JP2008294008A - Thin film capacitor and method for manufacturing same - Google Patents

Thin film capacitor and method for manufacturing same Download PDF

Info

Publication number
JP2008294008A
JP2008294008A JP2005206943A JP2005206943A JP2008294008A JP 2008294008 A JP2008294008 A JP 2008294008A JP 2005206943 A JP2005206943 A JP 2005206943A JP 2005206943 A JP2005206943 A JP 2005206943A JP 2008294008 A JP2008294008 A JP 2008294008A
Authority
JP
Japan
Prior art keywords
thin film
conductor
conductor layer
substrate
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005206943A
Other languages
Japanese (ja)
Inventor
Yutaka Takeshima
裕 竹島
Masanobu Nomura
雅信 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2005206943A priority Critical patent/JP2008294008A/en
Priority to PCT/JP2006/311306 priority patent/WO2007010681A1/en
Publication of JP2008294008A publication Critical patent/JP2008294008A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film capacitor having such a constitution that even when a stress occurs in a bump in the vertical direction, the stress does not concentrate on a conductor, the stress occurring owing to the difference in the coefficient of linear expansion between a substrate of the thin film capacitor and a mounted substrate. <P>SOLUTION: The thin film capacitor includes: a capacitor unit having the substrate 10, a first conductor layer 22 formed on the substrate, a dielectric thin film 23 formed on the first conductor layer, and a second conductor layer 24 formed on the dielectric thin film while electrically insulated from the first conductor layer; a first conductor pad 41 which is electrically connected with the first conductor layer and led out onto the top surface of the capacitor unit; a second conductor pad 42 which is electrically connected with the second conductor layer and also led out onto the top surface of the capacitor unit; and first and second bumps respectively formed on the first conductor pad and the second conductor pad, wherein the first and second conductor pads are joined to the substrate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は薄膜キャパシタに関し、より詳しくは集積回路のデカップリング用などに使用される薄膜キャパシタに関する。   The present invention relates to a thin film capacitor, and more particularly to a thin film capacitor used for decoupling an integrated circuit.

近年、LSI(大規模集積回路)の処理速度の高速化により、デカップリングキャパシタが用いられるようになっている。デカップリングキャパシタの高周波追随性能を向上させるためには、デカップリングキャパシタとLSIとの間のインダクタンスが低いことが要求されるため、LSIの直下にデカップリングキャパシタを配し、バンプによってデカップリングキャパシタとLSIを接続することが行われている。   In recent years, a decoupling capacitor has been used due to an increase in processing speed of an LSI (Large Scale Integrated Circuit). In order to improve the high frequency tracking performance of the decoupling capacitor, it is required that the inductance between the decoupling capacitor and the LSI is low. Therefore, a decoupling capacitor is arranged directly under the LSI, and the decoupling capacitor and the LSI are separated by bumps. An LSI is connected.

係る形態のデカップリング用に用いられる薄膜キャパシタとして、例えば特許文献1に記載された薄膜キャパシタがある。この薄膜キャパシタについて、図6を参照して説明する。   As a thin film capacitor used for decoupling in such a form, there is a thin film capacitor described in Patent Document 1, for example. This thin film capacitor will be described with reference to FIG.

薄膜キャパシタ100は、基板101上に順に形成された下部導体102、誘電体薄膜103、上部導体104を有している。そして、下部導体102および上部導体104にはそれぞれ導体パッド107a,107bが接続されていて、その上にはLSIや実装基板などとの電気的接続のためのバンプ108a,108bが形成されている。さらに、バンプ108a,108bからの機械的応力を緩和するためにポリイミド等の樹脂材からなる保護絶縁層106が設けられるとともに、キャパシタ部(下部導体102、誘電体薄膜103および上部導体104)と保護絶縁層106との間に非導電性無機質材料からなるバリア層105を設けることによって、ポリイミドの硬化時に起こる脱水縮合反応によって放出されるH2Oが分解されて生じる水素イオンが誘電体薄膜103に悪影響を及ぼすことを防止している。
特開2004−214589号公報
The thin film capacitor 100 includes a lower conductor 102, a dielectric thin film 103, and an upper conductor 104 that are sequentially formed on a substrate 101. Conductor pads 107a and 107b are connected to the lower conductor 102 and the upper conductor 104, respectively, and bumps 108a and 108b for electrical connection with an LSI, a mounting substrate, and the like are formed thereon. Further, a protective insulating layer 106 made of a resin material such as polyimide is provided to relieve mechanical stress from the bumps 108a and 108b, and the capacitor portion (the lower conductor 102, the dielectric thin film 103 and the upper conductor 104) is protected. By providing a barrier layer 105 made of a non-conductive inorganic material between the insulating layer 106, hydrogen ions generated by decomposition of H 2 O released by a dehydration condensation reaction that occurs at the time of curing of the polyimide are generated in the dielectric thin film 103. Preventing adverse effects.
JP 2004-214589 A

特許文献1に記載された発明では、バンプからの機械的応力を緩和するために保護絶縁層を設けている。この保護絶縁層は、バンプに対する水平方向(基板の主面に平行な方向、図の横方向)の応力に対しては緩衝材として一定の有効性があるものの、鉛直方向(基板の主面に垂直な方向、図の縦方向)の成分を有する応力に対しての緩衝効果は必ずしも十分ではない。   In the invention described in Patent Document 1, a protective insulating layer is provided to relieve mechanical stress from the bumps. This protective insulating layer has a certain effectiveness as a cushioning material against the stress in the horizontal direction (the direction parallel to the main surface of the substrate, the horizontal direction in the figure) with respect to the bump, but the vertical direction (on the main surface of the substrate). The buffering effect against stress having a component in the vertical direction (vertical direction in the figure) is not always sufficient.

