JP2008247620A - Mortar composite material for repairing steel floor slab - Google Patents

Mortar composite material for repairing steel floor slab Download PDF

Info

Publication number
JP2008247620A
JP2008247620A JP2007087226A JP2007087226A JP2008247620A JP 2008247620 A JP2008247620 A JP 2008247620A JP 2007087226 A JP2007087226 A JP 2007087226A JP 2007087226 A JP2007087226 A JP 2007087226A JP 2008247620 A JP2008247620 A JP 2008247620A
Authority
JP
Japan
Prior art keywords
composite
mortar
cement
repairing
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007087226A
Other languages
Japanese (ja)
Other versions
JP5022751B2 (en
Inventor
Hiroyuki Chiba
Takayoshi Kodama
Takao Koide
Koichi Matsumoto
Yasunori Suzuki
孝喜 児玉
浩幸 千葉
貴夫 小出
公一 松本
康範 鈴木
Original Assignee
Kajima Road Co Ltd
Sumitomo Osaka Cement Co Ltd
住友大阪セメント株式会社
鹿島道路株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Road Co Ltd, Sumitomo Osaka Cement Co Ltd, 住友大阪セメント株式会社, 鹿島道路株式会社 filed Critical Kajima Road Co Ltd
Priority to JP2007087226A priority Critical patent/JP5022751B2/en
Publication of JP2008247620A publication Critical patent/JP2008247620A/en
Application granted granted Critical
Publication of JP5022751B2 publication Critical patent/JP5022751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concrete composite material for repairing a steel floor slab which has a so-called crack self-repairing function, which disperses concrete cracks in steel floor slab pavement, which can effectively fill a hydraulic hydrate in the cracks by a latent hydraulic property included in concrete and which can prevent the infiltration of a liquid such as water and the like and a gas such as oxygen, carbon dioxide and the like causing corrosion to the steel floor slab. <P>SOLUTION: A mortar composite material for repairing the steel floor slab comprises a fiber reinforced high-toughness cement composite material whose essential components are cement, a fine aggregate and a reinforcing fiber and which includes cement coarse powders having a Blaine specific surface area of 500-2,000 cm<SP>2</SP>/g and/or blast furnace slag coarse powders having a Blaine specific surface area of 500-3,000 cm<SP>2</SP>/g and/or a blast furnace slag fine aggregate specified in JIS A 5011 and controlled to have a particle size of passing a 0.6 mm sieve in JIS. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼床版補修用モルタル複合材料に関し、特に、鋼床版の疲労亀裂補強に用いられる自己修復機能を有する鋼床版補修用モルタル複合材料に関するものである。   TECHNICAL FIELD The present invention relates to a mortar composite material for repairing steel slabs, and more particularly to a mortar composite material for repairing steel slabs having a self-repair function used for fatigue crack reinforcement of steel slabs.
重交通下におけるグースアスファルト舗装を施された鋼床版では、グースアスファルトの剛性が小さいので鋼床版上面の部材変形により、Uリブなどの部材に面外変形や面内応力が発生し、この面外挙動が原因となって鋼床版下面とUリブなどの部材接合部において疲労亀裂が生じやすく、特にこの現象は、グースアスファルトが軟化し剛性が低下する夏期において顕著となる。
したがって、補強プレートの設置工事などの応急補修を頻繁に行わないと、グースアスファルト舗装を施された鋼床版は供用に支障を来たすことが明らかになってきた。
しかも、補強プレートの設置工事などの応急補修は、その工事の都度に夜間通行止めか片側車線規制などの交通規制を行う必要があり、幹線道路では交通渋滞を招くため、恒久対策工法の確立が必要となっている。
In steel floor slabs with goose asphalt pavement under heavy traffic, because the rigidity of goose asphalt is small, deformation of the steel floor slab top surface causes out-of-plane deformation and in-plane stress on members such as U ribs. Due to out-of-plane behavior, fatigue cracks are likely to occur at the joint of the steel floor slab and the U-rib, and this phenomenon is particularly noticeable in the summer when goose asphalt softens and rigidity decreases.
Therefore, it has become clear that steel floor slabs with goose asphalt pavement will hinder service unless emergency repairs such as installation work of reinforcing plates are frequently performed.
Moreover, emergency repairs such as reinforcement plate installation work require traffic restrictions such as nighttime traffic closure or one-side lane restrictions at each construction work, and traffic congestion on main roads will cause traffic congestion. It has become.
恒久対策工法として、鋼床版上面厚さの増加、疲労設計を配慮した溶接仕上げの精度向上、及び繊維補強モルタル又は高靭性セメント複合材料による鋼床版との一体化などが挙げられる。
しかしながら、鋼床版上面厚さの増加、及び疲労設計を配慮した溶接仕上げの精度向上などの対策は、鋼床版上面の下にUリブ材が溶接されている鋼床版において、供用下にあっては採用が不可能である。
Permanent countermeasures include increasing the steel plate slab upper surface thickness, improving the accuracy of the welding finish considering fatigue design, and integrating the steel slab with fiber reinforced mortar or high toughness cement composite.
However, measures such as increasing the thickness of the upper surface of the steel slab and improving the accuracy of the welding finish considering fatigue design are not available for steel slabs where the U-rib material is welded under the upper surface of the steel slab. In that case, it cannot be adopted.
一方、繊維補強コンクリートによる鋼床版との一体化は、グースアスファルトに替えて剛性が大きくまた変形抑制効果が大きいモルタルを、鋼床版上面に接着剤により一体化させるものであり、供用下にある鋼床版において適用できる効果的な補修工法といえる。
ここで、対象とする高靭性セメント複合材料は場所打ちではなく、製品工場で予め製造されたプレキャスト部材であり、供用下に鋼床下は交通渋滞を避けるために、補修工事に要する時間の制約を受けることになるので、硬化速度が速い樹脂系の接着剤と組み合わせて用いる必要がある。
On the other hand, the integration with the steel slab by fiber reinforced concrete is to integrate mortar with high rigidity and great deformation suppression effect with adhesive on the upper surface of the steel slab instead of goose asphalt. It can be said that this is an effective repair method that can be applied to certain steel decks.
Here, the target high toughness cement composite material is not a cast-in-place, but is a precast member pre-manufactured in a product factory.In order to avoid traffic congestion under the steel floor, there is a restriction on the time required for repair work. Therefore, it is necessary to use it in combination with a resin-based adhesive having a high curing speed.
高靭性セメント複合材料による鋼床版の補強効果は、鋼床版とグースアスファルトに替えて打込まれる高靭性セメント複合材料が、接着剤によって一体化されることによって初めて補強効果が発揮される。   The reinforcing effect of the steel floor slab with the high toughness cement composite material is exhibited only when the high toughness cement composite material to be driven in place of the steel floor slab and goose asphalt is integrated with an adhesive.
また、接着剤による鋼床版と高靭性セメント複合材料との付着強度は、鋼床版の上面の状況、接着剤と高靭性セメント複合材料との材料特性の相互作用、あるいは温度や湿度などの環境条件の影響も極めて敏感に受けるため、事前に現場条件を再現した試験体等を使用して測定確認する必要がある。
そのため、本発明者らは「付着試験方法及びそれに用いる付着試験用用具」の特許出願を行った(特願2005−100705)。
更に、工事現場における接着剤の管理方法として「接着剤の可使時間決定方法」の特許出願を行った(特願2006−60097)。
In addition, the adhesive strength between the steel slab and the high-toughness cement composite by the adhesive depends on the condition of the upper surface of the steel slab, the interaction of the material properties between the adhesive and the high-toughness cement composite, or the temperature and humidity. Since it is very sensitive to the influence of environmental conditions, it is necessary to measure and confirm using test specimens that reproduce the field conditions in advance.
Therefore, the present inventors filed a patent application for “Adhesion test method and tool for adhesion test used therein” (Japanese Patent Application No. 2005-100705).
Furthermore, a patent application for “Method for determining the usable time of adhesive” was filed as a method for managing the adhesive at the construction site (Japanese Patent Application No. 2006-60097).
このように、近年、高靭性セメント複合材料による鋼床版疲労亀裂の補強工法が確立されてきている。
しかしながら、高靭性セメント複合材料は、舗装面として直接輪荷重を支持するので、その引張強度を上回る大きな応力が作用する。
また、高靭性セメント複合材料は、材料及び配合面からモルタルの体積変化を小さく抑えるような配慮がなされているが、実際は、その厚さが約50〜70mm程度と比較的薄く、接着剤及びジベルによって約12mm程度の鋼床版と一体化されているので、わずかな体積変化が生じても拘束の程度が大きいだけに、体積変化に起因するひび割れが発生しやすい。
Thus, in recent years, methods for reinforcing steel plate slab fatigue cracks using high-toughness cement composite materials have been established.
