JP2008239402A - Dielectric ceramic and stacked ceramic capacitor using the same - Google Patents

Dielectric ceramic and stacked ceramic capacitor using the same Download PDF

Info

Publication number
JP2008239402A
JP2008239402A JP2007082466A JP2007082466A JP2008239402A JP 2008239402 A JP2008239402 A JP 2008239402A JP 2007082466 A JP2007082466 A JP 2007082466A JP 2007082466 A JP2007082466 A JP 2007082466A JP 2008239402 A JP2008239402 A JP 2008239402A
Authority
JP
Japan
Prior art keywords
dielectric
dielectric ceramic
mol
powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007082466A
Other languages
Japanese (ja)
Other versions
JP5046699B2 (en
Inventor
Hideyuki Osuzu
英之 大鈴
Yoichi Yamazaki
洋一 山崎
Yoshihiro Fujioka
芳博 藤岡
Daisuke Fukuda
大輔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007082466A priority Critical patent/JP5046699B2/en
Priority to CN200880009546.6A priority patent/CN101641304B/en
Priority to PCT/JP2008/055951 priority patent/WO2008123377A1/en
Publication of JP2008239402A publication Critical patent/JP2008239402A/en
Application granted granted Critical
Publication of JP5046699B2 publication Critical patent/JP5046699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/6281Alkaline earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic having a high dielectric constant, excellent in stability of temperature characteristic of specific dielectric constant, and having a small voltage dependence of insulation resistance, and to provide stacked ceramic capacitor equipped with such dielectric ceramic as a dielectric layer, and excellent in life characteristic tested under high temperature load. <P>SOLUTION: The dielectric ceramic has: crystalline particles with a core shell structure where barium titanate is a major component and calcium, vanadium, magnesium, manganese, and at least one kind of rare earth element selected from yttrium, dysprosium, holmium, erbium and terbium are solid solubilized; and an intergranular phase present between the crystal grains. By incorporating specific ratio of vanadium, magnesium and rare earth element and manganese to set Curie temperature in the range of 95-105°C, the dielectric ceramic having a high dielectric constant, a small temperature changing rate of the specific dielectric constant a small voltage dependency of the insulation resistance can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、チタン酸バリウムを主成分とする結晶粒子により構成される誘電体磁器と、それを誘電体層として用いる積層セラミックコンデンサに関する。   The present invention relates to a dielectric ceramic composed of crystal particles mainly composed of barium titanate and a multilayer ceramic capacitor using the dielectric ceramic as a dielectric layer.

近年、携帯電話などモバイル機器の普及や、パソコンなどの主要部品である半導体素子の高速、高周波化に伴い、このような電子機器に搭載される積層セラミックコンデンサは、小型、高容量化の要求がますます高まっており、積層セラミックコンデンサを構成する誘電体層は薄層化と高積層化が求められている。   In recent years, with the widespread use of mobile devices such as mobile phones and the high speed and high frequency of semiconductor devices, which are the main components of personal computers and the like, multilayer ceramic capacitors mounted on such electronic devices are required to be smaller and have higher capacities. The dielectric layer constituting the multilayer ceramic capacitor is required to be thin and highly multilayered.

ところで、積層セラミックコンデンサを構成する誘電体層用の誘電体磁器として、従来より、カルシウムを固溶させたチタン酸バリウム(以下、チタン酸バリウムカルシウムという。)を主成分とする誘電率材料が用いられている。近年、このチタン酸バリウムカルシウムの粉末に、マグネシウムや希土類元素等の酸化物粉末を添加して、チタン酸バリウムカルシウムを主成分とする結晶粒子の表面付近に、さらにマグネシウムや希土類元素を固溶させた、いわゆるコアシェル構造の結晶粒子から構成された誘電体磁器が開発され、積層セラミックコンデンサとして実用化されている(例えば、特許文献1参照)。   By the way, as a dielectric ceramic for a dielectric layer constituting a multilayer ceramic capacitor, a dielectric constant material mainly composed of barium titanate (hereinafter referred to as barium calcium titanate) in which calcium is dissolved is used. It has been. Recently, oxide powders of magnesium and rare earth elements have been added to this barium calcium titanate powder, and magnesium and rare earth elements are further dissolved in the vicinity of the surface of crystal particles mainly composed of barium calcium titanate. In addition, dielectric ceramics composed of so-called core-shell structured crystal particles have been developed and put to practical use as multilayer ceramic capacitors (see, for example, Patent Document 1).

ここで、結晶粒子のコアシェル構造とは、結晶粒子の中心部であるコア部と外殻部であるシェル部とが物理的、化学的に異なる相を形成している構造をいい、チタン酸バリウムやチタン酸バリウムカルシウムを主成分とする結晶粒子については、コア部は正方晶系の結晶構造を有するチタン酸バリウムやチタン酸バリウムカルシウムで占められており、シェル部は立方晶系の結晶構造を有するチタン酸バリウムやチタン酸バリウムカルシウムにより占められている状態をいう。
特開2000−58377号公報 特開2004−79686号公報
Here, the core-shell structure of the crystal particle means a structure in which the core part which is the center part of the crystal particle and the shell part which is the outer shell part form physically and chemically different phases, and barium titanate. As for crystal grains mainly composed of barium calcium titanate, the core part is occupied by barium titanate or barium calcium titanate having a tetragonal crystal structure, and the shell part has a cubic crystal structure. The state occupied by barium titanate or barium calcium titanate.
JP 2000-58377 A JP 2004-79686 A

しかしながら、上述のようなコアシェル構造の結晶粒子から構成された誘電体磁器は、比誘電率の向上および比誘電率の温度特性の安定性に優れているものの、誘電体磁器に直流電圧を印加し、その直流電圧を増加させたときに絶縁抵抗の低下(以下、絶縁抵抗の電圧依存性という。)が大きくなるという問題があった。   However, dielectric ceramics composed of core-shell structured crystal particles as described above are excellent in relative permittivity and stability of temperature characteristics of relative permittivity, but are applied with a DC voltage to the dielectric ceramic. When the DC voltage is increased, the insulation resistance is lowered (hereinafter referred to as voltage dependency of the insulation resistance).

そして、上述のように、コアシェル構造の結晶粒子から構成された誘電体磁器を誘電体層として備えた積層セラミックコンデンサは、誘電体磁器における上述のような絶縁抵抗の電圧依存性に起因して高温負荷試験での寿命特性を向上させることが困難となっていた。   As described above, a multilayer ceramic capacitor including a dielectric ceramic composed of core-shell structured crystal particles as a dielectric layer has a high temperature due to the voltage dependence of the insulation resistance as described above in the dielectric ceramic. It has been difficult to improve the life characteristics in the load test.

従って本発明は、高誘電率かつ比誘電率の温度特性の安定性に優れるとともに、絶縁抵抗の電圧依存性の小さい誘電体磁器と、このような誘電体磁器を誘電体層として備え、高温負荷試験での寿命特性に優れた積層セラミックコンデンサを提供することを目的とする。   Accordingly, the present invention is provided with a dielectric ceramic having a high dielectric constant and excellent stability of the temperature characteristic of a relative dielectric constant and having a small voltage dependency of insulation resistance, and such a dielectric ceramic as a dielectric layer, An object of the present invention is to provide a multilayer ceramic capacitor having excellent life characteristics in a test.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、カルシウムと、バナジウムと、マグネシウムと、マンガンと、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素とが固溶したコアシェル構造の結晶粒子と、該結晶粒子間に存在する粒界相とを有する誘電体磁器であって、前記結晶粒子はカルシウム濃度が0.4原子%以上であるとともに、前記チタン酸バリウムを構成するバリウムおよび前記カルシウムの合計量100モルに対して、バナジウムを酸化物換算で0.1〜0.2モル、マグネシウムを酸化物換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素を酸化物換算で0.55〜0.75モル、およびマンガンを酸化物換算で0.25〜0.6モル含有し、キュリー温度が95〜105℃であることを特徴とする。   The dielectric ceramic of the present invention is mainly composed of barium titanate, and calcium, vanadium, magnesium, manganese, and at least one rare earth element selected from yttrium, dysprosium, holmium, erbium and terbium are solid. A dielectric ceramic having melted core-shell structure crystal grains and a grain boundary phase existing between the crystal grains, wherein the crystal grains have a calcium concentration of 0.4 atomic% or more, and the barium titanate Is 0.1 to 0.2 mol in terms of oxide, magnesium is 0.55 to 0.75 mol in terms of oxide, yttrium, displo At least one rare earth element selected from oxides of sium, holmium, erbium and terbium .55~0.75 mol, and manganese were 0.25 to 0.6 moles contained in terms of the oxide, the Curie temperature is characterized by a 95 to 105 ° C..