ここで、バンプに対して鉛直方向の成分を有する応力が働くメカニズムについて説明すると、薄膜キャパシタに通常用いられるSi基板の線膨張係数は2〜3ppm/℃であるが、樹脂多層基板の線膨張係数は数十ppm/℃程度とSi基板の線膨張係数と比較してかなり大きいため、樹脂多層基板に薄膜キャパシタを実装して温度変化が起こると、基板の線膨張係数の違いによってどちらかの基板に反りが発生する。   Here, the mechanism by which a stress having a component in the vertical direction acts on the bump will be described. The linear expansion coefficient of a Si substrate usually used for a thin film capacitor is 2 to 3 ppm / ° C. Is about several tens of ppm / ° C, which is considerably larger than the linear expansion coefficient of the Si substrate. When a thin film capacitor is mounted on a resin multilayer substrate and temperature changes, one of the substrates will differ depending on the difference in the linear expansion coefficient of the substrate. Warping occurs.

Si基板と樹脂基板のいずれが反るかは基板の厚みやヤング率によって決定されるが、例えばSi基板のほうが相対的に変形しやすい場合において、はんだバンプを用いて実装を行ったあとに冷却すると、樹脂基板のほうが相対的に大きく収縮するため薄膜キャパシタはバンプが形成されていない側の面を凸にして変形する。このような変形が生じると、中央付近に形成されているバンプには大きな引っ張り応力が生じる。一方、樹脂基板のほうが相対的に変形しやすい場合には、冷却時に樹脂基板は薄膜キャパシタが実装されていない側の面を凹として変形するので、外側のバンプに大きな引っ張り応力が生じる。   Whether the Si substrate or the resin substrate is warped is determined by the thickness and Young's modulus of the substrate. For example, when the Si substrate is more easily deformed, cooling is performed after mounting using solder bumps. Then, since the resin substrate contracts relatively larger, the thin film capacitor is deformed with the surface on which the bump is not formed being convex. When such deformation occurs, a large tensile stress is generated in the bump formed near the center. On the other hand, when the resin substrate is relatively easily deformed, the resin substrate is deformed with a concave surface on the side where the thin film capacitor is not mounted during cooling, so that a large tensile stress is generated on the outer bump.

ここで図6においてバンプ108bに図の上方向の引っ張り応力が発生すると、バンプ108bと導体パッド107bとの界面および導体パッドと上部導体104bとの界面の接合強度は相対的に強いため、上部導体が上方向に引っ張られる。そして上部導体と誘電体薄膜とは材質の違いにより(上部導体は金属であるのに対して、誘電体薄膜は酸化物であるため)界面の接合強度が相対的に弱く、引っ張り応力は誘電体薄膜には伝わりにくい。その結果、上部導体に引っ張り応力が集中して上部導体の破断が発生したり、上部導体と誘電体薄膜との界面に剥離が生じてキャパシタとしての機能が著しく損なわれることがあった。また、界面に剥離が生じないまでも、界面に引っ張り応力が集中した状態ではキャパシタとしての信頼性に悪影響を及ぼす。   Here, when an upward tensile stress is generated in the bump 108b in FIG. 6, the bonding strength at the interface between the bump 108b and the conductor pad 107b and the interface between the conductor pad and the upper conductor 104b is relatively strong. Is pulled upward. Due to the difference in material between the upper conductor and the dielectric thin film (because the upper conductor is a metal whereas the dielectric thin film is an oxide), the bonding strength at the interface is relatively weak, and the tensile stress is the dielectric Hard to be transmitted to thin film. As a result, tensile stress concentrates on the upper conductor and the upper conductor breaks, or peeling occurs at the interface between the upper conductor and the dielectric thin film, which may significantly impair the function as a capacitor. In addition, even if no peeling occurs at the interface, the reliability as a capacitor is adversely affected in the state where tensile stress is concentrated on the interface.

引っ張り応力の原因となる基板の反りはバンプの材料としてリフロー温度が高い無鉛はんだを用いた場合に特に顕著であり、近年は環境への影響性に配慮して無鉛はんだの使用が増加していることから、係る問題点への対応は喫緊の課題である。   The warpage of the board that causes tensile stress is particularly noticeable when lead-free solder with a high reflow temperature is used as the bump material. In recent years, the use of lead-free solder has increased in consideration of environmental impact. Therefore, dealing with such problems is an urgent issue.

なお、上記では樹脂基板上に薄膜キャパシタを実装した場合を例にとって説明したが、セラミック基板上に実装した場合でも同様の問題が生じる。セラミック基板は線膨張係数が樹脂基板よりも小さいがヤング率は高いため、結局バンプに大きな引っ張り応力が発生することに変わりはない。   In the above description, the case where the thin film capacitor is mounted on the resin substrate has been described as an example, but the same problem occurs even when the thin film capacitor is mounted on the ceramic substrate. The ceramic substrate has a smaller coefficient of linear expansion than the resin substrate, but has a higher Young's modulus, so that a large tensile stress is generated in the bumps.

また、薄膜キャパシタの基板としてサファイア基板(線膨張係数およそ8ppm/℃)や石英ガラス基板(線膨張係数およそ0.5ppm/℃)などを使用した場合にも、実装基板との線膨張係数の差があるので上記の問題が発生する。   Even when a sapphire substrate (linear expansion coefficient of about 8 ppm / ° C.) or a quartz glass substrate (linear expansion coefficient of about 0.5 ppm / ° C.) is used as a thin film capacitor substrate, the difference in linear expansion coefficient from the mounting substrate This causes the above problem.

