JP2008221205A - Dust collection method of exhaust gas from sludge incinerator - Google Patents

Dust collection method of exhaust gas from sludge incinerator Download PDF

Info

Publication number
JP2008221205A
JP2008221205A JP2008026269A JP2008026269A JP2008221205A JP 2008221205 A JP2008221205 A JP 2008221205A JP 2008026269 A JP2008026269 A JP 2008026269A JP 2008026269 A JP2008026269 A JP 2008026269A JP 2008221205 A JP2008221205 A JP 2008221205A
Authority
JP
Japan
Prior art keywords
ash
temperature
exhaust gas
particle size
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008026269A
Other languages
Japanese (ja)
Inventor
Masayuki Yamamoto
昌幸 山本
Nobuhiro Mori
信浩 森
Naoki Kishi
直樹 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008026269A priority Critical patent/JP2008221205A/en
Publication of JP2008221205A publication Critical patent/JP2008221205A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Treatment Of Sludge (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust collection method of exhaust gas from sludge incinerator capable of separating incinerated ash contained in an exhaust gas from a sludge incinerator into high-temperature fly ash containing extremely small amount of deposition of heavy metals such as As and Se, and low-temperature fly ash containing a large amount of heavy metals such as As and Se. <P>SOLUTION: The exhaust gas from the sludge incinerator 1 is supplied to a high-temperature cyclone 3 at 700°C or more to collect the high-temperature fly ash, thereafter the low-temperature fly ash is collected by a dust collector 5. In this invention, the separation limit particle size of the high-temperature cyclone 3 is adjusted, or the high-temperature fly ash collected by the high-temperature cyclone 3 is classified, so that the high-temperature fly ash having the minimum particle size of 10 μm or more is recovered. The amount of elution of heavy metals from this high-temperature coarse fly ash satisfies environmental standards. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、下水脱水汚泥を焼却する際に発生する汚泥焼却炉排ガスの集塵方法に関するものである。   The present invention relates to a method for collecting dust from sludge incinerator exhaust gas generated when incinerating sewage dewatered sludge.

下水処理場から発生する下水脱水汚泥の処理方法として、従来から様々な技術が開発されているが、主流を占めるのは焼却処理法である。この汚泥焼却炉の排ガスを集塵機で捕集した集塵灰には微量ながら重金属が含まれており、そのまま埋設処理すると特にAs、Se、F、Bが土壌環境基準に規定される溶出基準を超えて土壌中に溶出する可能性がある。ちなみに、各溶出基準値はAs及びSeが0.01mg/L、Fが0.8mg/L、Bが1.0mg/Lである。このため大量に発生する汚泥焼却灰の有効利用を図る場合には、溶出防止手段を講ずる必要があり、有効利用の障害となっていた。   Various techniques have been developed for the treatment of sewage dewatered sludge generated from sewage treatment plants, but the mainstream is the incineration process. Dust collection ash collected from the exhaust gas from this sludge incinerator contains a small amount of heavy metal, and when buried as it is, As, Se, F, and B exceed the elution standards stipulated in the soil environmental standards. May leach into the soil. Incidentally, the elution standard values are 0.01 mg / L for As and Se, 0.8 mg / L for F, and 1.0 mg / L for B. For this reason, in order to effectively use sludge incineration ash generated in large quantities, it is necessary to take elution prevention means, which has been an obstacle to effective use.

そこで本発明者等は、汚泥焼却炉の排ガスを700℃以上で高温サイクロンに供給して高温集塵灰を捕集したのち、その後段に設置された集塵装置で低温集塵灰を捕集する技術を開発し、特許文献1として提案済みである。この技術は、AsやSe等の重金属類は700℃以上で気化するため高温集塵灰に残留しにくいことを利用し、AsやSe等の残留量の少ない高温集塵灰を回収する方法である。排ガス中のAsやSe等は高温サイクロンをガス状態で通過するが、その後の排ガス温度の降下とともに凝結して焼却灰の表面に付着し、後段の200〜350℃程度の集塵装置で低温集塵灰とともに捕集される。   Therefore, the inventors of the present invention supplied the exhaust gas from the sludge incinerator to a high-temperature cyclone at 700 ° C. or higher to collect high-temperature dust collection ash, and then collected the low-temperature dust collection ash with a dust collector installed at the subsequent stage. The technology to be developed has been proposed as Patent Document 1. This technology utilizes the fact that heavy metals such as As and Se evaporate at 700 ° C or higher, so that they do not remain in the high-temperature dust collection ash. is there. As, Se, etc. in the exhaust gas pass through the high-temperature cyclone in a gas state, but as the exhaust gas temperature subsequently drops, they condense and adhere to the surface of the incineration ash, and are collected at a low temperature by a dust collector of about 200 to 350 ° C at the subsequent stage. Collected with dust ash.

