JP2008270250A - Semiconductor integrated circuit device and manufacturing method thereof - Google Patents

Semiconductor integrated circuit device and manufacturing method thereof Download PDF

Info

Publication number
JP2008270250A
JP2008270250A JP2007106945A JP2007106945A JP2008270250A JP 2008270250 A JP2008270250 A JP 2008270250A JP 2007106945 A JP2007106945 A JP 2007106945A JP 2007106945 A JP2007106945 A JP 2007106945A JP 2008270250 A JP2008270250 A JP 2008270250A
Authority
JP
Japan
Prior art keywords
trench
wiring
copper
integrated circuit
copper wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007106945A
Other languages
Japanese (ja)
Other versions
JP5370979B2 (en
Inventor
Hitoshi Onuki
仁 大貫
Masaru Tashiro
優 田代
Khyou Pin Khoo
Khyou Pin Khoo
Nobuhiro Ishikawa
信博 石川
Kazuo Furuya
一夫 古屋
Takahiro Nagano
隆洋 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BONZOU KK
National Institute for Materials Science
Ibaraki University NUC
Original Assignee
BONZOU KK
National Institute for Materials Science
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BONZOU KK, National Institute for Materials Science, Ibaraki University NUC filed Critical BONZOU KK
Priority to JP2007106945A priority Critical patent/JP5370979B2/en
Publication of JP2008270250A publication Critical patent/JP2008270250A/en
Application granted granted Critical
Publication of JP5370979B2 publication Critical patent/JP5370979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a copper wiring in which the resistance rate of a wiring does not remarkably increases even if a trench forming the wiring has a width of not more than 70 nm and a value disclosed in the international semiconductor road map is met. <P>SOLUTION: The copper wiring has a width of not more than 70 nm and a ratio D/W of an average crystal particle diameter D to a wiring width W is ≥1.3 in a surface parallel to the side surface of a trench. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は半導体集積回路装置、特に配線ロードマップに示された配線幅70nm及びそれ以下の配線幅を備える半導体集積回路装置及びその製造方法に関する。   The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor integrated circuit device having a wiring width of 70 nm and less than that shown in a wiring road map, and a manufacturing method thereof.

半導体集積回路装置はムーアの法則で言われている3年で集積度が4倍になるというハイスピードで高集積度化が進められている。この集積度向上のための目安になっているのが国際半導体技術ロードマップ(International Technology Roadmap for Semiconductor)で、2005年版(ITRS 2005 Edition)のMPU(Micro Processing Unit)の配線を例に挙げると、集積度を向上するために配線幅の目標値が2005年は90nm、2007年は68nm、2010年は45nm、2013年は32nmとなっており、高速動作を確保するために抵抗率の目標値は夫々3.07μΩ・cm、3.43μΩ・cm、4.08μΩ・cm、4.83μΩ・cmとなっている。   Semiconductor integrated circuit devices are being highly integrated at a high speed, in which integration is quadrupled in three years, which is said by Moore's Law. An example of the wiring of the MPU (Micro Processing Unit) of 2005 (ITRS 2005 Edition) is the International Semiconductor Technology Roadmap for Semiconductor, which is a standard for improving the degree of integration. In order to improve the degree of integration, the target value of the wiring width is 90 nm in 2005, 68 nm in 2007, 45 nm in 2010, and 32 nm in 2013. The target value of resistivity is as follows to ensure high-speed operation. They are 3.07 μΩ · cm, 3.43 μΩ · cm, 4.08 μΩ · cm, and 4.83 μΩ · cm, respectively.

半導体集積回路装置の配線材料としては、これまで安価で比較的抵抗率の低いアルミニウムまたはアルミニウム合金が広く使用されてきたが、集積度が向上する(配線幅が狭くなる)に従って抵抗率がアルミニウムの半分程度で許容電流がアルミニウムより2桁以上大きい銅または銅合金がアルミニウムに代わって使用される傾向にある。しかしながら、配線幅が縮小され、ある値以下になると銅とアルミニウムの平均自由行程の違いに基づいて銅配線の抵抗率がアルミニウムのそれより大きくなることが知られている(特許文献1)。特許文献1では、アルミニウム配線と銅配線の両方を備え、配線の形状に応じてアルミニウム配線と銅配線のうち抵抗率が小さくなる方を選択的に使用することで、平均自由行程の違いに基づく問題を解決している。
特開2003−133312号
As a wiring material of a semiconductor integrated circuit device, aluminum or an aluminum alloy that has been inexpensive and has a relatively low resistivity has been widely used so far. However, as the degree of integration increases (the wiring width becomes narrower), the resistivity of aluminum is reduced. Copper or a copper alloy, which is about half and whose allowable current is two orders of magnitude greater than aluminum, tends to be used instead of aluminum. However, it is known that when the wiring width is reduced to a certain value or less, the resistivity of the copper wiring becomes larger than that of aluminum based on the difference in mean free path between copper and aluminum (Patent Document 1). In patent document 1, it is based on the difference of an average free path | route by providing both aluminum wiring and copper wiring, and selectively using the direction where a resistivity becomes small among aluminum wiring and copper wiring according to the shape of wiring. The problem is solved.
JP 2003-133212 A

本発明者らは特許文献1で提案されている方法では配線幅が70nm以下になると国際半導体技術ロードマップに開示されている抵抗率を達成することが出来なくなることを実験で確認した。本発明者らはその原因が、半導体集積回路装置の集積度が向上すると配線を形成するトレンチの幅が狭くなり、トレンチの幅が100nm以下になるとトレンチ内に形成される銅配線の結晶粒径が小さくなり、電流の流れる方向に多数の結晶粒が存在し、結晶粒の界面で電子の散乱される機会が増加し、抵抗率が異常に増加することにあると推測した。   The present inventors have confirmed through experiments that the resistivity disclosed in the international semiconductor technology roadmap cannot be achieved by the method proposed in Patent Document 1 when the wiring width is 70 nm or less. The inventors of the present invention are that the width of the trench for forming the wiring becomes narrower when the integration degree of the semiconductor integrated circuit device is improved, and the crystal grain size of the copper wiring formed in the trench when the width of the trench is 100 nm or less. It has been estimated that there is a large number of crystal grains in the direction of current flow, the chance of electrons being scattered at the crystal grain interface increases, and the resistivity increases abnormally.

本発明の目的は、配線を形成するトレンチ幅が70nm以下になっても配線の抵抗率が大幅に増加せず国際半導体技術ロードマップに開示されている目標値を余裕を持って満たす銅配線を実現し、それを使用した半導体集積回路装置及びその製造方法を提供することにある。   An object of the present invention is to provide a copper wiring that satisfies the target value disclosed in the international semiconductor technology roadmap with a margin without increasing the resistivity of the wiring even when the width of the trench forming the wiring is 70 nm or less. An object of the present invention is to provide a semiconductor integrated circuit device using the same and a manufacturing method thereof.

上記目的を達成する本発明半導体集積回路装置の特徴とするところは、回路素子が形成された半導体基体と、前記半導体基体の主表面上に形成された絶縁層と、少なくとも前記絶縁層を利用して形成されたトレンチと、前記トレンチ内に形成された配線幅が70nm以下の銅配線を備え、前記銅配線が電子散乱の少ない粒界構造を有する点にある。電子散乱の少ない粒界構造は以下の説明から明らかになろう。   The semiconductor integrated circuit device of the present invention that achieves the above object is characterized by utilizing a semiconductor substrate on which circuit elements are formed, an insulating layer formed on the main surface of the semiconductor substrate, and at least the insulating layer. And a copper wiring having a wiring width of 70 nm or less formed in the trench, and the copper wiring has a grain boundary structure with less electron scattering. The grain boundary structure with less electron scattering will be clear from the following explanation.