また、上記誘電体磁器では、前記マンガンを酸化物換算で0.25〜0.35モル含有することが望ましい。   The dielectric ceramic preferably contains 0.25 to 0.35 mol of the manganese in terms of oxide.

また、上記誘電体磁器では、前記結晶粒子の平均粒径が0.25〜0.35μmであることが望ましい。   In the dielectric ceramic, it is preferable that an average particle diameter of the crystal particles is 0.25 to 0.35 μm.

次に、本発明の積層セラミックコンデンサは、上記の誘電体磁器からなる誘電体層と内部電極層との積層体から構成されていることを特徴とする。   Next, the multilayer ceramic capacitor of the present invention is characterized in that it is composed of a laminate of a dielectric layer made of the above dielectric ceramic and an internal electrode layer.

本発明の誘電体磁器によれば、チタン酸バリウムに対して、カルシウム、バナジウム、マグネシウム、希土類元素およびマンガンをそれぞれ所定の割合で含有させるとともに、誘電体磁器の結晶粒子をコアシェル構造とし、キュリー温度を95〜105℃の範囲としたことにより、高誘電率でかつ比誘電率の温度変化率を小さくできるとともに、電圧を印加したときの絶縁抵抗の低下が小さい(絶縁抵抗の電圧依存性の小さい)誘電体磁器を得ることができる。   According to the dielectric ceramic of the present invention, calcium, vanadium, magnesium, rare earth element and manganese are contained in a predetermined ratio with respect to barium titanate, respectively, and the dielectric ceramic crystal particles have a core-shell structure with a Curie temperature. Is within the range of 95 to 105 ° C., the temperature change rate of the dielectric constant and the dielectric constant can be reduced, and the decrease in insulation resistance when a voltage is applied is small (the voltage dependence of the insulation resistance is small). ) A dielectric ceramic can be obtained.

また、本発明の誘電体磁器に対して、マンガンを酸化物換算で0.25〜0.35モル含有させたときには絶縁抵抗の電圧依存性がほとんど無い誘電体磁器を得ることができる。   Moreover, when 0.25 to 0.35 mol of manganese in terms of oxide is contained in the dielectric ceramic of the present invention, a dielectric ceramic having almost no voltage dependency of insulation resistance can be obtained.

本発明の誘電体磁器に対して、さらに、チタン酸バリウムを主成分とする結晶粒子の平均粒径を0.25〜0.35μmとしたときには、印加する直流電圧の所定の範囲において、絶縁性が増加する傾向を示す誘電体磁器を得ることができる。   In addition, when the average particle size of the crystal grains mainly composed of barium titanate is 0.25 to 0.35 μm, the dielectric ceramic according to the present invention has an insulating property within a predetermined range of applied DC voltage. It is possible to obtain a dielectric ceramic showing a tendency to increase.

また、本発明の積層セラミックコンデンサによれば、誘電体層として、上記の誘電体磁器を適用することにより、誘電体層を薄層化しても高い絶縁性を確保でき、このため高温負荷試験においても寿命特性に優れた積層セラミックコンデンサを得ることができる。   Also, according to the multilayer ceramic capacitor of the present invention, by applying the above dielectric ceramic as the dielectric layer, high insulation can be secured even if the dielectric layer is thinned. In addition, it is possible to obtain a multilayer ceramic capacitor having excellent life characteristics.

本発明の誘電体磁器は、実質的にコアシェル構造を有し、チタン酸バリウムを主成分とし、カルシウムと、バナジウムと、マグネシウムと、マンガンと、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素とが固溶した結晶粒子と、この結晶粒子間に存在する粒界相とを有し、バリウムおよびカルシウムの合計量100モルに対して、バナジウムを酸化物換算で0.1〜0.2モル、マグネシウムを酸化物換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素を酸化物換算で0.55〜0.75モル、およびマンガンを酸化物換算で0.25〜0.6モル含有することを特徴とする。   The dielectric porcelain of the present invention has a substantially core-shell structure, is mainly composed of barium titanate, and is composed of calcium, vanadium, magnesium, manganese, yttrium, dysprosium, holmium, erbium and terbium. It has crystal grains in which at least one kind of rare earth element is dissolved, and a grain boundary phase existing between the crystal grains, and vanadium is converted to oxide in terms of oxide with respect to 100 mol of the total amount of barium and calcium. 1 to 0.2 mol, magnesium 0.55 to 0.75 mol in terms of oxide, and at least one rare earth element among yttrium, dysprosium, holmium, erbium and terbium 0.55 in terms of oxide It contains 0.75 mol and 0.25 to 0.6 mol of manganese in terms of oxide.

また、本発明の誘電体磁器では、キュリー温度が95〜105℃であることが重要である。なお、本発明におけるキュリー温度は比誘電率の温度特性を測定した範囲(−60〜150℃)において比誘電率が最大となる温度である。   In the dielectric ceramic according to the present invention, it is important that the Curie temperature is 95 to 105 ° C. In the present invention, the Curie temperature is a temperature at which the relative dielectric constant becomes maximum in the range (−60 to 150 ° C.) in which the temperature characteristic of the relative dielectric constant is measured.

上記組成およびキュリー温度の範囲であると、室温(25℃)における比誘電率を3300以上にでき、また、比誘電率の温度特性がX5R(−55〜85℃の温度範囲において、25℃に対する比誘電率の変化率が±15%以内)を満足し、さらに、単位厚み(1μm)当たりに印加する直流電圧の値を12.5Vとしたときの絶縁抵抗を1010Ω以上にできるという利点がある。 In the above composition and Curie temperature range, the relative dielectric constant at room temperature (25 ° C.) can be 3300 or more, and the temperature characteristic of the relative dielectric constant is X5R (with respect to 25 ° C. in the temperature range of −55 to 85 ° C.). The rate of change of the dielectric constant is within ± 15%), and further, the insulation resistance can be increased to 10 10 Ω or more when the value of the DC voltage applied per unit thickness (1 μm) is 12.5 V There is.

図1(a)は、本発明の誘電体磁器を構成するコアシェル構造を有するチタン酸バリウムを主成分とする結晶粒子の断面模式図であり、図1(b)は、(a)の断面における希土類元素およびマグネシウムの濃度変化を示した模式図である。   FIG. 1A is a schematic cross-sectional view of a crystal particle mainly composed of barium titanate having a core-shell structure constituting the dielectric ceramic of the present invention. FIG. 1B is a cross-sectional view of FIG. It is the schematic diagram which showed the density | concentration change of rare earth elements and magnesium.

図1(a)(b)に見られるように、本発明の誘電体磁器を構成する結晶粒子は、チタン酸バリウムを主成分とするコア部1と、このコア部1の周囲に形成されたチタン酸バリウムを主成分とするシェル部3とから構成されている。   As can be seen in FIGS. 1A and 1B, the crystal particles constituting the dielectric ceramic of the present invention were formed around the core portion 1 mainly composed of barium titanate and around the core portion 1. It is comprised from the shell part 3 which has barium titanate as a main component.

結晶粒子中には、カルシウム、バナジウム、マグネシウム、希土類元素およびマンガンが固溶しており、特に、マグネシウムや希土類元素の固溶状態を見ると、シェル部3はコア部1よりもマグネシウムや希土類元素の濃度勾配が高くなっている。   In the crystal particles, calcium, vanadium, magnesium, rare earth elements and manganese are solid-dissolved. In particular, when the solid solution state of magnesium and rare earth elements is seen, the shell portion 3 is more magnesium or rare earth elements than the core portion 1. The concentration gradient is high.

