JP2008224571A - Actinometer - Google Patents

Actinometer Download PDF

Info

Publication number
JP2008224571A
JP2008224571A JP2007066161A JP2007066161A JP2008224571A JP 2008224571 A JP2008224571 A JP 2008224571A JP 2007066161 A JP2007066161 A JP 2007066161A JP 2007066161 A JP2007066161 A JP 2007066161A JP 2008224571 A JP2008224571 A JP 2008224571A
Authority
JP
Japan
Prior art keywords
sphere
photodiode
solar radiation
pyranometer
base portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007066161A
Other languages
Japanese (ja)
Inventor
Sunao Takakura
直 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007066161A priority Critical patent/JP2008224571A/en
Publication of JP2008224571A publication Critical patent/JP2008224571A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Abstract

<P>PROBLEM TO BE SOLVED: To provide an actinometer usable suitably for plant cultivation, capable of measuring always accurately the insolation of sunlight with which the plant is drenched from the sun regardless of the position of the sun. <P>SOLUTION: This actinometer used for plant cultivation is equipped with a base part 11, a photodiode 13 for detecting the insolation arranged on the upper surface of the base part 11, and a white spherical body 14 arranged on the base part so as to cover a light receiving surface 13a of the photodiode 13 through a fixed space. The actinometer can be utilized suitably for plant cultivation, because a domain corresponding to the peripheral of the spherical body on the upper surface of the base part is black. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば植物のハウス栽培等に用いられる日射計に関する。   The present invention relates to a pyranometer used for, for example, plant cultivation of plants.

植物栽培には、気温、湿度、日射量、日照量、光強度などの多数の環境要因が影響する。特に光に関する環境要因は植物の成長を左右するものとなる。   Numerous environmental factors such as temperature, humidity, amount of solar radiation, amount of sunlight, and light intensity affect plant cultivation. In particular, environmental factors related to light influence plant growth.

従来、このような植物栽培には、多種の環境要因(気温、湿度、日射、照度など)を計測する計測機器及びこれらの環境要因を制御する制御機器(冷房、暖房、換気ファンなど)を設置し、コンピュータを用いて計測値に基づいて制御機器を制御することにより植物に対する環境要因をコントロールしていた(例えば、特許文献1及び特許文献2参照)。   Conventionally, in such plant cultivation, measuring devices that measure various environmental factors (temperature, humidity, solar radiation, illuminance, etc.) and control devices (cooling, heating, ventilation fans, etc.) that control these environmental factors are installed. And the environmental factor with respect to a plant was controlled by controlling a control apparatus based on a measured value using a computer (for example, refer to patent documents 1 and patent documents 2).

かかる植物栽培において日射量は環境要因のなかで最も重要な要素であり、日射計からの計測値に基づいて、制御機器を主に制御するようにしている。しかしながら、測定対象である自然光の特長はその分光分布と空間分布が経時的にランダムに変化することにある。従って、これを計測する機器はこれに十分対応できるものでなければならない。
特開平8−103173号公報(3−7頁、図1) 特開2005−224136号広報(6−9頁、図1)
In such plant cultivation, the amount of solar radiation is the most important factor among environmental factors, and the control device is mainly controlled based on the measurement value from the solar radiation meter. However, the feature of natural light as a measurement object is that its spectral distribution and spatial distribution change randomly with time. Therefore, the equipment for measuring this must be able to cope with this.
JP-A-8-103173 (page 3-7, FIG. 1) Japanese Laid-Open Patent Publication No. 2005-224136 (page 6-9, FIG. 1)

従来の日射計、標準的な日射計では水平な白色と黒色板に貼られた熱電対で日射に比例してできる温度差を検出するが、その上に半球状の透明フィルタを被せており、光電素子(たとえば、シリコンフォトダイオード)を用いる場合では、素子上にややふくらみをもたせた乳白色の拡散フィルタを被せ、日射量に比例して発生する電位を検出してその時の日射量を測定する構造となっている。   Conventional thermometers and standard pyranometers detect the temperature difference that is proportional to the solar radiation with a thermocouple affixed to a horizontal white and black plate, but they are covered with a hemispherical transparent filter. In the case of using a photoelectric element (for example, a silicon photodiode), a structure in which a milky white diffusion filter with a slight bulge is put on the element, a potential generated in proportion to the amount of solar radiation is detected, and the amount of solar radiation at that time is measured. It has become.

従来の標準的な日射計では、白色部分と黒色部分の受光面が水平面となっているため、側方から入射する日射量の計測値は誤差が大きく、精度良く計測することができないという問題点があった。光電素子の場合は、受光面に光沢があり、太陽入射角が大きくなると標準的なものよりさらに出力が減少するため、それを標準的な日射計と同等まで回復させるために乳白色のフィルタを用いている。   In the conventional standard pyranometer, the white and black light receiving surfaces are horizontal surfaces, so the measurement value of the amount of solar radiation incident from the side has a large error and cannot be measured accurately. was there. In the case of photoelectric elements, the light receiving surface is glossy, and when the sun incident angle increases, the output decreases further than the standard one, so a milky white filter is used to restore it to the same level as a standard pyranometer. ing.

