JP2008227434A - Heat dissipating device of heating element - Google Patents

Heat dissipating device of heating element Download PDF

Info

Publication number
JP2008227434A
JP2008227434A JP2007067918A JP2007067918A JP2008227434A JP 2008227434 A JP2008227434 A JP 2008227434A JP 2007067918 A JP2007067918 A JP 2007067918A JP 2007067918 A JP2007067918 A JP 2007067918A JP 2008227434 A JP2008227434 A JP 2008227434A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
heat generating
generating element
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007067918A
Other languages
Japanese (ja)
Inventor
Toru Shibata
徹 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007067918A priority Critical patent/JP2008227434A/en
Publication of JP2008227434A publication Critical patent/JP2008227434A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipating device of a heating element for radiating heat efficiently from two or more heating elements and maintaining the temperature of each heating element almost equal with each other. <P>SOLUTION: Two or more parallel branched passages 16a-16m, which are branched respectively from one pair of parallel passages 13-14 having an inlet 15a and outlet 15b of cooling medium at each end thereof, are provided correspondingly to two or more heating elements 12a-12n arranged in a row. The size of each branched passage 16 is adjusted according to the distance from the inlet 15a and the outlet 15b, and the heat is radiated by the cooling medium so that temperature rise of two or more heating elements 12 may become almost equal to each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は発熱素子の放熱装置に関し、特にTV送信機を含む通信機器等に使用される大きな発熱を伴う電力増幅器等の発熱素子の放熱装置に関する。   The present invention relates to a heat radiating device for a heat generating element, and more particularly to a heat radiating device for a heat generating element such as a power amplifier with large heat generation used for communication equipment including a TV transmitter.

電子部品には、動作時に不可避的に高い発熱を伴う高発熱電子部品がある。電力増幅器は、斯かる高発熱電子部品の1つである。特に、TV送信機および無線信号の中継装置を含む通信機器等には、そのサービスエリアに十分な電界強度の電波を送信するために、無線信号を所定の出力電力に増幅する電力増幅器を使用するが、斯かる用途の電力増幅器は最も発熱量の大きい電子部品の典型例である。   Electronic components include high heat generating electronic components that inevitably generate high heat during operation. The power amplifier is one of such high heat generation electronic components. In particular, a communication device including a TV transmitter and a radio signal relay device uses a power amplifier that amplifies a radio signal to a predetermined output power in order to transmit a radio wave having a sufficient electric field strength to the service area. However, a power amplifier for such an application is a typical example of an electronic component that generates the largest amount of heat.

斯かる高発熱電子部品である電力増幅器は、その動作の安定性を維持すると共に所定の動作寿命を実現するために冷却し、温度上昇を所定範囲に抑えることが必要となる。斯かる高発熱電子部品の冷却には、良熱伝導性部材を発熱部に接触させて配置し、発熱部の熱を外部へ熱伝導して放熱するヒートシンク、冷却ファン等を使用して外部の低温空気を発熱部へ吹き付けて冷却する強制空冷、パイプ等に冷却水等の冷媒(例えば、液体)を循環させ、パイプ内を循環する冷媒により発熱を外部へ運び出す強制水冷等が知られている。上述したTV送信機等の電力増幅器には、高い冷却性能が必要であるので、強制水冷式冷却の採用が一般的である。   The power amplifier, which is such a highly heat-generating electronic component, needs to be cooled in order to maintain its operation stability and to achieve a predetermined operation life, and to keep the temperature rise within a predetermined range. For cooling such highly heat-generating electronic components, a heat-conductive member is placed in contact with the heat-generating part, and the heat of the heat-generating part is transferred to the outside to dissipate the heat. For example, forced air cooling that blows and cools low-temperature air to the heat generating part, and forced water cooling that circulates a coolant (for example, liquid) such as cooling water through a pipe and the like and carries heat to the outside by the coolant circulating in the pipe . Since the power amplifier such as the TV transmitter described above requires high cooling performance, it is common to employ forced water cooling.

図3は、従来の一般的な発熱素子の冷却装置又は冷却構造を示す。図3(A)は平面図であり、(B)は(A)中の線B−Bに沿う断面図であり、(C)は(A)中の線A−Aに沿う断面図である。この発熱素子の冷却装置30は、コールドプレート(冷却用板状部材)31上に複数の発熱素子32a〜32n(説明の便宜上、これら多数の発熱素子を参照符号32で総称する場合がある)が例えば2列に並べて配置されている。各発熱素子32は、コールドプレート31に電熱部材33を介して取り付けられている。   FIG. 3 shows a conventional cooling device or cooling structure for a general heating element. 3A is a plan view, FIG. 3B is a sectional view taken along line BB in FIG. 3A, and FIG. 3C is a sectional view taken along line AA in FIG. . The heat generating element cooling device 30 includes a plurality of heat generating elements 32a to 32n (for convenience of explanation, these multiple heat generating elements may be collectively referred to by reference numeral 32) on a cold plate (cooling plate member) 31. For example, they are arranged in two rows. Each heating element 32 is attached to the cold plate 31 via an electric heating member 33.