本発明は上記の問題に鑑みてなされたものであり、バンプに働く鉛直方向の応力が導体に集中しない構造を有する薄膜キャパシタを提供するとともに、その製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a thin film capacitor having a structure in which a vertical stress acting on a bump does not concentrate on a conductor, and a manufacturing method thereof.

上記問題点を解決するために本発明の薄膜キャパシタは、基板と、該基板上に形成された第1の導体層と、該第1の導体層上に形成された誘電体薄膜と、該誘電体薄膜上に前記第1の導体層と電気的に絶縁されて形成された第2の導体層と、を有するキャパシタ部と、前記第1の導体層に電気的に接続するとともに前記キャパシタ部の上面に引き出さるように形成された第1の導体パッドと、前記第2の導体層に電気的に接続するとともに前記キャパシタ部の上面に引き出されるように形成された第2の導体パッドと、前記第1および第2の導体パッド上それぞれに形成された第1および第2のバンプと、を備え、前記第1および前記第2の導体パッドは前記基板に接合されていることを特徴とする。   In order to solve the above problems, a thin film capacitor of the present invention includes a substrate, a first conductor layer formed on the substrate, a dielectric thin film formed on the first conductor layer, and the dielectric A capacitor portion having a second conductor layer formed on the body thin film so as to be electrically insulated from the first conductor layer, and electrically connected to the first conductor layer and of the capacitor portion A first conductor pad formed so as to be drawn to the upper surface; a second conductor pad electrically connected to the second conductor layer and drawn to the upper surface of the capacitor unit; and First and second bumps formed on the first and second conductor pads, respectively, wherein the first and second conductor pads are bonded to the substrate.

第1および第2の導体パッドが基板に接合されていることにより、バンプに鉛直方向に引っ張り応力が生じた場合でも、この応力が第1あるいは第2の導体層に集中することはなく、第1あるいは第2の導体層の破断や界面の剥離が生じない。   Since the first and second conductor pads are bonded to the substrate, even if a tensile stress is generated in the vertical direction on the bump, this stress is not concentrated on the first or second conductor layer. No breakage of the first or second conductor layer or peeling of the interface occurs.

前記誘電体薄膜は、平坦な面上に形成されていることが好ましい。誘電体薄膜が段差上に形成されていると、段差部分で欠陥が生じやすく、信頼性の低下を生じるからである。   The dielectric thin film is preferably formed on a flat surface. This is because if the dielectric thin film is formed on the step, defects are likely to occur at the step portion, resulting in a decrease in reliability.

また、本発明に係る薄膜キャパシタの製造方法は、基板上に第1の導体層を形成する工程と、前記第1の導体層上に、金属の有機化合物を含有する誘電体原料溶液を塗布して熱処理を行い、誘電体薄膜を形成する工程と、前記誘電体薄膜上に第2の導体層を形成する工程と、前記第1および第2の導体層と前記誘電体薄膜を貫通し、前記基板を底面とする複数の貫通孔を形成する工程と、前記貫通孔のうちいずれかの内部に、前記第1の導体層と電気的に接続し前記第2の導体層と電気的に絶縁され、前記基板に接合された第1の導体パッドを形成する工程と、前記貫通孔のうちいずれかの内部に、前記第2の導体層と電気的に接続し前記第1の導体層と電気的に絶縁され、前記基板に接合された第2の導体パッドを形成する工程と、前記第1および第2の導体パッド上に、それぞれ第1および第2のバンプを形成する工程と、を有することを特徴とする。   The method of manufacturing a thin film capacitor according to the present invention includes a step of forming a first conductor layer on a substrate, and applying a dielectric material solution containing a metal organic compound on the first conductor layer. Performing a heat treatment to form a dielectric thin film; forming a second conductor layer on the dielectric thin film; penetrating the first and second conductor layers and the dielectric thin film; Forming a plurality of through holes having a substrate as a bottom surface, and electrically connecting to the first conductor layer and being electrically insulated from the second conductor layer in any one of the through holes; Forming a first conductor pad bonded to the substrate; and electrically connecting to the second conductor layer and electrically connecting to the first conductor layer in any one of the through holes. Forming a second conductor pad that is insulated by and bonded to the substrate; and And on the second conductor pad, forming first and second bumps respectively, and having a.

このように製造することにより、第1および第2の導体パッドが基板に接合されることとなり、バンプに鉛直方向に引っ張り応力が生じた場合でも、この応力が第1あるいは第2の導体層に集中することはなく、第1あるいは第2の導体層の破断や界面の剥離が生じない。   By manufacturing in this way, the first and second conductor pads are bonded to the substrate, and even if a tensile stress is generated in the vertical direction on the bump, this stress is applied to the first or second conductor layer. There is no concentration, and no breakage of the first or second conductor layer or peeling of the interface occurs.

以上において説明したように、本発明によれば、第1および第2の導体パッドが基板に接合されて形成されているので、バンプに鉛直方向に引っ張り応力が生じた場合でも、この応力が第1あるいは第2の導体層に集中することはなく、第1あるいは第2の導体層の破断や界面の剥離が生じない。   As described above, according to the present invention, the first and second conductor pads are formed by being bonded to the substrate. Therefore, even if a tensile stress is generated in the vertical direction on the bump, the stress is It does not concentrate on the first or second conductor layer, and the first or second conductor layer does not break or peel off at the interface.