However, since the high toughness cement composite material directly supports the wheel load as a paved surface, a large stress exceeding its tensile strength acts.
In addition, the high toughness cement composite material has been considered to suppress the volume change of the mortar from the material and the blending surface, but in reality, the thickness is about 50 to 70 mm, which is relatively thin. Is integrated with a steel slab of about 12 mm, so that even if a slight volume change occurs, cracking due to the volume change is likely to occur because the degree of restraint is large.
また、鋼床版の熱拡散係数が高靭性セメント複合材料の熱拡散係数よりも大きいので、外気温度・日射により温度変化が生じやすく、接着剤によって鋼床版に一体化された高靭性セメント複合材料では鋼床版との変形量の差によっても拘束を受けることとなり、ひび割れが発生しやすいといえる。   In addition, since the thermal diffusion coefficient of the steel slab is larger than that of the high toughness cement composite material, temperature changes are likely to occur due to outside air temperature and solar radiation, and the high toughness cement composite integrated with the steel floor slab by an adhesive. The material is also constrained by the difference in deformation from the steel slab, and it can be said that cracks are likely to occur.
補強された高靭性セメント複合材料にひび割れが発生すると、水などの液体、酸素・二酸化炭素などの気体など鋼床版に腐食をもたらす因子の侵入を許すことになり、鋼床版の耐久性の低下を招く。
これを防ぐには、ひび割れ部を樹脂などで充填する必要があるが、供用下にある鋼床版において交通規制を行って前述のひび割れ充填などの補修を行う必要があるため、交通渋滞及びそれに伴う周辺環境の悪化などの市民生活への悪影響が避けがたい。
また、ひび割れ充填材の種類によってはそれ自体が収縮し、ひび割れ部を塞いでも、その近傍において新たなひび割れを誘発するおそれがある。
If cracks occur in the reinforced high-toughness cement composite material, it will allow the penetration of factors that cause corrosion to the steel slab, such as liquids such as water and gases such as oxygen and carbon dioxide, and this will improve the durability of the steel slab. Incurs a decline.
In order to prevent this, it is necessary to fill the cracked part with resin etc., but it is necessary to carry out the traffic regulation on the steel floor slab in service and repair the above-mentioned crack filling, etc. It is hard to avoid adverse effects on civic life such as deterioration of the surrounding environment.
Further, depending on the type of the crack filler, itself contracts, and even if the crack portion is blocked, there is a possibility that a new crack is induced in the vicinity thereof.
ひび割れの自己修復機能材料として、特開平9−86983号公報には、骨材としてその少なくとも一部に未水和のセメントクリンカーを含むひび割れ自己修復性水和硬化物が、特開平11−217251号公報には、セメント、骨材、水及び各種混和材を混練したコンクリートであって、該骨材に替えて、当該骨材と粒度分布がほぼ類似したクリンカーが含まれているコンクリートが開示されている。
更には、特開2003−267765号公報には、水、セメント、骨材、膨張材を含むように配合され、打込み後に硬化した時点において、セメントを含む粉体の未反応部分が残存するように構成したコンクリートが、特開2003−26460号公報には、セメント等の隙間充填用材料を、各種樹脂や植物性または動物性細胞膜等の割裂性材料にて被包した粒状体よりなる水和硬化体用混和材料が提案されている。
As a self-healing functional material for cracks, JP-A-9-86983 discloses a self-repairing hydrated cured product containing unhydrated cement clinker as at least a part of an aggregate, as disclosed in JP-A-11-217251. The gazette discloses concrete in which cement, aggregate, water, and various admixtures are kneaded, and instead of the aggregate, concrete containing clinker having a particle size distribution almost similar to the aggregate is disclosed. Yes.
Furthermore, in JP-A-2003-267765, it is blended so as to contain water, cement, aggregate, and expansion material, and when it hardens after being placed, an unreacted portion of the powder containing cement remains. Japanese Patent Application Laid-Open No. 2003-26460 discloses a hydrated and hardened concrete composed of a granular material in which a gap filling material such as cement is encapsulated with various resins or a splitting material such as a plant or animal cell membrane. Body admixtures have been proposed.
しかしながら、上記コンクリートは、鋼床版舗装のように直接輪荷重の繰り返しを受ける過酷な条件下においては、体積変化又は輪荷重の繰り返しによって発生するコンクリートのひび割れ幅を有効に制御することが困難であり、鋼床版舗装用のコンクリートとして用いても、ひび割れに対する自己修復機能を効果的に発揮することは困難である。
特開平9−86983号公報 特開平11−217251号公報 特開2003−267765号公報 特開2003−26460号公報
However, it is difficult to effectively control the crack width of concrete generated by volume changes or repeated wheel loads under severe conditions such as steel floor slab pavement that are directly subjected to repeated wheel loads. Yes, even if it is used as a concrete for steel floor slab paving, it is difficult to effectively exert a self-repair function against cracks.
JP-A-9-86983 JP-A-11-217251 JP 2003-267765 A JP 2003-26460 A
本発明は上述した問題を解決するためになされたものであり、特に、鋼床版舗装におけるモルタルのひび割れを分散させ、モルタル中に含まれる潜在水硬性によってひび割れ部に水硬性水和物を有効に充填することができ、鋼床版に腐食をもたらす水などの液体及び酸素・二酸化炭素などの気体の侵入を防ぐことができる、いわゆるひび割れ自己修復機能を有する、高靭性セメント複合材料からなる鋼床版補修用モルタル複合材料を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in particular, mortar cracks in steel floor slab paving are dispersed, and hydraulic hydrates are effectively applied to the cracked portions due to the latent hydraulic properties contained in the mortar. Steel made of a high toughness cement composite material that has a so-called crack self-healing function and can prevent the invasion of liquids such as water and gases such as oxygen and carbon dioxide that can corrode the steel slab. An object is to provide a mortar composite material for repairing floor slabs.
請求項1に係る発明は、ブレーン比表面積が500〜2000cm/gのセメント粗粉及び/又はブレーン比表面積が500〜3000cm/gの高炉スラグ粗粉及び/又はJIS A 5011に規定される高炉スラグ細骨材であってJIS篩0.6mm全通に粒度調整されたものを含む、繊維補強高靭性セメント複合材料からなることを特徴とする、鋼床版補修用モルタル複合材料である。 Invention, Blaine specific surface area of cement meal and / or Blaine specific surface area of 500~2000cm 2 / g is defined in 500~3000cm 2 / g of blast furnace slag coarse powder and / or JIS A 5011 according to claim 1 A mortar composite material for repairing steel slabs, comprising a fiber reinforced high toughness cement composite material including blast furnace slag fine aggregate and having a particle size adjusted to 0.6 mm throughout the JIS sieve.
請求項2に係る発明は、請求項1記載の鋼床版補修用モルタル複合材料において、前記セメント粗粉、高炉スラグ粗粉及び高炉スラグ細骨材を、繊維補強高靭性セメント複合材料に用いる汎用細骨材の一部と代替して用いることを特徴とする、鋼床版補修用モルタル複合材料である。   The invention according to claim 2 is a general-purpose mortar composite material for repairing steel slabs according to claim 1, wherein the cement coarse powder, blast furnace slag coarse powder and blast furnace slag fine aggregate are used for a fiber reinforced high toughness cement composite material. A mortar composite material for repairing steel slabs, which is used in place of a part of fine aggregate.
請求項3に係る発明は、請求項2記載の鋼床版補修用モルタル複合材料において、モルタル1mあたり300〜600kg配合する汎用モルタル用細骨材の30〜60質量%を上記セメント粗粉または高炉スラグ粗粉に、及び/又は、該汎用モルタル用細骨材の30〜70質量%を上記高炉スラグ細骨材に代替することを特徴とする、鋼床版補修用モルタル複合材料である。 The invention according to claim 3 is the steel deck repair mortars composite material according to claim 2, wherein 30 to 60 mass% of fine aggregate for universal mortar to per mortar 1 m 3 300~600Kg compounding or the cement coarse powder It is a mortar composite material for repairing steel plate slabs, characterized in that the blast furnace slag coarse powder and / or 30 to 70% by mass of the fine aggregate for general purpose mortar is replaced with the above blast furnace slag fine aggregate.
請求項4に係る発明は、請求項1〜3いずれかの項に記載した鋼床版補修用モルタル複合材料において、前記補強繊維は、鋼繊維、ステンレス繊維、ガラス繊維、炭素繊維及び合成繊維の少なくとも1種類以上であることを特徴とする、鋼床版補修用モルタル複合材料である。   The invention according to claim 4 is the mortar composite material for repairing a steel floor slab described in any one of claims 1 to 3, wherein the reinforcing fiber is made of steel fiber, stainless fiber, glass fiber, carbon fiber, or synthetic fiber. A mortar composite material for repairing steel slabs, characterized in that it is at least one kind.
請求項5に係る発明は、請求項4記載の鋼床版補修用モルタル複合材料において、有機補強繊維は、補強繊維のモノフィラメントをサイジング処理した繊維束であることを特徴とする、鋼床版補修用モルタル複合材料である。   The invention according to claim 5 is the mortar composite material for repairing steel floor slab according to claim 4, wherein the organic reinforcing fiber is a fiber bundle obtained by sizing monofilaments of reinforcing fiber. Mortar composite material.