コールドプレート31内には、発熱素子32の列に沿って流路34−35が形成され、例えば流路34の一端に入口コネクタ36が取り付けられ、流路35の一端に出口コネクタ38が取り付けられ、流路34、35の他端は連結管37で相互に連結されている。そして、入口コネクタ36から出口コネクタ38に渡り流路34−35内に冷却水等の冷媒を流すように構成している。   In the cold plate 31, flow paths 34-35 are formed along the rows of the heat generating elements 32. For example, an inlet connector 36 is attached to one end of the flow path 34, and an outlet connector 38 is attached to one end of the flow path 35. The other ends of the flow paths 34 and 35 are connected to each other by a connecting pipe 37. And it is comprised so that refrigerant | coolants, such as cooling water, may flow in the flow path 34-35 over the inlet connector 36 and the outlet connector 38. FIG.

上述の如き従来の発熱素子の冷却装置30によると、入口コネクタ36から注入された冷却水が発熱素子32a、32b、32c、・・・の熱を順次受熱することにより暖められながら(発熱素子32は順次冷却される)出口コネクタ38から排出される。従って、入口コネクタ36に最も近い発熱素子32aの冷却効率が最も高く、出口コネクタ38に近い発熱素子32nの冷却効率は最も低い。そこで、最も冷却効率の低い(又は冷却条件が最も悪い)発熱素子32nが所定温度範囲に冷却されるように冷却水の流量等を設定する必要がある。   According to the conventional heat generating element cooling apparatus 30 as described above, the cooling water injected from the inlet connector 36 is heated by sequentially receiving heat from the heat generating elements 32a, 32b, 32c,. Are discharged from the outlet connector 38). Therefore, the cooling efficiency of the heating element 32a closest to the inlet connector 36 is the highest, and the cooling efficiency of the heating element 32n closest to the outlet connector 38 is the lowest. Therefore, it is necessary to set the flow rate of the cooling water so that the heating element 32n having the lowest cooling efficiency (or the worst cooling condition) is cooled to a predetermined temperature range.

多数の発熱素子又は大きい面積の発熱素子を効率的に冷却することを意図する多くの技術が技術文献に開示されている。回路基板に搭載された複数の発熱素子に対応して冷媒流路からの冷媒を流す冷媒導通路を形成することにより、発熱素子(電子デバイス)を冷却する回路基板の冷却装置が開示されている(例えば、特許文献1参照。)。また、平面状に並べて配置されたパワーデバイスに対して形成された平行流路に冷却媒体を流すことによりパワーモジュールの発熱を効率的に放熱するパワーモジュール用ヒートシンクが開示されている(例えば、特許文献2参照。)。更に、プリント基板の全面に平行に冷却室を形成し、これら冷却室に冷媒を流してプリント基板全体を均一に冷却する発熱素子の冷却構造が開示されている(例えば、特許文献3参照。)。   A number of techniques intended to efficiently cool a large number of heating elements or large area heating elements are disclosed in the technical literature. A circuit board cooling device for cooling a heat generating element (electronic device) by forming a refrigerant conduction path through which a refrigerant flows from a refrigerant flow path corresponding to a plurality of heat generating elements mounted on the circuit board is disclosed. (For example, refer to Patent Document 1). Further, a heat sink for a power module is disclosed that efficiently dissipates heat generated by a power module by flowing a cooling medium through parallel flow paths formed for power devices arranged in a plane (for example, patents). Reference 2). Furthermore, a cooling structure for a heating element is disclosed in which cooling chambers are formed in parallel over the entire surface of the printed circuit board, and a coolant is allowed to flow through these cooling chambers to uniformly cool the entire printed circuit board (see, for example, Patent Document 3). .

特開2005−191474号公報(第3−4頁、第1図、第4図)Japanese Patent Laying-Open No. 2005-191474 (page 3-4, FIGS. 1 and 4) 特開2006−310485号公報(第7−8頁、第2図)JP 2006-310485 A (pages 7-8, FIG. 2) 特開平5−335769号公報(第3頁、第1図)JP-A-5-335769 (page 3, Fig. 1)

上述の如き従来の発熱素子の冷却装置又は冷却方法は、多数の発熱素子又は大きな面積の発熱素子を可能な限り均一且つ効率的に冷却することが不可能又は困難であるという課題があった。従って、発熱素子の冷却効率又は冷却特性が劣る。   The conventional heating element cooling device or cooling method as described above has a problem that it is impossible or difficult to cool a large number of heating elements or a heating element having a large area as uniformly and efficiently as possible. Therefore, the cooling efficiency or cooling characteristics of the heating element are inferior.