具体的には、植物栽培においては、群生する植物は上面領域だけでなく側面領域も大きく全体としては立体的構成を有している。そのような植物群落が受ける日射量を測定するのに、従来の受光面が水平面である日射計では、例えば太陽が傾き高度が低くになるにつれその出力に誤差を生じていた。   Specifically, in plant cultivation, the plants that grow are large not only in the upper surface region but also in the side surface region, and have a three-dimensional configuration as a whole. In measuring the amount of solar radiation received by such a plant community, a conventional pyranometer in which the light receiving surface is a horizontal surface has an error in its output as the sun is tilted and the altitude is lowered.

そのため、多くの温室栽培農家や栽培の専門家がこのような通常の水平面日射計で測定したデータを基準とした制御は望ましい制御になっていなかった。   For this reason, control based on data measured by many greenhouse-grown farmers and cultivation specialists using such a normal horizontal surface pyranometer has not been a desirable control.

この理由としては、従来の日射計を用いた場合、植物群落、特に温室栽培ではトマト、キュウリ、ピーマンなど生育が進むにつれて、植物の背丈が高くなるが、このような植物群落が受ける日射量は太陽高度が低いと、群落上よりも側面からの入射光が多くなり、このような状態での植物群落が受ける日射量を通常の水平面日射計で測定すると、実際とかけ離れた値となってしまうためである。   The reason for this is that when using a conventional pyranometer, the height of the plant increases as the growth of plant communities, especially tomatoes, cucumbers, peppers, etc. in greenhouse cultivation, but the amount of solar radiation received by such plant communities is When the solar altitude is low, more incident light comes from the side than on the canopy, and when the amount of solar radiation received by the plant community in such a state is measured with a normal horizontal plane pyranometer, it will be far from the actual value. Because.

さらに、温室内では上部の構造材が日陰を作るが、温室内で日射測定をする場合、太陽の移動と共に日陰も移動するので、日陰の影響のない場所を捜すことは難しい。そのため、従来の日射計を用いると日陰になった時間帯では日射量を基準とした制御は難しかった。   Furthermore, in the greenhouse, the upper structural material creates shade, but when measuring solar radiation in the greenhouse, the shade moves with the movement of the sun, so it is difficult to search for a place that is not affected by the shade. For this reason, when a conventional pyranometer is used, control based on the amount of solar radiation is difficult in the shaded time zone.

図5は、このような従来の日射計5をハウスの中に設置した状態を示している。同図から分かるように植物がある程度の高さまで生育した状態になると、例えば昼間の日射量に関しては日射計5で正確に測ることができるが(図5の太陽光A参照)、朝方や夕方などにおいては日光が日射計5の側方から入光するので、正確な日射量を測ることができない(図5の太陽光B,C参照)。   FIG. 5 shows a state in which such a conventional pyranometer 5 is installed in a house. As can be seen from the figure, when the plant has grown to a certain height, for example, the amount of solar radiation in the daytime can be accurately measured with the pyranometer 5 (see sunlight A in FIG. 5), but in the morning or evening In FIG. 5, since sunlight enters from the side of the pyranometer 5, it is not possible to measure the exact amount of solar radiation (see sunlight B and C in FIG. 5).

本発明の目的は、太陽がどのような高さにあっても植物に降り注ぐ日光の日射量を常に正確に測定でき、植物栽培に好適に利用可能な日射計を提供することにある。   An object of the present invention is to provide a solar radiation meter that can always accurately measure the amount of solar radiation falling on a plant regardless of the height of the sun, and can be suitably used for plant cultivation.

上述した課題を解決するために、本発明の請求項1に記載の日射計は、
植物栽培に用いる日射計において、
ベース部と、当該ベース部の上面に配置された日射量検出用のフォトダイオードと、前記フォトダイオードの受光面を一定の空間を介して覆うように前記ベース部上に配置された白色の球体とを備え、前記球体には、下端部に取付け孔が形成され、当該取付け孔が前記フォトダイオードを囲むように前記ベース部の上面に固定され、かつ前記ベース部上面の前記球体周囲に対応する領域が黒色となっていることを特徴としている。
In order to solve the above-described problem, the pyranometer according to claim 1 of the present invention is:
In the solar radiation meter used for plant cultivation,
A base portion, a photodiode for detecting the amount of solar radiation disposed on the upper surface of the base portion, and a white sphere disposed on the base portion so as to cover a light receiving surface of the photodiode via a certain space; A mounting hole is formed in the lower end portion of the sphere, the mounting hole is fixed to the upper surface of the base portion so as to surround the photodiode, and a region corresponding to the periphery of the sphere on the upper surface of the base portion. Is characterized by being black.

本発明の請求項1に係る日射計がこのような構成を有することで、従来の日射計とは異なり、水平方向からの日光を球体が受けてもこの光を球体全体に拡散させて球体全体を光らせることができるので、太陽の高さに関わらず受光面積が一定で、太陽から降り注ぐ日光の日射量をフォトダイオードで精度良く測定することができる。   Since the pyranometer according to claim 1 of the present invention has such a configuration, unlike the conventional pyranometer, even if the sphere receives sunlight from the horizontal direction, this light is diffused to the entire sphere and the entire sphere. Since the light receiving area is constant regardless of the height of the sun, the amount of sunlight shining down from the sun can be accurately measured with a photodiode.