請求項6に係る発明は、請求項3又は4記載の鋼床版補修用モルタル複合材料において、更に、上記汎用モルタル細骨材の4〜8質量%を人工軽量骨材及び/又は吸水性ポリマーに代替することを特徴とする、鋼床版補修用コンクリート複合材料である。   The invention according to claim 6 is the mortar composite material for repairing steel slabs according to claim 3 or 4, further comprising 4 to 8% by mass of the general-purpose mortar fine aggregate, artificial lightweight aggregate and / or water-absorbing polymer. It is a concrete composite material for repairing steel slabs characterized by being replaced by
本発明の鋼床版補修用モルタル複合材料は、高靭性セメント複合材料が有するひび割れ分散効果、及び粗粉のセメントの長期にわたる水硬性または粗粉の高炉スラグの長期にわたる潜在水硬性、若しくは高炉スラグ細骨材などの潜在水硬性によって、舗装面として直接輪荷重を支持するため荷重による応力に起因するひび割れや、日射や乾燥収縮に影響を直接受けて体積変化に起因するひび割れ発生した場合でも、ひび割れ幅を極力小さく抑制して分散することができるため、ひび割れ部に水和物が充填され、鋼床版に腐食をもたらす水などの液体、及び酸素・二酸化炭素などの気体の侵入を防ぎ、いわゆるひび割れ自己修復機能を十分に発揮させることが可能となる。   The mortar composite material for repairing steel slabs according to the present invention comprises a crack dispersion effect of a high toughness cement composite material, a long-term hydraulic property of coarse cement or a long-term latent hydraulic property of coarse blast furnace slag, or a blast furnace slag. Due to the potential hydraulic properties of fine aggregates, etc., even if cracks caused by stress due to load and cracks caused by volume change due to direct influence of solar radiation and drying shrinkage due to directly supporting wheel load as pavement surface, Since the crack width can be minimized and dispersed, the cracks are filled with hydrates, preventing the intrusion of liquids such as water that cause corrosion to the steel slab, and gases such as oxygen and carbon dioxide, It is possible to fully exhibit the so-called crack self-repair function.
また、請求項5記載の鋼床版補修用モルタル複合材料は、上記効果に加えて、ひび割れ幅を微細な幅となるように有効に制御することが可能となる。
特に、請求項6記載の鋼床版補修用モルタル複合材料は、上記効果に加えて、補修後に水の供給がない場合であっても、ひび割れ自己修復機能を発現することが可能である。
In addition to the above effects, the mortar composite material for repairing steel slabs according to claim 5 can effectively control the crack width to be a fine width.
In particular, the mortar composite material for repairing steel slabs according to claim 6 can exhibit a crack self-repair function in addition to the above effects even when water is not supplied after repair.
本発明を以下の好適例を挙げて説明するが、これらに限定されるものではない。
本発明の鋼床版補修用モルタル複合材料は、セメント、細骨材および補強繊維を必須成分とし、かつ、ブレーン比表面積が500〜2000cm/gのセメント粗粉及び/又はブレーン比表面積が500〜3000cm/gの高炉スラグ粗粉及び/又はJIS A 5011に規定される高炉スラグ細骨材であってJIS篩0.6mm全通に粒度調整したものを含む、繊維補強高靭性セメント複合材料からなるものである。
The present invention will be described with reference to the following preferred examples, but is not limited thereto.
The mortar composite material for repairing steel slabs of the present invention comprises cement, fine aggregates and reinforcing fibers as essential components, and a cement coarse powder having a brain specific surface area of 500 to 2000 cm 2 / g and / or a brain specific surface area of 500. Fiber reinforced high toughness cement composite material including 3,000 to 3,000 cm 2 / g blast furnace slag coarse powder and / or blast furnace slag fine aggregate defined in JIS A 5011 and having a particle size adjusted to 0.6 mm throughout JIS sieve It consists of
このように、ブレーン比表面積が500〜2000cm/gのセメント粗粉及び/又はブレーン比表面積が500〜3000cm/gの高炉スラグ粗粉及び/又はJIS A 5011に規定される高炉スラグ細骨材であって上記粒度調整されたものを含む構成とすることにより、これらの潜在水硬性によって、ひび割れ部に水和物が充填され、鋼床版に腐食をもたらす水などの液体、及び酸素・二酸化炭素などの気体の侵入を防ぎ、いわゆるひび割れ自己修復機能を十分に発揮させることができる。
また、このような高靭性セメント複合材料を用いることで、ひび割れ幅を微細とし、ひび割れ分散効果を呈することができる。
Thus, blast furnace slag fine aggregate to Blaine specific surface area of cement meal and / or Blaine specific surface area of 500~2000cm 2 / g is defined in 500~3000cm 2 / g of blast furnace slag coarse powder and / or JIS A 5011 By including the above-mentioned material whose particle size has been adjusted, these latent hydraulic properties allow the cracked portion to be filled with hydrates and liquid such as water that causes corrosion to the steel deck, and oxygen. Intrusion of gas such as carbon dioxide can be prevented, and the so-called crack self-repair function can be fully exhibited.
Moreover, by using such a high toughness cement composite material, the crack width can be made fine and a crack dispersion effect can be exhibited.
本発明の高靭性セメント複合材料に使用されるセメントとしては、セメントの種類は特に限定されず、例えばJIS R 5201に規定される普通、早強、中庸熱、低熱及び超早強等の各種ポルトランドセメント、これらの各種ポルトランドセメントに、フライアッシュを混合したフライアッシュセメント(JIS R 5213)や、高炉スラグ等を混合した高炉セメント(JIS R 5211)等の各種混合セメント、超早硬セメントなどを、単独または2種以上で用いることができ、これらのセメントのブレーン比表面積は3250〜7000cm/gである。 As the cement used for the high toughness cement composite material of the present invention, the type of cement is not particularly limited. For example, various Portland cements such as normal, early strength, moderate heat, low heat, and ultra early strength specified in JIS R 5201 are used. Various kinds of mixed cements such as fly ash cement (JIS R 5213) mixed with fly ash in these various Portland cements, blast furnace slag mixed with blast furnace slag (JIS R 5211), super-hardened cement, etc. These cements can be used alone or in combination of two or more. The brane specific surface area of these cements is 3250 to 7000 cm 2 / g.
特に、現場打ちに用いる場合、工期の短縮を図るためには、超速硬セメントを用いることが好適である。
本発明に用いられる超速硬セメントは、エトリンガイトの急速な生成を利用したもので、「1クリンカータイプ」と「2クリンカータイプ」に分類される。
「1クリンカータイプ」の超速硬セメントは、超速硬成分であるカルシウムアルミネートを11CaO・7Al・CaFとして、クリンカー中でエーライトと共存させ、これにII型無水石こうと少量の添加物を混合して製造される。
これに対して、「2クリンカータイプ」の超速硬セメントは、超速硬成分であるカルシウムアルミネートを単独で製造し、これにJIS R 5210規定されるポルトランドセメントと石こう・その他を適量混合したものである。
In particular, when used on-site, it is preferable to use super-hard cement for shortening the construction period.
The ultrafast cement used in the present invention utilizes rapid generation of ettringite and is classified into “1 clinker type” and “2 clinker type”.
The "1 clinker type" super-hard cement is made of calcium aluminate, 11CaO · 7Al 2 O 3 · CaF 2 , co-existing with alite in the clinker, and type II anhydrous gypsum and a small amount added to this Manufactured by mixing products.
On the other hand, “2 clinker type” super fast hard cement is made of calcium aluminate, which is a super fast hard component, and a mixture of Portland cement, gypsum and others specified in JIS R 5210. is there.
また、上記セメントには、JIS A 6201に規定されたフライアッシュ、JIS A 6207に規定されたシリカヒューム、石灰石粉末、石英粉末、二水石膏、半水石膏、無水石膏などの公知の混和材を添加することができる。   The cement is made of a known admixture such as fly ash as defined in JIS A 6201, silica fume, limestone powder, quartz powder, dihydrate gypsum, hemihydrate gypsum, or anhydrous gypsum as defined in JIS A 6207. Can be added.
本発明のモルタルに配合される汎用モルタル用細骨材としては、JIS A 5005に規定された砕砂(石灰石起源を含む)、JIS A 5308 附属書1に規定された川砂、海砂、山砂、3〜8号珪砂等の汎用細骨材を使用することができるが、特に珪砂7号が好適に使用できる。
その配合割合は、通常、モルタル1mあたり300〜600kg、好ましくは、400〜500kgとすることが望ましい。
The fine aggregate for general-purpose mortar blended in the mortar of the present invention includes crushed sand (including limestone origin) defined in JIS A 5005, river sand, sea sand, mountain sand defined in Annex 1 of JIS A 5308, Although general-purpose fine aggregates such as 3-8 silica sand can be used, especially silica sand 7 can be preferably used.
The blending ratio is usually 300 to 600 kg, preferably 400 to 500 kg per 1 m 3 of mortar.