即ち、図3に示す如き従来技術では、電力増幅器の発熱体の冷却を1本の流路で接続していたので、上流の発熱体からの受熱により冷却水の温度が上昇するため、下流側の発熱体の温度が上流側の発熱体の温度に比べ高くなり、各発熱体間で温度状態が異なる。その結果、発熱体の発熱量によっては上流側では温度条件を満足しているが下流側では温度条件が満足できないという課題があった。また、上述した特許文献1〜3に示す如く複数の冷却流路を設けても、各流路の冷媒の注入口からの距離により冷却効率が異なり、均一又は一様に冷却することが不可能又は困難であるという課題があった。   That is, in the prior art as shown in FIG. 3, since the cooling of the heating element of the power amplifier is connected by one flow path, the temperature of the cooling water rises due to the heat received from the upstream heating element. The temperature of the heating element becomes higher than that of the upstream heating element, and the temperature state differs between the heating elements. As a result, depending on the amount of heat generated by the heating element, the temperature condition is satisfied on the upstream side, but the temperature condition cannot be satisfied on the downstream side. Moreover, even if a plurality of cooling channels are provided as shown in Patent Documents 1 to 3 described above, the cooling efficiency varies depending on the distance from the refrigerant inlet of each channel, and uniform or uniform cooling is impossible. Or there was a problem that it was difficult.

本発明は、従来技術の上述した課題に鑑みなされたものであり、複数の発熱素子又は大きな発熱素子の各部を略均一又は一様に冷却可能にする、放熱特性の優れた発熱素子の放熱装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and enables a heat generating device for a heat generating element having excellent heat dissipation characteristics to enable cooling of each part of a plurality of heat generating elements or large heat generating elements substantially uniformly or uniformly. The purpose is to provide.

上述した課題を解決し上述した目的を達成するために、本発明の発熱素子の放熱装置は、次の如き特徴的な構成を採用している。   In order to solve the above-described problems and achieve the above-described object, the heat-dissipating device for a heating element of the present invention employs the following characteristic configuration.

(1)冷却用板状部材の一面に列状に配設された複数の発熱素子が発生する熱を放熱させて所定温度に維持する発熱素子の放熱装置において、
前記複数の発熱素子の前記列に沿ってそれぞれ一端が冷媒の注入口および排出口となる平行した1対の冷媒用通路を設け、該1対の冷媒用流路に対して略直交する複数の分岐流路を前記冷却用板状部材の内部に設け、前記複数の分岐流路のサイズを前記注入口および排出口が形成された一端からの距離に応じて調節して、前記分岐流路内を流れる冷媒の量を調節可能にする発熱素子の放熱装置。
(2)前記冷媒用通路は、前記複数の発熱素子の列から外側に離れて形成される上記(1)の発熱素子の放熱装置。
(3)前記複数の分岐流路は、前記発熱素子と位置合せして形成される上記(1)又は(2)の発熱素子の放熱装置。
(4)前記冷媒用通路および前記分岐流路は、前記複数の発熱素子が取り付けられる放熱板の内部に設けられる上記(1)、(2)又は(3)の発熱素子の放熱装置。
(5)前記冷媒用通路および前記分岐流路は、フレーム状に形成され、前記分岐流路に台座を介して前記複数の発熱素子が配置される上記(1)、(2)又は(3)の発熱素子の放熱装置。
(6)前記冷媒用通路および前記分岐流路は、断面形状が略矩形であるパイプにより形成される上記(5)の発熱素子の放熱装置。
(7)前記複数の発熱素子は、電力増幅器を形成する上記(1)乃至(6)の何れかの発熱素子の放熱装置。
(1) In a heat dissipating device for a heat generating element that dissipates heat generated by a plurality of heat generating elements arranged in a row on one surface of a cooling plate member and maintains the heat at a predetermined temperature,
A pair of parallel refrigerant passages, each having one end serving as a refrigerant inlet and outlet, are provided along the row of the plurality of heating elements, and a plurality of the passages substantially orthogonal to the pair of refrigerant flow paths are provided. A branch channel is provided inside the cooling plate-like member, and the size of the plurality of branch channels is adjusted according to the distance from one end where the inlet and the outlet are formed, A heat-dissipating device for a heat-generating element that makes it possible to adjust the amount of refrigerant flowing through.
(2) The heat dissipation device for a heat generating element according to (1), wherein the refrigerant passage is formed away from the row of the plurality of heat generating elements.
(3) The heat dissipation device for a heating element according to (1) or (2), wherein the plurality of branch channels are formed in alignment with the heating element.
(4) The heat dissipation device for a heat generating element according to (1), (2), or (3), wherein the refrigerant passage and the branch flow path are provided inside a heat dissipation plate to which the plurality of heat generating elements are attached.
(5) The refrigerant passage and the branch flow path are formed in a frame shape, and the plurality of heating elements are arranged in the branch flow path via a pedestal (1), (2) or (3) Heating device for heat generating elements.
(6) The heat dissipation device for a heat generating element according to (5), wherein the refrigerant passage and the branch flow passage are formed by pipes having a substantially rectangular cross-sectional shape.
(7) The heat dissipation device for a heat generating element according to any one of (1) to (6), wherein the plurality of heat generating elements form a power amplifier.