図1(b)に示すように、結晶粒子の最表面SSからコア部1側に向けた希土類元素やマグネシウムの濃度変化が、コア部1の表面Sからコア部1の中心部Cに向けた希土類元素やマグネシウムの濃度変化よりも大きくなっている。   As shown in FIG. 1B, the concentration change of rare earth elements and magnesium from the outermost surface SS of the crystal particles toward the core portion 1 side is directed from the surface S of the core portion 1 toward the center portion C of the core portion 1. It is larger than the concentration change of rare earth elements and magnesium.

本発明の誘電体磁器を構成するコアシェル構造を有する結晶粒子では、シェル部3における希土類元素やマグネシウムの濃度変化が結晶粒子の最表面SSを最高濃度として、この最表面SSから内部にかけて0.05原子%/nm以上の濃度変化を有するものをいい、一方、コア部1は希土類元素やマグネシウムの濃度変化がシェル部3よりも小さいものをいう。なお、この測定は元素分析機器を付設した透過電子顕微鏡装置を用いて測定する。この場合、結晶粒子の表面側から中心部Cにかけて所定の間隔でエネルギー分散型分析器(EDS)を用いて元素分析を行うことにより希土類元素やマグネシウムの濃度変化を求めることができる。   In the crystal particle having the core-shell structure constituting the dielectric ceramic of the present invention, the concentration change of the rare earth element and magnesium in the shell part 3 is 0.05% from the outermost surface SS to the inside, with the outermost surface SS of the crystal particle being the highest concentration. On the other hand, the core portion 1 has a concentration change of at least atomic% / nm, while the core portion 1 has a concentration change of rare earth elements and magnesium smaller than that of the shell portion 3. This measurement is performed using a transmission electron microscope apparatus provided with elemental analysis equipment. In this case, the concentration change of the rare earth element or magnesium can be determined by performing elemental analysis using an energy dispersive analyzer (EDS) at a predetermined interval from the surface side of the crystal particle to the center portion C.

そして、本発明の誘電体磁器では、チタン酸バリウムに対して、カルシウム、バナジウム、マグネシウム、マンガン、およびイットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素の一部または全部を固溶させるとともに、これらの成分が固溶したチタン酸バリウムを主成分とする結晶粒子により形成された誘電体磁器のキュリー温度を95〜105℃と、キュリー温度を室温側にシフトさせる。   In the dielectric ceramic according to the present invention, part or all of at least one rare earth element selected from calcium, vanadium, magnesium, manganese, and yttrium, dysprosium, holmium, erbium, and terbium with respect to barium titanate. In addition, the Curie temperature of the dielectric ceramic formed by crystal grains mainly composed of barium titanate in which these components are dissolved is 95 to 105 ° C., and the Curie temperature is shifted to the room temperature side.

このことでキュリー温度が140℃付近にあるコアシェル構造を有したチタン酸バリウムを主成分とする結晶粒子を持つ従来の誘電体磁器に対して高誘電率化が図れるとともに、コアシェル構造を有する結晶粒子において、従来に比較してコア部1の割合が減少し、シェル部3の体積割合が増加し、その結果、高い絶縁抵抗を有する誘電体磁器を得ることができる。   This makes it possible to increase the dielectric constant of conventional dielectric ceramics having crystal grains mainly composed of barium titanate having a core-shell structure with a Curie temperature around 140 ° C., and having a core-shell structure. In comparison with the prior art, the ratio of the core portion 1 is decreased and the volume ratio of the shell portion 3 is increased. As a result, a dielectric ceramic having a high insulation resistance can be obtained.

これは、コア部1を形成しているチタン酸バリウム中にはマグネシウムや希土類元素の固溶量が少ないために、結晶粒子中に酸素空孔などの欠陥を多く含んだ状態となっている。このため直流電圧を印加した場合に、誘電体磁器を構成する結晶粒子の内部において酸素空孔などが電荷を運ぶキャリアになりやすく、誘電体磁器の絶縁性を低下させる原因となっている。   This is because the barium titanate forming the core portion 1 has a small amount of solid solution of magnesium and rare earth elements, so that the crystal grains contain many defects such as oxygen vacancies. For this reason, when a DC voltage is applied, oxygen vacancies or the like are likely to be carriers that carry electric charges in the crystal grains constituting the dielectric ceramic, which causes a decrease in the insulation of the dielectric ceramic.

これに対して、本発明の誘電体磁器は、結晶粒子の内部におけるコア部1の割合を減少させることによりコア部1を形成しているチタン酸バリウムに由来する酸素空孔などのキャリア密度を減少させ、希土類元素やマグネシウムを多く含み、酸素空孔の少ないシェル部3の割合を高めることができるために高い絶縁性を得ることができると考えられる。   On the other hand, the dielectric ceramic according to the present invention reduces the carrier density such as oxygen vacancies derived from barium titanate forming the core part 1 by reducing the ratio of the core part 1 in the crystal grains. It is considered that a high insulating property can be obtained because the ratio of the shell portion 3 containing a large amount of rare earth elements and magnesium and having few oxygen vacancies can be increased.

ただし、バリウムおよびカルシウムの合計量100モルに対するバナジウムの含有量がV換算で0.1モルよりも少ないか、または0.2モルよりも多い場合、また、バリウムおよびカルシウムの合計量100モルに対するマグネシウムの含有量がMgO換算で0.55モルよりも少ないか、または0.75モルよりも多い場合、また、バリウムおよびカルシウムの合計量100モルに対するイットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素の含有量がRE換算で0.55モルよりも少ないか、または0.75モルよりも多い場合、また、バリウムおよびカルシウムの合計量100モルに対するマンガンの含有量が0.25モルよりも少ない場合には、いずれも単位厚み当たりの直流電圧12.5Vにおける絶縁抵抗が1010Ωよりも低下し、さらにバリウムおよびカルシウムの合計量100モルに対するマンガンの含有量が0.6モルよりも多い場合には比誘電率が低下する。 However, when the content of vanadium with respect to 100 mol of the total amount of barium and calcium is less than 0.1 mol or more than 0.2 mol in terms of V 2 O 5 , the total amount of barium and calcium is 100 Yttrium, dysprosium, holmium, erbium, and yttrium, dysprosium, holmium, erbium and the total amount of barium and calcium of 100 mol when the magnesium content is less than 0.55 mol or more than 0.75 mol in terms of MgO When the content of at least one rare earth element in terbium is less than 0.55 mol or more than 0.75 mol in terms of RE 2 O 3 , manganese in addition to 100 mol of the total amount of barium and calcium When the content of is less than 0.25 mol, DC voltage insulation resistance is lower than 10 10 Omega in 12.5 V, when the more the manganese content relative to the total amount 100 mol of barium and calcium is more than 0.6 moles relative dielectric constant per unit thickness descend.

そのため、バリウムおよびカルシウムの合計量100モルに対して、バナジウムをV換算で0.1〜0.2モル、マグネシウムをMgO換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素をRE換算で0.55〜0.75モル、およびマンガンをMnO換算で0.25〜0.6モル含有することが重要である。 Therefore, 0.1 to 0.2 mol of vanadium in terms of V 2 O 5 and 0.55 to 0.75 mol in terms of MgO, yttrium and dysprosium with respect to 100 mol of the total amount of barium and calcium. It is important that at least one rare earth element among holmium, erbium and terbium is contained in an amount of 0.55 to 0.75 mol in terms of RE 2 O 3 and manganese is contained in an amount of 0.25 to 0.6 mol in terms of MnO. is there.