本発明においては、ブレーン比表面積が500〜2000cm/gのセメント粗粉及び/又はブレーン比表面積が500〜3000cm/gの高炉スラグ粗粉及び/又はJIS A 5011に規定される高炉スラグ細骨材であってJIS篩0.6mm全通に粒度調整したものを、望ましくは、上記汎用モルタル用細骨材の30〜60質量%、好ましくは40〜50質量%を上記セメント粗粉または高炉スラグ粗粉に、及び/又は、該汎用細骨材の30〜70質量%、望ましくは35〜60質量%を上記高炉スラグ細骨材に置換して用いる。 In the present invention, a cement coarse powder having a Blaine specific surface area of 500 to 2000 cm 2 / g and / or a blast furnace slag coarse powder having a Blaine specific surface area of 500 to 3000 cm 2 / g and / or a blast furnace slag fine as defined in JIS A 5011. An aggregate that is adjusted to a particle size of 0.6 mm throughout the JIS sieve, desirably 30 to 60% by mass, preferably 40 to 50% by mass of the fine aggregate for general-purpose mortar, is used for the cement coarse powder or blast furnace. The blast furnace slag fine aggregate is used by replacing the slag coarse powder and / or 30 to 70 mass%, preferably 35 to 60 mass% of the general-purpose fine aggregate.
また、ここで、ブレーン比表面積が500〜2000cm/gのセメント粗粉は平均粒径が50μm程度であり、また、ブレーン比表面積が500〜3000cm/gの高炉スラグ粗粉は平均粒径が25μm程度であることが、本発明の効果を奏する上で更に望ましい。
本発明において平均粒径とは、レーザー回折式粒度分布測定装置を用いて、0.9、1.4、1.9、2.8、3.9、5.5、7.8、11.0、16.0、22.0、31.0、44.0、62.0、88.0、125.0、176.0、250.0、350.0、500.0、700.0μmの各粒径における頻度を測定し、累計加積曲線を描き、累積頻度50%の粒径として求めたものである。
また、ブレーン比表面積は、JIS R 5201の7.に規定されているブレーン空気透過装置を用いて測定した値である。
また、該セメント粗粉の密度は好ましくは3.10〜3.25g/cmの範囲であり、より好ましくは3.13〜3.28g/cmである。
本件発明における密度とは真密度を意味し、その測定方法はJIS R 5201の1.に規定されているルシャテリエフラスコを用いた密度試験である。
Here, the cement coarse powder having a Blaine specific surface area of 500 to 2000 cm 2 / g has an average particle diameter of about 50 μm, and the blast furnace slag coarse powder having a Blaine specific surface area of 500 to 3000 cm 2 / g is an average particle diameter. Is more preferably about 25 μm in view of the effects of the present invention.
In the present invention, the average particle diameter means 0.9, 1.4, 1.9, 2.8, 3.9, 5.5, 7.8, 11. 0, 16.0, 22.0, 31.0, 44.0, 62.0, 88.0, 125.0, 176.0, 250.0, 350.0, 500.0, 700.0 μm The frequency at each particle size was measured, a cumulative accumulation curve was drawn, and the particle size was determined as a particle size with a cumulative frequency of 50%.
Also, the specific surface area of the brane is JIS R 5201 7. It is the value measured using the brane air permeation device specified in 1.
The density of the cement coarse powder is preferably in the range of 3.10 to 3.25 g / cm 3 , and more preferably 3.13 to 3.28 g / cm 3 .
The density in the present invention means the true density, and the measuring method is as described in JIS R 5201 1. Is a density test using a Le Chatelier flask defined in 1.
このように、ブレーン比表面積が500〜2000cm/gのセメント粗粉及び/又はブレーン比表面積が500〜3000cm/gの高炉スラグ粗粉及び/又はJIS A 5011に規定される高炉スラグ細骨材であってJIS篩0.6mm全通に粒度調整したものを配合することにより、高靭性セメント複合材料において荷重による応力、またはモルタルの体積変化に起因するひび割れが発生しても、高靭性セメント複合材料中に含まれる粗粉のセメントの長期にわたる水硬性または粗粉の高炉スラグの長期にわたる潜在水硬性、若しくは高炉スラグ細骨材などの微弱な潜在水硬性によってひび割れ部に水和物が充填され、鋼床版に腐食をもたらす水などの液体及び酸素・二酸化炭素などの気体の侵入を防ぐ、いわゆるひび割れ自己修復機能を有する鋼床版補修用モルタル複合材を提供することができる。 Thus, blast furnace slag fine aggregate to Blaine specific surface area of cement meal and / or Blaine specific surface area of 500~2000cm 2 / g is defined in 500~3000cm 2 / g of blast furnace slag coarse powder and / or JIS A 5011 By blending a material with a particle size adjusted to 0.6 mm throughout the JIS sieve, a high toughness cement composite can be used even if cracks due to load stress or mortar volume change occur in a high toughness cement composite material. Hydrate fills cracks due to long-term hydraulic properties of coarse cement contained in composites or long-term latent hydraulic properties of coarse blast furnace slag, or weak latent hydraulic properties such as fine granulated blast furnace slag. The so-called cracking self-prevention of liquids such as water and gases such as oxygen and carbon dioxide that corrode the steel slab. It is possible to provide a steel deck repair mortar composites having a repair function.
更に、本発明においては、いわゆるひび割れの自己修復機能を有する材料に外部よりの水の供給がない場合、高靭性セメント複合材料に予め含まれて水を供給する機能を有するように、上記汎用モルタル用細骨材の2〜10質量%、好ましくは4〜8質量%を、人工軽量骨材及び吸水性ポリマーに置換して配合する。   Further, in the present invention, when the material having a so-called crack self-repair function is not supplied with water from the outside, the above-mentioned general-purpose mortar has a function of supplying water contained in the high-toughness cement composite material in advance. 2 to 10% by mass, preferably 4 to 8% by mass, of the fine aggregate for use is replaced with an artificial light aggregate and a water-absorbing polymer.
かかる人工軽量材としては、JIS A 5002に規定される構造用軽量コンクリート骨材の種類のうち人工軽量骨材等が例示でき、また吸水性ポリマーとしては、ポリアクリル酸、アクリル酸共重合体塩からなるポリマー、ポリビニルアルコール+ポリアクリル酸塩、イソブチレン+マレイン酸塩、デンプン+ポリアクリル酸塩、架橋カルボキシメチルセルロース等を例示することができる。   Examples of such artificial lightweight materials include artificial lightweight aggregates among the types of structural lightweight concrete aggregates defined in JIS A 5002, and examples of water-absorbing polymers include polyacrylic acid and acrylic acid copolymer salts. Examples thereof include polymers consisting of: polyvinyl alcohol + polyacrylate, isobutylene + maleate, starch + polyacrylate, crosslinked carboxymethylcellulose and the like.
例えば、雨水等、外部よりの水の供給がほとんど期待できないダブルデッキ構造の橋梁形式の下段床版において、Self‐Curing作用が期待できる人工軽量骨材及び吸水性ポリマーを、汎用モルタル用細骨材の4〜8質量%を置換して使用するのがよい。
上記のSelf‐Curing作用を期待する材料は、コンクリートの練り混ぜ時に水又は収縮低減剤を含む水溶液で飽和させるものとする。
ここで、収縮低減剤を含む水溶液によりSelf‐Curing作用を期待する材料を飽和させると、ひび割れ発生時の負圧により水溶液が水と同様にひび割れ面に供給され、自己修復機能を有する材料の水和を促進するだけでなく、収縮低減剤の有する収縮低減作用(毛細管力の低減)がひび割れ面に作用し、乾燥収縮によるひび割れ幅の増大を抑制する。
For example, it is possible to use artificial lightweight aggregates and water-absorbing polymers that can be expected to have a self-curing action in a double deck bridge type lower floor slab that can hardly be expected to supply water from the outside, such as rainwater. It is preferable to use 4 to 8% by mass of
The material expected to have the above Self-Curing action is saturated with water or an aqueous solution containing a shrinkage reducing agent when concrete is mixed.
Here, when a material that is expected to have a self-curing action is saturated with an aqueous solution containing a shrinkage reducing agent, the aqueous solution is supplied to the cracked surface in the same manner as water due to the negative pressure at the time of cracking, and water of a material having a self-healing function. In addition to promoting the sum, the shrinkage reducing action (reduction in capillary force) of the shrinkage reducing agent acts on the crack surface, and suppresses an increase in crack width due to drying shrinkage.
このように、人工軽量材や吸水性ポリマーを配合することで、ひび割れ発生後において、いわゆるひび割れの自己修復機能を有する材料に外部よりの水の供給がない場合であっても、高靭性セメント複合材料に予め含まれて水を供給する人工軽量骨材及び吸水性ポリマーからの水を活用して自己修復機能を有効に実現させることができる。   In this way, by blending an artificial lightweight material and a water-absorbing polymer, a high-toughness cement composite can be used even after the occurrence of cracking even if there is no external water supply to the material having a so-called crack self-repair function. The self-healing function can be effectively realized by utilizing the water from the artificial lightweight aggregate and water-absorbing polymer that are included in the material and supply water.
更に、本発明に用いる高靭性セメント複合材料には、補強繊維が含まれる。
該補強繊維のうち、特に有機補強繊維は、補強繊維のモノフィラメントをサイジング処理した繊維束であることが好ましい。
このような補強繊維を含み、当該補強繊維の繊維の種類、量、アスペクト比を変化させて適性に組み合わせることによって、得られるモルタル複合材のひび割れ幅を微細とし、ひび割れ分散効果を呈することが、より効果的に達成できる。
Furthermore, the high-toughness cement composite material used in the present invention includes reinforcing fibers.
Of the reinforcing fibers, the organic reinforcing fibers are preferably fiber bundles obtained by sizing monofilaments of reinforcing fibers.
By including such reinforcing fibers, by appropriately changing the type, amount and aspect ratio of the fibers of the reinforcing fibers, the crack width of the resulting mortar composite material is made fine, and exhibiting a crack dispersion effect, It can be achieved more effectively.
このような繊維としては、鋼繊維、ステンレス繊維、ガラス繊維、耐アルカリガラス繊維、炭素繊維、アラミド繊維、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アクリル繊維等の合成繊維が例示でき、少なくとも1種以上を用いることができる。