本発明の発熱素子の放熱装置によると、次の如き実用上の特有の効果を奏する。即ち、複数の発熱素子を略一様に放熱することが可能であるので、少ない冷媒により各発熱素子を安定に動作させることが可能である。その理由は、1対の平行な冷媒用流路から分岐する複数の分岐流路のサイズを、注入口からの距離に応じて調節するからである。従って、多数の発熱素子を使用するTV送信機における電力増幅機等の増幅素子の放熱装置に特に好適である。   According to the heat-dissipating device for a heating element of the present invention, there are the following practical effects. That is, since a plurality of heat generating elements can be dissipated substantially uniformly, each heat generating element can be stably operated with a small amount of refrigerant. The reason is that the sizes of a plurality of branch channels branched from a pair of parallel refrigerant channels are adjusted according to the distance from the inlet. Therefore, it is particularly suitable for a heat dissipation device for an amplifying element such as a power amplifier in a TV transmitter using a large number of heat generating elements.

以下、本発明による発熱素子の放熱装置の好適実施の形態の構成および動作を、添付図面を参照して詳細に説明する。   Hereinafter, the configuration and operation of a preferred embodiment of a heat dissipating device for a heat generating element according to the present invention will be described in detail with reference to the accompanying drawings.

先ず、図1は、本発明による電力増幅器を構成する発熱素子の放熱装置(以下、単に放熱装置という場合もある)の第1実施の形態の構造を示す図であり、(A)は平面図、(B)は(A)中の線B−Bに沿う断面図、(C)は(A)中の線A―Aに沿う断面図である。   First, FIG. 1 is a diagram showing a structure of a first embodiment of a heat dissipation device for a heat generating element (hereinafter sometimes simply referred to as a heat dissipation device) constituting a power amplifier according to the present invention, and FIG. (B) is sectional drawing in alignment with line BB in (A), (C) is sectional drawing in alignment with line AA in (A).

図1に示す放熱装置10は、例えばTV送信機用の電力増幅器に適用され、相互に所定間隔で離間して配列された複数のトランジスタ等の発熱を伴う増幅素子を含んでいる。この放熱装置10は、図1(A)に示す如くコールドプレートと称される放熱用板状部材(以下、放熱板という)11の一面、例えば上面に配列された複数の発熱素子12a〜12nを含んでいる。   A heat dissipation device 10 shown in FIG. 1 is applied to, for example, a power amplifier for a TV transmitter, and includes amplifying elements that generate heat, such as a plurality of transistors arranged at predetermined intervals from each other. As shown in FIG. 1A, the heat radiating device 10 includes a plurality of heat generating elements 12a to 12n arranged on one surface, for example, the upper surface, of a heat radiating plate member (hereinafter referred to as a heat radiating plate) 11 called a cold plate. Contains.

この放熱板11は、図1(B)および(C)に示す如く、上放熱板11aおよび下放熱板11bよりなる2体(又は2重)構造である。そして、上放熱板11aの表面(上面)の略全体に渡って上述した複数の発熱素子12a〜12nが、例えば2列に配列されている。更に、これら上放熱板11aと下放熱板11bの接合部には、冷却水等の冷媒を流すための放熱(又は冷却)路が形成されている。この放熱路は、図1(A)に示す如く、それぞれ一端に冷媒の注入口(コネクタ)15aおよび排出口(コネクタ)15bが形成された比較的サイズの大きい平行した1対の冷媒用通路13−14およびこれら冷媒用通路13−14に対して略直交して分岐される複数の相互に平行な分岐流路16a〜16mにより構成されている。ここで、冷媒用通路13−14は、2列に配列された複数の発熱素子12a〜12nの列の外側に僅かに離間して配置されている。一方、複数の分岐流路16a〜16mは、それぞれ発熱素子12a〜12nと位置合せ(即ち、これらの発熱素子12の真下に形成されている。   As shown in FIGS. 1B and 1C, the heat radiating plate 11 has a two-body (or double) structure including an upper heat radiating plate 11a and a lower heat radiating plate 11b. The plurality of heating elements 12a to 12n described above are arranged in, for example, two rows over substantially the entire surface (upper surface) of the upper heat radiating plate 11a. Furthermore, a heat radiation (or cooling) path for flowing a coolant such as cooling water is formed at the joint between the upper heat radiation plate 11a and the lower heat radiation plate 11b. As shown in FIG. 1 (A), this heat radiation path is a pair of relatively large parallel coolant passages 13 each having a refrigerant inlet (connector) 15a and a discharge outlet (connector) 15b formed at one end. -14 and a plurality of mutually parallel branch flow paths 16a to 16m branched substantially orthogonally to the refrigerant passage 13-14. Here, the refrigerant passages 13-14 are arranged slightly apart from each other outside the rows of the plurality of heating elements 12a to 12n arranged in two rows. On the other hand, the plurality of branch flow paths 16a to 16m are respectively aligned with the heating elements 12a to 12n (that is, formed directly under these heating elements 12).