上記目的を達成する本発明半導体集積回路装置の特徴とするところは、回路素子が形成された半導体基体と、半導体基体の主表面上に形成された絶縁層と、少なくとも絶縁層を利用して形成されたトレンチと、トレンチ内に形成された銅配線を備え、銅配線の配線幅が70nm以下で、銅配線のトレンチの側面と平行な面における平均結晶粒径が配線幅の1.3倍以上となるようにした点にある。銅配線の抵抗率は、トレンチの側面と平行な面における平均結晶粒径Dと配線幅Wの比D/Wが1.3を境界にしてそれ以下では急増するが、それ以上になると安定した低い値を維持することが確認され、比D/Wを1.3以上にすることにより国際半導体技術ロードマップに開示されている抵抗率を満たす配線を実現するが可能になる。ここでいう銅配線は製造過程で不可避的に混入する不純物以外の不純物を含まない純度の高い銅からなる配線をいう。半導体基体としては、IV族元素、III―V族化合物及びこれらの組合せからなる半導体単結晶または半導体多結晶からなる基体、絶縁基体とその上に形成された半導体単結晶層または半導体多結晶層からなる基体をいう。また、ここでいう銅配線とは、半導体集積回路装置の各配線層の全てが銅配線で形成されているものは勿論のこと一部に銅配線が使用されているものを含むものである。   The semiconductor integrated circuit device of the present invention that achieves the above object is characterized in that a semiconductor substrate on which circuit elements are formed, an insulating layer formed on the main surface of the semiconductor substrate, and at least using the insulating layer And a copper wiring formed in the trench, the wiring width of the copper wiring is 70 nm or less, and the average crystal grain size in the plane parallel to the side surface of the trench of the copper wiring is 1.3 times or more of the wiring width It is in the point made to become. The resistivity of the copper wiring increases rapidly when the ratio D / W of the average crystal grain size D and the wiring width W in the plane parallel to the side surface of the trench is 1.3 or less, but is stable when the ratio is higher than that. It is confirmed that the low value is maintained, and by setting the ratio D / W to 1.3 or more, it becomes possible to realize a wiring satisfying the resistivity disclosed in the international semiconductor technology roadmap. The copper wiring here means wiring made of high-purity copper that does not contain impurities other than impurities inevitably mixed in the manufacturing process. Examples of the semiconductor substrate include a substrate made of a semiconductor single crystal or semiconductor polycrystal composed of a group IV element, a group III-V compound, and a combination thereof, an insulating substrate, and a semiconductor single crystal layer or a semiconductor polycrystal layer formed thereon. A substrate. The term “copper wiring” as used herein includes not only those in which all the wiring layers of the semiconductor integrated circuit device are formed of copper wiring, but also those in which copper wiring is used in part.

上記目的を再現性良く達成する本発明半導体集積回路装置の他の特徴とするところは、上述の比D/Wが1.3以上の半導体集積回路装置において銅配線の結晶粒径の標準偏差を40nm以下にすることである。   Another feature of the semiconductor integrated circuit device of the present invention that achieves the above object with good reproducibility is that the standard deviation of the crystal grain size of the copper wiring is set in the semiconductor integrated circuit device having the above ratio D / W of 1.3 or more. 40 nm or less.

上記目的を達成する本発明半導体集積回路装置の他の特徴とするところは、銅配線中の酸素濃度を配線幅70nm以下では5wt%以下に、50nm以下では4wt%以下に、30nm以下では3wt%以下にすることにある。配線中の酸素濃度を配線幅に応じて所定値以下にすることにより、銅配線の抵抗率を国際半導体技術ロードマップ2005版に開示されている配線幅68nm、45nm、32nmのときの抵抗率の目標値3.43μΩ・cm、4.08μΩ・cm、4.83μΩ・cmを大幅に下回った抵抗率を実現できる。また、配線中の酸素濃度の変化に対する配線の抵抗率の変化が著しく小さくなり、所望の抵抗率を再現性良く実現できる。   Another feature of the semiconductor integrated circuit device of the present invention that achieves the above object is that the oxygen concentration in the copper wiring is 5 wt% or less at a wiring width of 70 nm or less, 4 wt% or less at 50 nm or less, and 3 wt% at 30 nm or less. It is in the following. By reducing the oxygen concentration in the wiring to a predetermined value or less according to the wiring width, the resistivity of the copper wiring is the resistivity of the wiring widths 68 nm, 45 nm, and 32 nm disclosed in the International Semiconductor Technology Roadmap 2005 edition. It is possible to realize a resistivity significantly lower than the target value of 3.43 μΩ · cm, 4.08 μΩ · cm, and 4.83 μΩ · cm. Further, the change in the resistivity of the wiring with respect to the change in the oxygen concentration in the wiring is remarkably reduced, and a desired resistivity can be realized with good reproducibility.

上記目的を達成する本発明半導体集積回路装置の製造方法の特徴とするところは、純度99.99〜99.999999wt%(以下4N〜8Nと称す)の硫酸銅めっき浴、アノードに純度99.9999〜99.9999999wt%(以下6N〜9Nと称す)の銅電極を用いて電解めっき法によってトレンチ内に銅めっき層を形成し、しかる後に水素雰囲気で銅めっき層を熱処理する点にある。この製造方法によって、比D/Wを1.3以上にすること、酸素濃度を5wt%以下にすることを容易に実現できる。   The manufacturing method of the semiconductor integrated circuit device of the present invention that achieves the above object is characterized by a copper sulfate plating bath having a purity of 99.99 to 99.99999999 wt% (hereinafter referred to as 4N to 8N), and a purity of 99.9999 for the anode. A copper plating layer is formed in the trench by electrolytic plating using a copper electrode of ˜99.9999999 wt% (hereinafter referred to as 6N to 9N), and then the copper plating layer is heat-treated in a hydrogen atmosphere. By this manufacturing method, it is possible to easily realize the ratio D / W of 1.3 or more and the oxygen concentration of 5 wt% or less.

上記目的を達成する他の本発明半導体集積回路装置の製造方法の特徴とするところは、硫酸銅めっき浴、アノードに銅電極を用いて電解めっき法によってトレンチ内に銅めっき層を形成し、しかる後に銅めっき層を水素、アルゴン、窒素から選ばれた雰囲気で赤外線加熱する点にある。この製造方法によっても、比D/Wを1.3以上にすること、酸素濃度を5wt%以下にすることを容易に実現できる。   Another feature of the method of manufacturing a semiconductor integrated circuit device according to the present invention that achieves the above object is that a copper plating layer is formed in the trench by electrolytic plating using a copper sulfate plating bath, a copper electrode at the anode, and accordingly. Later, the copper plating layer is heated by infrared rays in an atmosphere selected from hydrogen, argon, and nitrogen. This manufacturing method can easily realize the ratio D / W of 1.3 or more and the oxygen concentration of 5 wt% or less.

本発明によれば、平均結晶粒径Dと配線幅Wの比D/Wを規定することにより、または配線中の酸素濃度を規定することによりトレンチ幅が狭くなるに従って抵抗率が異常に増加するという問題が解決でき、国際半導体技術ロードマップに開示されている値を満たす配線を備えた半導体集積回路装置の実現を可能にする。   According to the present invention, the resistivity increases abnormally as the trench width becomes narrower by defining the ratio D / W of the average crystal grain size D and the wiring width W or by defining the oxygen concentration in the wiring. This makes it possible to realize a semiconductor integrated circuit device having wiring that satisfies the values disclosed in the international semiconductor technology roadmap.