好ましい組成としては、バリウムおよびカルシウムの合計量100モルに対して、バナジウムをV換算で0.1〜0.2モル、マグネシウムをMgO換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素をRE換算で0.55〜0.75モルに、マンガンをMnO換算で0.25〜0.35モル含有するものが良く、この範囲の誘電体磁器は、単位厚み当たりに印加する直流電圧の値を3.15Vと12.5Vとして絶縁抵抗を評価したときに、絶縁抵抗の低下のほとんど無い誘電体磁器を得ることができる。なお、希土類元素としては、より高い比誘電率が得られ、絶縁抵抗が高いという点で、特に、イットリウムが好ましい。 As a preferred composition, 0.1 to 0.2 mol of vanadium in terms of V 2 O 5 , 0.55 to 0.75 mol in terms of MgO, yttrium, with respect to 100 mol of the total amount of barium and calcium, Containing at least one rare earth element among dysprosium, holmium, erbium and terbium in an amount of 0.55 to 0.75 mol in terms of RE 2 O 3 and manganese in an amount of 0.25 to 0.35 mol in terms of MnO A dielectric ceramic in this range is a dielectric ceramic with almost no decrease in insulation resistance when the insulation resistance is evaluated by setting the values of the DC voltage applied per unit thickness to 3.15 V and 12.5 V. be able to. As the rare earth element, yttrium is particularly preferable in that a higher relative dielectric constant is obtained and an insulation resistance is high.

また、本発明の誘電体磁器ではキュリー温度が95〜105℃であることが重要である。即ち、マンガンの含有量が多くなりキュリー温度が95℃よりも低い場合には比誘電率が低下し、一方、キュリー温度が105℃よりも高い場合には、いずれも誘電体磁器の単位厚み(1μm)当たりに印加する直流電圧を3.15Vおよび12.5Vとしたときの絶縁抵抗が1010Ωよりも低くなるからである。そして、上述したように、本発明では、結晶粒子におけるコア部1の割合を少なく、シェル部3の割合の多い構造にでき、これによりキュリー温度を95〜105℃とすることができ、これにより比誘電率が高くかつ絶縁抵抗の高いものとなる。 In the dielectric ceramic according to the present invention, it is important that the Curie temperature is 95 to 105 ° C. That is, when the content of manganese increases and the Curie temperature is lower than 95 ° C., the relative dielectric constant decreases. On the other hand, when the Curie temperature is higher than 105 ° C., the unit thickness of the dielectric ceramic (in both cases) This is because the insulation resistance becomes lower than 10 10 Ω when the DC voltage applied per 1 μm) is 3.15 V and 12.5 V. And, as described above, in the present invention, the ratio of the core part 1 in the crystal particles can be reduced and the ratio of the shell part 3 can be increased, whereby the Curie temperature can be set to 95 to 105 ° C. The dielectric constant is high and the insulation resistance is high.

結晶粒子中におけるCa濃度は0.4原子%以上であることが重要である。結晶粒子中におけるCa濃度が0.4原子%よりも低い場合にはキュリー温度が95℃よりも低くなり、比誘電率が低下するおそれがある。   It is important that the Ca concentration in the crystal grains is 0.4 atomic% or more. When the Ca concentration in the crystal particles is lower than 0.4 atomic%, the Curie temperature is lower than 95 ° C., and the relative dielectric constant may be lowered.

また、本発明の誘電体磁器では、高誘電率化を可能にするという点で結晶粒子のサイズは大きくてもよいが、静電容量のばらつきを小さくするという点で0.5μm以下が好ましく、さらには、結晶粒子の平均粒径が0.25〜0.35μmであることが望ましい。結晶粒子の平均粒径が0.25〜0.35μmであると、印加する直流電圧が誘電体磁器の単位厚み(1μm)当たりに3.15Vと12.5Vとの間で絶縁抵抗が増加する傾向(正の変化)を示す高絶縁性の誘電体磁器を得ることができるという利点がある。   In the dielectric ceramic of the present invention, the size of the crystal particles may be large in terms of enabling a high dielectric constant, but 0.5 μm or less is preferable in terms of reducing variation in capacitance, Furthermore, it is desirable that the average particle size of the crystal particles is 0.25 to 0.35 μm. When the average grain size of the crystal grains is 0.25 to 0.35 μm, the insulation resistance increases between 3.15 V and 12.5 V per unit thickness (1 μm) of the dielectric ceramic when the applied DC voltage is There is an advantage that a highly insulating dielectric ceramic exhibiting a tendency (positive change) can be obtained.

次に、本発明の誘電体磁器を製造する方法について説明する。まず、原料粉末として、チタン酸バリウムにカルシウムを固溶させたチタン酸バリウムカルシウム粉末(純度99%以上)に対し、添加剤として、V粉末とMgO粉末、さらに、Y粉末、Dy粉末、Ho粉末、Er粉末およびTe粉末のうち少なくとも1種の希土類元素の酸化物粉末およびMnCO粉末を添加、混合する。 Next, a method for manufacturing the dielectric ceramic according to the present invention will be described. First, as raw material powder, barium calcium titanate powder (purity 99% or more) in which calcium is solid-dissolved in barium titanate, as additives, V 2 O 5 powder and MgO powder, and further Y 2 O 3 powder , Dy 2 O 3 powder, Ho 2 O 3 powder, adding an oxide powder and MnCO 3 powder of at least one rare earth element selected from Er 2 O 3 powder and Te 2 O 3 powder, and mixed.

チタン酸バリウムカルシウム粉末としては、チタン酸バリウムのBaサイトの一部がCaで置換されたペロブスカイト型のチタン酸バリウムであり、化学式(Ba1−xCa)TiOで表される。なお、本発明において、Baサイト中のCa置換量は、X=0.01〜0.2であることが好ましい。Ca置換量がこの範囲内であれば、コンデンサとして使用する温度範囲において優れた温度特性およびDCバイアス特性を確保できるからである。 The barium calcium titanate powder is a perovskite-type barium titanate in which part of the Ba site of barium titanate is substituted with Ca, and is represented by the chemical formula (Ba 1-x Ca x ) TiO 3 . In the present invention, the amount of Ca substitution in the Ba site is preferably X = 0.01 to 0.2. This is because if the Ca substitution amount is within this range, excellent temperature characteristics and DC bias characteristics can be secured in the temperature range used as the capacitor.

また、チタン酸バリウムカルシウム粉末に含まれるCaは、そのチタン酸バリウムカルシウム中に均一に分散した状態で固溶しているものが良く、分析値としてのCa濃度が0.4原子%以上であるものを用いる。チタン酸バリウムカルシウム粉末に含まれるCaの置換量が少なくなると、結晶粒子中におけるCa濃度が0.4原子%よりも低下し、キュリー温度が95℃よりも低くなり、比誘電率が低下する原因となる。   Further, the Ca contained in the barium calcium titanate powder is preferably dissolved in a uniformly dispersed state in the barium calcium titanate, and the Ca concentration as an analytical value is 0.4 atomic% or more. Use things. Causes that the Ca concentration in the crystal particles is lower than 0.4 atomic%, the Curie temperature is lower than 95 ° C., and the relative dielectric constant is lowered when the amount of substitution of Ca contained in the barium calcium titanate powder is reduced. It becomes.

また、チタン酸バリウムカルシウム粉末の平均粒径は0.05〜0.15μmが好ましい。チタン酸バリウムカルシウム粉末の平均粒径が0.05μm以上であると、結晶粒子中にコアシェル構造を形成し易くなりコア部1の割合を増やすことができるために比誘電率の向上を図れるという利点がある。   The average particle size of the barium calcium titanate powder is preferably 0.05 to 0.15 μm. When the average particle size of the barium calcium titanate powder is 0.05 μm or more, the core-shell structure can be easily formed in the crystal particles, and the ratio of the core portion 1 can be increased, so that the relative dielectric constant can be improved. There is.

一方、チタン酸バリウムカルシウム粉末の平均粒径が0.15μm以下であると、上記添加剤を結晶粒子の内部にまで固溶させることが容易となり、また、後述するように、焼成前後における、チタン酸バリウムカルシウム粉末から結晶粒子への粒成長の比率を高められるという利点がある。   On the other hand, when the average particle size of the barium calcium titanate powder is 0.15 μm or less, it becomes easy to dissolve the additive into the crystal particles, and the titanium before and after firing as described later. There is an advantage that the ratio of grain growth from barium calcium acid powder to crystal grains can be increased.

また、添加剤であるY粉末、Dy粉末、Ho粉末、Er粉末およびTe粉末のうち少なくとも1種の希土類元素の酸化物粉末、V粉末、MgO粉末およびMnCO粉末についても平均粒径はチタン酸バリウムカルシウム粉末と同等、もしくはそれ以下のものを用いることが好ましい。 Also, an oxide powder of at least one rare earth element among Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder and Te 2 O 3 powder as additives, V 2 Regarding the O 5 powder, MgO powder and MnCO 3 powder, it is preferable to use those having an average particle diameter equivalent to or less than that of the barium calcium titanate powder.