かかる補強繊維を含むことにより、更にひび割れ抵抗性が向上する材料になる。
Examples of such fibers include steel fibers, stainless fibers, glass fibers, alkali-resistant glass fibers, carbon fibers, aramid fibers, vinylon fibers, polypropylene fibers, polyethylene fibers, acrylic fibers and the like, and at least one or more types Can be used.
By including such reinforcing fibers, the material is further improved in crack resistance.
また、複数微細ひび割れ挙動と引張ひずみ硬化挙動を示す高靭性セメント複合材料は、2%程度以下の容積繊維混入量を有することが望ましく、鋼繊維では直径0.1〜0.25mm程度、長さ10mm程度、有機系繊維では直径0.01〜0.04mm程度、アスペクト比が100以上のものが好適に使用される。   Further, it is desirable that the high toughness cement composite material exhibiting a plurality of microcracking behavior and tensile strain hardening behavior has a volume fiber mixing amount of about 2% or less, and a steel fiber has a diameter of about 0.1 to 0.25 mm and a length. An organic fiber having a diameter of about 0.01 to 0.04 mm and an aspect ratio of 100 or more is preferably used.
なお、引張ひずみ硬化挙動を得るためには、マトリックスの引張強度が繊維の架橋応力の最大値を上回らず、かつマトリックスのひび割れの進展に必要なエネルギー(Jtip)が、架橋応力−ひび割れ開口変位曲線(数1)から求められるコンプリメンタリーエネルギー(J’)を上回らないことが一般的な条件となり、このことは下記式1及び式2(数2)を満足させることである。 In order to obtain the tensile strain hardening behavior, the tensile strength of the matrix does not exceed the maximum value of the fiber cross-linking stress, and the energy (J tip ) required for the progress of the crack in the matrix is the cross-linking stress-crack opening displacement. It is a general condition not to exceed the complementary energy (J b ′) obtained from the curve (Equation 1), and this satisfies the following Equation 1 and Equation 2 (Equation 2).
また本発明に用いる繊維補強高靭性セメント複合材料には、JIS A 6202に規定された膨張材、乾燥収縮低減剤、凝結遅延剤、硬化促進剤、増粘剤、JIS A 6205に規定された防錆剤、防凍剤、着色剤等の各種の添加剤を、本発明の目的を実質的に阻害しない範囲で使用することができる。   Further, the fiber reinforced high toughness cement composite material used in the present invention includes an expansion material specified in JIS A 6202, a drying shrinkage reducing agent, a set retarder, a curing accelerator, a thickening agent, and an anti-corrosion specified in JIS A 6205. Various additives such as a rusting agent, an antifreezing agent, and a coloring agent can be used as long as the object of the present invention is not substantially inhibited.
本発明のモルタル複合材料は、上記材料を適量な水とを添加して混練するが、水は、セメント等の硬化に悪影響を及ぼす成分を含有していなければ、水道水や地下水、河川水等の水を用いることができ、例えば、「JIS A 5308 付属書9 レディーミクストコンクリートの練混ぜに用いる水」に適合するものが好ましいが、混和剤に含まれる水を用いることも可能である。
当該水の量は、水/セメント質量比が、0.3〜0.5、好ましくは0.35〜0.45となるように添加調整することが、上記効果をより有効に発現させるために好ましい。
The mortar composite material of the present invention is kneaded by adding an appropriate amount of water to the above material, but if the water does not contain components that adversely affect the hardening of cement or the like, tap water, ground water, river water, etc. For example, water suitable for “JIS A 5308 Appendix 9 Water used for kneading ready-mixed concrete” is preferable, but water contained in the admixture can also be used.
The amount of the water is adjusted so that the water / cement mass ratio is 0.3 to 0.5, preferably 0.35 to 0.45, in order to exhibit the above effect more effectively. preferable.
本発明のモルタル複合材料は、それぞれの材料を施工時に混合しても、予め一部を混合してもかまわないが、予め粉末成分を混合した材料と水とを混合することが、施工現場での計量手間や計量ミスをなくす点で好ましい。
水以外の粉末成分等を予め混合する装置としては、均一に混合できるものであれば特に限定されず、既存の任意の装置を使用でき、例えば、ヘンシェルミキサー、オムニミキサー、V型ミキサーやナウターミキサー等が挙げられる。
The mortar composite material of the present invention may be mixed at the time of construction or a part of the material may be mixed in advance. This is preferable because it eliminates the need for weighing and measuring errors.
The apparatus for premixing powder components other than water is not particularly limited as long as it can be uniformly mixed, and any existing apparatus can be used, for example, a Henschel mixer, an omni mixer, a V-type mixer or a nauter. A mixer etc. are mentioned.
このようにして、ひび割れ幅が0.1mm以下と微細になるように制御可能なモルタル複合材料を、鋼床版と接着剤の付着力により一体化し、鋼床版とUリブ付け根から発生する疲労亀裂の進展を阻止し補強する鋼床版の補修用に適用することができる。
補修方法毎の適用形態としては、現場打ち用の材料とする場合、補修個所を適切な寸法に分割してプレキャスト化して施工する際のプレキャスト部材用の材料とする場合いずれも可能である。
In this way, the mortar composite material that can be controlled so that the crack width is as fine as 0.1 mm or less is integrated by the adhesive force of the steel deck and adhesive, and fatigue occurs from the steel deck and the U-rib root. It can be applied for repairing steel decks that prevent and reinforce crack growth.
As a form of application for each repair method, it is possible to use a material for on-site use or a material for a precast member when a repair site is divided into appropriate dimensions and precast to be applied.
以下に、本発明の繊維補強高靭性セメント複合材料からなる鋼床版補修用モルタル複合材料について、比較をしながら説明する。   Hereinafter, the mortar composite material for repairing steel slabs made of the fiber-reinforced high toughness cement composite material of the present invention will be described with comparison.
(1)使用材料
以下の実施例及び比較例に用いた高靭性セメント複合材料を構成する各材料を表1及び表2に示す。
(1) Materials Used Table 1 and Table 2 show the materials constituting the high toughness cement composite materials used in the following Examples and Comparative Examples.
(2)補修用モルタル複合材料の調製
各補修用モルタル複合材料の調製は、以下のとおりである。
・比較例1(補修用モルタル複合材料1の調製)
上記表1の有機系繊維を1.0容積%、超速硬セメント1020kg/m、珪砂7号(細骨材)430kg/m、減水剤20.4kg/m、凝結遅延剤5.1kg/m(外割)を均一に撹拌混合して、高靭性セメント複合材料1を調製し、該高靭性セメント複合材料1に水を459kg/m配合して均一に撹拌混合し、補修用モルタル複合材料1を得た。
当該補修用モルタル複合材料1は、ひび割れの自己修復機能を有さない比較対象例に相当する。
(2) Preparation of repair mortar composite material Preparation of each repair mortar composite material is as follows.
Comparative Example 1 (Preparation of repair mortar composite material 1)
1.0% by volume of organic fiber in Table 1 above, super fast hard cement 1020 kg / m 3 , silica sand 7 (fine aggregate) 430 kg / m 3 , water reducing agent 20.4 kg / m 3 , setting retarder 5.1 kg / M 3 (outer split) is stirred and mixed uniformly to prepare a high toughness cement composite material 1, and 459 kg / m 3 of water is mixed in the high toughness cement composite material 1 and uniformly stirred and mixed for repair. A mortar composite material 1 was obtained.
The repair mortar composite material 1 corresponds to a comparative example that does not have a self-repair function for cracks.
・実施例1〜6(補修用モルタル複合材料2〜7の調製)
前記高靭性セメント複合材料1中の珪砂7号(細骨材)の40質量%をそれぞれセメント粗粉又は高炉スラグ粗粉に置換配合した高靭性セメント複合材料2〜3、前記高靭性セメント複合材料1中の珪砂7号(細骨材)の10質量%をセメント粗粉にかつ当該珪砂7号(細骨材)の50質量%を高炉スラグ細骨材に置換配合した高靭性セメント複合材料4をそれぞれ調製し、該高靭性セメント複合材料2〜4に水を459kg/m配合して均一に撹拌混合し、補修用モルタル複合材料2〜4を得た。
Examples 1-6 (preparation of mortar composite materials 2-7 for repair)
High toughness cement composite material 2-3 in which 40% by mass of silica sand No. 7 (fine aggregate) in high toughness cement composite material 1 is replaced with cement coarse powder or blast furnace slag coarse powder, respectively, and high toughness cement composite material A high toughness cement composite 4 in which 10% by mass of silica sand No. 7 (fine aggregate) in 1 is replaced with cement coarse powder and 50% by mass of the silica sand No. 7 (fine aggregate) is replaced with blast furnace slag fine aggregate 4 Were prepared, and 459 kg / m 3 of water was added to the high tough cement composite materials 2 to 4 and stirred and mixed uniformly to obtain mortar composite materials 2 to 4 for repair.
また、前記高靭性セメント複合材料1中の珪砂7号(細骨材)の40質量%をそれぞれセメント粗粉又は高炉スラグ粗粉に置換配合し、更に珪砂7号(細骨材)の5質量%を、表1に示す収縮低減剤を50質量%濃度に調整した水溶液で飽和させた平均粒径が0.6mm以下の人口細骨材に置換配合した高靭性セメント複合材料5〜6、前記高靭性セメント複合材料1中の珪砂7号(細骨材)の10質量%をセメント粗粉にかつ当該珪砂7号(細骨材)の50質量%を高炉スラグ細骨材に置換配合し、更に珪砂7号(細骨材)の5質量%を、表1に示す収縮低減剤を50質量%濃度に調整した水溶液で飽和させた平均粒径が0.6mm以下の人口細骨材に置換配合した、高靭性セメント複合材料7をそれぞれ調製し、該高靭性セメント複合材料5〜7に水を459kg/m配合して均一に撹拌混合し、補修用モルタル複合材料5〜7を得た。
これらの補修用モルタル2〜7は、セメント粗粉、高炉スラグ粗粉及び高炉スラグ細骨材等を含み、モルタルに自己修復作用を付与するものである。