以下において添付図面を参照しつつ本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1(a)は本発明に係る薄膜キャパシタを示す平面図であり、図1(b)は図1(a)におけるA−A線断面の一部を示す断面図である。   FIG. 1A is a plan view showing a thin film capacitor according to the present invention, and FIG. 1B is a cross-sectional view showing a part of a cross section taken along line AA in FIG.

本発明の薄膜キャパシタは、Siからなる基板10と、基板10上に順に形成された密着層21、第1の導体層22、誘電体薄膜23、第2の導体層24を備えるとともに、基板10に直接接合するように形成された第1および第2の導体パッド41,42を備えている。第1および第2の導体パッド41,42上には外部の回路と接続するためにバンプ51,52が形成されている。また、樹脂材料からなる第1および第2の保護層33,34が形成されている。第1および第2の保護層33,34とキャパシタ部(第1および第2の導体層22,24と誘電体薄膜23)との間には、結晶質の金属酸化物からなる第1のバリア層31と、非導電性の無機質材料からなる第2のバリア層32とが形成されている。第1および第2のバリア層31,32は、第1および第2の保護層33,34とキャパシタ部との間でバリア機能を果たすとともに、キャパシタ部内部での絶縁層の機能を兼ねている。   The thin film capacitor of the present invention includes a substrate 10 made of Si, an adhesion layer 21, a first conductor layer 22, a dielectric thin film 23, and a second conductor layer 24 formed in order on the substrate 10. The first and second conductor pads 41 and 42 are formed so as to be directly bonded to each other. Bumps 51 and 52 are formed on the first and second conductor pads 41 and 42 to connect to external circuits. Further, first and second protective layers 33 and 34 made of a resin material are formed. A first barrier made of a crystalline metal oxide is provided between the first and second protective layers 33 and 34 and the capacitor portion (the first and second conductor layers 22 and 24 and the dielectric thin film 23). A layer 31 and a second barrier layer 32 made of a nonconductive inorganic material are formed. The first and second barrier layers 31 and 32 serve as a barrier function between the first and second protective layers 33 and 34 and the capacitor portion, and also serve as an insulating layer inside the capacitor portion. .

第1の導体パッド41は側面が第1の導体層22と接続しており、第2の導体層34とは第1および第2のバリア層31,32によって電気的に絶縁されている。第2の導体パッド42は第2の導体層24に接続するとともに、第1の導体層22とは第1および第2のバリア層31,32によって電気的に絶縁されている。ここで、第2の導体パッド42と第2の導体層24の接続状態についてより詳しく説明すると、第2の導体層24上に形成されている第1および第2のバリア層31,32は第2の導体層24の表面を底面とする孔を有しており、この孔を覆うように第2の導体パッド42が形成されることにより、孔の底部において第2の導体層24と第2の導体パッド42とが接続されている。このとき、孔はバンプ52の直下を避けて形成されているので、バンプ52に鉛直方向の引っ張り応力が加わっても、引っ張り応力が直接的に第2の導体層24に加わることがない。   The side surface of the first conductor pad 41 is connected to the first conductor layer 22, and the first conductor pad 41 is electrically insulated from the second conductor layer 34 by the first and second barrier layers 31 and 32. The second conductor pad 42 is connected to the second conductor layer 24 and is electrically insulated from the first conductor layer 22 by the first and second barrier layers 31 and 32. Here, the connection state between the second conductor pad 42 and the second conductor layer 24 will be described in more detail. The first and second barrier layers 31 and 32 formed on the second conductor layer 24 are the first and second barrier layers 31 and 32. 2 has a hole whose bottom surface is the surface of the second conductor layer 24, and the second conductor pad 42 is formed so as to cover the hole, whereby the second conductor layer 24 and the second conductor layer 24 are formed at the bottom of the hole. The conductive pads 42 are connected. At this time, since the hole is formed so as to avoid a position directly below the bump 52, even if a tensile stress in the vertical direction is applied to the bump 52, the tensile stress is not directly applied to the second conductor layer 24.

本発明はこのように第1および第2の導体パッド41,42が基板10に接合されて形成されているので、バンプ51,52に鉛直方向に引っ張り応力が生じた場合でも、この応力が第1あるいは第2の導体層22,24に集中することはなく、第1あるいは第2の導体層22,24の破断や界面の剥離が生じない。   In the present invention, since the first and second conductor pads 41 and 42 are bonded to the substrate 10 as described above, even when a tensile stress is generated in the vertical direction on the bumps 51 and 52, the stress is not reduced. There is no concentration on the first or second conductor layers 22, 24, and the first or second conductor layers 22, 24 do not break or peel off at the interface.

