度センサ
8 差圧センサ
9 DPF(ディーゼル・パティキュレート・フィルター)
10 ECU(エンジン・コントロール・ユニット)
20 CPU
21 ROM
22 RAM
23 EEPROM
31 PM堆積量測定プログラム
32 DPF温度制御プログラム
34 運転状態測定プログラム
35 オイル蒸発量算出プログラム
36 オイル希釈量算出プログラム
37 DPF再生時間測定プログラム
50 バス
51 I/O
61 パイロット噴射
62 メイン噴射
63 ポスト噴射A
64 ポスト噴射B
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Diesel engine 3 Air flow meter 4 Engine rotation sensor 5 Accelerator opening sensor 6 Exhaust temperature sensor 7 Oxygen concentration sensor 8 Differential pressure sensor 9 DPF (diesel particulate filter)
10 ECU (Engine Control Unit)
20 CPU
21 ROM
22 RAM
23 EEPROM
31 PM accumulation amount measurement program 32 DPF temperature control program 34 Operating state measurement program 35 Oil evaporation amount calculation program 36 Oil dilution amount calculation program 37 DPF regeneration time measurement program 50 Bus 51 I / O
61 Pilot injection 62 Main injection 63 Post injection A
64 Post injection B

Claims (6)

エンジンの排気中に含まれる粒子状物質を捕集するディーゼルパティキュレートフィルターを備えた内燃機関の排気浄化装置であり、
前記内燃機関の排気浄化装置の動作を制御する制御部と、
前記ディーゼルパティキュレートフィルター内における前記粒子状物質の堆積量を測定する粒子状物質堆積量測定部と、
前記粒子状物質堆積量測定部において測定された前記粒子状物質の堆積量が第1の所定値を超えているか否かを判定する粒子状物質堆積量判定手段と、
エンジンオイルの中に希釈される燃料の量であるオイル希釈量を導出するために必要なオイル希釈関係データを測定するオイル希釈関係データ測定手段と、
前記オイル希釈関係データ測定手段によって測定されたオイル希釈関係データが、第2の所定値を超えているか否かを判定するオイル希釈関係データ判定手段と、
前記粒子状物質を燃焼させ、ディーゼルパティキュレートフィルターを再生させる再生手段と、を備え、
前記再生手段は、第1の再生手段とその第1の再生手段より前記オイル希釈量が低く、燃料消費率の高い第2の再生手段との2つの再生手段であり、
前記制御部は、前記粒子状物質堆積量判定手段によって、前記第1の所定値を超えた粒子状物質がディーゼルパティキュレートフィルターに堆積していると判定され、かつ前記オイル希釈関係データ判定手段によって前記測定されたオイル希釈関係データが前記第2の所定値より低いと判定された場合、前記2つの再生手段から前記第1の再生手段を選択し、
また、前記粒子状物質堆積量判定手段によって、前記第1の所定値を超えた粒子状物質がディーゼルパティキュレートフィルターに堆積していると判定され、かつ前記測定されたオイル希釈関係データが前記第2の所定値より高いと判定された場合、前記2つの再生手段から前記第2の再生手段を選択する選択手段を備えることを特徴とする内燃機関の排気浄化装置。
An exhaust purification device for an internal combustion engine having a diesel particulate filter that collects particulate matter contained in the exhaust of the engine,
A control unit for controlling the operation of the exhaust emission control device of the internal combustion engine;
A particulate matter deposition amount measuring unit for measuring the amount of particulate matter deposited in the diesel particulate filter;
Particulate matter deposition amount determination means for determining whether or not the particulate matter deposition amount measured by the particulate matter deposition amount measurement unit exceeds a first predetermined value;
Oil dilution relationship data measuring means for measuring oil dilution relationship data necessary for deriving an oil dilution amount that is the amount of fuel diluted in engine oil;
Oil dilution relation data determination means for determining whether the oil dilution relation data measured by the oil dilution relation data measurement means exceeds a second predetermined value;
Regenerating means for combusting the particulate matter and regenerating the diesel particulate filter,
The regeneration means is two regeneration means: a first regeneration means and a second regeneration means having a lower fuel dilution rate and a higher fuel consumption rate than the first regeneration means,
The control unit determines that the particulate matter exceeding the first predetermined value is deposited on the diesel particulate filter by the particulate matter accumulation amount judgment unit, and the oil dilution relation data judgment unit When it is determined that the measured oil dilution relation data is lower than the second predetermined value, the first regeneration means is selected from the two regeneration means,
