JP2008271652A - Permanent magnet type rotary electric machine - Google Patents

Permanent magnet type rotary electric machine Download PDF

Info

Publication number
JP2008271652A
JP2008271652A JP2007108433A JP2007108433A JP2008271652A JP 2008271652 A JP2008271652 A JP 2008271652A JP 2007108433 A JP2007108433 A JP 2007108433A JP 2007108433 A JP2007108433 A JP 2007108433A JP 2008271652 A JP2008271652 A JP 2008271652A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
magnet type
outer peripheral
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007108433A
Other languages
Japanese (ja)
Other versions
JP5239200B2 (en
Inventor
Shinichi Yamaguchi
信一 山口
Takashi Miyazaki
高志 宮崎
Hisashi Otsuka
久 大塚
Haruyuki Hasegawa
治之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007108433A priority Critical patent/JP5239200B2/en
Publication of JP2008271652A publication Critical patent/JP2008271652A/en
Application granted granted Critical
Publication of JP5239200B2 publication Critical patent/JP5239200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an embedded permanent magnet type rotary electric machine capable of reducing a cogging torque, a torque ripple and a reluctance torque and improving a torque output and having the cogging torque and current-torque characteristics same as those of a surface magnet type permanent magnet type rotary electric machine. <P>SOLUTION: The permanent magnet type rotary electric machine is provided with a rotary iron core whose external circumferential surface has a plurality of arc-like curved surfaces, a permanent magnet whose cross sectional shape vertical in a rotary axis direction has an arc-like curved surface, and a rotor in which the permanent magnet is embedded at a position near the external circumferential surface spaced by predetermined distance from the external circumferential surface of the rotary iron core. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、永久磁石式回転電機に関するものであり、特に、回転子の内部に永久磁石が埋設された埋め込み型永久磁石式回転電機とその回転子に関するものである。   The present invention relates to a permanent magnet type rotating electrical machine, and more particularly to an embedded permanent magnet type rotating electrical machine in which a permanent magnet is embedded in a rotor and the rotor.

従来の埋め込み型永久磁石式回転電機について説明する。従来の埋め込み型永久磁石式回転電機のロータ(回転子)は、打ち抜かれた電磁鋼板からなる略円形ロータコアシートを積層してなるロータコア内部に永久磁石を埋設し、この永久磁石の端面、正極面の端部、あるいは負極面の端部に接するように長穴部を設けている。ここで、長穴部の形状を変化させることにより、擬似的にスキューを施し、コギングトルクを低減させている。また、回転子表面を概略同一円とすることで、エアギャップ内部の磁束密度を高くすることができ、さらに磁石形状を矩形形状とすることで、リラクタンストルクを向上させ、高効率化を図っている。(例えば、特許文献1参照) A conventional embedded permanent magnet type rotating electrical machine will be described. A rotor (rotor) of a conventional embedded permanent magnet type rotating electrical machine has a permanent magnet embedded in a rotor core formed by laminating a substantially circular rotor core sheet made of a punched electromagnetic steel sheet, and an end face of this permanent magnet, a positive electrode face A long hole is provided so as to be in contact with the end of the negative electrode or the end of the negative electrode surface. Here, by changing the shape of the long hole portion, a pseudo skew is applied and the cogging torque is reduced. Also, by making the rotor surface approximately the same circle, the magnetic flux density inside the air gap can be increased, and by making the magnet shape rectangular, the reluctance torque is improved and the efficiency is increased. Yes. (For example, see Patent Document 1)

また、磁性体の板を積層してなる積層コアの積層方向に複数の磁石を貫通して設け、積層コアの中央部で磁石位置をスキューさせた構造の回転子において、スキュー部分に非磁性体の層を形成することで、回転子内部での軸方向漏洩磁束を低減し、コギングトルクの低減を図っている。(例えば、特許文献2参照) Further, in a rotor having a structure in which a plurality of magnets are provided in the stacking direction of a stacked core formed by stacking magnetic plates and the position of the magnet is skewed at the center of the stacked core, the nonmagnetic material is provided at the skew portion. By forming this layer, the axial leakage magnetic flux inside the rotor is reduced, and the cogging torque is reduced. (For example, see Patent Document 2)

特開2000−69695号公報(図1)Japanese Unexamined Patent Publication No. 2000-69695 (FIG. 1) 特開2005−57865号公報(図1)Japanese Patent Laying-Open No. 2005-57865 (FIG. 1)

特許文献1に示される従来の埋め込み型永久磁石式回転電機においては、矩形形状の磁石を用いていることから、回転子の起磁力高調波成分が大きくなり、コギングトルクやトルクリップルが十分に低減できない問題があった。また、回転子表面を概略同一円とした場合には、d軸インダクタンスとq軸インダクタンスに差異(突極性)が生じ、リラクタンストルクが発生するため、リラクタンストルクによるトルクリップルも発生するという問題もあった。さらに、回転子内部の永久磁石が回転子の外周面から離れた内部奥に設置されているため、磁路部に鉄心部分が多く存在することから、回転子内部の永久磁石磁路部にて磁気飽和が発生し、電流とトルクとの直線性が損なわれるという問題もあった。
また、特許文献2に示される従来の埋め込み型永久磁石式回転電機の回転子のように、段スキュー回転子の段間に非磁性材料部を設ける場合には、軸方向に非磁性材料部分の領域が増加するため、トルク出力が低下する等の問題があった。
In the conventional embedded permanent magnet type rotating electrical machine shown in Patent Document 1, since a rectangular magnet is used, the magnetomotive force harmonic component of the rotor is increased, and the cogging torque and torque ripple are sufficiently reduced. There was a problem that could not be done. In addition, when the rotor surfaces are approximately the same circle, a difference (saliency) occurs between the d-axis inductance and the q-axis inductance, and reluctance torque is generated. Therefore, there is a problem that torque ripple due to the reluctance torque also occurs. It was. Furthermore, since the permanent magnet inside the rotor is installed in the inner part away from the outer peripheral surface of the rotor, there are many iron core parts in the magnetic path part, so in the permanent magnet magnetic path part inside the rotor There was also a problem that magnetic saturation occurred and the linearity between current and torque was impaired.
Further, when a nonmagnetic material portion is provided between the steps of a step skew rotor, as in the rotor of a conventional embedded permanent magnet type rotating electrical machine shown in Patent Document 2, the nonmagnetic material portion is axially arranged. Since the area increases, there is a problem that the torque output decreases.