次いで、これらの原料粉末を、チタン酸バリウムカルシウム粉末を構成するバリウムおよびカルシウムの合計量100モルに対して、V粉末を0.1〜0.2モル、MgO粉末を0.55〜0.75モル、希土類元素の酸化物粉末を0.55〜0.75モル、およびMnCO粉末をMnOとして0.25〜0.6モルの割合で配合し、さらに焼結助剤としてガラス粉末を添加し、これに有機ビヒクルを加えてボールミルを用いて混合し、所定の形状に成形し、この成形体を脱脂したのち還元雰囲気中にて焼成する。 Next, these raw material powders are 0.1 to 0.2 mol of V 2 O 5 powder and 0.55 to 0.55 MgO powder with respect to 100 mol of barium and calcium constituting the barium calcium titanate powder. 0.75 mol, 0.55 to 0.75 mol of rare earth oxide powder, and 0.25 to 0.6 mol of MnCO 3 powder as MnO are blended, and glass powder as a sintering aid The organic vehicle is added thereto, mixed using a ball mill, molded into a predetermined shape, and the molded body is degreased and fired in a reducing atmosphere.

焼成温度は、本発明におけるチタン酸バリウムカルシウム粉末への添加剤の固溶と結晶粒子の粒成長を制御するという理由から1100〜1150℃が好ましい。   The firing temperature is preferably 1100 to 1150 ° C. because the solid solution of the additive in the barium calcium titanate powder and the grain growth of the crystal particles are controlled in the present invention.

本発明では、かかる誘電体磁器を得るために、微粒のチタン酸バリウムカルシウム粉末を用い、これに上述の添加剤を所定量添加し、上記温度で焼成することで、各種の添加剤を含ませたチタン酸バリウムカルシウム粉末の平均粒径が、焼成前後で2倍以上になるように焼成する。焼成後における結晶粒子の平均粒径がバナジウムや他の添加剤を含ませたチタン酸バリウムカルシウム粉末の平均粒径の2倍以上になるように焼成することで、結晶粒子は添加成分の固溶が高まり、その結果、コア部1の割合が減少し、シェル部3の体積割合が増加する。   In the present invention, in order to obtain such a dielectric ceramic, a fine amount of barium calcium titanate powder is used, a predetermined amount of the above-mentioned additive is added thereto, and the various additives are included by firing at the above-mentioned temperature. The barium calcium titanate powder is fired so that the average particle size is twice or more before and after firing. By firing so that the average particle size of the crystal particles after firing is at least twice the average particle size of the barium calcium titanate powder containing vanadium and other additives, the crystal particles are dissolved in the additive components. As a result, the ratio of the core part 1 decreases and the volume ratio of the shell part 3 increases.

また、本発明では、焼成後に、再度、弱還元雰囲気にて熱処理を行う。この熱処理は還元雰囲気中での焼成において還元された誘電体磁器を再酸化し、焼成時に還元されて低下した絶縁抵抗を回復するために行うものであり、その温度は結晶粒子の更なる粒成長を抑えつつ再酸化量を高めるという理由から900〜1100℃が好ましい。こうして結晶粒子中において高絶縁性のシェル部3の体積割合が増加し、95〜105℃のキュリー温度を示す誘電体磁器を形成することができる。   Moreover, in this invention, after baking, it heat-processes in a weak reduction atmosphere again. This heat treatment is performed to re-oxidize the reduced dielectric ceramics during firing in a reducing atmosphere, and to recover the reduced insulation resistance that was reduced during firing. 900-1100 degreeC is preferable from the reason of raising the amount of reoxidation, suppressing it. Thus, the volume ratio of the highly insulating shell portion 3 in the crystal particles is increased, and a dielectric ceramic exhibiting a Curie temperature of 95 to 105 ° C. can be formed.

図2は本発明の積層セラミックコンデンサの例を示す断面模式図である。本発明の積層セラミックコンデンサは、コンデンサ本体10の両端部に外部電極3が設けられたものであり、また、コンデンサ本体10は誘電体層5と内部電極層7とが交互に積層された積層体10Aから構成されている。そして、誘電体層5は上述した本発明の誘電体磁器によって形成されることが重要である。   FIG. 2 is a schematic cross-sectional view showing an example of the multilayer ceramic capacitor of the present invention. The multilayer ceramic capacitor of the present invention is one in which external electrodes 3 are provided at both ends of a capacitor body 10, and the capacitor body 10 is a multilayer body in which dielectric layers 5 and internal electrode layers 7 are alternately stacked. 10A. It is important that the dielectric layer 5 is formed by the above-described dielectric ceramic of the present invention.

このような本発明の積層セラミックコンデンサによれば、誘電体層5として、上記の誘電体磁器を適用することにより、誘電体層5を薄層化しても高い絶縁性を確保でき、高温負荷試験での寿命特性に優れた積層セラミックコンデンサを得ることができる。   According to the multilayer ceramic capacitor of the present invention, by applying the above dielectric ceramic as the dielectric layer 5, high insulation can be secured even if the dielectric layer 5 is thinned, and a high temperature load test is performed. A multilayer ceramic capacitor having excellent lifetime characteristics can be obtained.

ここで、誘電体層5の厚みは3μm以下、特に、2.5μm以下であることが積層セラミックコンデンサを小型高容量化する上で好ましく、さらに本発明では静電容量のばらつきおよび容量温度特性の安定化のために、誘電体層5の厚みは1μm以上であることがより望ましい。   Here, the thickness of the dielectric layer 5 is preferably 3 μm or less, and particularly preferably 2.5 μm or less, in order to reduce the size and capacity of the multilayer ceramic capacitor. For stabilization, the thickness of the dielectric layer 5 is more preferably 1 μm or more.

内部電極層7は高積層化しても製造コストを抑制できるという点で、ニッケル(Ni)や銅(Cu)などの卑金属が望ましく、特に、本発明における誘電体層1との同時焼成が図れるという点でニッケル(Ni)がより望ましい。   The internal electrode layer 7 is preferably a base metal such as nickel (Ni) or copper (Cu) in that the manufacturing cost can be suppressed even if the internal electrode layer 7 is highly laminated, and in particular, simultaneous firing with the dielectric layer 1 in the present invention can be achieved. In this respect, nickel (Ni) is more desirable.

外部電極3は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成される。   The external electrode 3 is formed by baking, for example, Cu or an alloy paste of Cu and Ni.

次に、積層セラミックコンデンサの製造方法について説明する。上記の素原料粉末に専用の有機ビヒクルを加えてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いてセラミックグリーンシートを形成する。この場合、セラミックグリーンシートの厚みは誘電体層の高容量化のための薄層化、高絶縁性を維持するという点で1〜4μmが好ましい。   Next, a method for manufacturing a multilayer ceramic capacitor will be described. A ceramic slurry is prepared by adding a dedicated organic vehicle to the raw material powder, and then a ceramic green sheet is formed from the ceramic slurry using a sheet forming method such as a doctor blade method or a die coater method. In this case, the thickness of the ceramic green sheet is preferably 1 to 4 μm from the viewpoint of thinning the dielectric layer for increasing the capacity and maintaining high insulation.

次に、得られたセラミックグリーンシートの主面上に矩形状の内部電極パターンを印刷して形成する。内部電極パターンとなる導体ペーストはNi、Cuもしくはこれらの合金粉末が好適である。   Next, a rectangular internal electrode pattern is printed and formed on the main surface of the obtained ceramic green sheet. Ni, Cu, or an alloy powder thereof is suitable for the conductor paste that forms the internal electrode pattern.

次に、内部電極パターンが形成されたセラミックグリーンシートを所望枚数重ねて、その上下に内部電極パターンを形成していないセラミックグリーンシートを複数枚、上下層が同じ枚数になるように重ねてシート積層体を形成する。この場合、シート積層体中における内部電極パターンは、長寸方向に半パターンずつずらしてある。   Next, stack the desired number of ceramic green sheets with internal electrode patterns, and stack multiple ceramic green sheets without internal electrode patterns on the top and bottom so that the upper and lower layers are the same number. Form the body. In this case, the internal electrode pattern in the sheet laminate is shifted by a half pattern in the longitudinal direction.