本発明を適用する半導体集積回路装置としては、単結晶半導体基体にMOSトランジスタ、バイポーラトランジスタなどから選ばれた回路素子を多数個集積化して日々集積度の向上が進められているMPU及びASIC(Application Specific Integrated Circuit:特定用途向けの集積回路の総称)などのロジックLSI、DRAM(Dynamic Random Access Memory)及びフラッシュメモリなどのメモリLSIが好ましい用途である。他の用途としては、表示画面の大型化が進められ高速動作が要求される液晶表示装置がある。
以下、本発明半導体集積回路装置及びその製造方法の好ましい実施形態を図面を用いて詳細に説明する。
As a semiconductor integrated circuit device to which the present invention is applied, MPUs and ASICs (Applications) in which a single crystal semiconductor substrate is integrated with a large number of circuit elements selected from MOS transistors, bipolar transistors, etc., and the degree of integration is being promoted every day. A logic LSI such as a specific integrated circuit (generic name of an integrated circuit for a specific application), a memory LSI such as a DRAM (Dynamic Random Access Memory), and a flash memory are preferable applications. As another application, there is a liquid crystal display device that requires a high-speed operation due to an increase in size of a display screen.
Hereinafter, preferred embodiments of a semiconductor integrated circuit device and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings.

図1は本発明を適用した半導体集積回路装置の概略断面図で、実際の半導体集積回路装置は配線層が8層、9層、それ以上になっているが、説明を簡略化するために2層配線構造を例示している。図において、1は一方の主表面1aに隣接して多数個の回路素子(図示せず)が形成された半導体基体、2は半導体基体1の一方の主表面1a上に形成された例えばシリコン酸化物層からなる第1絶縁層、2aは第1絶縁層2に形成されたスルーホール、3はスルーホール2a内に形成された例えばタングステンからなるプラグ、3aはスルーホール2aとプラグ3との間に形成された例えばTiN(窒化チタン)からなるバリア層、4は第1絶縁層2及びプラグ3上に例えば窒化シリコン層41を介して形成された例えばシリコン酸化物層42からなる第2絶縁層、4aは第2絶縁層4に形成された第1トレンチ、5は第1トレンチ4a内に形成された第1銅配線、5aは第1トレンチ4aと第1銅配線5との間に形成された例えばTaN(窒化タンタル)/Ta(タンタル)からなるバリア層、6は第2絶縁層4及び第1銅配線5上に例えば窒化シリコン層61を介して例えばシリコン酸化物層62、窒化シリコン層63、シリコン酸化物層64を順次積層して形成した第3絶縁層、6aは第2絶縁層6に形成された断面T字形を有する第2トレンチ、7は第2トレンチ6a内に形成された第2銅配線、7aは第2トレンチ6aと第2銅配線7の間に形成された例えばTa/TaN/Taからなるバリア層である。第1銅配線5及び/又は第2銅配線7の配線幅はバリア層5aまたは7aの幅を加えて70nm以下となる値で、トレンチの側面と平行な面における平均結晶粒径Dと配線幅Wの比D/Wが1.3以上になっている。配線幅とはトレンチの幅で決まる幅で、第1銅配線5または第2銅配線7の線幅にバリア層5aまたは7aの幅を加えた値をいう。   FIG. 1 is a schematic cross-sectional view of a semiconductor integrated circuit device to which the present invention is applied. An actual semiconductor integrated circuit device has eight, nine, or more wiring layers. However, in order to simplify the description, FIG. A layer wiring structure is illustrated. In the figure, 1 is a semiconductor substrate on which a large number of circuit elements (not shown) are formed adjacent to one main surface 1a, and 2 is, for example, a silicon oxide formed on one main surface 1a of the semiconductor substrate 1. A first insulating layer made of a material layer, 2a is a through hole formed in the first insulating layer 2, 3 is a plug made of, for example, tungsten formed in the through hole 2a, and 3a is between the through hole 2a and the plug 3. A barrier layer made of, for example, TiN (titanium nitride) is formed on the first insulating layer 2 and the plug 3, and a second insulating layer made of, for example, a silicon oxide layer 42 is formed through, for example, a silicon nitride layer 41. 4a is a first trench formed in the second insulating layer 4, 5 is a first copper wiring formed in the first trench 4a, and 5a is formed between the first trench 4a and the first copper wiring 5. For example, TaN A barrier layer 6 made of tantalum nitride) / Ta (tantalum), for example, a silicon oxide layer 62, a silicon nitride layer 63, and a silicon oxide layer on the second insulating layer 4 and the first copper wiring 5 through a silicon nitride layer 61, for example. A third insulating layer formed by sequentially stacking the physical layers 64; 6a, a second trench having a T-shaped cross section formed in the second insulating layer 6; and 7, a second copper wiring formed in the second trench 6a. , 7a are barrier layers made of, for example, Ta / TaN / Ta formed between the second trench 6a and the second copper wiring 7. The wiring width of the first copper wiring 5 and / or the second copper wiring 7 is a value of 70 nm or less including the width of the barrier layer 5a or 7a, and the average crystal grain size D and the wiring width in a plane parallel to the side surface of the trench The ratio D / W of W is 1.3 or more. The wiring width is a width determined by the width of the trench, and is a value obtained by adding the width of the barrier layer 5 a or 7 a to the line width of the first copper wiring 5 or the second copper wiring 7.

図2は銅配線におけるトレンチの側面と平行な面における平均結晶粒径Dと配線幅Wの比D/Wと抵抗率の関係を示す図で、この図から比D/Wが1.3を境界にして1.3以下になると抵抗率が急増し、1.3以上になると抵抗率が2.8〜3.0μΩ・cmの間で安定していることが分かる。この抵抗率は国際半導体技術ロードマップ2005年版に開示されている配線幅68nm、45nm、32nmのときの抵抗率の目標値3.43μΩ・cm、4.08μΩ・cm、4.83μΩ・cmを大幅に下回った値を実現できるものである。本発明は抵抗率が安定する平均結晶粒径Dと配線幅Wの比D/Wの範囲で銅配線を使用することを特徴としている。図2のデータは配線幅が70nm、50nm、30nmのいずれの場合においても同一であった。   FIG. 2 is a diagram showing the relationship between the average crystal grain size D and the ratio D / W of the wiring width W and the resistivity in the plane parallel to the side surface of the trench in the copper wiring. From this figure, the ratio D / W is 1.3. It can be seen that when the boundary is 1.3 or less, the resistivity increases rapidly, and when it is 1.3 or more, the resistivity is stable between 2.8 and 3.0 μΩ · cm. This resistivity is significantly higher than the target value of 3.43 μΩ · cm, 4.08 μΩ · cm, and 4.83 μΩ · cm when the wiring width is 68 nm, 45 nm, and 32 nm, which is disclosed in the 2005 edition of the International Semiconductor Technology Roadmap. It is possible to realize a value lower than. The present invention is characterized in that the copper wiring is used in the range of the ratio D / W of the average crystal grain diameter D and the wiring width W where the resistivity is stable. The data in FIG. 2 was the same regardless of whether the wiring width was 70 nm, 50 nm, or 30 nm.

銅配線のトレンチの側面と平行な面における平均結晶粒径は、微細構造解析技術として広く知られているFIB/TEM技術を用いて測定した。FIB/TEM技術とは、図3に示すように、試料としての銅配線5(7)からトレンチ4a(6a)の側面と平行をなす面に沿う領域を集束イオンビーム(FIB)加工によって試料片として切り出し、その試料片のトレンチ4a(6a)の側面と平行をなす面を透過型電子顕微鏡(TEM)により観察を行うものである。TEMによる観察された図4に示す組織図において各結晶粒の粒界に沿って線を引き、結晶粒を円形と仮定して粒径の面積を求め、最終的に個々の粒径を算出し、それらの平均値を求めた。これが平均結晶粒径である。   The average crystal grain size in a plane parallel to the side surface of the trench of the copper wiring was measured using a FIB / TEM technique widely known as a fine structure analysis technique. As shown in FIG. 3, the FIB / TEM technique is a sample piece formed by focusing ion beam (FIB) processing on a region extending from a copper wiring 5 (7) as a sample to a surface parallel to the side surface of the trench 4a (6a). And a surface parallel to the side surface of the trench 4a (6a) of the sample piece is observed with a transmission electron microscope (TEM). In the organization chart shown in FIG. 4 observed by TEM, a line is drawn along the grain boundary of each crystal grain, the area of the grain size is obtained assuming that the crystal grain is circular, and finally the individual grain size is calculated. The average value of them was obtained. This is the average crystal grain size.