この特許文献1の方法によれば、AsやSe等の重金属類の残留量の少ない比較的多量の高温集塵灰と、AsやSe等の重金属類(以下、単に重金属類と記す)を含む比較的少量の低温集塵灰とに分別回収が可能となり、高温集塵灰の有効利用を図ることができる。ところが最近になって、集塵灰からの重金属類の溶出量を従来よりも一段と低減したいとの要求が高まっている。このため、重金属類の溶出量を一段と低減できる新規な汚泥焼却炉排ガスの集塵方法が求められていた。
特開2006‐116526号公報
According to the method of Patent Document 1, a relatively large amount of high-temperature dust ash with a small residual amount of heavy metals such as As and Se and heavy metals such as As and Se (hereinafter simply referred to as heavy metals) are included. Separation and collection into a relatively small amount of low-temperature dust collection ash is possible, and effective use of high-temperature dust collection ash can be achieved. However, recently, there is an increasing demand for further reducing the amount of elution of heavy metals from dust collection ash than before. For this reason, there has been a demand for a novel dust collection method for sludge incinerator exhaust gas that can further reduce the elution amount of heavy metals.
JP 2006-116526 A

本発明は上記した要望に応えるためになされたものであり、汚泥焼却炉排ガス中に含まれる焼却灰を、重金属類の残留量が極めて少ない高温集塵灰と、重金属類を多量に含む低温集塵灰とに分別して回収することができる汚泥焼却炉排ガスの集塵方法を提供することを目的とするものである。   The present invention has been made to meet the above-mentioned demands. The incineration ash contained in the sludge incinerator exhaust gas is composed of a high-temperature dust collection ash with a very small amount of residual heavy metals and a low-temperature collection containing a large amount of heavy metals. An object of the present invention is to provide a method for collecting dust from sludge incinerator exhaust gas that can be separated and collected into dust ash.

本発明者等はこの課題を解決するために検討を重ねた結果、重金属類は焼却灰のうちでも微粒灰の表面に付着しやすく、例えば高温集塵灰のうち粒径10μm以下の微粒灰をカットして粗粒灰のみとすれば、重金属類の溶出量を低減できることを究明した。この現象は粒径が小さくなると比表面積が増加し、単位重量あたりの重金属類の付着量が増加するためではないかと推測される。なお、本発明者等は特許文献1に明示の無いP及びF、Bにも溶出低減効果が見られることを確認している。   As a result of repeated studies by the present inventors to solve this problem, heavy metals easily adhere to the surface of fine ash even among incinerated ash. For example, fine ash having a particle size of 10 μm or less among high-temperature dust ash is used. It was found that the amount of elution of heavy metals can be reduced by cutting only coarse ash. This phenomenon is presumed to be because the specific surface area increases as the particle size decreases, and the amount of heavy metals deposited per unit weight increases. In addition, the present inventors have confirmed that the elution reduction effect is also seen in P, F, and B that are not explicitly disclosed in Patent Document 1.

本発明はこのような知見に基づいて完成されたものであって、請求項1の発明は、汚泥焼却炉の排ガスを700℃以上で高温サイクロンに供給して高温集塵灰を捕集したのち、ろ過式集塵装置で低温集塵灰を捕集する汚泥焼却炉排ガスの集塵方法において、高温サイクロンの分離限界粒径を調節して最小粒径が10μm以上である高温集塵灰を回収することを特徴とするものである。なお、高温サイクロンの分離限界粒径の調節は、例えばサイクロン下部からのパージエアの吹き込みによって行うことができる。   The present invention has been completed on the basis of such knowledge. The invention of claim 1 is that after exhaust gas from a sludge incinerator is supplied to a high temperature cyclone at 700 ° C. or higher to collect high temperature dust ash. In a dust collection method for sludge incinerator exhaust gas that collects low temperature dust ash with a filtration dust collector, high temperature dust ash with a minimum particle size of 10 μm or more is recovered by adjusting the separation limit particle size of the high temperature cyclone It is characterized by doing. The separation limit particle size of the high temperature cyclone can be adjusted, for example, by blowing purge air from the lower part of the cyclone.