次に、シート積層体を格子状に切断して、内部電極パターンの端部が露出するようにコンデンサ本体成形体を形成する。このような積層工法により、切断後のコンデンサ本体成形体の端面に内部電極パターンが交互に露出されるように形成できる。   Next, the sheet laminate is cut into a lattice shape to form a capacitor body molded body so that the end of the internal electrode pattern is exposed. By such a laminating method, the internal electrode pattern can be formed so as to be alternately exposed on the end surface of the cut capacitor body molded body.

次に、コンデンサ本体成形体を脱脂したのち、上述した誘電体磁器と同様の焼成条件および弱還元雰囲気での熱処理を行うことによりコンデンサ本体を作製する。   Next, after the capacitor body molded body is degreased, the capacitor body is manufactured by performing heat treatment under the same firing conditions and weak reducing atmosphere as the above-described dielectric ceramic.

次に、このコンデンサ本体の対向する端部に、外部電極ペーストを塗布して焼付けを行い外部電極を形成する。また、この外部電極の表面には実装性を高めるためにメッキ膜を形成しても構わない。   Next, an external electrode paste is applied to the opposite ends of the capacitor body and baked to form external electrodes. Further, a plating film may be formed on the surface of the external electrode in order to improve mountability.

まず、素原料粉末として、2種類のチタン酸バリウムカルシウム粉末(以下、BCT粉末という。組成:Ba0.95Ca0.05TiOまたはBa0.98Ca0.02TiO)、MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末、MnCO粉末およびV粉末を準備し、これらの各種粉末を表1に示す割合で混合した。これらの原料粉末は純度が99.9%のものを用いた。なお、BCT粉末の平均粒径は表1に示した。MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末、MnCO粉末およびV粉末は平均粒径が0.1μmのものを用いた。BCT粉末のBa/Ti比は1.005とした。焼結助剤はSiO=55、BaO=20、CaO=15、LiO=10(モル%)組成のガラス粉末を用いた。ガラス粉末の添加量はBCT粉末100質量部に対して1質量部とした。 First, as raw material powders, two types of barium calcium titanate powder (hereinafter referred to as BCT powder, composition: Ba 0.95 Ca 0.05 TiO 3 or Ba 0.98 Ca 0.02 TiO 3 ), MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 2 O 3 powder, MnCO 3 powder and V 2 O 5 powder were prepared. It mixed in the ratio shown. These raw material powders having a purity of 99.9% were used. The average particle size of the BCT powder is shown in Table 1. MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 2 O 3 powder, MnCO 3 powder and V 2 O 5 powder have an average particle size of 0.1 μm. The thing of was used. The Ba / Ti ratio of the BCT powder was 1.005. As the sintering aid, glass powder having a composition of SiO 2 = 55, BaO = 20, CaO = 15, and Li 2 O = 10 (mol%) was used. The addition amount of the glass powder was 1 part by mass with respect to 100 parts by mass of the BCT powder.

次に、これらの原料粉末を直径5mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとの混合溶媒を添加し湿式混合した。   Next, these raw material powders were wet mixed by adding a mixed solvent of toluene and alcohol as a solvent using zirconia balls having a diameter of 5 mm.

次に、湿式混合した粉末にポリビニルブチラール樹脂およびトルエンとアルコールの混合溶媒を添加し、同じく直径5mmのジルコニアボールを用いて湿式混合しセラミックスラリを調製し、ドクターブレード法により厚み2.5μmのセラミックグリーンシートを作製した。   Next, a polyvinyl butyral resin and a mixed solvent of toluene and alcohol are added to the wet-mixed powder, and wet-mixed using a zirconia ball having a diameter of 5 mm to prepare a ceramic slurry, and a ceramic having a thickness of 2.5 μm is obtained by a doctor blade method. A green sheet was produced.

次に、このセラミックグリーンシートの上面にNiを主成分とする矩形状の内部電極パターンを複数形成した。内部電極パターンに用いた導体ペーストは、Ni粉末は平均粒径0.3μmのものを、共材としてグリーンシートに用いたBT粉末をNi粉末100質量部に対して30質量部添加した。   Next, a plurality of rectangular internal electrode patterns mainly composed of Ni were formed on the upper surface of the ceramic green sheet. The conductor paste used for the internal electrode pattern was Ni powder having an average particle size of 0.3 μm, and 30 parts by mass of BT powder used for a green sheet as a co-material with respect to 100 parts by mass of Ni powder.

次に、内部電極パターンを印刷したセラミックグリーンシートを360枚積層し、その上下面に内部電極パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で一括積層し、所定の寸法に切断した。 Next, 360 ceramic green sheets on which internal electrode patterns were printed were laminated, and 20 ceramic green sheets on which the internal electrode patterns were not printed were laminated on the upper and lower surfaces, respectively. The layers were laminated together under the conditions of 10 7 Pa and time 10 minutes, and cut into predetermined dimensions.

次に、積層成形体を10℃/hの昇温速度で大気中で300℃/hにて脱バインダ処理を行い、500℃からの昇温速度が300℃/hの昇温速度で、水素−窒素中、1100〜1145℃で2時間焼成してコンデンサ本体を作製した。また、試料は、続いて300℃/hの降温速度で1000℃まで冷却し、窒素雰囲気中1000℃で4時間再酸化処理をし、300℃/hの降温速度で冷却し、コンデンサ本体を作製した。このコンデンサ本体の大きさは0.95×0.48×0.48mm、誘電体層の厚みは2μm、内部電極層の1層の面積は0.3mmであった。 Next, the laminated molded body was subjected to binder removal treatment at 300 ° C./h in the atmosphere at a heating rate of 10 ° C./h, and the temperature rising rate from 500 ° C. was 300 ° C./h. -A capacitor body was fabricated by firing at 1100 to 1145 ° C for 2 hours in nitrogen. The sample was then cooled to 1000 ° C. at a rate of 300 ° C./h, reoxidized at 1000 ° C. for 4 hours in a nitrogen atmosphere, and cooled at a rate of 300 ° C./h to produce a capacitor body. did. The size of this capacitor body was 0.95 × 0.48 × 0.48 mm 3 , the thickness of the dielectric layer was 2 μm, and the area of one internal electrode layer was 0.3 mm 2 .

次に、焼成したコンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行い外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。   Next, the fired capacitor body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends of the capacitor body and baked at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、これらの積層セラミックコンデンサについて以下の評価を行った。以下の評価はいずれも試料数10個とし、平均値を求めた。比誘電率は静電容量を温度25℃、周波数1.0kHz、測定電圧1Vrmsの測定条件で測定し、誘電体層の厚みと内部電極層の全面積から求めた。また、比誘電率の温度特性は静電容量を温度−55〜85℃の範囲で測定した。キュリー温度は比誘電率の温度特性を測定した範囲において比誘電率が最大となる温度として求めた。絶縁抵抗は直流電圧6.3Vおよび25Vにて評価した。   Next, the following evaluation was performed on these multilayer ceramic capacitors. In the following evaluations, the number of samples was 10 and the average value was obtained. The relative dielectric constant was determined from the thickness of the dielectric layer and the total area of the internal electrode layer by measuring the capacitance under the measurement conditions of a temperature of 25 ° C., a frequency of 1.0 kHz, and a measurement voltage of 1 Vrms. Moreover, the temperature characteristic of the relative dielectric constant was measured by measuring the capacitance in the range of temperature -55 to 85 ° C. The Curie temperature was determined as the temperature at which the relative dielectric constant was maximum in the range in which the temperature characteristic of the relative dielectric constant was measured. The insulation resistance was evaluated at DC voltages of 6.3V and 25V.

高温負荷試験は温度85℃において、印加電圧9.45Vおよび12.6Vの条件で行い、1000時間まで不良なしを良品とした。高温負荷試験での試料数は各試料20個とした。   The high temperature load test was performed at a temperature of 85 ° C. under the conditions of applied voltages of 9.45 V and 12.6 V, and the product with no defects was regarded as non-defective product up to 1000 hours. The number of samples in the high temperature load test was 20 samples.