次に、上述した放熱板(コールドプレート)11は、上放熱板11aおよび下放熱板11bよりなり、相互にロウ付け等により張り合わされている。そして、図1(B)および(C)に示す如く、上放熱板11aの表面の各発熱素子12に対応する位置には凹部17が形成され、各凹部17に伝熱材18を介して各発熱素子12が取り付けられている。更に、上放熱板11aの上面にプリント基板19が配置され、複数の放熱素子12間の接続およびその他の受動電子デバイス(図示せず)等が実装されている。   Next, the above-described heat radiating plate (cold plate) 11 includes an upper heat radiating plate 11a and a lower heat radiating plate 11b, and is bonded to each other by brazing or the like. As shown in FIGS. 1B and 1C, a recess 17 is formed at a position corresponding to each heating element 12 on the surface of the upper heat radiating plate 11a, and each recess 17 has a heat transfer material 18 interposed therebetween. A heating element 12 is attached. Further, a printed circuit board 19 is disposed on the upper surface of the upper heat radiating plate 11a, and a connection between the plurality of heat radiating elements 12 and other passive electronic devices (not shown) are mounted.

図1(A)に示す如く、上述した複数の分岐流路16a〜16mは、冷媒の注入口15aおよび排出口15bからの距離に応じてサイズ(即ち、断面積)が調節されている。即ち、注入口15aおよび排出口15bが設けられた一端に近い分岐流路16a等はサイズを小さくし、この一端から離間した分岐流路16m等はサイズを大きくしている。その結果、注入口15aから注入された冷媒は、複数の分岐流路16a〜16mに異なる量に分流され、対応する発熱素子12を略均一に冷却するように調整されていることに注目されたい。   As shown in FIG. 1 (A), the sizes of the plurality of branch channels 16a to 16m described above are adjusted according to the distance from the refrigerant inlet 15a and outlet 15b. That is, the branch flow path 16a and the like close to one end provided with the injection port 15a and the discharge port 15b are reduced in size, and the branch flow path 16m and the like separated from the one end are increased in size. As a result, it should be noted that the refrigerant injected from the injection port 15a is diverted into different amounts to the plurality of branch flow paths 16a to 16m, and is adjusted so as to cool the corresponding heating elements 12 substantially uniformly. .

また、冷媒用通路13−14のサイズは、冷媒の注入口15aに近い、例えば分岐流路16a等に比較して十分大きく選定して形成されている。そして、冷媒用通路13−14のサイズは、例えば注入口15aから最も離間している分岐流路16mのサイズと略等しくてもよい。   The size of the refrigerant passage 13-14 is selected to be sufficiently large compared to the refrigerant inlet 15a, for example, compared to the branch flow path 16a. The size of the refrigerant passage 13-14 may be substantially equal to the size of the branch flow channel 16m that is farthest from the inlet 15a, for example.

次に、図1に示す放熱装置10の動作を説明する。先ず、発熱素子12により構成される電力増幅器等を動作させると、発熱素子12が発熱する。そこで、注入口15aから冷媒である冷却水等を注入すると、注入された冷媒は冷媒用通路13を通って複数の分岐流路16a〜16mの一端(図1(A)中の下端)の入口へ迅速に到達する。そして、各分岐流路16を通って出口である反対側の冷媒用通路14へ至り、排出口15から排出される。その間に、発熱素子12から伝熱材18を介して放熱板11に伝導された熱は、分岐流路16内を流れる調節された量の冷媒により奪い去られて、冷媒により放熱される。   Next, the operation of the heat dissipation device 10 shown in FIG. 1 will be described. First, when a power amplifier or the like constituted by the heating element 12 is operated, the heating element 12 generates heat. Therefore, when cooling water or the like, which is a refrigerant, is injected from the inlet 15a, the injected refrigerant passes through the refrigerant passage 13, and is an inlet of one end of the plurality of branch flow paths 16a to 16m (lower ends in FIG. 1A). To reach quickly. Then, it passes through each branch channel 16 to the refrigerant passage 14 on the opposite side, which is an outlet, and is discharged from the discharge port 15. Meanwhile, heat conducted from the heating element 12 to the heat radiating plate 11 via the heat transfer material 18 is taken away by the regulated amount of refrigerant flowing in the branch flow path 16 and is radiated by the refrigerant.