また同一の課題を解決するためになされた請求項2の発明は、汚泥焼却炉の排ガスを700℃以上で高温サイクロンに供給して高温集塵灰を捕集したのち、別途集塵装置で低温集塵灰を捕集する汚泥焼却炉排ガスの集塵方法において、捕集された高温集塵灰を分級し、最小粒径が10μm以上である高温集塵灰を回収することを特徴とするものである。   Further, in order to solve the same problem, the invention according to claim 2 is that the exhaust gas from the sludge incinerator is supplied to a high-temperature cyclone at 700 ° C. or higher to collect high-temperature dust collection ash, and then separately collected by a separate dust collector. In a dust collection method for exhaust gas from a sludge incinerator that collects dust collection ash, the collected high temperature dust collection ash is classified and the high temperature dust collection ash having a minimum particle size of 10 μm or more is recovered. It is.

これらの請求項1及び請求項2の発明においては、700℃以上の高温状態で捕集され、しかも最小粒径を10μm以上とし、粒径10μm以下の微粒灰を含まない高温集塵灰を回収する。上記したように粒径が小さくなると比表面積が増加し、単位重量あたりのP及び重金属類の付着量が増加するため、粒径10μm以下の微粒灰をカットして最小粒径を10μm以上とすれば、高温集塵灰からのP及び重金属類の溶出量を一段と低下させることが可能となる。なお、カットされた微粒灰は後段のバグフィルタなどのろ過式集塵装置や電気集塵機などで回収されることとなる。   In these first and second inventions, high-temperature dust ash that is collected at a high temperature of 700 ° C. or higher, has a minimum particle size of 10 μm or more, and does not contain fine ash having a particle size of 10 μm or less is recovered. To do. As described above, when the particle size is reduced, the specific surface area is increased, and the adhesion amount of P and heavy metals per unit weight is increased. Therefore, fine ash having a particle size of 10 μm or less is cut and the minimum particle size is set to 10 μm or more. For example, the elution amount of P and heavy metals from the high temperature dust ash can be further reduced. Note that the cut fine ash is collected by a filtration dust collector such as a bag filter or an electric dust collector.

以下に本発明の好ましい実施形態を示す。
図1において1は汚泥焼却炉であり、ここでは底部から空気を吹き込んで流動床を形成する流動床式焼却炉が用いられている。下水脱水汚泥は汚泥供給用ポンプ2により汚泥焼却炉1に投入され、800〜1000℃で焼却される。しかし汚泥焼却炉1の形式は特に限定されるものではない。
Preferred embodiments of the present invention are shown below.
In FIG. 1, 1 is a sludge incinerator. Here, a fluidized bed incinerator is used in which air is blown from the bottom to form a fluidized bed. The sewage dewatered sludge is thrown into the sludge incinerator 1 by the sludge supply pump 2 and incinerated at 800 to 1000 ° C. However, the type of the sludge incinerator 1 is not particularly limited.

汚泥焼却炉1の排ガスは高温サイクロン3に導かれる。この高温サイクロン3は捕集温度を700℃以上の高温としたものであり、排ガス中に含まれる焼却灰と排ガスとを分離する。Pの気化温度は277℃、Asの気化温度は613℃、Seの気化温度は685℃であるから、捕集温度を700℃以上と設定しておけばP及びAsやSeは焼却灰にほとんど残留せず、排ガスとともに後段に移行する。また、焼却灰に含有されるSOxやNOx等の酸性成分の一部も、排ガスとともに後段に移行するため、焼却灰はpH8〜9のアルカリ性を呈する。なお、好ましい捕集温度は800〜850℃である。   The exhaust gas from the sludge incinerator 1 is guided to the high temperature cyclone 3. The high-temperature cyclone 3 has a collection temperature of 700 ° C. or higher and separates incinerated ash and exhaust gas contained in the exhaust gas. The vaporization temperature of P is 277 ° C, the vaporization temperature of As is 613 ° C, and the vaporization temperature of Se is 685 ° C. If the collection temperature is set to 700 ° C or higher, P, As, and Se are almost incinerated ash. It does not remain and moves to the latter stage with the exhaust gas. In addition, since some of the acidic components such as SOx and NOx contained in the incineration ash also move to the subsequent stage together with the exhaust gas, the incineration ash exhibits alkalinity of pH 8-9. A preferred collection temperature is 800 to 850 ° C.