Further, it is determined by the particulate matter accumulation amount judgment means that particulate matter exceeding the first predetermined value is deposited on the diesel particulate filter, and the measured oil dilution relation data is the first data. An exhaust emission control device for an internal combustion engine, comprising: a selection unit that selects the second regeneration unit from the two regeneration units when it is determined that the value is higher than a predetermined value of 2.
前記第1の再生手段は、膨張行程において燃料噴射を行うポスト噴射を実施し、
前記第2の再生手段は、前記膨張行程中のより進角した噴射時期において前記ポスト噴射を実施することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The first regeneration means performs post injection for performing fuel injection in an expansion stroke,
2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the second regeneration unit performs the post-injection at a more advanced injection timing during the expansion stroke.
前記ポスト噴射は、前記膨張行程時に複数回に分けて噴射することを特徴とする請求項1または2に記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to claim 1 or 2, wherein the post-injection is performed in a plurality of times during the expansion stroke. 前記オイル希釈関係データ測定手段は、前記オイル希釈関係データを前記第1の再生手段、もしくは前記第2の再生手段のいずれかを実行している間の車速と走行距離、または前記第1の再生手段、もしくは前記第2の再生手段のいずれかを実行している間の車速と走行時間から測定されることを特徴とする請求項1ないし3に記載の内燃機関の排気浄化装置。   The oil dilution relationship data measuring means is configured to use the oil dilution relationship data as a vehicle speed and a travel distance during execution of either the first regeneration means or the second regeneration means, or the first regeneration. 4. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is measured from a vehicle speed and a running time during execution of either the first regeneration unit or the second regeneration unit. 前記オイル希釈関係データ測定手段は、前記第1の再生手段、もしくは前記第2の再生手段のいずれかを実行している間の継続時間から測定されることを特徴とする請求項1ないし3に記載の内燃機関の排気浄化装置。   4. The oil dilution-related data measuring means is measured from a duration time during which either the first regeneration means or the second regeneration means is being executed. An exhaust gas purification apparatus for an internal combustion engine as described. 前記オイル希釈関係データ測定手段は、前記オイル希釈量とオイル内から蒸発する燃料の量であるオイル蒸発量との差から導出することを特徴とする請求項1ないし3に記載の内燃機関の排気浄化装置。   4. The exhaust gas of an internal combustion engine according to claim 1, wherein the oil dilution relation data measuring means is derived from a difference between the oil dilution amount and an oil evaporation amount which is an amount of fuel evaporated from the oil. Purification equipment.
JP2007144844A 2007-05-31 2007-05-31 Exhaust emission control device for internal combustion engine Pending JP2008297969A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007144844A JP2008297969A (en) 2007-05-31 2007-05-31 Exhaust emission control device for internal combustion engine
US12/149,333 US20080295491A1 (en) 2007-05-31 2008-04-30 Exhaust gas purification device for internal combustion engine
DE102008002125A DE102008002125A1 (en) 2007-05-31 2008-05-30 Exhaust gas purification device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144844A JP2008297969A (en) 2007-05-31 2007-05-31 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008297969A true JP2008297969A (en) 2008-12-11

Family

ID=39917521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144844A Pending JP2008297969A (en) 2007-05-31 2007-05-31 Exhaust emission control device for internal combustion engine

Country Status (3)