本発明は上述のような課題を解決するためになされたもので、コギングトルクやトルクリップルを低減し、またリラクタンストルクも低減し、またトルク出力を高めた埋め込み型永久磁石式回転電機を提供することを目的とする。さらに、磁石保持のため回転子内部に磁石を埋設するにも関わらず、コギングトルクや電流−トルク特性は、磁石を回転子表面に貼り付けた表面磁石型永久磁石式回転電機と同等の特性を有する埋め込み型永久磁石式回転電機を提供するものである。 The present invention has been made to solve the above-described problems, and provides an embedded permanent magnet type rotating electrical machine that reduces cogging torque and torque ripple, reduces reluctance torque, and increases torque output. For the purpose. In addition, the cogging torque and current-torque characteristics are equivalent to those of a surface magnet type permanent magnet type rotating electrical machine with a magnet attached to the rotor surface, despite the magnet being embedded in the rotor to hold the magnet. The present invention provides an embedded permanent magnet type rotating electrical machine.

この発明に係る永久磁石式回転電機においては、外周面が複数の円弧状曲面を有する回転子鉄心と、回転軸方向に垂直な断面形状が円弧状曲面を有する永久磁石と、前記永久磁石を前記回転子鉄心の外周面から所定の距離だけ離間した前記外周面に近い位置に埋設した回転子と、を備えるものである。 In the permanent magnet type rotating electrical machine according to the present invention, the rotor core having a plurality of arcuate curved surfaces on the outer peripheral surface, the permanent magnet having the arcuate curved surface in a cross section perpendicular to the rotation axis direction, and the permanent magnet A rotor embedded in a position close to the outer peripheral surface that is separated from the outer peripheral surface of the rotor core by a predetermined distance.

本発明によれば、回転軸方向に垂直な断面形状が円弧状曲面を有する永久磁石を、外周面が複数の円弧状曲面を有する回転子鉄心の外周面に近い部分に埋設することで、回転子の磁石近傍での磁気飽和の影響を小さくでき、電流―トルク特性の直線性を向上させることができる。 According to the present invention, a permanent magnet having a circular arc-shaped cross section perpendicular to the rotation axis direction is embedded in a portion close to the outer peripheral surface of a rotor core whose outer peripheral surface has a plurality of arc-shaped curved surfaces. The influence of magnetic saturation near the child magnet can be reduced, and the linearity of the current-torque characteristic can be improved.

実施の形態1.
以下、本発明の実施の形態1について図を用いて説明する。図1に実施の形態1による埋め込み型永久磁石式回転電機の回転子の斜視図を、図2に埋め込み型永久磁石式回転電機の断面図を、図3に回転子断面の拡大図を示す。また、図4に埋め込み型永久磁石式回転電機のコギングトルクシミュレーション結果を示す。なお、本実施の形態は、磁石極数が8、固定子スロット数が12の場合のものである。
図1において、回転子10は、その外周面が複数の概略円弧状曲面を有する回転子鉄心11と永久磁石12と回転軸13から構成され、回転子鉄心11は回転軸方向に隣接して配置された2段の回転子鉄心(回転子上段鉄心11a、回転子下段鉄心11b)から成る。さらに、この回転子上段鉄心11aと回転子下段鉄心11bが回転子の回転軸を中心として回転方向にずれている(擬似段スキューと呼ぶ)。また、埋め込み型永久磁石式回転電機は、図2のように、固定子鉄心21と集中巻を施した固定子巻線22とから成る固定子20と、回転子10により構成される。
図1および図3に示すように、回転軸方向に垂直な断面形状が概略円弧状曲面を有する永久磁石12を、回転子鉄心11の外周面(回転中心に対して回転半径方向外側の面)から所定の距離だけ離間した、その外周面に近い部分に埋設する。埋設方法としては、永久磁石12を埋設するための孔を、2段の回転子鉄心(回転子上段鉄心11a、回転子下段鉄心11b)を貫通して設け、この孔に永久磁石12を挿入することで埋設する。永久磁石12は挿入方向に一体であるが、回転子鉄心11が軸方向に長い場合は、分割する場合もある。よって、回転子鉄心11のみが段毎に回転ずれしており、永久磁石12は回転ずれしていない。ここで、回転子の回転軸中心Oに対する回転子鉄心11の回転子外周面最外半径をR1とし、回転子外周面曲率半径をR2とすると、R1>R2の関係になるように回転子の外周面形状を構成する。図3においては、回転子上段鉄心11aと回転子下段鉄心11bに対する回転子外周面曲率半径R2の大きさを同一としている。
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. 1 is a perspective view of a rotor of an embedded permanent magnet type rotating electrical machine according to Embodiment 1, FIG. 2 is a sectional view of the embedded type permanent magnet rotating electrical machine, and FIG. 3 is an enlarged view of the rotor cross section. FIG. 4 shows a cogging torque simulation result of the embedded permanent magnet type rotating electrical machine. In this embodiment, the number of magnet poles is 8 and the number of stator slots is 12.
In FIG. 1, a rotor 10 is composed of a rotor core 11, a permanent magnet 12, and a rotating shaft 13 whose outer peripheral surface has a plurality of substantially arcuate curved surfaces, and the rotor core 11 is disposed adjacent to the rotating shaft direction. The two-stage rotor cores (rotor upper stage core 11a, rotor lower stage core 11b). Further, the upper iron core 11a and the lower iron core 11b of the rotor are displaced in the rotation direction around the rotation axis of the rotor (referred to as pseudo-stage skew). Further, the embedded permanent magnet type rotating electrical machine is constituted by a stator 20 and a rotor 10 which are composed of a stator core 21 and a concentrated winding 22 as shown in FIG.
As shown in FIGS. 1 and 3, the permanent magnet 12 whose cross-sectional shape perpendicular to the rotation axis direction has a substantially arcuate curved surface is attached to the outer peripheral surface of the rotor core 11 (surface on the outer side in the rotation radius direction with respect to the rotation center). It is embedded in a portion close to the outer peripheral surface, which is separated by a predetermined distance. As an embedding method, a hole for embedding the permanent magnet 12 is provided through the two-stage rotor core (rotor upper stage core 11a, rotor lower stage core 11b), and the permanent magnet 12 is inserted into the hole. To be buried. The permanent magnet 12 is integrated in the insertion direction, but may be divided when the rotor core 11 is long in the axial direction. Therefore, only the rotor core 11 is deviated from rotation for each stage, and the permanent magnet 12 is not deviated from rotation. Here, assuming that the outermost radius of the rotor outer peripheral surface of the rotor core 11 with respect to the rotation axis center O of the rotor is R1, and the radius of curvature of the outer peripheral surface of the rotor is R2, the relationship of R1> R2 is satisfied. The outer peripheral surface shape is configured. In FIG. 3, the size of the rotor outer peripheral surface radius of curvature R2 for the upper rotor core 11a and the lower rotor core 11b is the same.