本技術分野において従来一般に使用されているサイクロンは、分離限界粒径が3〜5μm、すなわち粒径が3〜5μm以上の焼却灰を回収できるように設計されているものが多く、この分離限界粒径以上の焼却灰は高温集塵灰として回収される。しかし本発明では、この高温サイクロン3の分離限界粒径を上方に調節することにより、最小粒径を10μm以上とし、粒径10μm以下の微粒灰を含まない高温集塵灰を回収する。分離限界粒径の調節方法については後述する。   Many cyclones conventionally used in this technical field are designed to collect incinerated ash having a separation limit particle size of 3 to 5 μm, that is, a particle size of 3 to 5 μm or more. Incineration ash larger than the diameter is collected as high temperature dust ash. However, in the present invention, by adjusting the separation limit particle size of the high temperature cyclone 3 upward, the minimum particle size is set to 10 μm or more, and high temperature dust ash not containing fine ash having a particle size of 10 μm or less is recovered. A method for adjusting the separation limit particle size will be described later.

流動床焼却炉の焼却灰の粒度分布を測定すると、平均粒度が30μm前後であり、粒径10μm以下の微粒灰が占める重量比は6〜7%程度、20μm以下の微粒灰が占める重量比は20%程度である。本発明では分離限界粒径を10μm以上の任意の値とすればよいが、分離限界粒径を30μmより大きく設定すると高温サイクロン3での高温集塵灰の回収率が低下することとなり、P及び重金属の溶出量の低い高温集塵灰をできるだけ多量に回収したいという目的から外れることとなる。このため、分離限界粒径は10μm以上、30μm以下の範囲内に設定することが好ましい。   When the particle size distribution of the incinerated ash in the fluidized bed incinerator is measured, the average particle size is around 30 μm, the weight ratio occupied by fine ash with a particle size of 10 μm or less is about 6 to 7%, and the weight ratio occupied by fine ash with a particle size of 20 μm or less is It is about 20%. In the present invention, the separation limit particle size may be set to an arbitrary value of 10 μm or more. However, when the separation limit particle size is set to be larger than 30 μm, the recovery rate of the high-temperature dust ash in the high-temperature cyclone 3 is reduced. This deviates from the purpose of collecting as much high-temperature dust ash as possible with a low heavy metal elution amount. For this reason, it is preferable to set the separation limit particle size within a range of 10 μm or more and 30 μm or less.

本発明において高温サイクロン3で回収される高温集塵灰は、700℃以上の高温状態で捕集され、しかも分離限界粒径以下の微粒灰を含まないものである。前記したように、微粒灰は比表面積が大きく単位重量当たりのP及び重金属類の付着量が比較的多いため、微粒灰をカットすることにより、回収された高温集塵灰はP及び重金属類の溶出量が極めて小さい清浄灰となる。具体的な数値は実施例のデータに示すが、5〜10μmの粒径の焼却灰はそれ以上の粒径の焼却灰よりもP及びAsの溶出量が約10倍と大きく、これをカットすることにより特にP及びAsの溶出量を大幅に抑制することが可能となる。   In the present invention, the high temperature dust ash collected by the high temperature cyclone 3 is collected in a high temperature state of 700 ° C. or higher and does not contain fine ash having a separation limit particle size or less. As described above, since the fine ash has a large specific surface area and a relatively large amount of P and heavy metals per unit weight, the recovered high-temperature dust ash is made up of P and heavy metals by cutting the fine ash. It becomes clean ash with very small elution amount. Although specific numerical values are shown in the data of the examples, incineration ash having a particle size of 5 to 10 μm has an elution amount of P and As about 10 times larger than that of incineration ash having a particle size larger than that, and this is cut. In particular, the amount of elution of P and As can be greatly suppressed.