Country Link
US (1) US20080295491A1 (en)
JP (1) JP2008297969A (en)
DE (1) DE102008002125A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078076A1 (en) * 2009-12-25 2011-06-30 三菱重工業株式会社 Exhaust gas purification device for internal combustion engine
WO2011108366A1 (en) * 2010-03-05 2011-09-09 ヤンマー株式会社 Engine device
JP2013019350A (en) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
JP2013130191A (en) * 2011-12-20 2013-07-04 Fiat Powertrain Technologies Spa System and method for regenerating particulate collecting filter of diesel engine
JP2013227983A (en) * 2013-06-26 2013-11-07 Yanmar Co Ltd Engine device
JP2013241936A (en) * 2013-06-26 2013-12-05 Yanmar Co Ltd Engine device
JP2019049244A (en) * 2017-09-12 2019-03-28 マツダ株式会社 Fuel injection control device of engine
KR102053336B1 (en) * 2018-10-18 2019-12-06 현대오트론 주식회사 Control method and device of engine output based on DPF regeneration cycle
KR102214579B1 (en) * 2019-12-12 2021-02-10 주식회사 현대케피코 Apparatus for controlling fuel injection time and method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2472816B (en) * 2009-08-19 2013-10-16 Gm Global Tech Operations Inc Method for regenerating a diesel particulate filter
DE102010026600A1 (en) * 2010-07-08 2012-01-12 Claas Selbstfahrende Erntemaschinen Gmbh Monitoring device for an internal combustion engine
CN102562237B (en) * 2010-12-21 2016-06-08 中国第一汽车集团公司无锡油泵油嘴研究所 The control method of addition amount of reducing agent in diesel engine tail gas treatment device
GB2488761B (en) * 2011-03-03 2017-11-29 Ford Global Tech Llc A method for controlling a diesel engine system
FR2974853B1 (en) * 2011-05-06 2015-05-01 Renault Sa METHOD OF ESTIMATING DILUTION OF FUEL IN THE OIL OF AN INTERNAL COMBUSTION ENGINE
US9708960B2 (en) * 2013-05-08 2017-07-18 Cummins Ip, Inc. Exhaust aftertreatment system diagnostic and conditioning
US9470173B2 (en) * 2014-06-18 2016-10-18 Ford Global Technologies, Llc System and method for reducing engine oil dilution
US9587574B2 (en) * 2014-11-26 2017-03-07 Electro-Motive Diesel, Inc. Exhaust system using ash-compensating regeneration management
US10132262B2 (en) * 2016-11-02 2018-11-20 GM Global Technology Operations LLC Methods for optimizing exhaust gas system regeneration and cleaning
DE102019205846A1 (en) * 2019-04-24 2020-10-29 Volkswagen Aktiengesellschaft Method for balancing a fuel mass in a lubricant of an internal combustion engine, internal combustion engine and motor vehicle
CN110425023B (en) * 2019-07-02 2020-12-04 一汽解放汽车有限公司 Regeneration control method and device for diesel particulate filter, vehicle and storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842326A (en) 1994-08-02 1996-02-13 Hino Motors Ltd Exhaust emission control device for engine
ITTO20010786A1 (en) * 2001-08-03 2003-02-03 Fiat Ricerche SELF-PRIMING METHOD OF THE REGENERATION OF A PARTICULATE FILTER FOR A DIRECT INJECTION DIESEL ENGINE PROVIDED WITH AN INI PLANT
JP3797278B2 (en) * 2002-04-26 2006-07-12 トヨタ自動車株式会社 Fuel injection control device for in-cylinder internal combustion engine
DE10323561A1 (en) * 2003-05-26 2004-12-30 Robert Bosch Gmbh Method for operating a component arranged in an exhaust gas area of an internal combustion engine and device for carrying out the method
ITTO20030987A1 (en) * 2003-12-09 2005-06-10 Fiat Ricerche METHOD OF CONTROL OF A SPONTANEOUS IGNITION ENGINE PROVIDED WITH A COMMON COLLECTOR INJECTION SYSTEM DURING THE REGENERATION OF THE PARTICULATE FILTER.
FR2866927B1 (en) * 2004-02-27 2008-03-07 Peugeot Citroen Automobiles Sa SYSTEM FOR AIDING THE REGENERATION OF MEANS OF DEPOLLUTION
JP4148178B2 (en) * 2004-04-08 2008-09-10 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP2005307746A (en) 2004-04-16 2005-11-04 Nissan Diesel Motor Co Ltd Exhaust emission control device
JP2006132392A (en) * 2004-11-04 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
JP4642546B2 (en) * 2005-05-13 2011-03-02 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101353648B1 (en) * 2009-12-25 2014-01-20 미츠비시 쥬고교 가부시키가이샤 Exhaust gas purification device for internal combustion engine
JP2011137381A (en) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd Exhaust emission control device for internal combustion engine
US8707685B2 (en) 2009-12-25 2014-04-29 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification device for internal combustion engine
WO2011078076A1 (en) * 2009-12-25 2011-06-30 三菱重工業株式会社 Exhaust gas purification device for internal combustion engine
JP2011185109A (en) * 2010-03-05 2011-09-22 Yanmar Co Ltd Engine device
CN102859163A (en) * 2010-03-05 2013-01-02 洋马株式会社 Engine device
WO2011108366A1 (en) * 2010-03-05 2011-09-09 ヤンマー株式会社 Engine device
US9222428B2 (en) 2010-03-05 2015-12-29 Yanmar Co., Ltd. Engine device
JP2013019350A (en) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp Fuel injection control device of internal combustion engine
JP2013130191A (en) * 2011-12-20 2013-07-04 Fiat Powertrain Technologies Spa System and method for regenerating particulate collecting filter of diesel engine
JP2013227983A (en) * 2013-06-26 2013-11-07 Yanmar Co Ltd Engine device
JP2013241936A (en) * 2013-06-26 2013-12-05 Yanmar Co Ltd Engine device
JP2019049244A (en) * 2017-09-12 2019-03-28 マツダ株式会社 Fuel injection control device of engine
KR102053336B1 (en) * 2018-10-18 2019-12-06 현대오트론 주식회사 Control method and device of engine output based on DPF regeneration cycle
KR102214579B1 (en) * 2019-12-12 2021-02-10 주식회사 현대케피코 Apparatus for controlling fuel injection time and method thereof