上記2つの鉄心が回転軸を中心として回転方向にずれている角度を擬似段スキュー角度と呼ぶ。よって、回転子上段鉄心11aの回転子外周面曲率半径の中心点Aと回転子下段鉄心11bの回転子外周面曲率半径の中心点Bと回転軸中心Oとで構成される角AOBの機械角度θが擬似段スキュー角度となる。一般的に理論擬似段スキュー角度は、360/(2×固定子スロット数と回転子磁石極数の最小公倍数)[度]と定義される。本実施の形態では、この機械角度θを理論擬似段スキュー角度より大きくする。これにより、この機械角度θを理論擬似段スキュー角度と等しいまたはそれ以下とした場合に対し、コギングトルクを大幅に低減することが可能となり、トルクリップルについても低減することができる。
また、本実施の形態においては、磁石極数が8、固定子スロット数が12であるため、理論擬似段スキュー角度は180/24=7.5度になり、この機械角度θを7.5度より大きくすることで、上記の効果が得られる。
The angle at which the two iron cores are displaced in the rotation direction about the rotation axis is called a pseudo-stage skew angle. Therefore, the mechanical angle of the angle AOB formed by the center point A of the rotor outer peripheral surface radius of curvature of the upper rotor core 11a, the center point B of the rotor outer peripheral surface radius of curvature of the lower rotor core 11b, and the rotational axis center O. θ is the pseudo-stage skew angle. In general, the theoretical pseudo-stage skew angle is defined as 360 / (2 × the least common multiple of the number of stator slots and the number of rotor magnet poles) [degrees]. In the present embodiment, the mechanical angle θ is set larger than the theoretical pseudo stage skew angle. As a result, when the mechanical angle θ is equal to or less than the theoretical pseudo-stage skew angle, the cogging torque can be greatly reduced, and the torque ripple can also be reduced.
In this embodiment, since the number of magnet poles is 8 and the number of stator slots is 12, the theoretical pseudo-stage skew angle is 180/24 = 7.5 degrees, and this mechanical angle θ is set to 7.5. The effect described above can be obtained by making the ratio larger than the above.

上記では、回転子上段鉄心11aと回転子下段鉄心11bの固定子外周面曲率半径R2の大きさを同一としたが、R2の大きさが各々異なっていても、この機械角度θが理論擬似段スキュー角度より大きければ、同様の効果が得られる。 In the above description, the size of the outer peripheral surface curvature radius R2 of the upper rotor core 11a and the lower rotor core 11b of the rotor is the same. However, even if the sizes of R2 are different, the mechanical angle θ is equal to the theoretical pseudo-stage. If it is larger than the skew angle, the same effect can be obtained.

ここで、擬似段スキュー効果の検証結果について説明する。図4に示すコギングトルクのシミュレーション結果は、本実施の形態において、回転子の擬似段スキュー無しの場合と、擬似段スキューが有り、その擬似段スキュー角度が理論擬似段スキュー角度(7.5度)に等しい場合の結果である。擬似段スキュー無しの場合に比べ、擬似段スキュー有りで、その擬似段スキュー角度が理論擬似段スキュー角度(7.5度)に等しい場合は、コギングトルクが約1/2以下に低減していることが分かる。
擬似段スキュー角度を理論擬似段スキュー角度よりも大きくすれば、さらに擬似段スキューの効果が高まるので、コギングトルクをさらに低減することが可能となる。
Here, the verification result of the pseudo stage skew effect will be described. The simulation results of the cogging torque shown in FIG. 4 show that there is no pseudo-stage skew of the rotor and pseudo-stage skew in the present embodiment, and the pseudo-stage skew angle is the theoretical pseudo-stage skew angle (7.5 degrees). ) Is the result. Compared to the case without pseudo stage skew, when the pseudo stage skew is present and the pseudo stage skew angle is equal to the theoretical pseudo stage skew angle (7.5 degrees), the cogging torque is reduced to about ½ or less. I understand that.
If the pseudo-stage skew angle is made larger than the theoretical pseudo-stage skew angle, the effect of the pseudo-stage skew is further increased, so that the cogging torque can be further reduced.

次に、永久磁石12の埋め込み位置から回転子鉄心11の外周面までの鉄心の厚さについて述べる。
図3に示す通り、永久磁石12の中央上部と回転子鉄心11の外周面までの鉄心の厚さを鉄心表面厚さhとする。この鉄心表面厚さhが小さいほど、永久磁石12の磁束を有効に利用することが可能である。擬似段スキューを施していない埋め込み型永久磁石式回転電機において、鉄心表面厚さhを変化させた場合の、トルク出力のシミュレーション結果を図5に示す。なお、このシミュレーションにおいては、固定子アンペアターンを同一とした。図5から、鉄心表面厚さhの増加に伴い、トルク出力は低下することが分かる。これは、永久磁石12が回転子内部に深くに埋設されると回転子内部での漏れ磁束が増加し、永久磁石12の磁束が有効利用されないためである。従って、リラクタンストルクを積極的に利用しない(詳細については後で述べる)本実施の形態のような埋め込み型永久磁石式回転電機では、鉄心表面厚さhは製造が可能な範囲で出来るだけ小さい方が良い。これにより、電流―トルク特性の直線性も向上させることができる。
Next, the thickness of the iron core from the embedded position of the permanent magnet 12 to the outer peripheral surface of the rotor iron core 11 will be described.
As shown in FIG. 3, the thickness of the core from the center upper portion of the permanent magnet 12 to the outer peripheral surface of the rotor core 11 is defined as the core surface thickness h. As the iron core surface thickness h is smaller, the magnetic flux of the permanent magnet 12 can be used more effectively. FIG. 5 shows a simulation result of torque output when the iron core surface thickness h is changed in an embedded permanent magnet type rotating electrical machine not subjected to pseudo-stage skew. In this simulation, the stator ampere turns were the same. FIG. 5 shows that the torque output decreases as the iron core surface thickness h increases. This is because when the permanent magnet 12 is buried deep inside the rotor, the leakage magnetic flux inside the rotor increases and the magnetic flux of the permanent magnet 12 is not effectively used. Therefore, in the embedded permanent magnet type rotating electrical machine as in the present embodiment in which reluctance torque is not actively used (details will be described later), the iron core surface thickness h should be as small as possible within the manufacturing range. Is good. As a result, the linearity of the current-torque characteristic can also be improved.