その結果、朝方や夕方などの入射角の比較的小さい時間帯の入射量も正確に測定することができる。また、温室内にこの日射計を設置した場合は、温室上部の構造体の作る日陰の影響を受けずに入射量を常に正確に測定することができる。   As a result, it is possible to accurately measure an incident amount in a time zone having a relatively small incident angle such as morning or evening. In addition, when this pyranometer is installed in a greenhouse, the amount of incident light can always be accurately measured without being affected by the shade created by the structure above the greenhouse.

また、本発明の請求項2にかかる日射計は、
植物栽培に用いる日射計において、
設置状態で上方向に突出すると共に上端が平面部を有する突出部を一部に備えたベース部と、当該ベース部の突出部上面に配置された日射量検出用のフォトダイオードと、前記フォトダイオードの受光面を一定の空間を介して覆う白色の球体とを備え、前記球体には、下端部に取付け孔が形成され、当該取付け孔が前記フォトダイオードを囲むように前記突出部の上面に固定され、かつ前記ベース部上面の前記球体周囲に対応する領域が反射防止つや消し黒色となっていることを特徴としている。
Further, the pyranometer according to claim 2 of the present invention is:
In the solar radiation meter used for plant cultivation,
A base part partially projecting upward in the installed state and having an upper end having a flat part, a photodiode for detecting solar radiation disposed on the upper surface of the projecting part of the base part, and the photodiode A white sphere that covers the light receiving surface of the sphere through a certain space, and a mounting hole is formed at a lower end of the sphere, and the mounting hole is fixed to the upper surface of the protrusion so as to surround the photodiode. In addition, the region corresponding to the periphery of the sphere on the upper surface of the base portion is characterized by being anti-reflection matte black.

本発明の請求項2に係る日射計がこのような構成を有することで、従来の日射計とは異なり、水平方向からの日光を球体が受けてもこの光を球体全体に拡散させて球体全体を光らせることができるので、太陽の高さに関わらず太陽から降り注ぐ日光の日射量をフォトダイオードで精度良く測定することができる。   Since the pyranometer according to claim 2 of the present invention has such a configuration, unlike the conventional pyranometer, even if the sphere receives sunlight from the horizontal direction, the sphere is diffused to the entire sphere. Therefore, the amount of sunlight shining down from the sun can be accurately measured with a photodiode regardless of the height of the sun.

その結果、朝方や夕方などの入射角の比較的小さい時間帯の入射量も正確に測定することができる。また、温室内にこの日射計を設置した場合は、温室上部の構造体の作る日陰の影響を受けずに入射量を常に正確に測定することができる。   As a result, it is possible to accurately measure an incident amount in a time zone having a relatively small incident angle such as morning or evening. In addition, when this pyranometer is installed in a greenhouse, the amount of incident light can always be accurately measured without being affected by the shade created by the structure above the greenhouse.

また、球体の下端部に形成された孔がベース部の突出部の上面に固定されているので、白色の球体全体の清掃性に優れ、日光を白色の球体が常に正確に受光することができるようになる。   Moreover, since the hole formed in the lower end part of the sphere is fixed to the upper surface of the protruding part of the base part, the white sphere is excellent in cleanability, and the white sphere can always receive sunlight accurately. It becomes like this.

本発明によると、太陽がどのような高さにあっても植物に降り注ぐ日光の日射量を常に正確に測定でき、植物栽培に好適に利用可能な日射計を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the solar radiation amount which can always measure correctly the solar radiation amount which pours into a plant regardless of the height of the sun can provide the solar radiation meter which can be utilized suitably for plant cultivation.

以下、本発明の一実施形態に係る日射計1について図面に基いて説明する。本発明の一実施形態に係る日射計1は、ハウス内で栽培される野菜や花などの生育の制御に利用されるもので、図1に示すようにベース部11と、ベース部11の上面中央部12に配置されたフォトダイオード13と、フォトダイオード13の受光面13aを所定の空間を介して囲むようにベース部11の上面中央部12に備わった中空の白色球体14を有している。そして、この日射計1は、本実施形態では図2に示すように、ハウスの地面から適当な高さで配置されるように支持体50で支持されている。ベース部11は、例えば強度と耐候性に優れた樹脂でできており円板状をなし、ベース部11の上面であって白色球体14に対応する領域には黒色塗装11aが施されている。ベース部11は、植物や地面からの日光の反射光が白色球体14に当たるのを防止し、白色球体14が天空からの日光のみを受光する役目を果たしている。なお、黒色塗装11aは、ベース部11の白色球体周囲の領域において日光が反射してこの反射光が白色球体に当たり、日射量の誤差にならないようにこのベース部11に当る光を吸収する役目を果たしている。   Hereinafter, a pyranometer 1 according to an embodiment of the present invention will be described with reference to the drawings. A solar radiation meter 1 according to an embodiment of the present invention is used for controlling the growth of vegetables and flowers cultivated in a house. As shown in FIG. 1, the base 11 and the upper surface of the base 11 are used. A photodiode 13 disposed in the central portion 12 and a hollow white sphere 14 provided in the upper surface central portion 12 of the base portion 11 so as to surround the light receiving surface 13a of the photodiode 13 via a predetermined space. . In this embodiment, the pyranometer 1 is supported by a support 50 so as to be arranged at an appropriate height from the ground of the house as shown in FIG. The base portion 11 is made of, for example, a resin excellent in strength and weather resistance, has a disk shape, and a black coating 11 a is applied to an upper surface of the base portion 11 and an area corresponding to the white sphere 14. The base part 11 prevents the reflected light of sunlight from a plant or the ground from hitting the white sphere 14, and the white sphere 14 serves to receive only sunlight from the sky. The black coating 11a has a function of absorbing the light hitting the base portion 11 so that the sunlight is reflected in the region around the white sphere of the base portion 11 and the reflected light hits the white sphere, and does not cause an error in the amount of solar radiation. Plays.