Also Published As

Publication number Publication date
DE102008002125A1 (en) 2008-12-04
US20080295491A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP2008297969A (en) Exhaust emission control device for internal combustion engine
US7611567B2 (en) Exhaust gas purifying apparatus for internal combustion engine
US7331171B2 (en) Control system and method for internal combustion engine
EP1382811A1 (en) Exhaust emission control device
JP2008309080A (en) Exhaust emission control device for internal combustion engine
JP2020015361A (en) Hybrid vehicle
KR20170066950A (en) Force regeneration method of GPF
JP2015078698A (en) Exhaust emission control device for internal combustion engine
JP5060540B2 (en) Exhaust gas purification device for internal combustion engine
JP2010138748A (en) Exhaust emission control device for internal combustion engine
JP4294662B2 (en) Exhaust gas purification device for internal combustion engine
JP2008267293A (en) Control system of internal combustion engine
JP2010090875A (en) Exhaust gas control device for internal combustion engine
JP6270247B1 (en) Engine exhaust purification system
JP4586702B2 (en) Internal combustion engine with oil dilution prevention device
JP5142050B2 (en) Exhaust gas purification device for internal combustion engine
JP5366015B2 (en) Exhaust gas purification device for internal combustion engine
JP2010106753A (en) Exhaust emission control device for vehicle
JP5163964B2 (en) DPF overheat prevention device
JP4849823B2 (en) Particulate filter regeneration control device
JP4512519B2 (en) Exhaust gas purification device for internal combustion engine
JP6168860B2 (en) Exhaust gas purification device
JP4062229B2 (en) Exhaust gas purification device for internal combustion engine
JP2009257211A (en) Control system for internal combustion engine
JP2018132042A (en) Exhaust purifying device for internal combustion engine