また、微粒灰は比表面積が大きく単位重量当たりのSOxやNOx等の酸性成分の付着量も比較的多いため、微粒灰をカットすることにより、回収された高温集塵灰はpH10〜11のアルカリ性を呈する。このため、従来から灰の溶出抑制手段として用いられてきた石灰の添加を行うことなく、灰の溶出を抑制することが可能となる。   In addition, since fine ash has a large specific surface area and a relatively large amount of acidic components such as SOx and NOx per unit weight, the collected high-temperature dust ash is alkaline with a pH of 10 to 11 by cutting the fine ash. Presents. For this reason, it becomes possible to suppress the elution of ash without adding lime which has been conventionally used as an ash elution suppression means.

このように、この高温集塵灰は土壌環境基準をクリアしており、そのまま埋設することができ、また溶出防止手段を講ずることなくそのまま有効利用することもできる。更に、この高温集塵灰ではP溶出量が抑制されるため、焼却灰をセメント材料やセメント系固化剤添加土木資料として用いる場合に生じていたPの混入による製品強度低下の問題が解消できる。   Thus, this high temperature dust collection ash has cleared the soil environmental standard, can be embedded as it is, and can also be effectively used as it is without taking elution prevention means. Furthermore, since the elution amount of P is suppressed in this high temperature dust collection ash, the problem of product strength reduction due to the mixing of P, which has occurred when incinerated ash is used as a cement material or a cement-based solidifying agent-added civil engineering material, can be solved.

しかも前記したように、全焼却灰のうち粒径10μm以下の微粒灰が占める重量比は6〜7%程度、20μm以下の微粒灰が占める重量比は20%程度であるから、分離限界粒径を10〜20μmに設定しても、高温サイクロン3で回収される高温集塵灰の量はさほど減少することはない。   Moreover, as described above, the weight ratio occupied by fine ash having a particle size of 10 μm or less in the total incinerated ash is about 6 to 7%, and the weight ratio occupied by fine ash having a size of 20 μm or less is about 20%. Is set to 10 to 20 μm, the amount of high-temperature dust collection ash recovered by the high-temperature cyclone 3 does not decrease so much.

高温サイクロン3の分離限界粒径は、新規に設計製作する場合には自由に設定することができる。しかし既設の高温サイクロン3については、図2に示すように高温サイクロン3の下部からパージエアを吹き込むことによって調節することができる。すなわちパージエアの吹込みによりサイクロン内部に上昇流が形成され、落下しようとする微粒子が吹き上げられるので、分離限界粒径を大径側にシフトさせることができる。パージエアの風量を変えることによって分離限界粒径の自由な調節が可能となる。   The separation limit particle size of the high-temperature cyclone 3 can be freely set when newly designed and manufactured. However, the existing high-temperature cyclone 3 can be adjusted by blowing purge air from the lower portion of the high-temperature cyclone 3 as shown in FIG. That is, as the purge air is blown, an upward flow is formed inside the cyclone and the fine particles to be dropped are blown up, so that the separation limit particle size can be shifted to the larger diameter side. The separation limit particle size can be freely adjusted by changing the air volume of the purge air.

このようにしてP及び重金属類の溶出量の極めて低い清浄な高温集塵灰を捕集したのち、排ガスは冷却塔4で200〜350℃程度まで冷却される。この段階でP及び重金属類は凝結して焼却灰の表面に付着するので、バグフィルタ、セラミックフィルタなどの集塵装置5で低温集塵灰を捕集する。この低温集塵灰にはP及び重金属類が多量に付着しているため、P及び重金属固定などの後処理を別途行い、最終処分する。集塵装置5を通過した排ガスはスクラバ6で脱硫・脱塩処理され放出されるが、P及び重金属をほとんど含まない。   In this way, after collecting clean high-temperature dust collection ash in which the elution amount of P and heavy metals is extremely low, the exhaust gas is cooled to about 200 to 350 ° C. in the cooling tower 4. At this stage, P and heavy metals condense and adhere to the surface of the incinerated ash, so the low-temperature dust ash is collected by the dust collector 5 such as a bag filter or a ceramic filter. Since a large amount of P and heavy metals adhere to this low-temperature dust collection ash, post-treatment such as fixing P and heavy metals is separately performed and finally disposed. The exhaust gas that has passed through the dust collector 5 is desulfurized and demineralized by the scrubber 6 and released, but contains almost no P and heavy metals.