フォトダイオード13の出力は図示しない電線を介してここでは詳細に示さない信号処理部で信号処理され、例えば非接触で遠隔制御されたハウスのコントロールセンターにその検出された日射量情報が逐次送信されるようになっている。   The output of the photodiode 13 is signal-processed by a signal processing unit (not shown in detail here) via an electric wire (not shown). For example, the detected amount of solar radiation information is sequentially transmitted to a control center of a house that is remotely controlled without contact. It has become so.

白色球体14は、本実施形態では例えば押しボタンスイッチの表示用拡散板などに用いられる白色の光拡散材料でできた球体であり、その設置状態における下端部に取付け孔14aが形成されている。そして、取付け孔14aがベース部11の上面中央部12に配置されたフォトダイオード13を囲んでフォトダイオード13の受光面13aが白色球体14の内周面と略面一となるように接着剤等の適当な固定手段で固定され、これによって、フォトダイオード13の受光面上側の空間を白色球体14の内部に形成しつつ、フォトダイオード13の周囲を覆うようになっている。なお、図1においては説明の都合上、白色球体14の断面ハッチングを省略して示している。   In the present embodiment, the white sphere 14 is a sphere made of a white light diffusing material used for, for example, a display diffusion plate of a push button switch, and a mounting hole 14a is formed at the lower end in the installed state. Then, an adhesive or the like is provided so that the mounting hole 14a surrounds the photodiode 13 disposed in the upper surface central portion 12 of the base portion 11 and the light receiving surface 13a of the photodiode 13 is substantially flush with the inner peripheral surface of the white sphere 14. Thus, the space above the light receiving surface of the photodiode 13 is formed inside the white sphere 14 while covering the periphery of the photodiode 13. In FIG. 1, the cross-sectional hatching of the white sphere 14 is omitted for convenience of explanation.

本実施形態に係る日射計1がこのような構成を有することで、従来の日射計5とは異なり、太陽がどのような高さにあっても日光を白色球体14が常に受けてこの入射光を白色球体全体に拡散させて白色球体全体を拡散板のように光らせることができるので、太陽の高さの如何に関わらず、日光の日射量をフォトダイオード13で精度良く測定することができる(図2の太陽光A,B参照)。   Since the pyranometer 1 according to the present embodiment has such a configuration, unlike the conventional pyranometer 5, the white sphere 14 always receives sunlight regardless of the height of the sun, and this incident light. Can be diffused over the entire white sphere so that the entire white sphere can shine like a diffusing plate, so that the amount of solar radiation can be accurately measured with the photodiode 13 regardless of the height of the sun ( (See sunlight A and B in FIG. 2).

また、本実施形態における日射計の白色球体14の下端に形成された取付け孔14aがフォトダイオード13を囲んだ状態でベース部11の上面中央部12に固定されていることで、水平方向から入射する日光に対しても白色球体14が受けてこれを白色球体全体に拡散させて白色球体全体を拡散板のように光らせることができるので、精度の良い日射計とすることができる(図2の太陽光C参照)。   Further, the mounting hole 14a formed at the lower end of the white sphere 14 of the pyranometer in the present embodiment is fixed to the upper surface central portion 12 of the base portion 11 so as to surround the photodiode 13, so that the incident light is incident from the horizontal direction. The white sphere 14 also receives sunlight to diffuse and diffuse it throughout the white sphere so that the entire white sphere can shine like a diffuser plate, so that an accurate pyranometer can be obtained (FIG. 2). See Sunlight C).