本発明は銅配線のトレンチの側面と平行な面における平均結晶粒径Dと配線幅Wの比D/Wが、配線の抵抗率を小さくするために好ましい範囲を有していることを見出しなされたものである。配線の平均結晶粒径Dと配線幅Wの比D/Wは従来からエレクトロマイグレーション耐性を向上するために検討されており、その場合の平均結晶粒径はトレンチに形成された配線を表面側から見て算出した値を使用している。配線幅が100nm以下の銅配線においては、表面側から底部側に向かって結晶粒径が小さくなるように結晶粒が分布していることを本発明者らは見出した。従って、配線の表面側から見た平均結晶粒径は配線幅によって大きく変化しないが、配線のトレンチの側面と平行な面における平均結晶粒径は大きく変化する。配線の抵抗率は電流の流れる方向における結晶粒の粒界の多さに依存することから、配線の抵抗率を小さくするためには、トレンチの側面と平行な面における平均結晶粒径が重要なファクターとなる。本発明はこの新しい知見に基づいてなされたものである。   The present invention has found that the ratio D / W of the average crystal grain diameter D and the wiring width W in a plane parallel to the side surface of the trench of the copper wiring has a preferable range for reducing the resistivity of the wiring. It is a thing. The ratio D / W between the average crystal grain size D of the wiring and the width W of the wiring has been studied in order to improve the electromigration resistance. In this case, the average crystal grain size of the wiring formed in the trench is from the surface side. The calculated value is used. The present inventors have found that in copper wiring having a wiring width of 100 nm or less, crystal grains are distributed so that the crystal grain size decreases from the surface side toward the bottom side. Therefore, the average crystal grain size seen from the surface side of the wiring does not change greatly depending on the wiring width, but the average crystal grain size in the plane parallel to the side surface of the trench of the wiring changes greatly. Since the resistivity of the wiring depends on the number of crystal grain boundaries in the direction of current flow, the average crystal grain size in the plane parallel to the side surface of the trench is important for reducing the wiring resistivity. It becomes a factor. The present invention has been made based on this new finding.

銅配線のトレンチの側面と平行な面における平均結晶粒径Dと配線幅Wの比D/Wを1.3以上にすると抵抗率を小さくできる理由は、平均結晶粒径が大きくなるということは結晶粒が大きくなることを意味し、その結果、電流の流れる方向に存在する粒界が減少して電子散乱が減少することが主たる要因と推測する。   The reason why the resistivity can be reduced when the ratio D / W of the average crystal grain size D to the wiring width W in the plane parallel to the side surface of the trench of the copper wiring is 1.3 or more is that the average crystal grain size increases. It means that the crystal grain becomes larger, and as a result, the main factor is that the grain boundary existing in the direction of current flow decreases and the electron scattering decreases.

図5は銅配線における結晶粒径の標準偏差と抵抗率の関係を示す図で、結晶粒径の標準偏差が35〜40nm付近から抵抗率が急増することが分かる。従って、標準偏差を40nm以下、好ましくは35nm以下にすると抵抗率の変化が殆どなくなり、所望の抵抗率の銅配線を再現性良く得ることが出来る。

Figure 2008270250
FIG. 5 is a diagram showing the relationship between the standard deviation of the crystal grain size and the resistivity in the copper wiring, and it can be seen that the resistivity rapidly increases when the standard deviation of the crystal grain size is around 35 to 40 nm. Therefore, when the standard deviation is 40 nm or less, preferably 35 nm or less, the change in resistivity is almost eliminated, and a copper wiring having a desired resistivity can be obtained with good reproducibility.
Figure 2008270250

Figure 2008270250
Figure 2008270250

平均結晶粒径Dと配線幅Wの比D/Wを1.3以上に保持した状態で結晶粒径の標準偏差は小さくすることは、線幅より大きい結晶粒径の結晶粒が揃うことを意味し、電流の流れ方向に存在する粒界が減少し抵抗率が小さくなる。従って、標準偏差は小さい方が好ましい。但し、標準偏差に0nmは含まない。図5のデータは配線幅が70nm、50nm、30nmのいずれの場合においても同一であった。   Reducing the standard deviation of the crystal grain size while maintaining the ratio D / W of the average crystal grain size D and the wiring width W to 1.3 or more means that crystal grains having a crystal grain size larger than the line width are aligned. This means that the grain boundaries existing in the direction of current flow are reduced and the resistivity is reduced. Therefore, it is preferable that the standard deviation is small. However, 0 nm is not included in the standard deviation. The data in FIG. 5 was the same regardless of whether the wiring width was 70 nm, 50 nm, or 30 nm.

銅配線からその結晶粒径の標準偏差を測定する方法としては、例えばFIB/TEM技術を用いて図4に示す組織図を作成し、それから全結晶粒の粒径を算出して数式(1)により算出することが可能である。   As a method of measuring the standard deviation of the crystal grain size from the copper wiring, for example, the organization chart shown in FIG. 4 is created using the FIB / TEM technique, and the grain size of all crystal grains is calculated from the formula (1). It is possible to calculate by

図6は銅配線に含まれる酸素濃度と抵抗率の関係を示す図で、配線幅が70nmの場合は酸素濃度が5wt%を超えると抵抗率が急増し、50nmの場合は酸素濃度が4wt%を超えると抵抗率が急増し、30nmの場合は酸素濃度が3wt%を超えると抵抗率が急増していることが分かる。このことから銅配線中の酸素濃度を配線幅が70nmの場合は5wt%以下にすると3μΩ・cm以下の抵抗率の銅配線が再現性良く得られ、配線幅が50nmの場合は酸素濃度を4wt%以下にすると3.5μΩ・cm以下の抵抗率の銅配線が再現性良く得られ、配線幅が30nmの場合は酸素濃度を3wt%以下にすると3.8μΩ・cm以下の抵抗率の銅配線が再現性良く得られ、国際半導体技術ロードマップ2005年版に開示されている配線幅68nm、45nm、32nmのときの抵抗率の目標値3.43μΩ・cm、4.08μΩ・cm、4.83μΩ・cmを大幅に下回った抵抗率を実現できることが分かる。酸素濃度は低ければ低いほど抵抗率を小さくできることから、酸素濃度の好ましい下限値は存在しない。   FIG. 6 is a diagram showing the relationship between the oxygen concentration contained in the copper wiring and the resistivity. When the wiring width is 70 nm, the resistivity rapidly increases when the oxygen concentration exceeds 5 wt%, and when the wiring width is 50 nm, the oxygen concentration is 4 wt%. It can be seen that the resistivity rapidly increases when the oxygen concentration exceeds 30 nm, and the resistivity increases rapidly when the oxygen concentration exceeds 3 wt% in the case of 30 nm. Therefore, if the oxygen concentration in the copper wiring is 5 wt% or less when the wiring width is 70 nm, a copper wiring having a resistivity of 3 μΩ · cm or less can be obtained with good reproducibility, and if the wiring width is 50 nm, the oxygen concentration is 4 wt%. Copper wiring with a resistivity of 3.5 μΩ · cm or less can be obtained with good reproducibility when it is less than%, and when the wiring width is 30 nm, copper wiring with a resistivity of 3.8 μΩ · cm or less is obtained with an oxygen concentration of 3 wt% or less. Is obtained with good reproducibility and is disclosed in the International Semiconductor Technology Roadmap 2005 edition as a target value of resistivity 3.43 μΩ · cm, 4.08 μΩ · cm, 4.83 μΩ · when the wiring width is 68 nm, 45 nm, and 32 nm. It can be seen that a resistivity significantly lower than cm can be realized. The lower the oxygen concentration, the lower the resistivity, so there is no preferred lower limit for the oxygen concentration.