Further, 40% by mass of silica sand No. 7 (fine aggregate) in the high toughness cement composite material 1 is respectively replaced with cement coarse powder or blast furnace slag coarse powder, and further 5 mass of silica sand No. 7 (fine aggregate). % Tough cement composite materials 5-6, in which the average particle size is saturated with an aqueous solution in which the shrinkage reducing agent shown in Table 1 is adjusted to a concentration of 50% by mass, and the artificial fine aggregate has an average particle size of 0.6 mm or less, 10% by mass of silica sand 7 (fine aggregate) in the high toughness cement composite material 1 is replaced with cement coarse powder and 50% by mass of the silica sand 7 (fine aggregate) is replaced with blast furnace slag fine aggregate. Furthermore, 5% by mass of silica sand No. 7 (fine aggregate) was replaced with artificial fine aggregate having an average particle size of 0.6 mm or less, saturated with an aqueous solution prepared by adjusting the shrinkage reducing agent shown in Table 1 to a concentration of 50% by mass. Each compounded high toughness cement composite material 7 was prepared, and the high toughness cement composite material was prepared. 5-7 Water was 459kg / m 3 blended uniformly stirred and mixed to obtain a repair mortar composites 5-7.
These repair mortars 2 to 7 include cement coarse powder, blast furnace slag coarse powder, blast furnace slag fine aggregate, and the like, and impart self-repairing action to the mortar.
(3)試験体版の調製
図1に示すような鋼床版付き試験体を準備した。
模擬鋼板床版として、幅200mm×長さ1500mm×厚さ9mmの実際の現場で使用される鋼板床板と同じものを準備し、ショットブラスト機(SB−1000、株式会社フタミ製)で、鋼板表面にショットブラスト処理(鋼球:スチールショット(異形)、投射密度250kg/m)を行った。
(3) Preparation of specimen plate A specimen with a steel floor slab as shown in Fig. 1 was prepared .
As a simulated steel plate slab, prepare the same steel plate floor plate used in the actual site with a width of 200 mm × length of 1500 mm × thickness of 9 mm, and the steel plate surface with a shot blast machine (SB-1000, manufactured by Futami Co., Ltd.) Were subjected to shot blasting (steel ball: steel shot (deformed), projection density 250 kg / m 2 ).
また、模擬鋼床版と同一の素材で、鋼板床版の側面に沿って4枚の側板を設置し、ねじ込み式皿ボルトで、模擬鋼板床版と側板を固定した。
該鋼板の上面に表1に示す接着剤を1リットル/mの量で塗布し、その上に50mm厚みで各補修用モルタル複合材料1〜7を打ち込み、次いで表面仕上げを行い、28日間20℃の水中で水中養生を行い、その後立脱型して、各試験体版1〜7を作成・準備した。
In addition, with the same material as the simulated steel slab, four side plates were installed along the side surface of the steel plate slab, and the simulated steel plate slab and the side plate were fixed with screw-type countersunk bolts.
The adhesive shown in Table 1 is applied to the upper surface of the steel plate in an amount of 1 liter / m 2 , and each mortar composite material 1 to 7 for repair is driven in a thickness of 50 mm, followed by surface finishing for 20 days for 20 days. Underwater curing was carried out in water at 0 ° C., and after that, the test specimens 1 to 7 were prepared and prepared.
(4)自己修復機能試験
次いで、上記試験体版1〜7を用いて、自己修復機能試験を実施した。
図2に示す鋼床版のリブ溶接部の負曲げ試験を模擬するため、図3に示すように、鋼床版を圧縮側に、モルタルを引張り側になるように試験体をセットした。
載荷は、モルタルの打込み後28日経過した各試験体を用いて、等曲げモーメント区間を有する静的2点曲げとし、大たわみが発生しないように、かつせん断破壊が先行しないようにスパンを定めた。
(4) Self-healing function test Next, a self-healing function test was carried out using the above-mentioned test specimens 1 to 7.
In order to simulate the negative bending test of the rib weld portion of the steel deck shown in FIG. 2, as shown in FIG. 3, the test specimen was set so that the steel deck was on the compression side and the mortar was on the tension side.
For each loading test, 28 days after the mortar was placed, each specimen was subjected to static two-point bending with an equal bending moment section, and the span was determined so that no large deflection occurred and shear fracture did not precede. It was.
各試験体両サイドの荷重点に4箇所及び支持部に4箇所、合計8箇所に変位計(東京衡機製造所製の容量300kNの万能試験機)を取り付け、それぞれの平均値の差を算出し、荷重点の曲げモーメントによる変位(たわみ)とした。
載荷は前記変位が10mmになるまで行った。
図4に前記変位が10mmとなった際の、各試験体のひび割れ状況の模式図を示す。これにより、ひび割れ発生個所が分散していることがわかる。
Displacement meters (universal testing machines with a capacity of 300 kN manufactured by Tokyo Henki Plant) are attached to the load points on both sides of each specimen and 4 places on the support part, totaling 8 places, and the difference between the respective average values is calculated. The displacement (deflection) due to the bending moment at the load point was used.
Loading was performed until the displacement reached 10 mm.
FIG. 4 shows a schematic diagram of the cracking state of each specimen when the displacement is 10 mm. Thereby, it turns out that the crack generation | occurrence | production location is disperse | distributing.
次に、各試験体から前記載荷の負荷を取り除いた除荷後の各試験体のひび割れが0.1mm程度となるように、各試験体の側面及び底面を2箇所ずつ金属箔のスペーサーによって保持した。
次いで、該金属箔のスペーサーによってひび割れ幅を0.1mmとなるように保持した上記比較例1及び実施例1〜3の各試験体版1〜4を、20℃で1ヶ月間水中浸漬に供し、ひび割れ部の閉塞状態を観測し、その結果を表3に示す。
Next, hold the two sides and bottom of each specimen with metal foil spacers so that the cracks of each specimen after unloading after removing the load of the load described above from each specimen are about 0.1 mm. did.
Next, each specimen plate 1 to 4 of Comparative Example 1 and Examples 1 to 3 held so that the crack width is 0.1 mm by the spacer of the metal foil is immersed in water at 20 ° C. for 1 month. The closed state of the cracked portion was observed, and the results are shown in Table 3.
また、該金属箔のスペーサーによってひび割れ幅を0.1mmとなるように保持した上記実施例4〜6の各試験体版5〜7を、温度20℃、湿度70%の恒温恒湿室に1ヶ月間静置して、ひび割れ部の閉塞状態を観測し、その結果を表3に示す。   Further, each specimen plate 5 to 7 of Examples 4 to 6 held by the metal foil spacer so as to have a crack width of 0.1 mm was placed in a constant temperature and humidity chamber at a temperature of 20 ° C. and a humidity of 70%. After standing for months, the closed state of the cracked portion was observed, and the results are shown in Table 3.
7種類の試験体におけるひび割れ部の閉塞状況は、表3に示すとおり、上記比較例1の試験体版を除いて、ひび割れ部は水和物によって充填されていた。
すなわち、セメント粗粉、高炉スラグ粗粉及び高炉スラグ細骨材材料を配合した場合には、ひび割れの自己修復機能が有効に発現されたことが確認できるとともに、外部よりの水の供給がない場合であっても、高靭性セメント複合材料に予め含まれて水を供給する人工軽量骨材を使用することで、ひび割れの自己修復機能が有効に発現できることがわかった。
As shown in Table 3, the cracks in the seven types of test specimens were filled with hydrates except for the test specimen version of Comparative Example 1 described above.
That is, when cement coarse powder, blast furnace slag coarse powder, and blast furnace slag fine aggregate material are blended, it can be confirmed that the self-repair function of cracks has been effectively expressed, and there is no external water supply Even so, it was found that the self-healing function of cracks can be effectively expressed by using an artificial lightweight aggregate that is included in the high-toughness cement composite material and supplies water.
本発明のモルタル複合材料は、ひび割れの発生を分散することができ、更には、自己修復機能により、水和物が該ひび割れに充填されるため、重交通下におけるグースアスファルト舗装を施された鋼床版の補修に、特に夏季に有効に利用することができる。   The mortar composite material of the present invention can disperse the occurrence of cracks, and further, the self-healing function fills the cracks with hydrate, so that the steel subjected to goose asphalt pavement under heavy traffic It can be used effectively for repairing floor slabs, especially in summer.
本発明に係る鋼床版付き補修用モルタル複合材料の形状・寸法を模式的に表した図である。It is the figure which represented typically the shape and dimension of the repair mortar composite material with a steel floor slab which concerns on this invention. 重交通下における載荷状況を模式的に表した図である。It is the figure which represented the loading situation under heavy traffic typically. 図2の載荷状況におけるリブ溶接部の負曲げを模擬するための試験体版セッティング図である。FIG. 3 is a test plate setting diagram for simulating negative bending of a rib weld in the loading state of FIG. 2. 試験体版のひび割れ状況の模式図である。It is a schematic diagram of the crack condition of a test body version.