続いて、上述した実施形態に係る日射計1を用いた日光の日射角度とフォトダイオード13の出力との関係について測定したので、この測定結果を図3に基づいて説明する。なお、この測定に際して光の強度は一定とし、入射角度のみを変えるようにした。図3に示す横軸は鉛直方向に対する日光の入射角度(度)を示し、縦軸はこれに対応したフォトダイオード13の出力(mV)を示している。また、この図では、三角のプロットは水平面日射を入射角の余弦で除した値、即ち、日射の鉛直面強度である。   Subsequently, since the relationship between the solar radiation angle using the solar radiation meter 1 according to the above-described embodiment and the output of the photodiode 13 was measured, the measurement result will be described with reference to FIG. In this measurement, the light intensity was constant and only the incident angle was changed. The horizontal axis shown in FIG. 3 indicates the incident angle (degree) of sunlight with respect to the vertical direction, and the vertical axis indicates the output (mV) of the photodiode 13 corresponding thereto. Moreover, in this figure, the triangular plot is a value obtained by dividing horizontal solar radiation by the cosine of the incident angle, that is, the vertical plane intensity of solar radiation.

図3から明らかなように、本実施形態による日射計を用いると、入射角度がかなり変わって日射計の側方から光が入射してもフォトダイオード13の出力があまり変わらないことが分かった。その結果、日射量が一定の場合、入射光の入射角度の影響をあまり受けずに日射計で正確に測定できることが分かった。   As is clear from FIG. 3, it was found that when the pyranometer according to the present embodiment is used, the output angle of the photodiode 13 does not change so much even if the incident angle changes considerably and light enters from the side of the pyranometer. As a result, it was found that when the amount of solar radiation is constant, it can be accurately measured with a pyranometer without being greatly affected by the incident angle of incident light.

この測定結果から、本実施形態にかかる日射計は、従来の日射計とは異なり、太陽がどのような高さにあっても球体が受けた日光を球体全体に拡散させて球体全体を光らせることができるので、太陽の高さの如何に関わらず日光の日射量をフォトダイオードで精度良く測定することができることが立証できた。   From this measurement result, the pyranometer according to the present embodiment, unlike the conventional pyranometer, diffuses the sunlight received by the sphere to the entire sphere, regardless of the height of the sun, and shines the entire sphere. Therefore, it was proved that the amount of solar radiation could be accurately measured with a photodiode regardless of the height of the sun.

即ち、朝方や夕方などの入射角の比較的小さい時間帯の入射量も正確に測定することができることが分かった。また、温室内にこの日射計を設置した場合、温室上部の構造体の作る日陰の影響を最小限にすることができ、入射量を常に正確に測定することができることが立証できた。   That is, it was found that the incident amount in a time zone having a relatively small incident angle such as morning or evening can be accurately measured. Moreover, when this pyranometer was installed in the greenhouse, it was proved that the influence of the shade created by the structure above the greenhouse could be minimized and the incident amount could always be measured accurately.

続いて、上述の実施形態の変形例に係る日射計について説明する。本発明の変形例に係る日射計2も、ハウス内で栽培される野菜や花などの生育の制御に利用されるもので、図4に示すようにベース部21と、ベース部21の突出部22の上面22aに配置されたフォトダイオード23と、フォトダイオード23を所定の空間を介して囲むようにベース部21の突出部22の上面22aに備わった中空の白色球体24を有している。そして、この日射計2は、本実施形態では図2に示した支持体50と同様な支持体で、ハウスの地面から適当な高さで配置されるように支持されている。   Then, the pyranometer concerning the modification of the above-mentioned embodiment is demonstrated. The pyranometer 2 according to the modification of the present invention is also used for controlling the growth of vegetables and flowers cultivated in the house. As shown in FIG. 4, the base portion 21 and the protruding portion of the base portion 21 are used. A photodiode 23 disposed on the upper surface 22a of the base 22 and a hollow white sphere 24 provided on the upper surface 22a of the protruding portion 22 of the base portion 21 so as to surround the photodiode 23 via a predetermined space. In this embodiment, the pyranometer 2 is supported by a support similar to the support 50 shown in FIG. 2 so as to be arranged at an appropriate height from the ground of the house.

ベース部21は、例えば強度と耐候性に優れた樹脂でできており円板状をなし、ベース部21の上面であって白色球体24に対応する領域にはつや消し黒色塗装21aが施されている。なお、ベース部21は、植物や地面からの日光の反射光が白色球体24に当たるのを防止し、白色球体24が天空からの日光のみを受光するような役割を果たしている。また、ベース部21の中心部に日射計2の設置状態で上方に向かって突出する円柱状の突出部22が備わっている。そして、突出部22の上面22aは平面状に形成され、この上に日射量検出用のフォトダイオード23が配置されている。このような突出部22を設けることで、白色球体全体の清掃性を高めて日光を常に正確に受光するようになっている。   The base portion 21 is made of, for example, a resin having excellent strength and weather resistance, has a disk shape, and a matte black paint 21a is applied to the upper surface of the base portion 21 and corresponding to the white sphere 24. . The base portion 21 prevents the reflected light of sunlight from a plant or the ground from hitting the white sphere 24, and the white sphere 24 plays a role of receiving only sunlight from the sky. Further, a columnar protruding portion 22 that protrudes upward in the installed state of the pyranometer 2 is provided at the center of the base portion 21. And the upper surface 22a of the protrusion part 22 is formed in planar shape, and the photodiode 23 for the solar radiation amount detection is arrange | positioned on this. By providing such a protrusion 22, the cleanability of the entire white sphere is improved and sunlight is always received accurately.