永久磁石12の回転軸方向に垂直な断面形状における回転子鉄心11の外周面側の曲面形状を回転子鉄心11の外周面曲面形状と概略等しい曲面形状とし、永久磁石12を回転子鉄心11のできるだけ外周面に近い位置に埋め込むことで、永久磁石12の端部から中央部に渡り鉄心表面厚さhを、さらに均一に小さくすることができる。例えば、回転子鉄心11の外周面の形状および永久磁石12の回転軸方向に垂直な断面形状における回転子鉄心11の外周面側の曲面形状を概略円弧形状にして、回転子鉄心11の外周面の曲率半径にあたる回転子外周面曲率半径R2と永久磁石12の回転軸方向に垂直な断面形状における前記回転子鉄心の外周面側の円弧状曲面の曲率半径を概略等しく構成することで、永久磁石12の端部から中央部に渡り鉄心表面厚さhを、均一に小さくすることができる。 The curved surface shape on the outer peripheral surface side of the rotor core 11 in the cross-sectional shape perpendicular to the rotation axis direction of the permanent magnet 12 is a curved surface shape that is substantially equal to the curved surface shape of the outer peripheral surface of the rotor core 11. By embedding in a position as close to the outer peripheral surface as possible, the iron core surface thickness h can be further uniformly reduced from the end of the permanent magnet 12 to the center. For example, the shape of the outer peripheral surface of the rotor core 11 and the curved surface shape on the outer peripheral surface side of the rotor core 11 in the cross-sectional shape perpendicular to the rotation axis direction of the permanent magnet 12 are substantially arc shapes, and the outer peripheral surface of the rotor core 11 The outer peripheral surface radius of curvature R2 corresponding to the radius of curvature of the permanent magnet 12 and the radius of curvature of the arcuate curved surface on the outer peripheral surface side of the rotor core in the cross-sectional shape perpendicular to the rotation axis direction of the permanent magnet 12 are configured to be approximately equal. The surface thickness h of the iron core can be uniformly reduced from the end of 12 to the center.

本実施の形態のような擬似段スキューを行うための回転子鉄心11を製作する方法としては、回転子鉄心11を同一金型にて打ち抜き、打ち抜いた鉄心を反転してそれぞれ回転子上段鉄心11aと回転子下段鉄心11bに用いる方法がある。また、それぞれ異なった形状で製作し、回転子上段鉄心11aと回転子下段鉄心11bに用いても良い。 As a method of manufacturing the rotor core 11 for performing the pseudo-stage skew as in the present embodiment, the rotor core 11 is punched with the same die, the punched iron core is inverted, and the rotor upper stage core 11a is respectively turned on. And a method used for the lower rotor core 11b. Further, they may be manufactured in different shapes and used for the upper rotor core 11a and the lower rotor core 11b of the rotor.

回転子鉄心11は、打ち抜きまたはカシメ等により所定の形状に形成した電磁鋼板を積層させて構成される。一般的に、打ち抜き可能な電磁鋼板の最小幅は電磁鋼板板厚の2倍程度である。電磁鋼板の厚さは、通常0.35mmもしくは0.5mmであるため、製造可能な回転子鉄心11の鉄心表面厚さhは、電磁鋼板の厚さの2倍程度の0.7mm〜1mmとなる。従って、本実施の形態での鉄心表面厚さhは、電磁鋼板板厚の2倍以下、もしくは1mm以下とするのが望ましい。 The rotor core 11 is configured by laminating electromagnetic steel sheets formed in a predetermined shape by punching or caulking. Generally, the minimum width of an electromagnetic steel sheet that can be punched is about twice the thickness of the electromagnetic steel sheet. Since the thickness of the electromagnetic steel sheet is usually 0.35 mm or 0.5 mm, the iron core surface thickness h of the manufacturable rotor core 11 is about 0.7 mm to 1 mm, which is about twice the thickness of the electromagnetic steel sheet. Become. Therefore, it is desirable that the iron core surface thickness h in the present embodiment is not more than twice the thickness of the magnetic steel sheet, or not more than 1 mm.

ここで、永久磁石式回転電機の発生トルクについて説明する。
永久磁石式回転電機の発生トルクは回転子の位置と巻線に流れる電流位相の関係により決定される。永久磁石式回転電機では、固定子巻線を回転子の座標系に変換して考えることが一般的である。回転子の座標系とは、永久磁石界磁がつくる磁束の方向(永久磁石の中心軸)をd軸とし、それと電気的・磁気的に直交する軸(永久磁石間の軸)をq軸としたd−q軸座標系である。d−q軸座標系での永久磁石式回転電機に発生するトルクTは次式で与えられる。
Here, the torque generated by the permanent magnet type rotating electric machine will be described.
The torque generated by the permanent magnet type rotating electrical machine is determined by the relationship between the position of the rotor and the phase of the current flowing through the winding. In a permanent magnet type rotating electrical machine, it is general to consider a stator winding by converting it into a rotor coordinate system. The rotor coordinate system refers to the direction of the magnetic flux generated by the permanent magnet field (the central axis of the permanent magnet) as the d axis, and the axis (axis between the permanent magnets) orthogonal to it as the q axis. The dq axis coordinate system. The torque T generated in the permanent magnet type rotating electrical machine in the dq axis coordinate system is given by the following equation.

Figure 2008271652
(1)式の第1項はマグネットトルクTで第2項はリラクタンストルクTである。d軸インダクタンスやq軸インダクタンスが回転子位置によって変化するような一般的な磁石埋め込み型永久磁石式回転電機の場合、リラクタンストルクTが回転子位置によって変化し、トルクリップルの原因となる場合がある。
これに対し、磁石を回転子表面に貼り付けた表面磁石型永久磁石式回転電機では、d軸インダクタンスとq軸インダクタンスがほぼ同等となるため、リラクタンストルクが発生せずマグネットトルクTのみとなる。この場合、発生トルクは次式で表現される。
Figure 2008271652
The first term of the equation (1) is the magnet torque Tm , and the second term is the reluctance torque Tr . In the case of a general embedded permanent magnet type rotating electrical machine in which the d-axis inductance and the q-axis inductance vary depending on the rotor position, the reluctance torque Tr may vary depending on the rotor position, which may cause torque ripple. is there.
In contrast, in the surface magnet type permanent magnet rotating electric machine affixed to the rotor surface magnet, because the d-axis inductance and q-axis inductance is substantially equal, the reluctance torque is only the magnet torque T m does not occur . In this case, the generated torque is expressed by the following equation.

Figure 2008271652
(2)式より,表面磁石型永久磁石式回転電機において,トルクに寄与する電流はq軸電流のみであることが分かる。そのため表面磁石型永久磁石式回転電機では、d軸電流がゼロとなるように制御(d軸電流ゼロ制御)することで,電流一定の条件下で最大トルクを得るような制御を行うことが一般的である。
Figure 2008271652
From the equation (2), it can be seen that in the surface magnet type permanent magnet type rotating electrical machine, the current contributing to the torque is only the q-axis current. Therefore, in a surface magnet type permanent magnet type rotating electrical machine, it is generally controlled to obtain a maximum torque under a constant current condition by controlling the d-axis current to be zero (d-axis current zero control). Is.