以上に説明した請求項1の発明では、高温サイクロン3の分離限界粒径を調節して、最小粒径を10μm以上とし、粒径10μm以下の微粒灰を含まない高温集塵灰を回収したが、図3に示す請求項2の発明では、従来と同様の分離限界粒径の高温サイクロン3を用いる。この場合には高温集塵灰中に粒径10μm以下の微粒灰が含まれるので、分級器7により分級を行い、粒径10μm以下の微粒灰を分離する。   In the invention of claim 1 explained above, the separation limit particle size of the high temperature cyclone 3 is adjusted so that the minimum particle size is 10 μm or more and the high temperature dust ash not containing fine ash having a particle size of 10 μm or less is recovered. In the invention of claim 2 shown in FIG. 3, a high-temperature cyclone 3 having a separation limit particle size similar to the conventional one is used. In this case, since fine ash having a particle size of 10 μm or less is contained in the high-temperature dust collection ash, classification is performed by the classifier 7 to separate the fine ash having a particle size of 10 μm or less.

この微粒灰には粗粒灰よりも比較的多量のP及び重金属類が含まれているため、ろ過式集塵装置5で捕集された低温集塵灰とともに処分する。粒径10μm以下の微粒灰を含まない粗粒灰はP及び重金属類の溶出量の極めて低い清浄灰である。   Since this fine ash contains a relatively large amount of P and heavy metals than the coarse ash, it is disposed with the low-temperature dust collection ash collected by the filtration dust collector 5. Coarse ash not containing fine ash having a particle size of 10 μm or less is a clean ash with an extremely low elution amount of P and heavy metals.

ある下水処理場から発生した比較的多量のP及びAsを含む下水汚泥脱水ケーキを、炉内温度が820℃の流動床式焼却炉で焼却し、その排ガスを図2に示した本発明方法により処理した。先ず比較例として高温サイクロンのパージエアを停止して集塵温度800℃で高温集塵灰を捕集し、環境基準に規定される方法でP及び重金属の溶出試験を行ったところ、Seの溶出量は0.002mg/Lであり基準値である0.01mg/Lをクリアしたが、Asは0.016mg/Lであり基準値である0.01mgを越えていた。また、Pの溶出量は1.33mg/Lであった。   A sewage sludge dewatering cake containing a relatively large amount of P and As generated from a certain sewage treatment plant is incinerated in a fluidized bed incinerator having a furnace temperature of 820 ° C., and the exhaust gas is obtained by the method of the present invention shown in FIG. Processed. First, as a comparative example, high temperature cyclone purge air was stopped, high temperature dust ash was collected at a dust collection temperature of 800 ° C., and an elution test for P and heavy metals was conducted by a method stipulated in environmental standards. Was 0.002 mg / L and cleared the standard value of 0.01 mg / L, but As was 0.016 mg / L and exceeded the standard value of 0.01 mg. The elution amount of P was 1.33 mg / L.

これに対して、本発明方法によりパージエア(排ガス量の約37%)を吹込むことによって高温サイクロンの分離限界粒径を調節し、粒径が10μm以下の微粒灰を含まない高温集塵灰のみを捕集した場合には、Seの溶出量は上記比較例と同様0.002mg/Lであったが、Pの溶出量は0.05mg/L以下となり、Asは定量限界値である0.005mg/Lを下回り、検出不能のレベルにまで低下した。   On the other hand, the separation limit particle size of the high-temperature cyclone is adjusted by blowing purge air (about 37% of the exhaust gas amount) according to the method of the present invention, and only the high-temperature dust collection ash not containing fine ash having a particle size of 10 μm or less. In this case, the elution amount of Se was 0.002 mg / L as in the above comparative example, but the elution amount of P was 0.05 mg / L or less, and As was a quantification limit value of 0.0. The level dropped below 005 mg / L to an undetectable level.

なお、比較例において捕集された高温集塵灰を分級して粒度別にAsの溶出量を測定したところ、10μm以下の微粒灰からのAsの溶出量は0.06mg/Lに達しており、この部分を除去したことによってAs溶出量の低い清浄灰の捕集が可能となったことが裏付けられた。   In addition, when the high temperature dust ash collected in the comparative example was classified and the elution amount of As was measured according to the particle size, the elution amount of As from fine ash of 10 μm or less reached 0.06 mg / L. It was confirmed that the removal of this part enabled the collection of clean ash with a low As elution amount.