なお、白色球体24が突出部22を介してベース部21の若干上側に支持されるようになっているので、ベース部21の大きさは、上述した実施形態に係るベース部11よりも大きくなって、植物や地面からの反射光を白色球体24が受光するのを防止している。また、黒色塗装21aは、ベース部21の白色球体周囲の領域において日光が反射してこの反射光が白色球体に当たり、日射量の誤差にならないようにこのベース部21に当る光を吸収する役目を果たしている。   Since the white sphere 24 is supported on the slightly upper side of the base portion 21 via the protruding portion 22, the size of the base portion 21 is larger than that of the base portion 11 according to the above-described embodiment. Thus, the white sphere 24 is prevented from receiving light reflected from the plant or the ground. Further, the black paint 21a has a function of absorbing the light hitting the base portion 21 so that the sunlight is reflected in the region around the white sphere of the base portion 21 and the reflected light hits the white sphere, and does not cause an error in the amount of solar radiation. Plays.

フォトダイオード23の出力は図示しない電線を介してここでは詳細に示さない信号処理部で信号処理され、例えば非接触で遠隔制御されたハウスのコントロールセンターにその検出された日射量情報が逐次送信されるようになっている。   The output of the photodiode 23 is signal-processed by a signal processing unit (not shown in detail) through an electric wire (not shown). For example, the detected amount of solar radiation information is sequentially transmitted to a control center of a house that is remotely controlled without contact. It has become so.

白色球体24は、本実施形態では例えば押しボタンスイッチの表示用拡散板などに用いられる白色の光拡散材料でできた球体であり、その設置状態における下端部に取付け孔24aが形成されている。そして、取付け孔24aがベース部21の突出部22の上面22aに配置されたフォトダイオード23を囲んでフォトダイオード23の受光面23aが白色球体24の内周面と略面一となるように接着剤等の適当な固定手段で固定され、フォトダイオード23の受光面23aの上側の空間を白色球体24の内部に形成しつつ、フォトダイオード23の周囲を覆うようになっている。なお、図4においても説明の都合上、白色球体24の断面ハッチングを省略して示している。   In the present embodiment, the white sphere 24 is a sphere made of a white light diffusing material used for, for example, a display diffusion plate of a push button switch, and a mounting hole 24a is formed at a lower end portion in the installed state. The mounting hole 24a surrounds the photodiode 23 disposed on the upper surface 22a of the protruding portion 22 of the base portion 21, and is bonded so that the light receiving surface 23a of the photodiode 23 is substantially flush with the inner peripheral surface of the white sphere 24. It is fixed by an appropriate fixing means such as an agent, and covers the periphery of the photodiode 23 while forming a space above the light receiving surface 23 a of the photodiode 23 inside the white sphere 24. In FIG. 4, the cross-sectional hatching of the white sphere 24 is omitted for convenience of explanation.

本変形例に係る日射計2がこのような構成を有することで、従来の日射計5とは異なり、太陽がどのような高さにあろうとも太陽から降り注ぐ日光を白色球体24が常に受けてこの入射光を白色球体全体に拡散させて白色球体全体を拡散板のように光らせることができるので、太陽の高さの如何に関わらず日光の日射量をフォトダイオード13で精度良く測定することができる。   Since the pyranometer 2 according to this modification has such a configuration, unlike the conventional pyranometer 5, the white sphere 24 always receives sunlight falling from the sun no matter what the height. Since this incident light can be diffused throughout the white sphere and the entire white sphere can be illuminated like a diffuser, the amount of solar radiation can be accurately measured by the photodiode 13 regardless of the height of the sun. it can.

また、本実施形態における日射計の白色球体24の下端がベース部21の突出部22の上面22aに固定されていることで、白色球体全体の清掃性を高めており、日射量を常に精度良く測定できるようにしている。   In addition, the lower end of the white sphere 24 of the pyranometer in the present embodiment is fixed to the upper surface 22a of the protruding portion 22 of the base portion 21, thereby improving the cleanability of the entire white sphere, and the amount of solar radiation is always accurate. It can be measured.

なお、上述した実施形態及びその変形例においては、ベース部11(21)の上面に黒色塗装11a(21a)を施したが、必ずしもこれに限定されず、
ベース部自体が黒色の材質でできていることでベース部の上面が黒色となっていても構わない。
In addition, in embodiment mentioned above and its modification, although the black coating 11a (21a) was given to the upper surface of the base part 11 (21), it is not necessarily limited to this,
Since the base part itself is made of a black material, the upper surface of the base part may be black.

また、白色球体14(24)は上述の本実施形態では白色であったが、必ずしもこの色彩には限定されず、太陽の光を球体全体に拡散させるような材質でできた球体であれば例えば乳白色などどのような色彩であっても構わない。   The white sphere 14 (24) is white in the above-described embodiment. However, the white sphere 14 (24) is not necessarily limited to this color. For example, the white sphere 14 (24) may be any sphere made of a material that diffuses the sun's light throughout the sphere. Any color such as milky white may be used.