また、誘電体層を構成する結晶粒子の平均粒径は走査型電子顕微鏡(SEM)により求めた。研磨面をエッチングし、電子顕微鏡写真内の結晶粒子を任意に20個選択し、インターセプト法により各結晶粒子の最大径を求め、それらの平均値を求め、また、誘電体粉末からの粒成長の割合を評価した。   Moreover, the average particle diameter of the crystal grains constituting the dielectric layer was determined by a scanning electron microscope (SEM). The polished surface is etched, 20 crystal particles in the electron micrograph are arbitrarily selected, the maximum diameter of each crystal particle is obtained by the intercept method, the average value thereof is obtained, and the grain growth from the dielectric powder is determined. The percentage was evaluated.

また、Ca濃度については、研磨した誘電体磁器中に存在する結晶粒子に対して、透過電子顕微鏡およびエネルギー分散分析器(EDS)を用いて、結晶粒子の中心部近傍の任意の場所を分析して求めた。このとき、結晶粒子から検出されるBa、Ti、Ca、V、Mg、希土類元素およびMnの全量を100%として、その含有量を求めた。評価した結晶粒子は各試料について100点とし平均値を求めた。   As for the Ca concentration, the crystal particles existing in the polished dielectric ceramic are analyzed at an arbitrary location near the center of the crystal particles using a transmission electron microscope and an energy dispersion analyzer (EDS). Asked. At this time, the content of Ba, Ti, Ca, V, Mg, rare earth elements and Mn detected from the crystal particles was taken as 100%, and the content was determined. The crystal grains evaluated were 100 points for each sample, and the average value was obtained.

また、得られた焼結体である試料の組成分析はICP分析もしくは原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。調合組成と焼成温度を表1に、焼結体中の各元素の組成を表2に、および特性の結果を表3にそれぞれ示した。

Figure 2008239402
In addition, the composition analysis of the obtained sintered body sample was performed by ICP analysis or atomic absorption analysis. In this case, the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified. The diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table. The composition and firing temperature are shown in Table 1, the composition of each element in the sintered body is shown in Table 2, and the characteristics results are shown in Table 3.
Figure 2008239402

Figure 2008239402
Figure 2008239402

Figure 2008239402
Figure 2008239402

表1〜3の結果から明らかなように、磁器中にバナジウム、マグネシウム、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素およびマンガンを所定量含有させて、キュリー温度を90〜105℃の誘電体磁器からなる誘電体層とした試料No.2〜4、8〜10、16〜18、24〜28、30〜34および38〜43では、印加電圧を6.3Vおよび25Vとしたときの直流電圧の増加に対する絶縁抵抗の低下が小さく、印加電圧25Vにおける絶縁抵抗が1010Ω以上を示し、比誘電率が3300以上であった。これらの試料はいずれも焼成前のBT粉末の平均粒径と焼成後の結晶粒子の平均粒径の変化率である焼成前後の粒成長率が225%以上であった。また、これら本発明の誘電体磁器を誘電体層とする積層セラミックコンデンサについて、温度85℃、印加電圧9.45Vの条件で高温負荷試験を行ったところ、いずれも1000時間経過後も不良ゼロであった。 As is apparent from the results of Tables 1 to 3, a predetermined amount of at least one rare earth element and manganese of vanadium, magnesium, yttrium, dysprosium, holmium, erbium and terbium is contained in the porcelain, and the Curie temperature is set. Sample No. 90 having a dielectric layer made of dielectric ceramic at 90 to 105 ° C. In 2 to 4, 8 to 10, 16 to 18, 24 to 28, 30 to 34, and 38 to 43, the decrease in insulation resistance with respect to the increase in DC voltage when the applied voltage is 6.3 V and 25 V is small. The insulation resistance at a voltage of 25 V was 10 10 Ω or more, and the relative dielectric constant was 3300 or more. All of these samples had a grain growth rate before and after firing, which is a change rate of the average grain size of the BT powder before firing and the average grain size of the crystal particles after firing, of 225% or more. Moreover, when the high temperature load test was conducted on the multilayer ceramic capacitor having the dielectric ceramic according to the present invention as a dielectric layer under the conditions of a temperature of 85 ° C. and an applied voltage of 9.45 V, all had zero defects after 1000 hours. there were.

また、マンガンの含有量を0.25〜0.35モルとした試料No.2〜4、8〜10、16〜18、24〜25、30〜34および38〜43では、いずれも直流電圧の増加に対する絶縁抵抗の低下が無く、また、これらの試料は温度85℃、印加電圧12.6V、1000時間の高温負荷試験を満足するものであった。   In addition, Sample No. 2 having a manganese content of 0.25 to 0.35 mol was used. In 2-4, 8-10, 16-18, 24-25, 30-34, and 38-43, there is no decrease in insulation resistance with respect to an increase in DC voltage, and these samples are applied at a temperature of 85 ° C. The voltage satisfied a high temperature load test of 12.6 V and 1000 hours.

さらに、結晶粒子の平均粒径が0.25〜0.35μmである試料No.2〜3、9〜10、24〜25、31〜32および38〜41では、いずれも直流電圧の増加に対する絶縁抵抗の変化が増加する傾向を示し、絶縁特性に優れた誘電体磁器が得られた。   Furthermore, Sample No. in which the average particle diameter of the crystal particles is 0.25 to 0.35 μm. 2 to 3, 9 to 10, 24 to 25, 31 to 32, and 38 to 41, all show a tendency for the change in insulation resistance to increase with increasing DC voltage, and a dielectric ceramic having excellent insulation characteristics is obtained. It was.

これに対して、本発明の範囲外の試料No.1、5〜7、11〜15および19〜23では、印加電圧を6.3Vおよび25Vとしたときの直流電圧の増加に対する絶縁抵抗が低下する傾向を示し、かつ直流電圧25Vにおける絶縁抵抗が1010Ωよりも低かった。 On the other hand, sample no. 1, 5-7, 11-15, and 19-23 show a tendency for the insulation resistance to decrease with increasing DC voltage when the applied voltage is 6.3 V and 25 V, and the insulation resistance at DC voltage 25 V is 10 It was lower than 10 Ω.

また、マンガンを0.8モル含有させた試料No.29ではキュリー温度が76℃となり、静電容量が3100と本発明の誘電体磁器よりも低くかった。   Sample No. 8 containing 0.8 mol of manganese was used. In No. 29, the Curie temperature was 76 ° C., and the capacitance was 3100, which was lower than that of the dielectric ceramic of the present invention.

また、焼成前のBCT粉末の平均粒径と焼成後の結晶粒子の平均粒径の変化率である焼成前後の粒成長率が105%〜120%であり、キュリー温度が115℃〜140℃である試料No.35〜37では比誘電率が2400〜2700であった。   Further, the grain growth rate before and after firing, which is the rate of change of the average particle size of the BCT powder before firing and the average particle size of the crystal particles after firing, is 105% to 120%, and the Curie temperature is 115 ° C to 140 ° C. Some sample No. In 35 to 37, the relative dielectric constant was 2400 to 2700.

また、Caの置換量をX=0.02としたチタン酸バリウム粉末を用いて作製した試料No.44は結晶粒子中に含まれるCa濃度が0.2原子%となり、キュリー温度が85℃となり、比誘電率が3100と低かった。また、これら試料No.35〜37については直流電圧の増加に対して絶縁抵抗が低下する傾向を示し、直流電圧25Vにおける絶縁抵抗が1010Ωよりも低かった。また、本発明の範囲外の試料では、温度85℃、印加電圧9.45Vの条件での高温負荷試験の寿命が1000時間を満足しなかった。 In addition, Sample No. 2 produced using a barium titanate powder in which the amount of substitution of Ca was X = 0.02. No. 44 had a Ca concentration of 0.2 atomic% in the crystal grains, a Curie temperature of 85 ° C., and a dielectric constant as low as 3100. These sample Nos. About 35-37, the insulation resistance showed the tendency to fall with respect to the increase in DC voltage, and the insulation resistance in DC voltage 25V was lower than 10 < 10 > (omega | ohm). Moreover, in the sample out of the range of the present invention, the life of the high temperature load test under the conditions of the temperature of 85 ° C. and the applied voltage of 9.45 V did not satisfy 1000 hours.