ここで、図2ないし図4を参照して、この薄膜キャパシタの製造方法について説明する。まず、図2(a)に示すように、表面に厚さ0.7μmの熱酸化膜(SiO2膜、図示を省略)が形成されたSi単結晶からなる基板10を用意し、Ba,Sr,Tiの有機化合物を含有する(Ba,Sr)TiO3(BST)のMOD原料溶液を基板10上に塗布して乾燥させ、酸素中で625℃の熱処理を行って膜厚50nmの密着層21を形成した。次に密着層21上にスパッタ法によって膜厚200nmのPtからなる第1の導体層22を形成した。さらに第1の導体層22上に前記のMOD原料溶液を塗布、乾燥させて酸素中625℃で30分間の熱処理を行って誘電体薄膜23を形成した。誘電体薄膜23の膜厚は100nmとなるように形成した。誘電体薄膜23上にスパッタ法で膜厚200nmのPtからなる第2の導体層24を形成した。 Here, with reference to FIG. 2 thru | or FIG. 4, the manufacturing method of this thin film capacitor is demonstrated. First, as shown in FIG. 2A, a substrate 10 made of Si single crystal having a surface formed with a thermal oxide film (SiO 2 film, not shown) having a thickness of 0.7 μm is prepared, and Ba, Sr A MOD raw material solution of (Ba, Sr) TiO 3 (BST) containing an organic compound of Ti, Ti is applied onto the substrate 10 and dried, and then heat-treated at 625 ° C. in oxygen to form an adhesion layer 21 having a thickness of 50 nm. Formed. Next, a first conductor layer 22 made of Pt having a thickness of 200 nm was formed on the adhesion layer 21 by sputtering. Further, the MOD raw material solution was applied onto the first conductor layer 22 and dried, followed by heat treatment in oxygen at 625 ° C. for 30 minutes to form a dielectric thin film 23. The film thickness of the dielectric thin film 23 was formed to be 100 nm. A second conductor layer 24 made of Pt having a thickness of 200 nm was formed on the dielectric thin film 23 by sputtering.

このとき、誘電体薄膜23は基板10上の略全面に形成された第1の導体層22上に形成されているので、実質的に段差のない平坦面上に形成されていることになる。MOD法によって誘電体薄膜23を形成する場合、段差部分の被覆性が必ずしも良好ではなく、段差部分でショートやリーク電流の発生を招きやすい。よって、誘電体薄膜23は平坦面上に形成することがプロセス上好ましい。   At this time, since the dielectric thin film 23 is formed on the first conductor layer 22 formed on substantially the entire surface of the substrate 10, it is formed on a flat surface having substantially no step. When the dielectric thin film 23 is formed by the MOD method, the coverage of the step portion is not necessarily good, and a short circuit or a leak current is likely to occur at the step portion. Therefore, it is preferable in the process that the dielectric thin film 23 is formed on a flat surface.

次に第2の導体層24上にレジストを塗布し、露光・現像を行ってレジストを所定のパターンに形成し、ドライエッチングによって第2の導体層24の一部を除去した(図2(b))。   Next, a resist is applied on the second conductor layer 24, exposed and developed to form a resist in a predetermined pattern, and a part of the second conductor layer 24 is removed by dry etching (FIG. 2B). )).

次に前記のMOD原料溶液を塗布、乾燥させて酸素中625℃で30分間の熱処理を行って、図2(c)に示すように、膜厚200nmのBSTからなる第1のバリア層31を形成した。その後、825℃で30分間の熱処理を行って誘電体薄膜23の結晶性を向上させた。   Next, the MOD raw material solution is applied and dried, and heat treatment is performed in oxygen at 625 ° C. for 30 minutes. As shown in FIG. 2C, the first barrier layer 31 made of BST having a thickness of 200 nm is formed. Formed. Thereafter, heat treatment was performed at 825 ° C. for 30 minutes to improve the crystallinity of the dielectric thin film 23.

次に第1のバリア層31上にレジストを塗布し、露光・現像を行ってレジストを所定のパターンに形成し、ウェットエッチングを行って第1のバリア層31と誘電体薄膜23とを、図2(d)に示すように所定形状にパターニングした。このとき、第2の導体層24上の第1のバリア層31に孔63が形成されて第2の導体層24の一部が露出するようにされている。   Next, a resist is applied onto the first barrier layer 31, exposure and development are performed to form the resist in a predetermined pattern, and wet etching is performed to form the first barrier layer 31 and the dielectric thin film 23. Patterned into a predetermined shape as shown in 2 (d). At this time, a hole 63 is formed in the first barrier layer 31 on the second conductor layer 24 so that a part of the second conductor layer 24 is exposed.

次に第1の導体層22および第1のバリア層31上にレジストを塗布し、露光・現像を行ってレジストを所定のパターンに形成し、ドライエッチングを行うことによって基板10外周部の密着層21および第1の導体層22を除去するとともに、第1および第2の貫通孔61,62を形成して基板10表面を露出させた。   Next, a resist is applied on the first conductor layer 22 and the first barrier layer 31, exposure / development is performed to form a resist in a predetermined pattern, and dry etching is performed, whereby an adhesion layer on the outer periphery of the substrate 10 is formed. 21 and the first conductor layer 22 were removed, and the first and second through holes 61 and 62 were formed to expose the surface of the substrate 10.

次にスパッタ法によって膜厚1μmの窒化ケイ素を成膜し、レジストを塗布し、露光・現像を行ってレジストを所定のパターンに形成し、ドライエッチングによって窒化ケイ素膜の一部を除去して、図3(f)に示すように第2のバリア層32を形成した。第2のバリア層32は、第1の貫通孔61の内部においては第1の導体層22を完全に覆うことがないように内壁の一部を覆っており、第2の貫通孔62の内部においては第1の導体層22を完全に覆うように内壁の略全面を覆っている。   Next, a silicon nitride film having a thickness of 1 μm is formed by sputtering, a resist is applied, exposure / development is performed to form a resist in a predetermined pattern, and a part of the silicon nitride film is removed by dry etching, A second barrier layer 32 was formed as shown in FIG. The second barrier layer 32 covers a part of the inner wall so as not to completely cover the first conductor layer 22 inside the first through hole 61, and the inside of the second through hole 62. In FIG. 3, substantially the entire inner wall is covered so as to completely cover the first conductor layer 22.

次に感光性のベンゾシクロブテン(BCB)ワニスを塗布し、露光・現像した後にキュアを行って、図3(g)に示すようにBCB樹脂からなる第1の保護層33を形成した。   Next, photosensitive benzocyclobutene (BCB) varnish was applied, exposed and developed, and then cured to form a first protective layer 33 made of BCB resin, as shown in FIG.