この実施例のデータに示されるように、本発明によれば汚泥焼却炉排ガス中に含まれる焼却灰を、P及び重金属類の付着量が極めて少なく環境基準をクリアできる高温集塵灰と、これらを比較的多量に含む低温集塵灰とに分別して回収することができ、焼却灰の有効利用を図るうえで有利である。   As shown in the data of this example, according to the present invention, the incineration ash contained in the sludge incinerator exhaust gas is a high-temperature dust collection ash that can clear environmental standards with very little P and heavy metal adhesion, and these Can be separated and collected into low-temperature dust ash containing a relatively large amount of ash, which is advantageous for effective use of incinerated ash.

請求項1の発明の実施形態を示すフロー図である。It is a flowchart which shows embodiment of invention of Claim 1. 請求項1の発明の他の実施形態を示すフロー図である。It is a flowchart which shows other embodiment of invention of Claim 1. 請求項2の発明の実施形態を示すフロー図である。It is a flowchart which shows embodiment of invention of Claim 2.

符号の説明Explanation of symbols

1 汚泥焼却炉
2 汚泥供給用ポンプ
3 高温サイクロン
4 冷却塔
5 集塵装置
6 スクラバ
7 分級器
1 Sludge incinerator 2 Sludge supply pump 3 High temperature cyclone 4 Cooling tower 5 Dust collector 6 Scrubber 7 Classifier

Claims (3)

汚泥焼却炉の排ガスを700℃以上で高温サイクロンに供給して高温集塵灰を捕集したのち、集塵装置で低温集塵灰を捕集する汚泥焼却炉排ガスの集塵方法において、高温サイクロンの分離限界粒径を調節し、最小粒径が10μm以上である高温集塵灰を回収することを特徴とする汚泥焼却炉排ガスの集塵方法。   In the dust collection method of sludge incinerator exhaust gas, the exhaust gas from the sludge incinerator is supplied to the high temperature cyclone at 700 ° C or higher to collect the high temperature dust ash, and then the low temperature dust ash is collected by the dust collector. A dust collection method for exhaust gas from a sludge incinerator, wherein the high temperature dust collection ash having a minimum particle size of 10 μm or more is recovered by adjusting the separation limit particle size of the sludge. 汚泥焼却炉の排ガスを700℃以上で高温サイクロンに供給して高温集塵灰を捕集したのち、集塵装置で低温集塵灰を捕集する汚泥焼却炉排ガスの集塵方法において、捕集された高温集塵灰を分級し、最小粒径が10μm以上である高温集塵灰を回収することを特徴とする汚泥焼却炉排ガスの集塵方法。   In the dust collection method of the sludge incinerator exhaust gas, the exhaust gas from the sludge incinerator is supplied to the high temperature cyclone at 700 ° C or higher to collect the high temperature dust ash and then the low temperature dust ash is collected by the dust collector. A method for collecting dust from a sludge incinerator exhaust gas, wherein the collected high-temperature dust ash is classified and the high-temperature dust ash having a minimum particle size of 10 μm or more is recovered. 高温サイクロンの分離限界粒径の調節を、サイクロン下部からのパージエアの吹き込みによって行うことを特徴とする請求項1記載の汚泥焼却炉排ガスの集塵方法。   The method for collecting dust from a sludge incinerator exhaust gas according to claim 1, wherein the separation limit particle size of the high-temperature cyclone is adjusted by blowing purge air from the lower part of the cyclone.
JP2008026269A 2007-02-13 2008-02-06 Dust collection method of exhaust gas from sludge incinerator Pending JP2008221205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026269A JP2008221205A (en) 2007-02-13 2008-02-06 Dust collection method of exhaust gas from sludge incinerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007032201 2007-02-13
JP2008026269A JP2008221205A (en) 2007-02-13 2008-02-06 Dust collection method of exhaust gas from sludge incinerator

Publications (1)

Publication Number Publication Date
JP2008221205A true JP2008221205A (en) 2008-09-25

Family

ID=39840407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026269A Pending JP2008221205A (en) 2007-02-13 2008-02-06 Dust collection method of exhaust gas from sludge incinerator

Country Status (1)