また、上述の実施形態及びその変形例において用いたフォトダイオードの代わりに白色球体に当った日光の強度を測定できる光センサを用いても良い。   Moreover, you may use the optical sensor which can measure the intensity | strength of the sunlight which hits the white sphere instead of the photodiode used in the above-mentioned embodiment and its modification.

なお、上述の実施形態及びその変形例では日射計をハウス内に設置したが、必ずしもハウス内に日射計を設置する必要はなく、植物の生育を制御する必要のあるところであれはどのような場所においても本発明にかかる日射計を適用可能である。   In the above-described embodiment and its modification, the pyranometer is installed in the house, but the pyranometer is not necessarily installed in the house, and any place where plant growth needs to be controlled The pyranometer according to the present invention can also be applied.

以上説明したように、本発明にかかる日射計を用いると、従来の平面型の日射計の出力を制約する余弦法則の影響を受け難くする。即ち、入射強度が同じでも、太陽高度が落ちて入射角が低くなるとその分出力が落ちるのを防げる。   As described above, when the pyranometer according to the present invention is used, it is difficult to be influenced by the cosine law that restricts the output of the conventional flat-type pyranometer. In other words, even if the incident intensity is the same, the output can be prevented from decreasing as the solar altitude decreases and the incident angle decreases.

本発明にかかる日射計がこのような構成を有することで、立体の植物が外部からうける光の量をより実際に合わせて測定できる。また、本発明にかかる日射計は、垂直方向に最大感度がある従来の平面型の日射計の水平面受光に比べて全方位から均等に受光するため、時刻と共に移動してきた日光の陰の影響を軽減できる。   Since the pyranometer according to the present invention has such a configuration, the amount of light that a three-dimensional plant receives from the outside can be measured more in accordance with actual conditions. In addition, the pyranometer according to the present invention receives light evenly from all directions compared to the horizontal plane light reception of the conventional flat type pyranometer with the maximum sensitivity in the vertical direction. Can be reduced.

即ち、本発明にかかる日射計は、日光の入射角が大きくなってもフォトダイオードの出力に関する入射強度の誤差を最小限とすることができる。特に植物群落の場合、生育の状況に応じて植物が小さいときでも生育が進み背丈が高くなっても、本発明にかかる日射計を用いると、全方面から日射量を測定することができる。これにより、植物栽培における日射量の測定につき、太陽の移動により誤差を生じることがなく、全方位の日射を最小限の誤差で測定することができる。   That is, the pyranometer according to the present invention can minimize the error of the incident intensity related to the output of the photodiode even when the incident angle of sunlight increases. In particular, in the case of a plant community, even if the plant grows small and the height increases depending on the growth situation, the amount of solar radiation can be measured from all directions using the solar radiation meter according to the present invention. Thereby, about the measurement of the solar radiation amount in plant cultivation, an error is not produced by the movement of the sun, and the solar radiation in all directions can be measured with a minimum error.

また、本発明にかかる日射計を用いると、日光が傾いて植物の側面に光が当たる状態でも日射量を誤差なく測定することができる。   Moreover, when the solar radiation meter concerning this invention is used, even if the sunlight inclines and the light strikes the side of a plant, the amount of solar radiation can be measured without error.

なお、本発明にかかる日射計を温室環境制御器と組み合わせることによって、光制御のためのカーテンの開閉などで従来と比べて一歩進んだ制御が可能となり、優れた温室環境制システムを実現することが可能になる。   In addition, by combining the pyranometer according to the present invention with a greenhouse environment controller, it is possible to perform control one step further than before by opening and closing the curtain for light control, etc., and realize an excellent greenhouse environment control system Is possible.

本発明の一実施形態にかかる日射計を、白色球体の中心を含む鉛直面に沿って概略的に示す断面図である。It is sectional drawing which shows schematically the pyranometer concerning one Embodiment of this invention along the vertical plane containing the center of a white sphere. 図1に示した日射計をハウス内に設置した状態を示す概略説明図である。It is a schematic explanatory drawing which shows the state which installed the pyranometer shown in FIG. 1 in the house. 本発明の作用を説明するための特性図であり、一定の日射量において横軸に入射角、縦軸にその入射角に対するフォトダイオードの出力をとった特性図である。It is a characteristic view for explaining the operation of the present invention, and is a characteristic view in which the horizontal axis represents the incident angle and the vertical axis represents the output of the photodiode with respect to the incident angle at a constant amount of solar radiation. 図1に示した日射計の変形例を示す、図1に対応する断面図である。It is sectional drawing corresponding to FIG. 1 which shows the modification of the pyranometer shown in FIG. 従来の日射計をハウス内に設置した状態を示す概略説明図である。It is a schematic explanatory drawing which shows the state which installed the conventional pyranometer in the house.