ここで、発熱素子12が発生する熱は、各発熱素子12の周囲の放熱板11へ伝導される。即ち、発熱素子12の列の外側および内側へ伝導される。冷媒用通路13−14を発熱素子12の外側に設けることにより、発熱素子12の列から外側へ伝導される熱は、冷媒用通路13−14を流れる冷媒により放熱される。他方、発熱素子12の列の内側へ伝導される熱は、分岐流路16を流れる冷媒により放熱される。従って、発熱素子12の発熱を効率的に放熱することにより、発熱素子12の温度上昇を予め設定した温度範囲内に抑えることが可能である。尚、冷媒には所定の圧力を加えて、冷媒用通路13−14および分岐流路16内を流れる冷媒の速度(従って、単位時間当たりの冷媒の流量)を制御することが可能である。   Here, the heat generated by the heating elements 12 is conducted to the heat dissipation plate 11 around each heating element 12. That is, it is conducted to the outside and the inside of the row of heating elements 12. By providing the refrigerant passage 13-14 outside the heating element 12, the heat conducted from the row of the heating elements 12 to the outside is radiated by the refrigerant flowing through the refrigerant passage 13-14. On the other hand, the heat conducted to the inside of the row of the heating elements 12 is radiated by the refrigerant flowing through the branch flow path 16. Therefore, by efficiently dissipating the heat generated by the heating element 12, the temperature rise of the heating element 12 can be suppressed within a preset temperature range. In addition, it is possible to apply a predetermined pressure to the refrigerant to control the speed of the refrigerant flowing in the refrigerant passages 13-14 and the branch flow path 16 (accordingly, the flow rate of the refrigerant per unit time).

次に、図2は本発明による発熱素子の放熱装置(放熱装置)の第2実施の形態を示す平面図である。尚、この放熱装置20において、説明の便宜上、図1に示す放熱装置10と対応する構成素子には同様の参照番号を付し、以下の説明は放熱装置10との相違点を中心に説明することとする。   Next, FIG. 2 is a plan view showing a second embodiment of a heat dissipation device (heat dissipation device) for a heating element according to the present invention. In this heat radiating device 20, for convenience of explanation, the same reference numerals are given to the constituent elements corresponding to those of the heat radiating device 10 shown in FIG. 1, and the following explanation will be made focusing on differences from the heat radiating device 10. I will do it.

図2に示す放熱装置20では、冷媒用流路を形成する放熱板(コールドプレート)を使用することなく、1対の平行パイプ(冷媒用通路)23−24およびこれらのパイプ23−24間に平行に配置された分岐パイプ(分岐流路)26a〜26mにより構成されるパイプ状フレーム、各分岐パイプ26に設けられた台座21a〜21mにより構成され、各台座21上に、例えば電力増幅器を構成する複数の発熱素子22a〜22nが実装されている。そして、平行パイプ23−24の一端にそれぞれ注入口(コネクタ)25aおよび排出口25bが設けられている。   In the heat radiating device 20 shown in FIG. 2, a pair of parallel pipes (refrigerant passages) 23-24 and a pair of these pipes 23-24 are used without using a heat radiating plate (cold plate) forming a refrigerant flow path. A pipe-like frame composed of branch pipes (branch flow paths) 26a to 26m arranged in parallel and pedestals 21a to 21m provided on the respective branch pipes 26. For example, a power amplifier is constructed on each pedestal 21. A plurality of heating elements 22a to 22n are mounted. An inlet (connector) 25a and an outlet 25b are respectively provided at one end of the parallel pipes 23-24.

この放熱装置20においても、図1に示す放熱装置10と同様に、複数の分岐パイプ26のサイズは、注入口25aおよび排出口25bが設けられている一端から各分岐パイプ26までの距離に応じて異なる大きさに選定されている。尚、各パイプ23−24および26の断面形状は、必ずしも円形である必要はなく、例えば矩形等の任意形状であるを可とする。特に、台座21の取付面は略平坦であるのが好ましい。   In the heat radiating device 20 as well, similarly to the heat radiating device 10 shown in FIG. 1, the size of the plurality of branch pipes 26 depends on the distance from one end where the inlet 25a and the outlet 25b are provided to each branch pipe 26. Different sizes are selected. The cross-sectional shapes of the pipes 23-24 and 26 are not necessarily circular, and may be any shape such as a rectangle. In particular, the mounting surface of the pedestal 21 is preferably substantially flat.