銅配線中の酸素濃度は、TEM/EDS(透過型電子顕微鏡対応のエネルギー分散型X線分析装置)によって測定した。具体的には、ビーム径1〜2nmの電子線を銅配線に照射して銅配線から励起されたX線のエネルギーを検出することにより、銅配線に含まれる元素の種類(定性分析)及びその濃度(定量分析)を分析する方法である。   The oxygen concentration in the copper wiring was measured by TEM / EDS (energy dispersive X-ray analyzer compatible with a transmission electron microscope). Specifically, by irradiating the copper wiring with an electron beam having a beam diameter of 1 to 2 nm and detecting the energy of the X-rays excited from the copper wiring, the type of element contained in the copper wiring (qualitative analysis) and its This is a method for analyzing the concentration (quantitative analysis).

銅配線に含まれる酸素濃度が低くなると抵抗率が小さくなる理由は、(1)酸素は粒界付近に集まり電子散乱の原因になるので、酸素濃度を低くすると粒界付近に集まる酸素を低減でき電子散乱を抑制できること、(2)酸素濃度が低くなると銅配線とバリア層との密着性が向上し、銅配線の側面及び底面における電子散乱が抑制できること、が考えられるが、前者が主たる要因と推測する。   The reason why the resistivity decreases when the concentration of oxygen contained in the copper wiring is reduced is as follows. (1) Since oxygen collects near the grain boundary and causes electron scattering, lowering the oxygen concentration can reduce the oxygen collected near the grain boundary. It can be considered that the electron scattering can be suppressed, and (2) the adhesion between the copper wiring and the barrier layer is improved when the oxygen concentration is lowered, and the electron scattering on the side surface and the bottom surface of the copper wiring can be suppressed. Infer.

本発明半導体集積回路装置の銅配線を粒界構造から言及するに、隣接する結晶粒の粒界が対応粒界(coincidence boundary)になっていると考えられる。対応粒界とはGrain Boundary Structure and Properties Academic press(1976)に掲載された論文“5.Special High Angle Grain Boundaries“に説明されているように、粒界において隣接する2個の結晶粒間で共有する原子が存在する状態をいう。隣接する結晶粒間で原子が共有される状態になると、その部分では粒界が存在せず、電子散乱が生じないため、抵抗率が下がる効果を奏する。   When referring to the copper wiring of the semiconductor integrated circuit device of the present invention from the grain boundary structure, it is considered that the grain boundary of adjacent crystal grains is a coincidence boundary. As described in the paper “5. Special High Angle Grain Boundaries” published in Grain Boundary Structure and Properties Academic Press (1976), the corresponding grain boundary is defined as two grain boundaries adjacent to each other in the grain boundary. The state where there is an atom to do. When atoms are shared between adjacent crystal grains, there is no grain boundary in that portion, and electron scattering does not occur, so that the effect of decreasing the resistivity is obtained.

図7は本発明半導体集積回路装置の製造方法を説明するための概略工程図で、図1の同一部材には同一符号を付し繰り返し説明を避けた。また、半導体集積回路装置の製造方法のうち、本発明に直接関係するデユアルダマシンプロセスを用いて銅配線を形成する工程を示した。   FIG. 7 is a schematic process diagram for explaining a method for manufacturing a semiconductor integrated circuit device of the present invention. The same members in FIG. In addition, a step of forming a copper wiring using a dual damascene process directly related to the present invention in the method of manufacturing a semiconductor integrated circuit device is shown.

まず、一方の主表面11に隣接して多数の回路素子(図示せず)が形成された半導体基体1を準備し、半導体基体1の一方の主表面1aの上方に窒化シリコン層41及びシリコン酸化物層42からなる第1絶縁層4をCVD(Chemical Vapor Deposition)法により堆積する。次に、配線を形成する予定の領域のシリコン酸化物層42をエッチングにより除去し、これによって露出した窒化シリコン層41を更にエッチングすることにより第1トレンチ4aを形成する。このトレンチは幅が70nm以下、50〜300nmの範囲から通電容量によって選択される深さを有している。窒化シリコン層41はシリコン酸化物層42をエッチングするときのストッパーとして利用される(図7a)。   First, a semiconductor substrate 1 having a large number of circuit elements (not shown) formed adjacent to one main surface 11 is prepared, and a silicon nitride layer 41 and a silicon oxide layer are formed above one main surface 1a of the semiconductor substrate 1. The first insulating layer 4 made of the material layer 42 is deposited by a CVD (Chemical Vapor Deposition) method. Next, the silicon oxide layer 42 in a region where wiring is to be formed is removed by etching, and the exposed silicon nitride layer 41 is further etched to form the first trench 4a. This trench has a depth selected by a current carrying capacity from a range of 70 nm or less in width and 50 to 300 nm. The silicon nitride layer 41 is used as a stopper when the silicon oxide layer 42 is etched (FIG. 7a).

次に、第1トレンチ4a内を含むシリコン酸化物層42上に、例えばTaN/Ta積層体からなるバリア層5aをスパッタ法またはCVD法により数nmから10nm程度の厚さ堆積する。このバリア層5a上に銅配線5を形成する。その方法は、まずスパッタ法によってバリア層5a上に極薄い銅シード層(図示せず)を形成し、銅シード層上に純度6Nの硫酸銅めっき浴、アノードに純度9Nの銅電極を用いて電解めっき法により第1トレンチ4aの深さを超える厚さの銅めっき層を形成し、その後水素雰囲気中において200〜400℃で10分〜1時間加熱処理するプロセスで形成した(図7b)。この電解めっきプロセスに使用した高純度のめっき浴及び銅電極は、現在市販されていないため材料メーカに特別に注文して入手した。   Next, a barrier layer 5a made of, for example, a TaN / Ta laminated body is deposited on the silicon oxide layer 42 including the inside of the first trench 4a to a thickness of about several nm to 10 nm by sputtering or CVD. Copper wiring 5 is formed on this barrier layer 5a. In this method, first, an ultrathin copper seed layer (not shown) is formed on the barrier layer 5a by sputtering, a copper sulfate plating bath having a purity of 6N is formed on the copper seed layer, and a copper electrode having a purity of 9N is used for the anode. A copper plating layer having a thickness exceeding the depth of the first trench 4a was formed by electrolytic plating, and then formed by a process of heat treatment at 200 to 400 ° C. for 10 minutes to 1 hour in a hydrogen atmosphere (FIG. 7b). The high-purity plating bath and copper electrode used in this electrolytic plating process are not currently available on the market, so they were specially ordered from material manufacturers.

銅配線5を形成する他の方法としては、銅シード層上に、市販されている通常の純度3Nの硫酸銅めっき浴、アノードに市販されている純度4Nを有する銅電極を用いて電解めっき法により第1トレンチ4aの深さを超える厚さの銅めっき層を形成し、水素、アルゴン、窒素から選ばれた雰囲気中で赤外線ランプにより200〜600℃で10分〜1時間加熱処理する方法である。この方法の特徴は純度の低いめっき浴及び銅電極を使用できること、及び短時間で処理できることである。   As another method for forming the copper wiring 5, an electrolytic plating method is performed by using a commercially available copper sulfate plating bath having a normal purity of 3N on the copper seed layer and a copper electrode having a purity of 4N commercially available on the anode. A copper plating layer having a thickness exceeding the depth of the first trench 4a is formed by heat treatment at 200 to 600 ° C. for 10 minutes to 1 hour with an infrared lamp in an atmosphere selected from hydrogen, argon and nitrogen. is there. The feature of this method is that a low-purity plating bath and a copper electrode can be used, and processing can be performed in a short time.