符号の説明Explanation of symbols

1,2,5 日射計
11 ベース部
11a 黒色塗装
12 上面中央部
13 フォトダイオード
13a 受光面
14 白色球体
14a 取付け孔
21 ベース部
21a 黒色塗装
22 突出部
22a 上面
23 フォトダイオード
23a 受光面
24 白色球体
24a 取付け孔
50 支持体
A,B,C 太陽光
1,2,5 Pyrometer 11 Base portion 11a Black coating 12 Upper surface center portion 13 Photodiode 13a Light receiving surface 14 White sphere 14a Mounting hole 21 Base portion 21a Black coating 22 Protruding portion 22a Upper surface 23 Photodiode 23a Light receiving surface 24 White sphere 24a Mounting hole 50 Support A, B, C Sunlight

Claims (2)

植物栽培に用いる日射計において、
ベース部と、当該ベース部の上面に配置された日射量検出用のフォトダイオードと、前記フォトダイオードの受光面を一定の空間を介して覆うように前記ベース部上に配置された白色の球体とを備え、前記球体には、下端部に取付け孔が形成され、当該取付け孔が前記フォトダイオードを囲むように前記ベース部の上面に固定され、かつ前記ベース部上面の前記球体周囲に対応する領域が黒色となっていることを特徴とする日射計。
In the solar radiation meter used for plant cultivation,
A base portion, a photodiode for detecting the amount of solar radiation disposed on the upper surface of the base portion, and a white sphere disposed on the base portion so as to cover a light receiving surface of the photodiode via a certain space; A mounting hole is formed in the lower end portion of the sphere, the mounting hole is fixed to the upper surface of the base portion so as to surround the photodiode, and a region corresponding to the periphery of the sphere on the upper surface of the base portion. A pyranometer characterized by the fact that is black.
植物栽培に用いる日射計において、
設置状態で上方向に突出すると共に上端が平面部を有する突出部を一部に備えたベース部と、当該ベース部の突出部上面に配置された日射量検出用のフォトダイオードと、前記フォトダイオードの受光面を一定の空間を介して覆う白色の球体とを備え、前記球体には、下端部に取付け孔が形成され、当該取付け孔が前記フォトダイオードを囲むように前記突出部の上面に固定され、かつ前記ベース部上面の前記球体周囲に対応する領域が反射防止用つや消し黒色となっていることを特徴とする日射計。

In the solar radiation meter used for plant cultivation,
A base part partially projecting upward in the installed state and having an upper end having a flat part, a photodiode for detecting solar radiation disposed on the upper surface of the projecting part of the base part, and the photodiode A white sphere that covers the light receiving surface of the sphere through a certain space, and a mounting hole is formed at a lower end of the sphere, and the mounting hole is fixed to the upper surface of the protrusion so as to surround the photodiode. And a region corresponding to the periphery of the sphere on the upper surface of the base portion is an antireflection matte black.

JP2007066161A 2007-03-15 2007-03-15 Actinometer Pending JP2008224571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066161A JP2008224571A (en) 2007-03-15 2007-03-15 Actinometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066161A JP2008224571A (en) 2007-03-15 2007-03-15 Actinometer

Publications (1)

Publication Number Publication Date
JP2008224571A true JP2008224571A (en) 2008-09-25

Family

ID=39843365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066161A Pending JP2008224571A (en) 2007-03-15 2007-03-15 Actinometer

Country Status (1)

Country Link
JP (1) JP2008224571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145254A (en) * 2008-12-18 2010-07-01 Toyohashi Univ Of Technology Solar radiation measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145254A (en) * 2008-12-18 2010-07-01 Toyohashi Univ Of Technology Solar radiation measuring apparatus

Similar Documents

Publication Publication Date Title
US6417500B1 (en) Solar radiation sensor
Strangeways Measuring the natural environment
CN105424188B (en) The system and method for spectral contribution and correction visual field error in Evaluation Environment light
Sakerin et al. Sun photometers for measuring spectral air transparency in stationary and mobile conditions
Hilker et al. Instrumentation and approach for unattended year round tower based measurements of spectral reflectance
CN105874143B (en) The window shade control system and its method of direct projection and diffusion solar radiation based on decomposition
Geuder et al. Corrections for rotating shadowband pyranometers for solar resource assessment
Biggs Radiation measurement
US10359314B2 (en) Global solar spectrum devices and methods
JP5952814B2 (en) Portable reflectometer and method for measuring mirror characteristics of solar power plant
Driesse et al. Indoor and outdoor evaluation of global irradiance sensors
US20150276913A1 (en) Sensor arrangement and method for operating a sensor arrangement
JP2008224571A (en) Actinometer
Kim et al. Calibration of the Pyranometer Sensitivity Using the Integrating Sphere
US10145732B1 (en) Systems and methods for measuring ultraviolet exposure
Gensler Advanced agricultural instrumentation: design and use
Oyelami et al. A Pyranometer for Solar Radiation Measurement-Review
CN108449967A (en) The device and system of optical measurement for surface reflection coefficient
CN106872030B (en) Visible-short-wave infrared ultraphotic spectrum irradiance instrument available for long-term automatic Observation
Takakura Plant solarimeter for energy balance
EP3584549A1 (en) Polyhedral solar sensor
KR101576051B1 (en) Sunshine Duration Meter Device With Rotating Curved Mirror
Habte et al. Exploring sources of uncertainties in solar resource measurements
Instruments Solar radiation sensor
ES2320963A1 (en) Pyranometer