以上、本発明による発熱素子の放熱装置を、好適実施の形態に基づいて詳述した。しかし、斯かる実施の形態は、本発明の単なる例示に過ぎず、何ら本発明を限定するものではないことに留意されたい。本発明の要旨を逸脱することなく、特定用途に応じて種々の変形変更が可能であること、当業者には容易に理解できよう。   As mentioned above, the heat radiating device of the heat generating element according to the present invention has been described in detail based on the preferred embodiment. However, it should be noted that such embodiments are merely examples of the present invention and do not limit the present invention. Those skilled in the art can easily understand that various modifications and changes can be made according to a specific application without departing from the gist of the present invention.

例えば、複数の発熱素子は、必ずしも2列に配置する必要はなく3列以上の複数列に配置可能である。また、注入口および排出口に連結する1対の冷媒用通路から分岐する複数の分岐流路は、その両端部を冷媒流路に対して鋭角(90°未満の角度)又はアールをつけて湾曲させてもよい。本発明の発熱素子の放熱装置は、特に発熱量の大きい多数の発熱素子を使用するテレビ送信機やその他の高出力電子機器の電力増幅器を放熱・冷却するための応用が好ましい。   For example, the plurality of heat generating elements are not necessarily arranged in two rows, and can be arranged in a plurality of rows of three or more rows. In addition, the plurality of branch flow paths branching from the pair of refrigerant passages connected to the inlet and the outlet are curved with acute angles (angles less than 90 °) or rounded at both ends with respect to the refrigerant flow path. You may let them. The heat-radiating device for heat-generating elements of the present invention is preferably applied for heat-dissipating and cooling power amplifiers of television transmitters and other high-power electronic devices that use a large number of heat-generating elements that generate a large amount of heat.

本発明による発熱素子の放熱装置の第1実施の形態を示し、(A)は平面図、(B)は(A)中の線B−Bに沿う断面図、(C)は(A)中の線A−Aに沿う断面図である。1 shows a first embodiment of a heat dissipation device for a heat generating element according to the present invention, (A) is a plan view, (B) is a cross-sectional view taken along line BB in (A), and (C) is in (A). It is sectional drawing in alignment with line AA. 本発明による発熱素子の放熱装置の第2実施の形態の平面図を示す。The top view of 2nd Embodiment of the thermal radiation apparatus of the heat generating element by this invention is shown. 従来の発熱素子(電力増幅器)の放熱構造を示し、(A)は平面図、(B)は(A)中の線B−Bに沿う断面図、(C)は(A)中の線A−Aに沿う断面図である。The heat dissipation structure of the conventional heat generating element (power amplifier) is shown, (A) is a top view, (B) is sectional drawing in alignment with line BB in (A), (C) is line A in (A). It is sectional drawing which follows -A.

符号の説明Explanation of symbols

10、20 発熱素子の放熱装置(放熱装置)
11 放熱板(コールドプレート)
12、22 発熱素子
13−14、23−24 冷媒用流路
15a、25a 冷媒の注入口
15b、25b 冷媒の排出口
16、26 分岐流路(分岐パイプ)
17 凹部
18 伝導材
19 プリント基板
10, 20 Heat radiating device (heat radiating device)
11 Heat sink (cold plate)
12, 22 Heating element 13-14, 23-24 Refrigerant flow path 15a, 25a Refrigerant inlet 15b, 25b Refrigerant discharge port 16, 26 Branch flow path (branch pipe)
17 Recess 18 Conductive material 19 Printed circuit board

Claims (7)