次いで、CMP(Chemical Mechanical Polishing)により第1トレンチ4a部分においてはその深さを超える部分の銅層、並びにシリコン酸化物層42上の銅層及びバリア層5aを除去して第1トレンチ4a内にのみ第1銅配線5となる銅層及びバリア層5aを残す(図7c)。   Next, the portion of the first trench 4a that exceeds the depth of the first trench 4a, and the copper layer and the barrier layer 5a on the silicon oxide layer 42 are removed by CMP (Chemical Mechanical Polishing), and the first trench 4a is removed. Only the copper layer to be the first copper wiring 5 and the barrier layer 5a are left (FIG. 7c).

次に、シリコン酸化物層42及び第1銅配線5上に窒化シリコン層61、シリコン酸化物層62、窒化シリコン層63及びシリコン酸化物層64を順次CVD法により堆積する。ここで、窒化シリコン層63は断面T字形を有する第2トレンチ6aの上辺部を形成する際のエッチングストッパーとして、また、窒化シリコン層61は第1銅配線5との接続を図るためのコンタクトホール(T字形の脚部)を形成する際のエッチングストッパーとして機能する(図7d)。トレンチの上辺部の幅は幅が70nm以下、50〜300nmの範囲から通電容量によって選択される深さを有している。   Next, a silicon nitride layer 61, a silicon oxide layer 62, a silicon nitride layer 63, and a silicon oxide layer 64 are sequentially deposited on the silicon oxide layer 42 and the first copper wiring 5 by a CVD method. Here, the silicon nitride layer 63 serves as an etching stopper when forming the upper side portion of the second trench 6 a having a T-shaped cross section, and the silicon nitride layer 61 serves as a contact hole for connection to the first copper wiring 5. It functions as an etching stopper when forming the (T-shaped leg) (FIG. 7d). The width of the upper side portion of the trench has a depth selected by the current carrying capacity from a range of 70 nm or less and 50 to 300 nm.

次いで、第1銅配線5のコンタクト領域上のシリコン酸化物層64、窒化シリコン層63及びシリコン酸化物層62をエッチングにより除去し、更にエッチングによって露出した窒化シリコン層61をエッチングすることによりコンタクトホール(第2トレンチ6aのT字形の脚部)を形成する。   Next, the silicon oxide layer 64, the silicon nitride layer 63, and the silicon oxide layer 62 on the contact region of the first copper wiring 5 are removed by etching, and the silicon nitride layer 61 exposed by the etching is further etched to thereby contact holes. (T-shaped leg portion of the second trench 6a) is formed.

次に、コンタクトホール内を含むシリコン酸化物層64上に反射防止膜もしくはレジスト膜(図示せず)を形成する。更に、第2銅配線7を形成する予定領域を開口したレジスト膜をマスクにして反射防止膜もしくはレジスト膜、シリコン酸化物層64をエッチングする。続いて、このエッチングにより露出した窒化シリコン層63をエッチングすると共にコンタクトホール内の反射防止膜もしくはレジスト膜を除去することにより第2トレンチ6aが形成される(図7e)。   Next, an antireflection film or a resist film (not shown) is formed on the silicon oxide layer 64 including the inside of the contact hole. Further, the antireflection film or the resist film and the silicon oxide layer 64 are etched using the resist film having an opening in a region where the second copper wiring 7 is to be formed as a mask. Subsequently, the silicon nitride layer 63 exposed by this etching is etched and the antireflection film or the resist film in the contact hole is removed to form the second trench 6a (FIG. 7e).

次いで、第2トレンチ6a内を含むシリコン酸化物層64上に例えばTa/TaN/Ta積層体からなるバリア層7aをスパッタ法またはCVD法により数nmから10nm程度の厚さ堆積する。   Next, a barrier layer 7a made of, for example, a Ta / TaN / Ta laminate is deposited on the silicon oxide layer 64 including the inside of the second trench 6a to a thickness of about several nm to 10 nm by sputtering or CVD.

次に、バリア層7a上に薄い銅膜をスパッタ法により形成し、この銅膜をシード層にして第1銅配線の場合と同様の方法により第2トレンチ6aを含むバリア層7a上全面に第2トレンチ6aの深さを超える厚さの銅層を形成し、同様の熱処理を行う(図7f)。   Next, a thin copper film is formed on the barrier layer 7a by sputtering, and this copper film is used as a seed layer on the entire surface of the barrier layer 7a including the second trench 6a by the same method as that for the first copper wiring. A copper layer having a thickness exceeding the depth of the two trenches 6a is formed, and the same heat treatment is performed (FIG. 7f).

しかる後、CMPにより第2トレンチ6a部分においてはその深さを超える部分の銅層、並びにシリコン酸化物層64上の銅層及びバリア層7aを除去して、第2トレンチ6a内にのみ第2銅配線7となる銅層及びバリア層7aを残し、2層構造の銅配線が完成する。(図7g)。   Thereafter, the portion of the second trench 6a that exceeds the depth of the second trench 6a and the copper layer and the barrier layer 7a on the silicon oxide layer 64 are removed by CMP, so that the second trench 6a is only in the second trench 6a. A copper layer having a two-layer structure is completed, leaving the copper layer and the barrier layer 7a to be the copper wiring 7. (Figure 7g).

この実施例では2層構造の銅配線の製造方法を説明したが、3層以上の配線構造にする場合には、第2銅配線を形成した工程を繰り返すことで実現できる。   In this embodiment, the method for manufacturing a copper wiring having a two-layer structure has been described. However, when a wiring structure having three or more layers is used, it can be realized by repeating the process of forming the second copper wiring.

この実施例で得られた半導体集積回路装置の銅配線は配線幅70nm、平均結晶粒径Dと配線幅Wの比D/Wが1.4、抵抗率が2.9μΩ・cm、酸素濃度1wt%であった。   The copper wiring of the semiconductor integrated circuit device obtained in this example has a wiring width of 70 nm, a ratio D / W of the average crystal grain size D to the wiring width W of 1.4, a resistivity of 2.9 μΩ · cm, and an oxygen concentration of 1 wt. %Met.

本発明の実施形態においては、バリア層5a、7aとしてTa膜とTaN膜の組合せを使用したが、これに限定されず他の金属とその金属の窒化物との組合せが使用できる。金属としては、Ti(チタン)、W(タングステン)、Nb(ニオブ)、Cr(クロム)、Mo(モリブデン)などが挙げられる。   In the embodiment of the present invention, a combination of a Ta film and a TaN film is used as the barrier layers 5a and 7a. However, the present invention is not limited to this, and a combination of another metal and a nitride of the metal can be used. Examples of the metal include Ti (titanium), W (tungsten), Nb (niobium), Cr (chromium), and Mo (molybdenum).