Claims (6)

  1. ブレーン比表面積が500〜2000cm/gのセメント粗粉及び/又はブレーン比表面積が500〜3000cm/gの高炉スラグ粗粉及び/又はJIS A 5011に規定される高炉スラグ細骨材であってJIS篩0.6mm全通に粒度調整されたものを含む、繊維補強高靭性セメント複合材料からなることを特徴とする、鋼床版補修用モルタル複合材料。 A cement coarse powder having a Blaine specific surface area of 500 to 2000 cm 2 / g and / or a blast furnace slag coarse powder having a Blaine specific surface area of 500 to 3000 cm 2 / g and / or a blast furnace slag fine aggregate defined in JIS A 5011, A mortar composite material for repairing steel slabs, comprising a fiber reinforced high toughness cement composite material including a JIS sieve having a particle size of 0.6 mm.
  2. 請求項1記載の鋼床版補修用モルタル複合材料において、前記セメント粗粉、高炉スラグ粗粉及び高炉スラグ細骨材を、繊維補強高靭性セメント複合材料に用いる汎用細骨材の一部と代替して用いることを特徴とする、鋼床版補修用モルタル複合材料。   The mortar composite material for repairing steel slabs according to claim 1, wherein the cement coarse powder, blast furnace slag coarse powder and blast furnace slag fine aggregate are replaced with a part of general-purpose fine aggregate used for fiber-reinforced high toughness cement composite material. A mortar composite material for repairing steel slabs, characterized by being used as a slab.
  3. 請求項2記載の鋼床版補修用モルタル複合材料において、モルタル1mあたり300〜600kg配合する汎用モルタル用細骨材の30〜60質量%を上記セメント粗粉または高炉スラグ粗粉に、及び/又は、該汎用モルタル用細骨材の30〜70質量%を上記高炉スラグ細骨材に代替することを特徴とする、鋼床版補修用モルタル複合材料。 In steel deck repair mortars composite material according to claim 2, wherein 30 to 60 wt% of a general-purpose mortar for fine aggregate blending 300~600kg per mortar 1 m 3 in the cement coarse blast furnace slag coarse, and / Alternatively, a mortar composite material for repairing steel slabs, wherein 30 to 70% by mass of the fine aggregate for general-purpose mortar is replaced with the blast furnace slag fine aggregate.
  4. 請求項1〜3いずれかの項に記載した鋼床版補修用モルタル複合材料において、前記補強繊維は、鋼繊維、ステンレス繊維、ガラス繊維、炭素繊維及び合成繊維の少なくとも1種類以上であることを特徴とする、鋼床版補修用モルタル複合材料。   The mortar composite material for repairing a steel floor slab according to any one of claims 1 to 3, wherein the reinforcing fiber is at least one of steel fiber, stainless steel fiber, glass fiber, carbon fiber and synthetic fiber. A mortar composite material for repairing steel slabs.
  5. 請求項4記載の鋼床版補修用モルタル複合材料において、有機補強繊維は、補強繊維のモノフィラメントをサイジング処理した繊維束であることを特徴とする、鋼床版補修用モルタル複合材料。   5. The mortar composite material for repairing steel slabs according to claim 4, wherein the organic reinforcing fibers are fiber bundles obtained by sizing monofilaments of reinforcing fibers.
  6. 請求項3又は4記載の鋼床版補修用モルタル複合材料において、更に、上記汎用モルタル用細骨材の4〜8質量%を人工軽量骨材及び/又は吸水性ポリマーに代替することを特徴とする、鋼床版補修用モルタル複合材料。   The mortar composite material for repairing steel slabs according to claim 3 or 4, wherein 4-8% by mass of the fine aggregate for general-purpose mortar is replaced with artificial lightweight aggregate and / or water-absorbing polymer. A mortar composite material for repairing steel slabs.
JP2007087226A 2007-03-29 2007-03-29 Mortar composite material for repairing steel slabs Active JP5022751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007087226A JP5022751B2 (en) 2007-03-29 2007-03-29 Mortar composite material for repairing steel slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007087226A JP5022751B2 (en) 2007-03-29 2007-03-29 Mortar composite material for repairing steel slabs