本実施の形態では、外周面が概略円弧状曲面を有する回転子鉄心11に対して、永久磁石12の回転軸方向に垂直な断面形状が概略円弧状曲面を有するようにして、鉄心表面厚さhを永久磁石12の端部から中央部に渡り概略一定にし、かつ鉄心表面厚さhを出来るだけ小さくするとともに、回転子外周面曲率半径R2を回転子外周面最外半径R1よりも小さくすることで、永久磁石式回転電機のd軸インダクタンスとq軸インダクタンスとの差を極力小さくしている。従って、この差によって発生するリラクタンストルクTがほぼ発生しなくなり、リラクタンストルクTに伴うトルクリップルを低減することができる。 In the present embodiment, the rotor core 11 whose outer peripheral surface has a substantially arcuate curved surface, the cross-sectional shape perpendicular to the rotation axis direction of the permanent magnet 12 has a substantially arcuate curved surface, and the iron core surface thickness. h is made substantially constant from the end to the center of the permanent magnet 12, the core surface thickness h is made as small as possible, and the rotor outer peripheral surface radius of curvature R2 is made smaller than the outer peripheral surface radius R1 of the rotor outer peripheral surface. Thus, the difference between the d-axis inductance and the q-axis inductance of the permanent magnet type rotating electrical machine is minimized. Therefore, the reluctance torque T r generated due to this difference is almost not generated, and the torque ripple associated with the reluctance torque T r can be reduced.

上述のように、d軸インダクタンスとq軸インダクタンスとの差が極力小さくなりリラクタンストルクTが低減し、ほぼ発生しなくなることで、コギングトルクや電流−トルク特性が表面磁石型永久磁石式回転電機とほぼ同等の特性を有する埋め込み型永久磁石式回転電機を提供することが可能となる。これにより、サーボモータ等で一般的に使用されているd軸電流ゼロ制御を行うことが可能となり、制御も簡易に行うことができる。 As described above, the difference between the d-axis inductance and the q-axis inductance is reduced as much as possible to reduce the reluctance torque Tr , so that the cogging torque and the current-torque characteristics are not generated. It is possible to provide an embedded permanent magnet type rotating electrical machine having substantially the same characteristics as the above. As a result, it is possible to perform d-axis current zero control generally used in servo motors and the like, and control can be easily performed.

実施の形態2.
本発明の実施の形態2は、実施の形態1に非磁性材料部14を更に設けたものである。以下、実施の形態2について図を用いて説明する。図6に実施の形態2における埋め込み型永久磁石式回転電機の回転子の斜視図を、図7に回転子上段鉄心と回転子下段鉄心の間の部分の非磁性材料部を示す。なお、これらの図は実施の形態1と同様、回転子極数が8極の場合の図である。図6に示す通り、実施の形態2における埋め込み型永久磁石式回転電機の回転子10Aは、回転子上段鉄心11aと回転子下段鉄心11bとの間の部分に、永久磁石12が貫通する構造の非磁性材料部14を備えている。これにより、回転子上段部から回転子下段部への漏洩磁束を低減することができる。さらに、永久磁石12が非磁性材料部14を貫通する構造となっているので、非磁性材料部14を設けても回転子10の軸方向で永久磁石12が無い部分が存在せず、トルクの高出力化が可能になる。
Embodiment 2. FIG.
In the second embodiment of the present invention, the nonmagnetic material portion 14 is further provided in the first embodiment. The second embodiment will be described below with reference to the drawings. FIG. 6 is a perspective view of the rotor of the embedded permanent magnet type rotating electrical machine according to the second embodiment, and FIG. 7 shows a nonmagnetic material portion between the rotor upper stage core and the rotor lower stage core. In addition, these figures are figures when the number of rotor poles is 8 as in the first embodiment. As shown in FIG. 6, the rotor 10 </ b> A of the embedded permanent magnet type rotating electric machine according to the second embodiment has a structure in which the permanent magnet 12 passes through a portion between the rotor upper iron core 11 a and the rotor lower iron core 11 b. A nonmagnetic material portion 14 is provided. Thereby, the leakage magnetic flux from a rotor upper step part to a rotor lower step part can be reduced. Furthermore, since the permanent magnet 12 has a structure that penetrates the nonmagnetic material portion 14, even if the nonmagnetic material portion 14 is provided, there is no portion without the permanent magnet 12 in the axial direction of the rotor 10, and torque High output is possible.

実施の形態3.
本発明の実施の形態3は、実施の形態1における永久磁石12の形状を平板形状に変更したものである。以下、実施の形態3について図を用いて説明する。図8に実施の形態3による埋め込み型永久磁石式回転電機の回転子の斜視図を、図9にその回転子の断面図を、図10にその回転子断面の拡大図を示す。なお、これらの図は実施の形態1と同様、回転子極数が8極の場合の図である。安価な平板状の永久磁石12Aを使用することで、磁石コストを低減できると共に、工作性の向上も図ることが可能となる。さらに、平板状の永久磁石12Aを出来るだけ回転子11の外周面に近い部分に埋め込むことにより、電流―トルク特性の直線性を向上させることができる。具体的には、電磁鋼板の厚さは0.35mmもしくは0.5mmが一般的であるため、製造可能な回転子鉄心の鉄心表面厚さは、電磁鋼板板厚の2倍程度である0.7mm〜1mmとなる。よって、図10における永久磁石12Aの端部付近の鉄心表面厚さh2が、電磁鋼板板厚の2倍以下もしくは1mm以下となるようにすると良い。
Embodiment 3 FIG.
In the third embodiment of the present invention, the shape of the permanent magnet 12 in the first embodiment is changed to a flat plate shape. The third embodiment will be described below with reference to the drawings. FIG. 8 is a perspective view of a rotor of an embedded permanent magnet type rotating electric machine according to Embodiment 3, FIG. 9 is a sectional view of the rotor, and FIG. 10 is an enlarged view of the rotor cross section. In addition, these figures are figures when the number of rotor poles is 8 as in the first embodiment. By using an inexpensive flat permanent magnet 12A, the magnet cost can be reduced and the workability can be improved. Furthermore, the linearity of the current-torque characteristics can be improved by embedding the plate-like permanent magnet 12A as close to the outer peripheral surface of the rotor 11 as possible. Specifically, since the thickness of the electromagnetic steel sheet is generally 0.35 mm or 0.5 mm, the iron core surface thickness of the manufacturable rotor core is about twice the thickness of the electromagnetic steel sheet. 7 mm to 1 mm. Therefore, the iron core surface thickness h2 in the vicinity of the end of the permanent magnet 12A in FIG. 10 is preferably less than twice the thickness of the electromagnetic steel plate or less than 1 mm.