本発明の一実施例として示した半導体集積回路装置の概略断面図である。It is a schematic sectional drawing of the semiconductor integrated circuit device shown as one Example of this invention. 銅配線におけるトレンチの側面と平行な面における平均結晶粒径Dと配線幅Wの比D/Wと抵抗率の関係を示す図である。It is a figure which shows the relationship between the ratio D / W of the average crystal grain diameter D in the surface parallel to the side surface of the trench in copper wiring, and wiring width W, and resistivity. FIB/TEM技術を用いた銅配線のトレンチの側面と平行な面における平均結晶粒径の測定方法の説明図である。It is explanatory drawing of the measuring method of the average crystal grain diameter in a surface parallel to the side surface of the trench of copper wiring using FIB / TEM technique. 銅配線のトレンチの側面と平行な面をTEMによって観察した組織図である。It is the organization chart which observed the field parallel to the side of the trench of copper wiring with TEM. 銅配線における結晶粒径の標準偏差と抵抗率の関係を示す図である。It is a figure which shows the relationship between the standard deviation of the crystal grain diameter in copper wiring, and resistivity. 銅配線に含まれる酸素濃度と抵抗率の関係を示す図である。It is a figure which shows the relationship between the oxygen concentration contained in a copper wiring, and a resistivity. 本発明半導体集積回路装置の製造方法の一実施例の一工程を説明するための概略工程図である。It is a schematic process drawing for demonstrating one process of one Example of the manufacturing method of the semiconductor integrated circuit device of this invention. 本発明半導体集積回路装置の製造方法の一実施例の一工程を説明するための概略工程図である。It is a schematic process drawing for demonstrating one process of one Example of the manufacturing method of the semiconductor integrated circuit device of this invention. 本発明半導体集積回路装置の製造方法の一実施例の一工程を説明するための概略工程図である。It is a schematic process drawing for demonstrating one process of one Example of the manufacturing method of the semiconductor integrated circuit device of this invention. 本発明半導体集積回路装置の製造方法の一実施例の一工程を説明するための概略工程図である。It is a schematic process drawing for demonstrating one process of one Example of the manufacturing method of the semiconductor integrated circuit device of this invention. 本発明半導体集積回路装置の製造方法の一実施例の一工程を説明するための概略工程図である。It is a schematic process drawing for demonstrating one process of one Example of the manufacturing method of the semiconductor integrated circuit device of this invention. 本発明半導体集積回路装置の製造方法の一実施例の一工程を説明するための概略工程図である。It is a schematic process drawing for demonstrating one process of one Example of the manufacturing method of the semiconductor integrated circuit device of this invention. 本発明半導体集積回路装置の製造方法の一実施例の一工程を説明するための概略工程図である。It is a schematic process drawing for demonstrating one process of one Example of the manufacturing method of the semiconductor integrated circuit device of this invention.

符号の説明Explanation of symbols

1…半導体基体、2…第1絶縁層、3…プラグ、4…第2絶縁層、4a…第1トレンチ、41…窒化シリコン層、42…シリコン酸化物層、5…第1銅配線、5a…バリア層、6…第3絶縁層、6a…トレンチ層、61…窒化シリコン層、62…シリコン酸化物層、63…窒化シリコン層、64…シリコン酸化物層、7…第2銅配線、7a…バリア層。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... 1st insulating layer, 3 ... Plug, 4 ... 2nd insulating layer, 4a ... 1st trench, 41 ... Silicon nitride layer, 42 ... Silicon oxide layer, 5 ... 1st copper wiring, 5a ... Barrier layer, 6 ... third insulating layer, 6a ... trench layer, 61 ... silicon nitride layer, 62 ... silicon oxide layer, 63 ... silicon nitride layer, 64 ... silicon oxide layer, 7 ... second copper wiring, 7a ... barrier layer.

Claims (8)

回路素子が形成された半導体基体と、前記半導体基体の主表面上に形成された絶縁層と、少なくとも前記絶縁層を利用して形成されたトレンチと、前記トレンチ内に形成された銅配線を備え、前記銅配線の線幅が70nm以下で、前記銅配線の前記トレンチの側面と平行な面における平均結晶粒径が配線幅の1.3倍以上であることを特徴とする半導体集積回路装置。   A semiconductor substrate on which circuit elements are formed, an insulating layer formed on the main surface of the semiconductor substrate, a trench formed using at least the insulating layer, and a copper wiring formed in the trench A semiconductor integrated circuit device, wherein a line width of the copper wiring is 70 nm or less, and an average crystal grain size in a plane parallel to the side surface of the trench of the copper wiring is 1.3 times or more of the wiring width. 前記銅配線の前記トレンチの側面と平行な面における平均結晶粒径の標準偏差が40nm以下であることを特徴とする請求項1記載の半導体集積回路装置。   2. The semiconductor integrated circuit device according to claim 1, wherein a standard deviation of an average crystal grain size in a plane parallel to the side surface of the trench of the copper wiring is 40 nm or less. 回路素子が形成された半導体基体と、前記半導体基体の主表面上に形成された絶縁層と、少なくとも前記絶縁層を利用して形成されたトレンチと、前記トレンチ内に形成された銅配線を備え、前記銅配線の線幅が70nm以下で、酸素濃度が5wt%以下であることを特徴とする半導体集積回路装置。   A semiconductor substrate on which circuit elements are formed, an insulating layer formed on the main surface of the semiconductor substrate, a trench formed using at least the insulating layer, and a copper wiring formed in the trench A semiconductor integrated circuit device, wherein the copper wiring has a line width of 70 nm or less and an oxygen concentration of 5 wt% or less. 前記銅配線の線幅が50nm以下で、酸素濃度が4wt%以下であることを特徴とする請求項3記載の半導体集積回路装置。   4. The semiconductor integrated circuit device according to claim 3, wherein the copper wiring has a line width of 50 nm or less and an oxygen concentration of 4 wt% or less. 前記銅配線の線幅が30nm以下で、酸素濃度が3wt%以下であることを特徴とする請求項3記載の半導体集積回路装置。   4. The semiconductor integrated circuit device according to claim 3, wherein the copper wiring has a line width of 30 nm or less and an oxygen concentration of 3 wt% or less. 回路素子が形成された半導体基体と、前記半導体基体の主表面上に形成された絶縁層と、少なくとも前記絶縁層を利用して形成されたトレンチと、前記トレンチ内に形成された配線幅が70nm以下の銅配線を備え、前記銅配線が電子散乱の少ない粒界構造を有することを特徴とする半導体集積回路装置。   A semiconductor substrate on which circuit elements are formed, an insulating layer formed on the main surface of the semiconductor substrate, a trench formed using at least the insulating layer, and a wiring width formed in the trench is 70 nm. A semiconductor integrated circuit device comprising the following copper wiring, wherein the copper wiring has a grain boundary structure with less electron scattering. 回路素子が形成された半導体基体と、前記半導体基体の主表面上に形成された絶縁層と、少なくとも前記絶縁層を利用して形成されたトレンチと、前記トレンチ内に形成された銅配線を備えた半導体集積回路装置の製造方法であって、純度が99.99〜99.999999wt%の硫酸銅めっき浴、アノードに純度が99.9999〜99.9999999wt%の銅電極を用いた電解めっきによって前記トレンチ内に銅めっき層を形成する第1工程、電解めっき後に銅めっき層を水素雰囲気で熱処理をする第2工程を有することを特徴とする半導体集積回路装置の製造方法。   A semiconductor substrate on which circuit elements are formed, an insulating layer formed on the main surface of the semiconductor substrate, a trench formed using at least the insulating layer, and a copper wiring formed in the trench A method of manufacturing a semiconductor integrated circuit device comprising: a copper sulfate plating bath having a purity of 99.99 to 99.99999999 wt%; and electroplating using a copper electrode having a purity of 99.9999 to 99.99999 wt% at the anode. A method for manufacturing a semiconductor integrated circuit device, comprising: a first step of forming a copper plating layer in a trench; and a second step of heat-treating the copper plating layer in a hydrogen atmosphere after electrolytic plating. 回路素子が形成された半導体基体と、前記半導体基体の主表面上に形成された絶縁層と、少なくとも前記絶縁層を利用して形成されたトレンチと、前記トレンチ内に形成された銅配線を備えた半導体集積回路装置の製造方法であって、硫酸銅めっき浴、アノードに銅電極を用いた電解めっきによって前記トレンチ内に銅めっき層を形成する第1工程、電解めっき後にアルゴン、水素、窒素から選らばれた雰囲気で赤外線加熱をする第2工程を有することを特徴とする半導体集積回路装置の製造方法。   A semiconductor substrate on which circuit elements are formed, an insulating layer formed on the main surface of the semiconductor substrate, a trench formed using at least the insulating layer, and a copper wiring formed in the trench A semiconductor integrated circuit device manufacturing method comprising: a copper sulfate plating bath; a first step of forming a copper plating layer in the trench by electrolytic plating using a copper electrode as an anode; from argon, hydrogen, nitrogen after electrolytic plating; A method for manufacturing a semiconductor integrated circuit device, comprising a second step of performing infrared heating in a selected atmosphere.
JP2007106945A 2007-04-16 2007-04-16 Manufacturing method of semiconductor integrated circuit Expired - Fee Related JP5370979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106945A JP5370979B2 (en) 2007-04-16 2007-04-16 Manufacturing method of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106945A JP5370979B2 (en) 2007-04-16 2007-04-16 Manufacturing method of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JP2008270250A true JP2008270250A (en) 2008-11-06
JP5370979B2 JP5370979B2 (en) 2013-12-18