本発明の誘電体磁器を構成するコアシェル構造を有するチタン酸バリウムカルシウムを主成分とする結晶粒子の断面模式図であり、(b)は、(a)の断面における希土類元素およびマグネシウムの濃度変化を示した模式図である。It is a cross-sectional schematic diagram of the crystal particle which has as a main component the barium calcium titanate which has the core shell structure which comprises the dielectric material ceramic of this invention, (b) is a density | concentration change of the rare earth elements and magnesium in the cross section of (a). It is the shown schematic diagram. 本発明の積層セラミックコンデンサの例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the multilayer ceramic capacitor of this invention.

符号の説明Explanation of symbols

1 コア部
3 シェル部
10A 積層体
5 誘電体層
7 内部電極層
10A 積層体
DESCRIPTION OF SYMBOLS 1 Core part 3 Shell part 10A Laminated body 5 Dielectric layer 7 Internal electrode layer 10A Laminated body

Claims (4)

チタン酸バリウムを主成分とし、カルシウムと、バナジウムと、マグネシウムと、マンガンと、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素とが固溶したコアシェル構造の結晶粒子と、該結晶粒子間に存在する粒界相とを有する誘電体磁器であって、前記結晶粒子はカルシウム濃度が0.4原子%以上であるとともに、前記チタン酸バリウムを構成するバリウムおよび前記カルシウムの合計量100モルに対して、バナジウムを酸化物換算で0.1〜0.2モル、マグネシウムを酸化物換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素を酸化物換算で0.55〜0.75モル、およびマンガンを酸化物換算で0.25〜0.6モル含有し、キュリー温度が95〜105℃であることを特徴とする誘電体磁器。 Core-shell crystal grains mainly composed of barium titanate, in which calcium, vanadium, magnesium, manganese, and at least one rare earth element of yttrium, dysprosium, holmium, erbium, and terbium are dissolved. A dielectric ceramic having a grain boundary phase existing between the crystal grains, wherein the crystal grains have a calcium concentration of 0.4 atomic% or more, and the barium titanate and the calcium For a total amount of 100 mol, vanadium is 0.1 to 0.2 mol in terms of oxide, magnesium is 0.55 to 0.75 mol in terms of oxide, yttrium, dysprosium, holmium, erbium and terbium. Of these, at least one rare earth element is converted to 0.55-0.75 mol in terms of oxide. And manganese containing 0.25 to 0.6 mol of the oxide equivalent, the dielectric ceramic Curie temperature, characterized in that a 95 to 105 ° C.. 前記マンガンを酸化物換算で0.25〜0.35モル含有することを特徴とする請求項1に記載の誘電体磁器。 The dielectric ceramic according to claim 1, wherein the manganese is contained in an amount of 0.25 to 0.35 mol in terms of oxide. 前記結晶粒子の平均粒径が0.25〜0.35μmであることを特徴とする請求項1または2に記載の誘電体磁器。 3. The dielectric ceramic according to claim 1, wherein the crystal grains have an average grain size of 0.25 to 0.35 μm. 請求項1乃至3のうちいずれかに記載の誘電体磁器からなる誘電体層と内部電極層との積層体から構成されていることを特徴とする積層セラミックコンデンサ。 A multilayer ceramic capacitor comprising a laminate of a dielectric layer made of the dielectric ceramic according to any one of claims 1 to 3 and an internal electrode layer.
JP2007082466A 2007-03-27 2007-03-27 Dielectric porcelain and multilayer ceramic capacitor Active JP5046699B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007082466A JP5046699B2 (en) 2007-03-27 2007-03-27 Dielectric porcelain and multilayer ceramic capacitor
CN200880009546.6A CN101641304B (en) 2007-03-27 2008-03-27 Dielectric ceramic and laminated ceramic capacitor
PCT/JP2008/055951 WO2008123377A1 (en) 2007-03-27 2008-03-27 Dielectric ceramic and laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082466A JP5046699B2 (en) 2007-03-27 2007-03-27 Dielectric porcelain and multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2008239402A true JP2008239402A (en) 2008-10-09
JP5046699B2 JP5046699B2 (en) 2012-10-10

Family

ID=39830865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082466A Active JP5046699B2 (en) 2007-03-27 2007-03-27 Dielectric porcelain and multilayer ceramic capacitor

Country Status (3)

Country Link
JP (1) JP5046699B2 (en)
CN (1) CN101641304B (en)
WO (1) WO2008123377A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297179A (en) * 2007-06-01 2008-12-11 Kyocera Corp Dielectric porcelain and multilayer ceramic capacitor
JP2011176184A (en) * 2010-02-25 2011-09-08 Kyocera Corp Multilayer ceramic capacitor
WO2012114877A1 (en) * 2011-02-23 2012-08-30 株式会社 村田製作所 Laminated ceramic capacitor
JP2016058687A (en) * 2014-09-12 2016-04-21 株式会社村田製作所 Multilayer ceramic capacitor
US11072564B2 (en) 2018-07-31 2021-07-27 Tdk Corporation Dielectric ceramic composition and multilayer ceramic electronic component
JP2021155257A (en) * 2020-03-26 2021-10-07 Tdk株式会社 Dielectric ceramic composition and electronic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739019B1 (en) * 1994-10-19 2003-12-03 TDK Corporation Multilayer ceramic chip capacitor
JP2005104770A (en) * 2003-09-30 2005-04-21 Tdk Corp Dielectric ceramic composition and electronic component
TW200531955A (en) * 2004-03-16 2005-10-01 Tdk Corp Dielectric ceramic composition, multilayer ceramic capacitor, and method for manufacturing the same
KR100631995B1 (en) * 2005-07-28 2006-10-09 삼성전기주식회사 Dielectric ceramic compositions for low temperature sintering and multilayer ceramic condenser using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297179A (en) * 2007-06-01 2008-12-11 Kyocera Corp Dielectric porcelain and multilayer ceramic capacitor
JP2011176184A (en) * 2010-02-25 2011-09-08 Kyocera Corp Multilayer ceramic capacitor
WO2012114877A1 (en) * 2011-02-23 2012-08-30 株式会社 村田製作所 Laminated ceramic capacitor
US9466426B2 (en) 2011-02-23 2016-10-11 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor
JP2016058687A (en) * 2014-09-12 2016-04-21 株式会社村田製作所 Multilayer ceramic capacitor
US11072564B2 (en) 2018-07-31 2021-07-27 Tdk Corporation Dielectric ceramic composition and multilayer ceramic electronic component
JP2021155257A (en) * 2020-03-26 2021-10-07 Tdk株式会社 Dielectric ceramic composition and electronic component
JP7396157B2 (en) 2020-03-26 2023-12-12 Tdk株式会社 Dielectric ceramic compositions and electronic components

Also Published As

Publication number Publication date
CN101641304B (en) 2012-08-29
WO2008123377A1 (en) 2008-10-16
CN101641304A (en) 2010-02-03
JP5046699B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5046700B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4925958B2 (en) Multilayer ceramic capacitor
JP4991564B2 (en) Multilayer ceramic capacitor
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4809152B2 (en) Multilayer ceramic capacitor
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5210300B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4480367B2 (en) Dielectric porcelain and its manufacturing method, and multilayer electronic component and its manufacturing method
JP4999988B2 (en) Multilayer ceramic capacitor
JP5046699B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5094283B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5106626B2 (en) Multilayer ceramic capacitor
JP2008135638A (en) Multilayer ceramic capacitor
JP2002265260A (en) Dielectric ceramic and lamination type electronic part
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5100592B2 (en) Multilayer ceramic capacitor
JP2002293617A (en) Dielectric ceramic, laminated electronic parts and production method for the laminated electronic parts
JP4463093B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2006179774A (en) Laminated ceramic capacitor and manufacturing method therefor
JP4753860B2 (en) Multilayer ceramic capacitor
JP4557708B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2008109019A (en) Multilayer ceramic capacitor
JP4463095B2 (en) Multilayer ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150