次に順にTi,Cu,Niを成膜することによって図3(h)に示すように第1および第2の導体パッド41,42を形成した。Ti,Cu,Niの膜厚はそれぞれ100nm、500nm、2μmとした。   Next, Ti, Cu, and Ni were formed in this order to form first and second conductor pads 41 and 42 as shown in FIG. The film thicknesses of Ti, Cu, and Ni were 100 nm, 500 nm, and 2 μm, respectively.

次に第1の保護層33と同様の方法で図4(i)に示すようにBCB樹脂からなる第2の保護層34を形成した。第1の保護層33を形成せずに第2の保護層34のみを形成するようにしてもよい。   Next, a second protective layer 34 made of BCB resin was formed by the same method as that for the first protective layer 33 as shown in FIG. Only the second protective layer 34 may be formed without forming the first protective layer 33.

次に第1および第2の導体パッド41,42の露出部分に、はんだとの接合性を高めるために、無電解めっきによって順にNi,Auを形成し(Ni,Au被膜は図示しない)、Sn−Ag−Cu系の無鉛はんだによって図4(j)に示すようにバンプ51,52を形成して本発明の薄膜キャパシタが完成した。なおNi,Auの膜厚はともに500nmとした。   Next, Ni and Au are sequentially formed on the exposed portions of the first and second conductor pads 41 and 42 by electroless plating in order to improve the bondability with the solder (Ni and Au coatings are not shown). As shown in FIG. 4 (j), bumps 51 and 52 were formed with -Ag-Cu lead-free solder, thereby completing the thin film capacitor of the present invention. The film thicknesses of Ni and Au were both 500 nm.

ここで、比較例として上記実施例と同様の方法で図5に示す構造を有する薄膜キャパシタを作製した。比較例の薄膜キャパシタは、第1の導体層22と第1の導体パッド41とが第1の導体層22の上面で接続しており、第2の導体層24と第2の導体パッド42とが第2の導体層24の上面で接続している。第1および第2の導体パッド41,42はいずれも基板10に接合していない。その他の構成は実施例の薄膜キャパシタと同じである。図5においては、図1ないし図4と共通あるいは対応する部分に同一の符号を付しているので、構成の説明は省略する。   Here, as a comparative example, a thin film capacitor having the structure shown in FIG. In the thin film capacitor of the comparative example, the first conductor layer 22 and the first conductor pad 41 are connected on the upper surface of the first conductor layer 22, and the second conductor layer 24 and the second conductor pad 42 are connected to each other. Are connected on the upper surface of the second conductor layer 24. None of the first and second conductor pads 41 and 42 are bonded to the substrate 10. Other configurations are the same as those of the thin film capacitor of the embodiment. In FIG. 5, the same or corresponding parts as in FIGS. 1 to 4 are denoted by the same reference numerals, and the description of the configuration is omitted.

実施例の薄膜キャパシタと比較例の薄膜キャパシタを各々10個ずつ作製し、表面にCuからなる配線が形成された厚さ1.27mmのガラス−エポキシ基板(線膨張係数およそ40ppm/℃)上に実装した。   Ten thin film capacitors of the example and the comparative thin film capacitor were manufactured, respectively, on a glass-epoxy substrate (linear expansion coefficient of about 40 ppm / ° C.) having a thickness of 1.27 mm on which Cu wiring was formed. Implemented.

実装後、各試料について導通不良のバンプがみられるか実験したところ、実施例の薄膜キャパシタはすべての試料で導通不良はみられなかったが、比較例の薄膜キャパシタでは10個中1個の試料で導通不良が見つかった。   After mounting, an experiment was conducted to determine whether or not bumps with poor continuity were observed for each sample. In all of the thin film capacitors of the example, no continuity failure was observed, but one sample out of 10 was found in the thin film capacitor of the comparative example. In continuity failure was found.

次にこれらの試料を−55℃〜+125℃で500サイクルの熱サイクル試験に供した後に導通テストおよび静電容量の測定を行った。実施例に係る試料では導通不良はみられず、静電容量変化率ΔC/C0(熱サイクル試験前の静電容量をC0、熱サイクル試験前後の静電容量の変化量をΔCとする)は±2%以内だった。これに対して比較例に係る試料では、10個中8個の試料で導通不良が見つかった。また、導通不良がみられた8個の試料で、導通不良のないバンプを用いて静電容量を測定したところ、8個中6個でショート状態であることがわかった。なお、静電容量はLCRメータを用いて0.5V、1kHzの条件で測定した。 Next, these samples were subjected to a thermal cycle test of 500 cycles at −55 ° C. to + 125 ° C., and then a continuity test and a capacitance measurement were performed. In the sample according to the example, no conduction failure was observed, and the capacitance change rate ΔC / C 0 (capacitance before the thermal cycle test was C 0 , and the change in capacitance before and after the thermal cycle test was ΔC. ) Was within ± 2%. On the other hand, in the sample according to the comparative example, conduction failure was found in 8 out of 10 samples. Moreover, when the electrostatic capacity was measured using the bumps having no continuity failure in 8 samples in which the continuity failure was observed, it was found that 6 out of 8 samples were in a short-circuit state. The capacitance was measured using an LCR meter under conditions of 0.5 V and 1 kHz.

なお、本発明は上記実施例に限定されるものではないことはいうまでもなく、本発明の趣旨の範囲内で種々の変更を加えることが可能である。   Needless to say, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist of the present invention.