実施の形態4.
本発明の実施の形態4は、実施の形態1の回転子鉄心の段数を4段にしたものである。以下、実施の形態4について図を用いて説明する。図11に実施の形態4による埋め込み型永久磁石式回転電機の回転子の斜視図を、図12にその回転子断面の拡大図を示す。図11および図12においては、回転子鉄心の段数が4段で、それぞれの隣接する段が回転軸を中心として回転方向にずれている場合を示している。実施の形態1〜3では、軸方向に2段に分かれている回転子鉄心11を使用した場合について述べたが、3段以上の回転子鉄心を使用することで更なるコギングトルク低減効果が得られる。ここで、永久磁石12は、実施の形態1の場合と同様に、全段の回転子鉄心を貫通する孔を設け、この孔に挿入することで埋設されている。よって、回転子鉄心11のみが段毎に回転ずれしており、永久磁石12は回転ずれしていない。図12に示す通り、回転子の回転軸を中心にして、回転子鉄心の各段の回転子外周面曲率半径R2a、R2b、R2c、R2dの中心を回転させている。回転子1段目鉄心31aと回転子2段目鉄心31b、回転子2段目鉄心31bと回転子3段目鉄心31c、回転子3段目鉄心31cと回転子4段目鉄心31dの擬似段スキュー角度となる機械角度を、それぞれθ(a−b)、θ(b−c)、θ(c−d)とする。また、回転子鉄心がn段(nは2以上の整数)の場合の理論擬似段スキュー角度θnは、θn=360/(n×固定子スロット数と回転子磁石極数の最小公倍数)[度]と定義される。各擬似段スキュー角度θ(a−b)、θ(b−c)、θ(c−d)を、それぞれ理論擬似段スキュー角度θn(本実施の形態の場合、θn=5.0(=360/(3×24)[度])より大きくすることで、回転子鉄心が2段の場合以上にコギングトルクを低減できる。
Embodiment 4 FIG.
In the fourth embodiment of the present invention, the number of stages of the rotor core of the first embodiment is four. The fourth embodiment will be described below with reference to the drawings. FIG. 11 is a perspective view of a rotor of an embedded permanent magnet type rotating electric machine according to the fourth embodiment, and FIG. 12 is an enlarged view of the rotor cross section. 11 and 12 show a case where the number of stages of the rotor core is four and each adjacent stage is shifted in the rotation direction around the rotation axis. In the first to third embodiments, the case where the rotor core 11 that is divided into two stages in the axial direction is used has been described. However, a cogging torque reduction effect can be further obtained by using the rotor core of three stages or more. It is done. Here, as in the case of the first embodiment, the permanent magnet 12 is embedded by providing a hole penetrating the rotor cores of all stages and inserting the hole into the hole. Therefore, only the rotor core 11 is deviated from rotation for each stage, and the permanent magnet 12 is not deviated from rotation. As shown in FIG. 12, the centers of the rotor outer peripheral surface curvature radii R2a, R2b, R2c, and R2d of each stage of the rotor core are rotated about the rotation axis of the rotor. Rotor 1st stage iron core 31a and rotor 2nd stage iron core 31b, rotor 2nd stage iron core 31b and rotor 3rd stage iron core 31c, rotor 3rd stage iron core 31c and rotor 4th stage iron core 31d pseudo stage The mechanical angles serving as the skew angles are θ (ab), θ (bc), and θ (cd), respectively. Further, when the rotor core has n stages (n is an integer of 2 or more), the theoretical pseudo-stage skew angle θn is θn = 360 / (n × the least common multiple of the number of stator slots and the number of rotor magnet poles) [degrees] ] Is defined. Respective pseudo-stage skew angles θ (ab), θ (bc), and θ (cd) are respectively converted into theoretical pseudo-stage skew angles θn (in this embodiment, θn = 5.0 (= 360). / (3 × 24) [degree]), the cogging torque can be reduced more than when the rotor core has two stages.

本発明は、永久磁石式回転電機において、コギングトルクやトルクリップルを低減し、またリラクタンストルクも低減し、トルク出力を高めた埋め込み型永久磁石式回転電機を提供するとともに、コギングトルクや電流−トルク特性は、表面磁石型永久磁石式回転電機と同等の特性を有することができるため、産業上の利用可能性は大である。 The present invention provides an embedded permanent magnet type rotating electrical machine that reduces cogging torque and torque ripple and also reduces reluctance torque and increases torque output in a permanent magnet type rotating electrical machine, and also provides cogging torque and current-torque. Since the characteristics can be equivalent to those of the surface magnet type permanent magnet type rotating electric machine, industrial applicability is great.

実施の形態1における埋め込み型永久磁石式回転電機の回転子斜視図である。FIG. 3 is a rotor perspective view of the embedded permanent magnet type rotating electric machine in the first embodiment. 実施の形態1における埋め込み型永久磁石式回転電機の断面図である。FIG. 3 is a cross-sectional view of the embedded permanent magnet type rotating electric machine in the first embodiment. 実施の形態1における回転子断面の拡大図である。FIG. 3 is an enlarged view of a rotor cross section in the first embodiment. 埋め込み型永久磁石式回転電機のコギングトルクシミュレーション結果の図である。It is a figure of a cogging torque simulation result of an embedded type permanent magnet type rotating electrical machine. 埋め込み型永久磁石式回転電機のトルク出力シミュレーション結果の図である。It is a figure of a torque output simulation result of an embedded permanent magnet type rotating electrical machine. 実施の形態2における埋め込み型永久磁石式回転電機の回転子斜視図である。6 is a perspective view of a rotor of an embedded permanent magnet type rotating electric machine according to Embodiment 2. FIG. 実施の形態2における非磁性材料部を示す図である。FIG. 6 is a diagram showing a nonmagnetic material part in a second embodiment. 実施の形態3における埋め込み型永久磁石式回転電機の回転子斜視図である。6 is a perspective view of a rotor of an embedded permanent magnet type rotating electrical machine in Embodiment 3. FIG. 実施の形態3における回転子断面図である。6 is a rotor cross-sectional view in a third embodiment. FIG. 実施の形態3における回転子断面の拡大図である。6 is an enlarged view of a rotor cross section in Embodiment 3. FIG. 実施の形態4における埋め込み型永久磁石式回転電機の回転子斜視図である。FIG. 10 is a rotor perspective view of an embedded permanent magnet type rotating electric machine in a fourth embodiment. 実施の形態4における回転子断面の拡大図である。FIG. 10 is an enlarged view of a rotor cross section in a fourth embodiment.

符号の説明Explanation of symbols

10、10A、10B、10C 回転子、
11、11a、11b、31a、31b、31c、31d 回転子鉄心、
12、12A 永久磁石、13 回転軸、14 非磁性材料部。
10, 10A, 10B, 10C rotor,
11, 11a, 11b, 31a, 31b, 31c, 31d rotor core,
12, 12A Permanent magnet, 13 Rotating shaft, 14 Non-magnetic material part.