Country Link
JP (1) JP2008221205A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266938A (en) * 1995-03-29 1996-10-15 Chugoku Electric Power Co Inc:The Classifying point variable type cyclone apparatus
JP2001096134A (en) * 1999-09-29 2001-04-10 Ngk Insulators Ltd Treatment method of combustion gas containing heavy metal
JP2002102835A (en) * 2000-09-28 2002-04-09 Nkk Corp Method and apparatus for treating dust produced from waste incineration
JP2002102820A (en) * 2000-09-28 2002-04-09 Nkk Corp Treating method of waste gasification fused dust and equipment
JP2002102647A (en) * 2000-10-03 2002-04-09 Ngk Insulators Ltd Treatment method for incineration flue gas
JP2002119945A (en) * 2000-10-12 2002-04-23 Nkk Corp Method for treating waste incineration exhaust gas and dust
JP2003286050A (en) * 2002-03-29 2003-10-07 Taiheiyo Cement Corp Treatment method for dust in kiln exhaust gas
JP2006116526A (en) * 2004-09-24 2006-05-11 Ngk Insulators Ltd Treatment method for exhaust gas of sewage sludge incinerator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266938A (en) * 1995-03-29 1996-10-15 Chugoku Electric Power Co Inc:The Classifying point variable type cyclone apparatus
JP2001096134A (en) * 1999-09-29 2001-04-10 Ngk Insulators Ltd Treatment method of combustion gas containing heavy metal
JP2002102835A (en) * 2000-09-28 2002-04-09 Nkk Corp Method and apparatus for treating dust produced from waste incineration
JP2002102820A (en) * 2000-09-28 2002-04-09 Nkk Corp Treating method of waste gasification fused dust and equipment
JP2002102647A (en) * 2000-10-03 2002-04-09 Ngk Insulators Ltd Treatment method for incineration flue gas
JP2002119945A (en) * 2000-10-12 2002-04-23 Nkk Corp Method for treating waste incineration exhaust gas and dust
JP2003286050A (en) * 2002-03-29 2003-10-07 Taiheiyo Cement Corp Treatment method for dust in kiln exhaust gas
JP2006116526A (en) * 2004-09-24 2006-05-11 Ngk Insulators Ltd Treatment method for exhaust gas of sewage sludge incinerator

Similar Documents

Publication Publication Date Title
JP5522740B2 (en) Cement kiln exhaust gas treatment apparatus and treatment method
KR101425289B1 (en) Exhaust gas treatment system, and exhaust gas treatment method
JP2013248548A (en) Exhaust gas treatment method and exhaust gas treatment device
KR20120080222A (en) Exhaust gas treatment system, and exhaust gas treatment method
JP4630156B2 (en) Exhaust gas treatment method for sewage sludge incinerator
JP5355431B2 (en) Method and apparatus for treating incinerated fly ash and cement kiln combustion gas bleed dust
KR20140133560A (en) Method for reducing the content of fine material in fgd gypsum
JP2007191670A (en) System for producing alkaline soil-improving material, combined with flue-gas desulfurization
JP2007268398A (en) Treatment method and treatment facility of burnt ash
JP2008221206A (en) Dust collection method of exhaust gas from sludge incinerator
JP5867690B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP2014091058A (en) Exhaust gas treatment device and exhaust gas treatment method
JP2008221205A (en) Dust collection method of exhaust gas from sludge incinerator
JP5661151B2 (en) Cement kiln extraction gas processing method and processing system
CN103084057B (en) Process for extracting coal ash to produce desulfurizer in pulverized coal combustion
JP3045916B2 (en) Melting and solidification of waste incineration ash
CN108926980A (en) Use the capture of the emission pollutant of comprehensive fluidized bed plant and collection system and its application method
JP4348046B2 (en) Treatment method of kiln exhaust gas dust
JP2014221474A (en) Combustion smog purification method
JP5131764B2 (en) Method for recovering thallium from cement manufacturing process
JP5951291B2 (en) Exhaust gas treatment equipment
JP6223791B2 (en) Method for removing lead from cement firing equipment
KR101504511B1 (en) Valuable Mineral Collection Method From Fly Ash By Particle Separation
JP2003222303A (en) Method of preventing stain of surface of heat transfer tube
JP2004358288A (en) Method for washing/desalting incineration ash

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130531