例えば基板としてはSi基板の他にサファイア基板や石英ガラス基板などを用いることができる。密着層として上記実施例ではBSTを用いたが、必ずしも誘電体薄膜と同一の材料を用いる必要はなく、例えばTiやCr、TiO2などを用いることもできる。誘電体薄膜としてはBSTの他にBaTiO3、SrTiO3、Pb(Zr,Ti)O3などの高誘電率の複合酸化物を好適に用いることができる。 For example, a sapphire substrate or a quartz glass substrate can be used as the substrate in addition to the Si substrate. In the above embodiment, BST is used as the adhesion layer, but it is not always necessary to use the same material as that of the dielectric thin film. For example, Ti, Cr, TiO 2 or the like can be used. As the dielectric thin film, a complex oxide having a high dielectric constant such as BaTiO 3 , SrTiO 3 , Pb (Zr, Ti) O 3 can be preferably used in addition to BST.

また、上記実施例では一つの基板上に一つの薄膜キャパシタを作製するかのように説明したが、一つの基板上に複数の薄膜キャパシタを作製してダイシングソーで個々の薄膜キャパシタに切り分けるようにしてもよい。   In the above embodiment, the description is made as if one thin film capacitor is formed on one substrate. However, a plurality of thin film capacitors are manufactured on one substrate and separated into individual thin film capacitors using a dicing saw. May be.

本発明の薄膜キャパシタを示す平面図および断面図である。It is the top view and sectional drawing which show the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the thin film capacitor of this invention. 本発明の薄膜キャパシタの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the thin film capacitor of this invention. 比較例の薄膜キャパシタを示す断面図である。It is sectional drawing which shows the thin film capacitor of a comparative example. 従来の薄膜キャパシタを示す断面図である。It is sectional drawing which shows the conventional thin film capacitor.

符号の説明Explanation of symbols

10 基板
21 密着層
22 第1の導体層
23 誘電体薄膜
24 第2の導体層
31 第1のバリア層
32 第2のバリア層
33 第1の保護層
34 第2の保護層
41 第1の導体パッド
42 第2の導体パッド
51,52 バンプ

DESCRIPTION OF SYMBOLS 10 Board | substrate 21 Adhesion layer 22 1st conductor layer 23 Dielectric thin film 24 2nd conductor layer 31 1st barrier layer 32 2nd barrier layer 33 1st protective layer 34 2nd protective layer 41 1st conductor Pad 42 Second conductor pad 51, 52 Bump

Claims (3)

基板と、
該基板上に形成された第1の導体層と、該第1の導体層上に形成された誘電体薄膜と、該誘電体薄膜上に前記第1の導体層と電気的に絶縁されて形成された第2の導体層と、を有するキャパシタ部と、
前記第1の導体層に電気的に接続するとともに前記キャパシタ部の上面に引き出さるように形成された第1の導体パッドと、
前記第2の導体層に電気的に接続するとともに前記キャパシタ部の上面に引き出されるように形成された第2の導体パッドと、
前記第1および第2の導体パッド上それぞれに形成された第1および第2のバンプと、を備え、
前記第1および前記第2の導体パッドは前記基板に接合されていることを特徴とする薄膜キャパシタ。
A substrate,
A first conductor layer formed on the substrate; a dielectric thin film formed on the first conductor layer; and the first conductor layer electrically insulated from the first conductor layer on the dielectric thin film. A capacitor portion having a second conductor layer formed;
A first conductor pad formed so as to be electrically connected to the first conductor layer and to be drawn to the upper surface of the capacitor unit;
A second conductor pad formed so as to be electrically connected to the second conductor layer and to be drawn to the upper surface of the capacitor unit;
First and second bumps formed on the first and second conductor pads, respectively,
The thin film capacitor, wherein the first and second conductive pads are bonded to the substrate.
前記誘電体薄膜は、平坦な面上に形成されていることを特徴とする請求項1に記載の薄膜キャパシタ。   The thin film capacitor according to claim 1, wherein the dielectric thin film is formed on a flat surface. 基板上に第1の導体層を形成する工程と、
前記第1の導体層上に、金属の有機化合物を含有する誘電体原料溶液を塗布して熱処理を行い、誘電体薄膜を形成する工程と、
前記誘電体薄膜上に第2の導体層を形成する工程と、
前記第1および第2の導体層と前記誘電体薄膜を貫通し、前記基板を底面とする複数の貫通孔を形成する工程と、
前記貫通孔のうちいずれかの内部に、前記第1の導体層と電気的に接続し前記第2の導体層と電気的に絶縁され、前記基板に接合された第1の導体パッドを形成する工程と、
前記貫通孔のうちいずれかの内部に、前記第2の導体層と電気的に接続し前記第1の導体層と電気的に絶縁され、前記基板に接合された第2の導体パッドを形成する工程と、
前記第1および第2の導体パッド上に、それぞれ第1および第2のバンプを形成する工程と、を有することを特徴とする薄膜キャパシタの製造方法。

Forming a first conductor layer on a substrate;
Applying a dielectric material solution containing a metal organic compound on the first conductor layer and performing a heat treatment to form a dielectric thin film;
Forming a second conductor layer on the dielectric thin film;
Forming a plurality of through holes penetrating the first and second conductor layers and the dielectric thin film and having the substrate as a bottom surface;
A first conductor pad electrically connected to the first conductor layer, electrically insulated from the second conductor layer, and joined to the substrate is formed inside any of the through holes. Process,
A second conductor pad that is electrically connected to the second conductor layer, electrically insulated from the first conductor layer, and joined to the substrate is formed inside any of the through holes. Process,
Forming a first bump and a second bump on the first and second conductor pads, respectively.