Claims (8)

外周面が複数の円弧状曲面を有する回転子鉄心と、回転軸方向に垂直な断面形状が円弧状曲面を有する永久磁石と、前記永久磁石を前記回転子鉄心の外周面から所定の距離だけ離間した前記外周面に近い位置に埋設した回転子と、を備えることを特徴とする永久磁石式回転電機。 A rotor core having a plurality of arcuate curved surfaces on the outer peripheral surface, a permanent magnet having a cross-sectional shape perpendicular to the rotation axis direction and an arcuate curved surface, and the permanent magnets separated from the outer peripheral surface of the rotor core by a predetermined distance And a rotor embedded at a position close to the outer peripheral surface. 前記回転子の回転軸を中心とした回転子外周面最外半径が回転子外周面曲率半径よりも大きく、かつ、前記回転子鉄心は回転軸方向に複数の段部からなり、前記段部の回転子外周面曲率半径中心は、隣接する段部の回転子外周面曲率半径中心を、回転軸中心に一定の機械角度θだけ回転させた位置にあることを特徴とする請求項1に記載の永久磁石式回転電機。 The outermost radius of the outer periphery of the rotor around the rotation axis of the rotor is larger than the radius of curvature of the outer periphery of the rotor, and the rotor core consists of a plurality of steps in the direction of the rotation axis. The rotor outer peripheral surface curvature radius center is located at a position obtained by rotating the rotor outer peripheral surface curvature radius center of an adjacent step portion by a fixed mechanical angle θ about the rotation axis center. Permanent magnet type rotating electric machine. 前記回転子の回転軸を中心とした回転子外周面曲率半径の曲率半径と、前記永久磁石の回転軸方向に垂直な断面形状における前記回転子鉄心の外周面側の円弧状曲面の曲率半径と、を等しくしたことを特徴とする請求項1または2に記載の永久磁石式回転電機。 A radius of curvature of the outer circumferential surface of the rotor centered on the rotational axis of the rotor, and a radius of curvature of the arcuate curved surface on the outer circumferential surface side of the rotor core in a cross-sectional shape perpendicular to the rotational axis direction of the permanent magnet; The permanent magnet type rotating electrical machine according to claim 1 or 2, wherein 前記回転子鉄心は鋼板を積層して構成され、前記回転子鉄心の外周面から前記永久磁石までの埋設深さを、前記鋼板の板厚の2倍以下としたことを特徴とする請求項1〜3のうちいずれか1つに記載の永久磁石式回転電機。 2. The rotor core is formed by laminating steel plates, and the embedded depth from the outer peripheral surface of the rotor core to the permanent magnet is set to be twice or less the plate thickness of the steel plate. The permanent magnet type rotating electrical machine according to any one of? 前記埋設深さを、1mm以下としたことを特徴とする請求項4に記載の永久磁石式回転電機。 The permanent magnet type rotating electric machine according to claim 4, wherein the embedding depth is 1 mm or less. 前記機械角度θが、360/(回転子鉄心段数×回転子磁石極数と固定子スロット数の最小公倍数)度より大きいことを特徴とする請求項1〜5のうちいずれか1つに記載の永久磁石式回転電機。 6. The machine angle according to claim 1, wherein the mechanical angle θ is larger than 360 / (number of rotor core stages × number of rotor magnet poles and number of stator slots). Permanent magnet type rotating electric machine. 前記回転子鉄心段数が2、前記回転子磁石極数が8、前記固定子スロット数が12であり、前記機械角度θが7.5度より大きいことを特徴とする請求項6に記載の永久磁石式回転電機。 The permanent core according to claim 6, wherein the number of rotor core stages is 2, the number of rotor magnet poles is 8, the number of stator slots is 12, and the mechanical angle θ is greater than 7.5 degrees. Magnet rotating electric machine. 前記永久磁石が平板形状であることを特徴とする請求項1〜7のうちいずれか1つに記載の永久磁石式回転電機。 The permanent magnet type rotating electric machine according to any one of claims 1 to 7, wherein the permanent magnet has a flat plate shape.
JP2007108433A 2007-04-17 2007-04-17 Permanent magnet rotating electric machine Active JP5239200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108433A JP5239200B2 (en) 2007-04-17 2007-04-17 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108433A JP5239200B2 (en) 2007-04-17 2007-04-17 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2008271652A true JP2008271652A (en) 2008-11-06
JP5239200B2 JP5239200B2 (en) 2013-07-17

Family

ID=40050458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108433A Active JP5239200B2 (en) 2007-04-17 2007-04-17 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP5239200B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175575A1 (en) * 2012-05-22 2013-11-28 三菱電機株式会社 Embedded permanent magnet type rotary electric machine
WO2014125568A1 (en) * 2013-02-12 2014-08-21 三菱電機株式会社 Motor drive device
JPWO2013108726A1 (en) * 2012-01-17 2015-05-11 三菱電機株式会社 Brushless motor, external AC voltage source and electric power steering device
WO2015156044A1 (en) * 2014-04-08 2015-10-15 三菱電機株式会社 Interior permanent magnet rotating electric machine
CN106253618A (en) * 2015-06-09 2016-12-21 福特全球技术公司 Surface groove pattern for permanent magnet machine rotor
CN106655572A (en) * 2017-02-17 2017-05-10 广东美芝制冷设备有限公司 Rotor core, rotor, motor and compressor
CN107196436A (en) * 2017-07-03 2017-09-22 广东威灵电机制造有限公司 Rotor punching, skewed pole rotor and magneto
CN107370265A (en) * 2017-07-04 2017-11-21 广东威灵电机制造有限公司 Skewed pole rotor iron core and its core stamping, skewed pole rotor and motor
WO2018123839A1 (en) * 2016-12-28 2018-07-05 日本電産株式会社 Rotor and motor
CN109980814A (en) * 2017-12-28 2019-07-05 丹佛斯(天津)有限公司 Built-in permanent magnet motor rotor and magneto
CN109995160A (en) * 2017-12-25 2019-07-09 本田技研工业株式会社 The rotor of rotating electric machine
KR20220158167A (en) * 2021-05-21 2022-11-30 한국전자기술연구원 Rotor Skew Structure for Reducing Cogging Torque and Rotor Skew Method for Reducing Cogging Torque
US11532960B2 (en) 2019-02-05 2022-12-20 Fanuc Corporation Device for manufacturing rotor core, method for manufacturing rotor core, and rotor structure
WO2024105797A1 (en) * 2022-11-16 2024-05-23 三菱電機株式会社 Rotary electric machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172279B2 (en) * 2011-02-04 2015-10-27 Mitsubishi Electric Corporation Automotive embedded permanent magnet rotary electric machine
CN104600946B (en) * 2013-12-25 2016-04-13 珠海格力节能环保制冷技术研究中心有限公司 Synchronous magnetic resistance motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350393A (en) * 1999-03-29 2000-12-15 Shin Etsu Chem Co Ltd Permanent-magnet motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350393A (en) * 1999-03-29 2000-12-15 Shin Etsu Chem Co Ltd Permanent-magnet motor

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013108726A1 (en) * 2012-01-17 2015-05-11 三菱電機株式会社 Brushless motor, external AC voltage source and electric power steering device
US9331623B2 (en) 2012-01-17 2016-05-03 Mitsubishi Electric Corporation Brushless motor, external AC voltage source, and electric power steering device
JP5791794B2 (en) * 2012-05-22 2015-10-07 三菱電機株式会社 Permanent magnet embedded rotary electric machine
JPWO2013175575A1 (en) * 2012-05-22 2016-01-12 三菱電機株式会社 Permanent magnet embedded rotary electric machine
WO2013175575A1 (en) * 2012-05-22 2013-11-28 三菱電機株式会社 Embedded permanent magnet type rotary electric machine
US9735631B2 (en) 2012-05-22 2017-08-15 Mitsubishi Electric Corporation Embedded permanent magnet rotary electric machine
JPWO2014125568A1 (en) * 2013-02-12 2017-02-02 三菱電機株式会社 Motor drive device
WO2014125568A1 (en) * 2013-02-12 2014-08-21 三菱電機株式会社 Motor drive device
CN104981973A (en) * 2013-02-12 2015-10-14 三菱电机株式会社 Motor drive device
CN104981973B (en) * 2013-02-12 2018-02-16 三菱电机株式会社 Motor drive
JP5911636B2 (en) * 2013-02-12 2016-04-27 三菱電機株式会社 Motor drive device
US9571017B2 (en) 2013-02-12 2017-02-14 Mitsubishi Electric Corporation Motor drive device
KR20160131063A (en) * 2014-04-08 2016-11-15 미쓰비시덴키 가부시키가이샤 Interior permanent magnet rotating electric machine
CN106165259A (en) * 2014-04-08 2016-11-23 三菱电机株式会社 Permanent magnet submerged type electric rotating machine
US9705366B2 (en) 2014-04-08 2017-07-11 Mitsubishi Electric Corporation Embedded permanent magnet rotary electric machine
CN106165259B (en) * 2014-04-08 2018-07-03 三菱电机株式会社 Permanent magnet submerged type electric rotating machine
JP5930253B2 (en) * 2014-04-08 2016-06-08 三菱電機株式会社 Permanent magnet embedded rotary electric machine
KR101880377B1 (en) * 2014-04-08 2018-07-19 미쓰비시덴키 가부시키가이샤 Interior permanent magnet rotating electric machine
WO2015156044A1 (en) * 2014-04-08 2015-10-15 三菱電機株式会社 Interior permanent magnet rotating electric machine
CN106253618A (en) * 2015-06-09 2016-12-21 福特全球技术公司 Surface groove pattern for permanent magnet machine rotor
CN106253618B (en) * 2015-06-09 2020-04-17 福特全球技术公司 Surface groove patterns for permanent magnet motor rotors
CN110100376A (en) * 2016-12-28 2019-08-06 日本电产株式会社 Rotor and motor
US11159067B2 (en) 2016-12-28 2021-10-26 Nidec Corporation Rotor and motor
JP7135865B2 (en) 2016-12-28 2022-09-13 日本電産株式会社 rotor and motor
JPWO2018123839A1 (en) * 2016-12-28 2019-10-31 日本電産株式会社 Rotor and motor
WO2018123839A1 (en) * 2016-12-28 2018-07-05 日本電産株式会社 Rotor and motor
CN110100376B (en) * 2016-12-28 2021-03-12 日本电产株式会社 Rotor and motor
CN106655572B (en) * 2017-02-17 2024-02-20 广东美芝制冷设备有限公司 Rotor core, rotor, motor and compressor
CN106655572A (en) * 2017-02-17 2017-05-10 广东美芝制冷设备有限公司 Rotor core, rotor, motor and compressor
CN107196436B (en) * 2017-07-03 2019-04-16 广东威灵电机制造有限公司 Rotor punching, skewed pole rotor and magneto
CN107196436A (en) * 2017-07-03 2017-09-22 广东威灵电机制造有限公司 Rotor punching, skewed pole rotor and magneto
CN107370265A (en) * 2017-07-04 2017-11-21 广东威灵电机制造有限公司 Skewed pole rotor iron core and its core stamping, skewed pole rotor and motor
CN109995160B (en) * 2017-12-25 2021-02-09 本田技研工业株式会社 Rotor of rotating electric machine
CN109995160A (en) * 2017-12-25 2019-07-09 本田技研工业株式会社 The rotor of rotating electric machine
CN109980814A (en) * 2017-12-28 2019-07-05 丹佛斯(天津)有限公司 Built-in permanent magnet motor rotor and magneto
US11532960B2 (en) 2019-02-05 2022-12-20 Fanuc Corporation Device for manufacturing rotor core, method for manufacturing rotor core, and rotor structure
KR20220158167A (en) * 2021-05-21 2022-11-30 한국전자기술연구원 Rotor Skew Structure for Reducing Cogging Torque and Rotor Skew Method for Reducing Cogging Torque
KR102590333B1 (en) 2021-05-21 2023-10-19 한국전자기술연구원 Rotor Skew Structure for Reducing Cogging Torque and Rotor Skew Method for Reducing Cogging Torque
WO2024105797A1 (en) * 2022-11-16 2024-05-23 三菱電機株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP5239200B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5239200B2 (en) Permanent magnet rotating electric machine
KR101880377B1 (en) Interior permanent magnet rotating electric machine
JP5238231B2 (en) Rotating electrical machine rotor
JP6806352B2 (en) Manufacturing method of rotary electric machine and rotor core
JP5663936B2 (en) Permanent magnet rotating electric machine
JP2008206308A (en) Permanent-magnet rotating electric machine
JP2011135638A (en) Rotator of rotating electric machine, and rotating electric machine
JP2008167583A (en) Rotor of permanent magnet embedded motor, electric motor for blower and electric motor for compressor
JP2011091911A (en) Permanent-magnet rotary electric machine
JP2006158008A (en) Permanent magnet embedded rotor and dynamo-electric machine
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP3769943B2 (en) Permanent magnet rotor
JP6748852B2 (en) Brushless motor
JP2008148447A (en) Motor for electric power steering device
JP2008048481A (en) Permanent magnet motor
JP6314479B2 (en) Manufacturing method of rotor for rotating electrical machine
JP2002084690A (en) Electric motor
JP2015233368A (en) Permanent magnet type motor
JP2007228771A (en) Permanent magnet type motor
JP4080273B2 (en) Permanent magnet embedded motor
JP2007159308A (en) Rotor
JP2007143305A (en) Method of manufacturing core, method of manufacturing stator, and method of manufacturing motor
JP2010068548A (en) Motor
JP2009095110A (en) Rotor for magnet-embedded synchronous motor and magnet-embedded synchronous motor
JP2008017634A (en) Permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5239200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250