Publications (2)

Publication Number Publication Date
JP2008247620A true JP2008247620A (en) 2008-10-16
JP5022751B2 JP5022751B2 (en) 2012-09-12

Family

ID=39973027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007087226A Active JP5022751B2 (en) 2007-03-29 2007-03-29 Mortar composite material for repairing steel slabs

Country Status (1)

Country Link
JP (1) JP5022751B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162985A (en) * 2010-02-08 2011-08-25 Kobe Univ Structure for reinforcing steel girder, and method for constructing the same
US20120079962A1 (en) * 2009-01-21 2012-04-05 Jose Garcia Cementitious compositions having coarse ground blast furnace slag and methods of making and using the same
JP2014065626A (en) * 2012-09-25 2014-04-17 Sumitomo Osaka Cement Co Ltd Cement admixture and cement composition
JP2016160116A (en) * 2015-02-27 2016-09-05 アイカテック建材株式会社 Cement sheet excellent in durability and cement composition therefor
JP2016223077A (en) * 2015-05-27 2016-12-28 太平洋セメント株式会社 Board for buried mold
JP2018203582A (en) * 2017-06-07 2018-12-27 株式会社トクヤマ Water-proof material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986983A (en) * 1995-09-29 1997-03-31 Shimizu Corp Hydration curing material having self repairing properties against crack and its crack repairing
JPH10194801A (en) * 1996-12-26 1998-07-28 Katsunobu Demura Concrete repairing liquid-encapsulated aggregate, and concrete blended with the same
JP2003267765A (en) * 2002-03-13 2003-09-25 East Japan Railway Co Concrete
JP2005155187A (en) * 2003-11-26 2005-06-16 Civil Engineering Research Institute Of Hokkaido Composite floor slab structure
JP2005239482A (en) * 2004-02-26 2005-09-08 East Japan Railway Co Self-healing concrete
JP2006131864A (en) * 2004-11-05 2006-05-25 Renew System Co Ltd Sticky/flexible asphaltic waterproof material composition using waste tire melt rubber and manufacturing method thereof
JP2007056564A (en) * 2005-08-25 2007-03-08 Taisei Corp Floor slab structure and method of reinforcing steel floor slab
JP2007162417A (en) * 2005-12-16 2007-06-28 Kajima Road Co Ltd Concrete composite material for repairing steel floor slab

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986983A (en) * 1995-09-29 1997-03-31 Shimizu Corp Hydration curing material having self repairing properties against crack and its crack repairing
JPH10194801A (en) * 1996-12-26 1998-07-28 Katsunobu Demura Concrete repairing liquid-encapsulated aggregate, and concrete blended with the same
JP2003267765A (en) * 2002-03-13 2003-09-25 East Japan Railway Co Concrete
JP2005155187A (en) * 2003-11-26 2005-06-16 Civil Engineering Research Institute Of Hokkaido Composite floor slab structure
JP2005239482A (en) * 2004-02-26 2005-09-08 East Japan Railway Co Self-healing concrete
JP2006131864A (en) * 2004-11-05 2006-05-25 Renew System Co Ltd Sticky/flexible asphaltic waterproof material composition using waste tire melt rubber and manufacturing method thereof
JP2007056564A (en) * 2005-08-25 2007-03-08 Taisei Corp Floor slab structure and method of reinforcing steel floor slab
JP2007162417A (en) * 2005-12-16 2007-06-28 Kajima Road Co Ltd Concrete composite material for repairing steel floor slab

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120079962A1 (en) * 2009-01-21 2012-04-05 Jose Garcia Cementitious compositions having coarse ground blast furnace slag and methods of making and using the same
US8257488B2 (en) * 2009-01-21 2012-09-04 Capitol Aggregates, Inc. Cementitious compositions having coarse ground blast furnace slag and methods of making and using the same
JP2011162985A (en) * 2010-02-08 2011-08-25 Kobe Univ Structure for reinforcing steel girder, and method for constructing the same
JP2014065626A (en) * 2012-09-25 2014-04-17 Sumitomo Osaka Cement Co Ltd Cement admixture and cement composition
JP2016160116A (en) * 2015-02-27 2016-09-05 アイカテック建材株式会社 Cement sheet excellent in durability and cement composition therefor
JP2016223077A (en) * 2015-05-27 2016-12-28 太平洋セメント株式会社 Board for buried mold
JP2018203582A (en) * 2017-06-07 2018-12-27 株式会社トクヤマ Water-proof material

Also Published As

Publication number Publication date
JP5022751B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP4989068B2 (en) Concrete composite for repairing steel slabs
Han et al. Smart and multifunctional concrete toward sustainable infrastructures
Gencel et al. Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash
US7799127B2 (en) High early strength engineered cementitious composites
JP5022751B2 (en) Mortar composite material for repairing steel slabs
Madhkhan et al. Effects of pozzolans together with steel and polypropylene fibers on mechanical properties of RCC pavements
Şahmaran et al. High-early-strength ductile cementitious composites with characteristics of low early-age shrinkage for repair of infrastructures
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
Dopko et al. Strength and Crack Resistance of Carbon Microfiber Reinforced Concrete.
JP5543734B2 (en) Fast curing polymer cement mortar composition for repair and its construction method
Brown et al. Investigation of fiber-reinforced self-consolidating concrete.
Rupnow Evaluation of ternary cementitious combinations.
Khayat et al. Economical and crack-free high-performance concrete for pavement and transportation infrastructure construction.
Bouzoubaa et al. Use of fly ash and slag in concrete: A Best Practice Guide
Yıldırım et al. Engineered cementitious composites-based concrete
Morcous et al. Design and performance of self-consolidating concrete for connecting precast concrete deck panels and bridge I-girders
Madhkhan et al. Roller compacted concrete pavements reinforced with steel and polypropylene fibers
Castine Development of High Early-Strength Concrete for Accelerated Bridge Construction Closure Pour Connections
Sherir Fracture Energy, Fatigue and Creep Properties of Engineered Cementitious Composites Incorporating Fly Ash/Slag With Different Aggregates
JP2007270470A (en) Construction method for repairing/reinforcing concrete structure
Scherr Feasibility of non-proprietary ultra-high performance concrete (UHPC) for use in highway bridges in Montana: phase II field application
JP2009023878A (en) Concrete for repairing cross section, and construction method for repairing cross section of concrete structure using the same
Valipour Design and performance of cost-effective ultra high performance concrete for bridge deck overlays
Sigdel Performance of Hybrid Fiber Reinforced Self-Consolidating and Normal Concrete in the State of Idaho
Abhishek et al. Experimental Study on Self-Compacting Concrete with Replacement Material’s

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

R150 Certificate of patent or registration of utility model

Ref document number: 5022751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250