JP2005206943A 2005-07-15 2005-07-15 Thin film capacitor and method for manufacturing same Pending JP2008294008A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005206943A JP2008294008A (en) 2005-07-15 2005-07-15 Thin film capacitor and method for manufacturing same
PCT/JP2006/311306 WO2007010681A1 (en) 2005-07-15 2006-06-06 Thin film capacitor and method for manufacturing thin film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206943A JP2008294008A (en) 2005-07-15 2005-07-15 Thin film capacitor and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2008294008A true JP2008294008A (en) 2008-12-04

Family

ID=37668568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206943A Pending JP2008294008A (en) 2005-07-15 2005-07-15 Thin film capacitor and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2008294008A (en)
WO (1) WO2007010681A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227874A (en) * 2006-01-30 2007-09-06 Fujitsu Ltd Thin-film capacitor and its manufacturing method
JP2010225849A (en) * 2009-03-24 2010-10-07 Murata Mfg Co Ltd Thin film capacitor
JP2011066284A (en) * 2009-09-18 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> Stacked mim capacitor, and method of manufacturing the same
JP2011077343A (en) * 2009-09-30 2011-04-14 Tdk Corp Thin-film capacitor
US10418179B2 (en) 2016-11-11 2019-09-17 Samsung Electro-Mechanics Co., Ltd. Multilayer thin-film capacitor
US11081283B2 (en) 2019-06-03 2021-08-03 Samsung Electro-Mechanics Co., Ltd. Multi-layered ceramic electronic component and mounting board thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294695B2 (en) 2007-01-31 2009-07-15 Tdk株式会社 Thin film capacitor, method for manufacturing the same, and electronic component
JP5407775B2 (en) * 2009-03-31 2014-02-05 Tdk株式会社 Thin film capacitor manufacturing method and thin film capacitor
RU2460164C2 (en) * 2010-11-25 2012-08-27 Открытое акционерное общество "Научно-исследовательский институт полупроводниковых приборов" (ОАО "НИИПП") Thin-film capacitor for surface mounting into asymmetrical strip lines
KR101872582B1 (en) 2016-03-22 2018-06-28 삼성전기주식회사 Multi-layered ceramic capacitor and method of manufacturing the same
US10460877B2 (en) * 2016-05-27 2019-10-29 Tdk Corporation Thin-film capacitor including groove portions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217143A (en) * 2000-01-31 2001-08-10 Kyocera Corp Laminated thin-film capacitor and substrate
JP4166013B2 (en) * 2001-12-26 2008-10-15 富士通株式会社 Thin film capacitor manufacturing method
JP3966208B2 (en) * 2002-11-14 2007-08-29 富士通株式会社 Thin film capacitor and manufacturing method thereof
JP4523299B2 (en) * 2003-10-31 2010-08-11 学校法人早稲田大学 Thin film capacitor manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227874A (en) * 2006-01-30 2007-09-06 Fujitsu Ltd Thin-film capacitor and its manufacturing method
JP2010225849A (en) * 2009-03-24 2010-10-07 Murata Mfg Co Ltd Thin film capacitor
JP2011066284A (en) * 2009-09-18 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> Stacked mim capacitor, and method of manufacturing the same
JP2011077343A (en) * 2009-09-30 2011-04-14 Tdk Corp Thin-film capacitor
US10418179B2 (en) 2016-11-11 2019-09-17 Samsung Electro-Mechanics Co., Ltd. Multilayer thin-film capacitor
US11081283B2 (en) 2019-06-03 2021-08-03 Samsung Electro-Mechanics Co., Ltd. Multi-layered ceramic electronic component and mounting board thereof

Also Published As

Publication number Publication date
WO2007010681A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP2008294008A (en) Thin film capacitor and method for manufacturing same
US7898792B2 (en) Thin-film capacitor
KR101089084B1 (en) Interposer and interposer manufacturing method
WO2017209296A1 (en) Through electrode substrate, method for producing same and mounting substrate
JP2007096232A (en) Interposer and production method for electronic device
JP2010157690A (en) Board for mounting electronic component thereon, and method of manufacturing the same
JP2001135663A (en) Semiconductor device and its manufacturing method
JP2006179564A (en) Semiconductor connection substrate, method of manufacturing the same semiconductor apparatus, semiconductor device, and semiconductor substrate
JP4603383B2 (en) Wiring board, semiconductor device, and manufacturing method thereof
US7911048B2 (en) Wiring substrate
JP4061506B2 (en) Manufacturing method of semiconductor device
JP2011187912A (en) Electro device-embedded printed circuit board and manufacturing method thereof
JP4063240B2 (en) Semiconductor device mounting substrate, manufacturing method thereof, and semiconductor package
JP2011035296A (en) Semiconductor package and method of manufacturing the same, and electronic device
JP6152434B2 (en) Semiconductor device
JP5873146B2 (en) Semiconductor device
JP5633095B2 (en) Semiconductor package manufacturing method and semiconductor package
JP2003347157A (en) Thin film electronic component
US20060231942A1 (en) Semiconductor device
JP2006351996A (en) Semiconductor device and manufacturing method thereof
JP2006210473A (en) Multilayer wiring substrate
JP2006147932A (en) Multilayer wiring board and its manufacturing method
JP5673592B2 (en) Wiring board and manufacturing method thereof
JP2018206896A (en) Compound semiconductor integrated circuit and manufacture method thereof
JP4938346B2 (en) Semiconductor device and manufacturing method thereof