冷却用板状部材の一面に列状に配設された複数の発熱素子が発生する熱を放熱させて所定温度に維持する発熱素子の放熱装置において、
前記複数の発熱素子の前記列に沿ってそれぞれ一端が冷媒の注入口および排出口となる平行した1対の冷媒用通路を設け、該1対の冷媒用流路に対して略直交する複数の分岐流路を前記冷却用板状部材の内部に設け、前記複数の分岐流路のサイズを前記注入口および排出口が形成された一端からの距離に応じて調節して、前記分岐流路内を流れる冷媒の量を調節可能にすることを特徴とする発熱素子の放熱装置。
In a heat dissipation device for a heat generating element that dissipates heat generated by a plurality of heat generating elements arranged in a row on one surface of the cooling plate member and maintains the heat at a predetermined temperature,
A pair of parallel refrigerant passages, each having one end serving as a refrigerant inlet and outlet, are provided along the row of the plurality of heating elements, and a plurality of the passages substantially orthogonal to the pair of refrigerant flow paths are provided. A branch channel is provided inside the cooling plate-like member, and the size of the plurality of branch channels is adjusted according to the distance from one end where the inlet and the outlet are formed, A heat dissipating device for a heat generating element, characterized in that the amount of refrigerant flowing through the air can be adjusted.
前記冷媒用通路は、前記複数の発熱素子の列から外側に離れて形成されることを特徴とする請求項1に記載の発熱素子の放熱装置。   2. The heat dissipation device for a heat generating element according to claim 1, wherein the refrigerant passage is formed outwardly from the row of the plurality of heat generating elements. 前記複数の分岐流路は、前記発熱素子と位置合せして形成されることを特徴とする請求項1又は2に記載の発熱素子の放熱装置。   The heat dissipation device for a heat generating element according to claim 1, wherein the plurality of branch flow paths are formed in alignment with the heat generating element. 前記冷媒用通路および前記分岐流路は、前記複数の発熱素子が取り付けられる放熱板の内部に設けられることを特徴とする請求項1、2又は3に記載の発熱素子の放熱装置。   The heat-radiating device for a heat-generating element according to claim 1, wherein the refrigerant passage and the branch flow path are provided inside a heat-dissipating plate to which the plurality of heat-generating elements are attached. 前記冷媒用通路および前記分岐流路は、フレーム状に形成され、前記分岐流路に台座を介して前記複数の発熱素子が配置されることを特徴とする請求項1、2又は3に記載の発熱素子の放熱装置。   4. The refrigerant passage and the branch flow path are formed in a frame shape, and the plurality of heating elements are arranged in the branch flow path via a pedestal. A heat dissipation device for a heating element. 前記冷媒用通路および前記分岐流路は、断面形状が略矩形であるパイプにより形成されることを特徴とする請求項5に記載の発熱素子の放熱装置。   The heat dissipation device for a heat generating element according to claim 5, wherein the refrigerant passage and the branch flow path are formed by a pipe having a substantially rectangular cross-sectional shape. 前記複数の発熱素子は、電力増幅器を形成することを特徴とする請求項1乃至6の何れかに記載の発熱素子の放熱装置。
The heat-radiating device for a heating element according to claim 1, wherein the plurality of heating elements form a power amplifier.
JP2007067918A 2007-03-16 2007-03-16 Heat dissipating device of heating element Pending JP2008227434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067918A JP2008227434A (en) 2007-03-16 2007-03-16 Heat dissipating device of heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067918A JP2008227434A (en) 2007-03-16 2007-03-16 Heat dissipating device of heating element

Publications (1)

Publication Number Publication Date
JP2008227434A true JP2008227434A (en) 2008-09-25

Family

ID=39845644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067918A Pending JP2008227434A (en) 2007-03-16 2007-03-16 Heat dissipating device of heating element

Country Status (1)

Country Link
JP (1) JP2008227434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172233A1 (en) * 2018-03-08 2019-09-12 日本電気株式会社 Cooling structure, power amplifier, and transmitter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172233A1 (en) * 2018-03-08 2019-09-12 日本電気株式会社 Cooling structure, power amplifier, and transmitter
JPWO2019172233A1 (en) * 2018-03-08 2021-02-04 日本電気株式会社 Cooling structures, power amplifiers and transmitters
JP7088282B2 (en) 2018-03-08 2022-06-21 日本電気株式会社 Cooling structures, power amplifiers and transmitters

Similar Documents

Publication Publication Date Title
US9298231B2 (en) Methods of fabricating a coolant-cooled electronic assembly
JP6050617B2 (en) Cooling device for power supply module and related method
WO2011096218A1 (en) Heat radiation device and electronic equipment using the same
US7529089B2 (en) Heat-dissipating device connected in series to water-cooling circulation system
US8120917B2 (en) Heat dissipation device
JP2007234744A (en) Refrigerator and electronic apparatus
US11122705B2 (en) Liquid cooled optical cages for optical modules
JP2005229033A (en) Liquid-cooled system and electronic apparatus having the same
WO2016173286A1 (en) Liquid cooling radiator and electronic device
JP2016073201A (en) Inverter heat-dissipation device and inverter
US20130206367A1 (en) Heat dissipating module
US7823866B1 (en) Distributed load edge clamp
JP5057838B2 (en) Power semiconductor element cooling device
US8558373B2 (en) Heatsink, heatsink assembly, semiconductor module, and semiconductor device with cooling device
US20220007551A1 (en) Impinging jet coldplate for power electronics with enhanced heat transfer
US9420720B2 (en) Liquid cooling apparatus
JP2008106958A (en) Heat exchanger
JP2009099995A (en) Refrigerator and electronic apparatus
JP2008227434A (en) Heat dissipating device of heating element
Tomasic et al. Cold plate design, fabrication, and demonstration for high-power Ka-band active electronically scanned arrays
US20070139888A1 (en) Heat transfer system
JP2007043041A (en) Electric element equipment and electric element module
JP2015213123A (en) High-frequency amplifying device
WO2022239419A1 (en) Cooling component
WO2012048432A1 (en) Device for cooling high power broadcast transmitters

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091214