Family

ID=40049416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106945A Expired - Fee Related JP5370979B2 (en) 2007-04-16 2007-04-16 Manufacturing method of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP5370979B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206322A (en) * 2008-02-28 2009-09-10 Renesas Technology Corp Semiconductor device, method of manufacturing semiconductor device, semiconductor manufacturing/inspecting device and inspecting device
US20120146220A1 (en) * 2008-12-04 2012-06-14 Ibaraki University Semiconductor integrated-circuit device and method of producing the same
JP2012163392A (en) * 2011-02-04 2012-08-30 Ibaraki Univ Method of evaluating crystal particle size and particle size distribution in metal layer and method of manufacturing semiconductor integrated circuit device using the same
JP2013251380A (en) * 2012-05-31 2013-12-12 Ibaraki Univ Semiconductor integrated circuit device and method for manufacturing the same
WO2014185187A1 (en) * 2013-05-13 2014-11-20 国立大学法人茨城大学 Semiconductor integrated circuit device, production method therefor, and method for searching for low-resistivity copper wiring used in said semiconductor integrated circuit device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220170402A (en) * 2021-06-22 2022-12-30 삼성디스플레이 주식회사 Wiring substrate and display device comprising the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154709A (en) * 1996-09-25 1998-06-09 Toshiba Corp Manufacture of semiconductor device
JPH11283981A (en) * 1998-03-30 1999-10-15 Sony Corp Semiconductor device and manufacture thereof
JP2000114367A (en) * 1998-10-05 2000-04-21 Matsushita Electronics Industry Corp Manufacture of semiconductor device
JP2001345325A (en) * 2000-06-02 2001-12-14 Nec Kyushu Ltd Wiring formation method of semiconductor device
JP2003171797A (en) * 2001-12-07 2003-06-20 Nikko Materials Co Ltd Copper electroplating method, pure copper anode for copper electroplating, semiconductor wafer plated by using these and less deposited with particle
JP2003231995A (en) * 2002-02-13 2003-08-19 Nikko Materials Co Ltd Phosphor-containing copper anode for copper electroplating, copper electroplating method using phosphor-containing copper anode, and semiconductor wafer plated by using them with few adhering particles
JP2004221494A (en) * 2003-01-17 2004-08-05 Toyoda Gosei Co Ltd Wiring structure for semiconductor device
JP2005223059A (en) * 2004-02-04 2005-08-18 Toshiba Corp Semiconductor device
WO2006137237A1 (en) * 2005-06-22 2006-12-28 Nec Corporation Semiconductor device and method for manufacturing same
JP2007053133A (en) * 2005-08-15 2007-03-01 Toshiba Corp Semiconductor device and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154709A (en) * 1996-09-25 1998-06-09 Toshiba Corp Manufacture of semiconductor device
JPH11283981A (en) * 1998-03-30 1999-10-15 Sony Corp Semiconductor device and manufacture thereof
JP2000114367A (en) * 1998-10-05 2000-04-21 Matsushita Electronics Industry Corp Manufacture of semiconductor device
JP2001345325A (en) * 2000-06-02 2001-12-14 Nec Kyushu Ltd Wiring formation method of semiconductor device
JP2003171797A (en) * 2001-12-07 2003-06-20 Nikko Materials Co Ltd Copper electroplating method, pure copper anode for copper electroplating, semiconductor wafer plated by using these and less deposited with particle
JP2003231995A (en) * 2002-02-13 2003-08-19 Nikko Materials Co Ltd Phosphor-containing copper anode for copper electroplating, copper electroplating method using phosphor-containing copper anode, and semiconductor wafer plated by using them with few adhering particles
JP2004221494A (en) * 2003-01-17 2004-08-05 Toyoda Gosei Co Ltd Wiring structure for semiconductor device
JP2005223059A (en) * 2004-02-04 2005-08-18 Toshiba Corp Semiconductor device
WO2006137237A1 (en) * 2005-06-22 2006-12-28 Nec Corporation Semiconductor device and method for manufacturing same
JP2007053133A (en) * 2005-08-15 2007-03-01 Toshiba Corp Semiconductor device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206322A (en) * 2008-02-28 2009-09-10 Renesas Technology Corp Semiconductor device, method of manufacturing semiconductor device, semiconductor manufacturing/inspecting device and inspecting device
US20120146220A1 (en) * 2008-12-04 2012-06-14 Ibaraki University Semiconductor integrated-circuit device and method of producing the same
JP5366270B2 (en) * 2008-12-04 2013-12-11 国立大学法人茨城大学 Semiconductor integrated circuit device and manufacturing method thereof
JP2012163392A (en) * 2011-02-04 2012-08-30 Ibaraki Univ Method of evaluating crystal particle size and particle size distribution in metal layer and method of manufacturing semiconductor integrated circuit device using the same
JP2013251380A (en) * 2012-05-31 2013-12-12 Ibaraki Univ Semiconductor integrated circuit device and method for manufacturing the same
WO2014185187A1 (en) * 2013-05-13 2014-11-20 国立大学法人茨城大学 Semiconductor integrated circuit device, production method therefor, and method for searching for low-resistivity copper wiring used in said semiconductor integrated circuit device
JP2014222715A (en) * 2013-05-13 2014-11-27 国立大学法人茨城大学 Semiconductor integrated circuit device, manufacturing method thereof, and method of searching for low resistivity copper wiring used for semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP5370979B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
US8112885B2 (en) Method for forming copper interconnection structures
JP5370979B2 (en) Manufacturing method of semiconductor integrated circuit
Choi et al. Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films
Kohn et al. Characterization of electroless deposited Co (W, P) thin films for encapsulation of copper metallization
JP4555540B2 (en) Semiconductor device
JP4591084B2 (en) Copper alloy for wiring, semiconductor device, and method for manufacturing semiconductor device
US7443029B2 (en) Adhesion of copper and etch stop layer for copper alloy
US20090236746A1 (en) Semiconductor device and method for fabricating semiconductor device
JP5585909B2 (en) Contact plug, wiring, semiconductor device, and contact plug forming method
JP2007035734A (en) Semiconductor device and manufacturing method thereof
JP2011216867A (en) Thin-film formation method
JP5510657B2 (en) Contact plug formation method
JP2004506814A (en) Sputtering target
JP5366270B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP5747406B2 (en) Method for evaluating crystal grain size and grain size distribution of metal layer and method for manufacturing semiconductor integrated circuit device using the same
JP5963191B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
US20050048776A1 (en) Integrated circuit copper plateable barriers
JP2009135481A (en) Semiconductor device
JP6080009B2 (en) Semiconductor integrated circuit device and manufacturing method thereof, and search method for low resistivity copper wiring used in the semiconductor integrated circuit device
WO2021245893A1 (en) Semiconductor device
EP3916348B1 (en) Method of calculating thickness of graphene layer by using xps
CN103620746A (en) Method for producing semiconductor device and semiconductor device
Moon et al. Electrical Resistivity Modification of Electrodeposited Mo and Mo–Co Nanowires for Interconnect Applications
TW575918B (en) Process for producing metal-containing thin films with a low electrical resistance
JP2008249632A (en) Evaluation method for wiring, and manufacturing method for semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Ref document number: 5370979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees