JP2008192547A - Positive electrode plate, manufacturing method thereof, battery, manufacturing method thereof, vehicle, and battery-mounted equipment - Google Patents

Positive electrode plate, manufacturing method thereof, battery, manufacturing method thereof, vehicle, and battery-mounted equipment Download PDF

Info

Publication number
JP2008192547A
JP2008192547A JP2007027998A JP2007027998A JP2008192547A JP 2008192547 A JP2008192547 A JP 2008192547A JP 2007027998 A JP2007027998 A JP 2007027998A JP 2007027998 A JP2007027998 A JP 2007027998A JP 2008192547 A JP2008192547 A JP 2008192547A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
electrode plate
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007027998A
Other languages
Japanese (ja)
Inventor
Hideyasu Kawai
秀保 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007027998A priority Critical patent/JP2008192547A/en
Publication of JP2008192547A publication Critical patent/JP2008192547A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode plate, along with its manufacturing method, of high conductivity, a battery, along with its manufacturing method, using the positive electrode plate, whose output and energy density are improved using it, a vehicle on which the battery is mounted, and battery-mounted equipment on which the battery is mounted. <P>SOLUTION: The positive electrode plate 20 is composed of a first main surface 20a and second main surface 20b, and is used as a positive electrode plate 20 for a positive electrode of a battery 1. It comprises many active particles 22 which are granular and made from positive electrode active material, and a positive electrode plate body 21 which is of metal and covers at least a part of a surface 22S of the active particles 22, while holding the active particles 22. The active particles 22 are exposed to at least either the first main surface 20a or the second main surface 20b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、正電極板、正電極板を備える電池、電池を搭載する車両、電池搭載機器、正電極板の製造方法、および、電池の製造方法に関する。   The present invention relates to a positive electrode plate, a battery including the positive electrode plate, a vehicle on which the battery is mounted, a battery-mounted device, a method for manufacturing the positive electrode plate, and a method for manufacturing the battery.

リチウムイオン二次電池等の電池に用いる正電極板としては、例えば、金属箔に正極活物質を塗布してなるものが知られている。このような正電極板は、金属箔に正極活物質とともに、結着剤および導電化材を混練したものを金属箔に塗布してなる。
その他、正電極板としては、アルミニウムを主成分とする金属繊維を溶融紡糸し、三次元の網目構造を有するように形成したアルミニウム不織布を正極集電体とし、これに正極活物質、結着剤、および導電化剤を混練したものを塗布、圧着してなるものも知られている(特許文献1参照)。
As a positive electrode plate used for a battery such as a lithium ion secondary battery, for example, a plate obtained by applying a positive electrode active material to a metal foil is known. Such a positive electrode plate is formed by coating a metal foil with a binder and a conductive material kneaded together with a positive electrode active material.
In addition, as the positive electrode plate, an aluminum nonwoven fabric formed by melt spinning a metal fiber mainly composed of aluminum and having a three-dimensional network structure is used as a positive electrode current collector, and a positive electrode active material and a binder are added thereto. Also known are those obtained by applying and pressure-bonding a kneaded mixture of a conductive agent (see Patent Document 1).

特開2001−155739公報JP 2001-155739 A

ところで、上述のアルミニウム不織布を用いたものでは、複数の金属繊維によって三次元的に粒子形状の正極活物質を担持するため、正極活物質の密着性は向上させうる。しかし、この場合でも、アルミニウム不織布に正極活物質を担持させるために結着剤および導電化剤を使用している。従って、結着剤が正電極部材を構成する正極集電体と正極活物質との間で抵抗体となり、この間の導電性が低下する。さらに、結着剤および導電化剤も正電極部材の体積や重量に含まれるので、正電極板の体積や重量がかさむ不具合もある。   By the way, in the thing using the above-mentioned aluminum nonwoven fabric, since the positive electrode active material of a particle shape is carry | supported three-dimensionally by several metal fiber, the adhesiveness of a positive electrode active material can be improved. However, even in this case, a binder and a conductive agent are used to support the positive electrode active material on the aluminum nonwoven fabric. Therefore, the binder acts as a resistor between the positive electrode current collector and the positive electrode active material constituting the positive electrode member, and the conductivity between them decreases. Furthermore, since the binder and the conductive agent are also included in the volume and weight of the positive electrode member, there is a problem that the volume and weight of the positive electrode plate are increased.

さらに、上述の正電極部材を用いた電池では、正極集電体が有する結着剤による抵抗体の分、この電池の内部抵抗値が大きいため、たとえ使用初期でも出力が小さい。また、電池全体に占める正電極部材の体積および重量が共に大きいため、その分、体積エネルギー密度および重量エネルギー密度も低い。
さらに、このような電池を搭載した車両および電池搭載機器では、車両全体あるいは電池搭載機器全体に占める電池の総体積や総重量が増大する不具合がある。
Further, in the battery using the positive electrode member described above, the output is small even in the initial use because the internal resistance value of the battery is large by the amount of the resistor by the binder of the positive electrode current collector. Moreover, since the volume and weight of the positive electrode member occupying the whole battery are both large, the volume energy density and the weight energy density are also correspondingly low.
Furthermore, in vehicles and battery-equipped devices equipped with such batteries, there is a problem that the total volume or total weight of the battery occupying the entire vehicle or the entire battery-equipped device is increased.

本発明は、かかる現状に鑑みてなされたものであって、導電性の高い正電極板、これを用いて出力やエネルギー密度を向上させた電池、この電池を搭載した車両、およびこの電池を搭載した電池搭載機器を提供することを目的とする。また、正電極板の製造方法、および正電極板を用いた電池の製造方法を提供することを目的とする。   The present invention has been made in view of the present situation, and is a positive electrode plate having high conductivity, a battery using the same to improve output and energy density, a vehicle equipped with the battery, and the battery. An object is to provide a battery-equipped device. Moreover, it aims at providing the manufacturing method of a positive electrode plate, and the manufacturing method of the battery using a positive electrode plate.

そして、その解決手段は、第1主面および第2主面を有する板状で、電池の正電極に用いる正電極板であって、粒子形状を有し、正極活物質からなる多数の活物質粒子と、金属からなり、上記活物質粒子の表面の少なくとも一部を覆って、上記活物質粒子を保持してなる正電極板本体と、を備え、上記第1主面および第2主面の少なくともいずれかに、上記活物質粒子が露出してなる、正電極板である。   The solution is a plate having a first main surface and a second main surface, and is a positive electrode plate used for a positive electrode of a battery, having a particle shape, and a large number of active materials made of a positive electrode active material A positive electrode plate body made of a metal and covering at least a part of the surface of the active material particles and holding the active material particles, the first main surface and the second main surface It is a positive electrode plate formed by exposing the active material particles to at least one of them.

本発明の正電極板では、活物質粒子の少なくとも一部を、金属からなる正電極板本体で覆って、これを直接保持しているので、抵抗体となる結着剤が介在せず、正電極板本体と活物質粒子との間での導電性が向上する。また、結着剤、導電化剤を用いなくとも活物質粒子を保持できるので、結着剤、導電化剤の分だけ正電極板の体積および重量を低減できる。従って、この正電極板を電池に用いれば、電池出力を向上することができ、さらに、体積エネルギー密度および重量エネルギー密度も向上できる。   In the positive electrode plate of the present invention, since at least a part of the active material particles is covered with the positive electrode plate body made of metal and directly held, the binder serving as a resistor is not interposed, and the positive electrode plate The conductivity between the electrode plate body and the active material particles is improved. Further, since the active material particles can be held without using a binder and a conductive agent, the volume and weight of the positive electrode plate can be reduced by the amount of the binder and the conductive agent. Therefore, if this positive electrode plate is used for a battery, battery output can be improved, and volume energy density and weight energy density can also be improved.

なお、正極活物質としては、電気化学的に自由にリチウムイオンの授受が可能な固体リチウム化合物であればよく、例えばLiCoO2、LiNiO2、LiMn24、LiFeO2、Li5FeO4、Li2MnO3、LiFePO4、LiV24、これらの混合物等が挙げられる。
また、正極活物質粒子であるリチウム化合物の焼成温度は、例えばLiCoO2が700〜960℃、LiNiO2が600〜850℃、LiMn24が750〜850℃である。
The positive electrode active material may be a solid lithium compound that can freely exchange lithium ions electrochemically. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 , Li 5 FeO 4 , Li 2 MnO 3 , LiFePO 4 , LiV 2 O 4 , mixtures thereof and the like.
The firing temperature of the lithium compound as a positive electrode active material particles, for example, LiCoO 2 is 700-960 ° C., LiNiO 2 is 600~850 ℃, LiMn 2 O 4 is 750 to 850 ° C..

また、正電極板本体の材質としては、正極活物質の材質、電池に用いる電解質、負電極等を考慮して適宜選択できるが、体積固有抵抗が小さく、融点が正極活物質の焼成温度よりも低い金属が好ましい。具体的には、アルミニウム(融点、659℃)が挙げられる。   Further, the material of the positive electrode plate body can be appropriately selected in consideration of the material of the positive electrode active material, the electrolyte used for the battery, the negative electrode, etc., but the volume specific resistance is small and the melting point is higher than the firing temperature of the positive electrode active material. Low metals are preferred. Specific examples include aluminum (melting point, 659 ° C.).

さらに、他の解決手段は、上述の正電極板を用いてなる電池である。   Yet another solution is a battery using the positive electrode plate described above.

本発明の電池では、上述の活物質粒子と正電極板本体とからなる正電極板を用いる。従って、正電極板における正電極板本体と活物質粒子との間の導電性が高いことから、電池の内部抵抗を低減でき、電池出力を向上させることができる。また、電池の体積および重量を低減できる。   In the battery of the present invention, a positive electrode plate composed of the above active material particles and a positive electrode plate body is used. Therefore, since the electrical conductivity between the positive electrode plate body and the active material particles in the positive electrode plate is high, the internal resistance of the battery can be reduced and the battery output can be improved. In addition, the volume and weight of the battery can be reduced.

なお、電池としては、上述の正電極板を用いた電池であれば良いが、例えば、この正電極板のほか負極活物質を担持した負電極板、およびこれらの間に介在するセパレータを備える電池が挙げられる。従って例えば、複数の正電極板と複数の負電極板とを、セパレータを介して交互に積層した積層型の電池や、帯状の正電極板と帯状の負電極板を帯状のセパレータを介して捲回した捲回型の電池が挙げられる。
また、セパレータとしては、正電極板と負電極板とを互いに離間して配置するものであり、繊維等から構成されて、内部および表面に電解液を含みうるもののほか、固体電解質体を用いて、離間と共に電解質の役割を担わせたものも含まれる。
The battery may be a battery using the above-described positive electrode plate. For example, a battery including a negative electrode plate supporting a negative electrode active material in addition to the positive electrode plate, and a separator interposed therebetween. Is mentioned. Therefore, for example, a stacked battery in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked via separators, or a belt-like positive electrode plate and a belt-like negative electrode plate via a belt-like separator. Examples include a wound type battery.
In addition, as the separator, the positive electrode plate and the negative electrode plate are arranged apart from each other, and are composed of fibers and the like, and can contain an electrolyte solution inside and on the surface, and also use a solid electrolyte body Also included are those that play the role of electrolyte along with separation.

さらに、他の解決手段は、上述の電池を搭載した車両である。   Another solution is a vehicle equipped with the above-described battery.

本発明の車両では、上述の電池を搭載しているので、小型あるいは小数の電池で足り、電池の総体積、総重量を低減した車両とすることができる。   In the vehicle of the present invention, since the above-described battery is mounted, a small or small number of batteries are sufficient, and the total volume and total weight of the battery can be reduced.

なお、電池を搭載した車両としては、その動力源の全部あるいは一部に電池による電気エネルギーを使用している車両であれば良く、電気自動車、ハイブリッド電気自動車、フォークリフト、電気車いす、電動アシスト自転車、電動スクータ、鉄道車両が挙げられる。   The vehicle equipped with the battery may be any vehicle that uses electric energy from the battery for all or a part of its power source, such as an electric vehicle, a hybrid electric vehicle, a forklift, an electric wheelchair, an electrically assisted bicycle, Electric scooters and railway vehicles are examples.

またさらに他の解決手段は、上述の電池を搭載した電池搭載機器である。   Still another solution is a battery-equipped device equipped with the above-described battery.

本発明の電池搭載機器では、上述の電池を搭載しているので、小型あるいは小数の電池で足り、電池の総体積、総重量を低減した電池搭載機器とすることができる。   In the battery-mounted device of the present invention, since the above-described battery is mounted, a small or small number of batteries are sufficient, and the battery-mounted device with a reduced total volume and total weight of the battery can be obtained.

なお、電池搭載機器としては、電池を搭載しこれをエネルギー源の少なくとも1つとして利用する機器であれば良く、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具など、電池で駆動される各種の家電製品、オフィス機器、産業機器が挙げられる。   The battery-equipped device may be any device equipped with a battery and using it as at least one of the energy sources. For example, various types of battery-driven devices such as personal computers, mobile phones, and battery-powered electric tools. Household appliances, office equipment, and industrial equipment.

他の解決手段は、粒子形状を有し、正極活物質からなる多数の活物質粒子を、上記正極活物質の焼成温度より低い温度で溶融させた金属の中に混入する粒子混入工程と、上記活物質粒子が混入した上記金属を冷却固化して金属塊を形成する金属塊形成工程と、上記金属塊を圧延して、上記第1主面および第2主面を有する板状で、上記金属で上記活物質粒子を保持した正電極板を形成する圧延工程と、を備える正電極板の製造方法である。   Another solution is a particle mixing step of mixing a large number of active material particles having a particle shape and made of a positive electrode active material into a metal melted at a temperature lower than the firing temperature of the positive electrode active material, A metal lump forming step of cooling and solidifying the metal mixed with active material particles to form a metal lump, and rolling the metal lump to form a plate having the first main surface and the second main surface; And a rolling step for forming a positive electrode plate holding the active material particles.

本発明の正電極板の製造方法では、まず、粒子混入工程で溶融させた金属に活物質粒子を混入する。このときの金属の温度を、正極活物質の焼成温度よりも低くしておく。これにより活物質粒子を溶融状態の金属の中に混入しても、正極活物質の特性を維持できる。
さらに金属塊形成工程および圧延工程を経た正電極板は、金属が活物質粒子が直接接触しているので、結着剤が介在する従来の正電極板よりも、正極集電体として機能する金属と活物質粒子との間に生じる電気抵抗が低くなり導電性が向上する。さらに、活物質粒子の保持の為の結着剤、導電化剤が不要である分、正電極板の体積および重量を低減できる。
In the method for producing a positive electrode plate of the present invention, first, active material particles are mixed into the metal melted in the particle mixing step. The temperature of the metal at this time is set lower than the firing temperature of the positive electrode active material. Thereby, even if the active material particles are mixed in the molten metal, the characteristics of the positive electrode active material can be maintained.
Furthermore, the positive electrode plate that has undergone the metal lump formation step and the rolling step is a metal that functions as a positive electrode current collector than a conventional positive electrode plate in which a binder is present, since the active material particles are in direct contact with the metal. The electric resistance generated between the active material particles and the active material particles is lowered, and the conductivity is improved. Furthermore, the volume and weight of the positive electrode plate can be reduced by the amount that the binder and the conductive agent for holding the active material particles are unnecessary.

さらに、上述の正電極板の製造方法であって、前記圧延工程の後に、前記正電極板の前記第1主面および第2主面の少なくともいずれかに露出する前記金属を溶解し、前記活物質粒子の露出面積を増加させる溶解工程を備える正電極板の製造方法とすると良い。   Furthermore, in the method for manufacturing a positive electrode plate described above, after the rolling step, the metal exposed on at least one of the first main surface and the second main surface of the positive electrode plate is melted, A positive electrode plate manufacturing method including a melting step for increasing the exposed area of the substance particles is preferable.

本発明の正電極板の製造方法では、溶解工程で活物質粒子の露出面積を増加させる。従って、溶解前には電池反応に寄与できていなかった活物質粒子あるいは活物質粒子の表面を、新たに電池反応に利用することができるので、電池内のリチウムイオン量を増やして電池容量を増加させることができる。さらに、この溶解により、正電極板のうちの金属の重量を低減できるので、正電極板のさらなる軽量化を図ることができる。   In the positive electrode plate manufacturing method of the present invention, the exposed area of the active material particles is increased in the melting step. Therefore, the active material particles or the surface of the active material particles that did not contribute to the battery reaction before dissolution can be newly used for the battery reaction, so the battery capacity is increased by increasing the amount of lithium ions in the battery. Can be made. Furthermore, since the weight of the metal in the positive electrode plate can be reduced by this melting, the weight of the positive electrode plate can be further reduced.

なお、正電極板の第1主面および第2主面を形成する金属を溶解する手段としては、例えば酸、塩基のいずれかの溶液に浸漬する処理、電気分解処理等が挙げられる。   In addition, as a means to melt | dissolve the metal which forms the 1st main surface and 2nd main surface of a positive electrode plate, the process immersed in the solution of either an acid or a base, an electrolysis process etc. are mentioned, for example.

さらに、他の解決手段は、第1板主面および第2板主面を有する板状の金属板の、上記第1板主面および第2板主面の少なくともいずれかを、正極活物質の焼成温度より低い温度で軟化させて軟化面とする軟化工程と、粒子形状を有し上記正極活物質からなる活物質粒子を多数、上記金属板の上記軟化面にそれぞれ配置した後に、上記活物質粒子の形状を保ちつつ上記金属板の内側に向けて押し込む粒子押込み工程と、を備える正電極板の製造方法である。   Furthermore, another means for solving the problem is that at least one of the first plate main surface and the second plate main surface of the plate-shaped metal plate having the first plate main surface and the second plate main surface is made of a positive electrode active material. A softening step of softening at a temperature lower than the firing temperature to form a softened surface, and after arranging a large number of active material particles having a particle shape and the positive electrode active material on the softened surface of the metal plate, the active material And a particle pushing step of pushing in toward the inside of the metal plate while maintaining the shape of the particles.

本発明の正電極板の製造方法では、軟化工程で、金属板の有する第1板主面および第2板主面の少なくともいずれかを熱で軟化させて、粒子押込み工程で活物質粒子の形状を保ちつつ、第1板主面あるいは第2板主面からその内部に向けて押し込む。そのときの金属板の軟化面の温度は、正極活物質の焼成温度よりも低くしてある。このため、この軟化面から押し込まれた活物質粒子は、その特性を維持できる。
また、粒子押込み工程では、活物質粒子を軟化面から金属板の内側に向けて押し込むので、押し込まれたいずれの活物質粒子も金属板の第1板主面あるいは第2板主面に露出しており、いずれの活物質粒子も電池反応に寄与できる状態となる。従って、すべての活物質粒子を無駄なく電池反応に利用することができる。また、電池内のリチウムイオン量を増やして電池容量を増加させることができる。
さらに、本発明の製造法で製造された正電極板は、金属板と活物質粒子とが直接接触しているので、その間に生じる電気抵抗が低くなり導電性が向上する。また、結着剤や導電化剤を要しないので、その分正電極板の体積および重量が低減できている。
なお、軟化面の温度は、活物質粒子を金属板の第1板主面あるいは第2板主面に押し込んだときに、活物質粒子がその形状を保ちうる状態にまで軟化する温度とする。従って、金属板の材質および活物質粒子の材質に応じて軟化面の温度を選択する。
In the method for producing a positive electrode plate of the present invention, in the softening step, at least one of the first plate main surface and the second plate main surface of the metal plate is softened by heat, and the shape of the active material particles in the particle pushing step The first plate main surface or the second plate main surface is pushed toward the inside while maintaining the above. The temperature of the softened surface of the metal plate at that time is lower than the firing temperature of the positive electrode active material. For this reason, the active material particle pushed in from this softened surface can maintain the characteristic.
In the particle pushing step, the active material particles are pushed from the softened surface toward the inside of the metal plate, so that any pushed active material particles are exposed to the first plate main surface or the second plate main surface of the metal plate. Thus, any active material particles can contribute to the battery reaction. Therefore, all the active material particles can be used for the battery reaction without waste. Further, the battery capacity can be increased by increasing the amount of lithium ions in the battery.
Furthermore, since the metal plate and the active material particles are in direct contact with each other in the positive electrode plate manufactured by the manufacturing method of the present invention, the electrical resistance generated therebetween is lowered and the conductivity is improved. Further, since no binder or conductive agent is required, the volume and weight of the positive electrode plate can be reduced accordingly.
The temperature of the softening surface is a temperature at which the active material particles soften to a state where the active material particles can maintain their shape when the active material particles are pushed into the first plate main surface or the second plate main surface of the metal plate. Therefore, the temperature of the softened surface is selected according to the material of the metal plate and the material of the active material particles.

さらに他の解決方法は、正電極板を備える電池の製造方法であって、上記正電極板を、上述の正電極板の製造方法で製造する電池の製造方法である。   Yet another solution is a method for manufacturing a battery including a positive electrode plate, wherein the positive electrode plate is manufactured by the above-described method for manufacturing a positive electrode plate.

本発明の電池の製造方法では、正電極板の製造にあたり上述の正電極板の製造方法を用いる。従って、正電極板内に生じる抵抗が小さくなり、ひいては電池全体の内部抵抗を低くできる。これにより電池出力が向上させた電池を製造できる。   In the battery manufacturing method of the present invention, the above-described positive electrode plate manufacturing method is used for manufacturing the positive electrode plate. Therefore, the resistance generated in the positive electrode plate is reduced, and as a result, the internal resistance of the entire battery can be reduced. Thereby, a battery with improved battery output can be manufactured.

(実施形態1)
次に、本発明の実施形態1について、図面を参照しつつ説明する。
まず、本実施形態1にかかる正電極板20について説明する。図1(a)は正電極板20の斜視図、図1(b)はその断面図(図1(a)のA−Aを含む断面)である。
本実施形態1にかかる正電極板20は、第1主面20aおよび第2主面20bを有する平板状であり、第1主面20aと第2主面20bの間の厚さTH1は55μmである。この正電極板20は、正電極板本体21と、この内部に分散して配置された活物質粒子22とからなる。このうち、正電極板本体21は、アルミニウムからなり、第1本体主面21aおよび第2本体主面21bを有する板状である。また活物質粒子22は、平均粒径が20μmの粒子形状で、正極活物質のLiMn24からなる。この活物質粒子22は、その表面22Sの少なくとも一部を正電極板本体21が覆うことによって、この正電極板本体21に保持されている。従って、この活物質粒子22の中には、表面22Sのうち、露出面22Hが正電極板本体21の第1本体主面21aあるいは第2本体主面21bよりも外部に露出しているものもある。なお、本実施形態では、活物質粒子22の中には、その表面22Sのすべてが正電極板本体21の内部に埋没した状態とされているものも含まれうる。
(Embodiment 1)
Next, Embodiment 1 of the present invention will be described with reference to the drawings.
First, the positive electrode plate 20 according to the first embodiment will be described. 1A is a perspective view of the positive electrode plate 20, and FIG. 1B is a cross-sectional view thereof (a cross section including AA in FIG. 1A).
The positive electrode plate 20 according to the first embodiment has a flat plate shape having a first main surface 20a and a second main surface 20b, and a thickness TH1 between the first main surface 20a and the second main surface 20b is 55 μm. is there. The positive electrode plate 20 includes a positive electrode plate main body 21 and active material particles 22 that are dispersed and arranged inside the positive electrode plate main body 21. Among these, the positive electrode plate main body 21 is made of aluminum and has a plate shape having a first main body main surface 21a and a second main body main surface 21b. The active material particles 22 have a particle shape with an average particle diameter of 20 μm and are made of a positive electrode active material LiMn 2 O 4 . The active material particles 22 are held by the positive electrode plate body 21 by covering at least a part of the surface 22S with the positive electrode plate body 21. Therefore, among the active material particles 22, some of the surface 22 </ b> S whose exposed surface 22 </ b> H is exposed to the outside from the first main body main surface 21 a or the second main body main surface 21 b of the positive electrode plate main body 21. is there. In the present embodiment, the active material particles 22 may include all the surfaces 22 </ b> S embedded in the positive electrode plate body 21.

一方、図2は従来の正電極板PPを示した断面図である。従来の正電極板PPは、金属箔PFと、活物質層PLを備える。具体的には、従来の正電極板PPは、平板状のアルミニウムからなる金属箔PFの第1主面PFaおよび第2主面PFbに、正極活物質のLiMn24からなる活物質粒子PA、結着剤AM、および導電化剤CMを混練した活物質層PL(例えば、重量比で活物質粒子PA:結着剤AM:導電化剤CM=8:1:1)を塗布してなる。なお、例えば、結着剤AMにはポリフッ化ビニリデン樹脂、導電化剤CMにはアセチレンブラックがそれぞれ使用される。
このように、従来の正電極板PPは、金属箔PFと活物質粒子PAとの間には、結着剤AMおよび導電化剤CMが介在している。
FIG. 2 is a cross-sectional view showing a conventional positive electrode plate PP. The conventional positive electrode plate PP includes a metal foil PF and an active material layer PL. Specifically, the conventional positive electrode plate PP includes active material particles PA made of LiMn 2 O 4 as a positive electrode active material on the first main surface PFa and the second main surface PFb of a metal foil PF made of flat aluminum. And an active material layer PL (for example, active material particles PA: binding agent AM: conducting agent CM = 8: 1: 1) in a weight ratio. . For example, polyvinylidene fluoride resin is used for the binder AM, and acetylene black is used for the conductive agent CM.
Thus, in the conventional positive electrode plate PP, the binder AM and the conductive agent CM are interposed between the metal foil PF and the active material particles PA.

これに対し、本実施形態1の正電極板20は前述の通り、活物質粒子22の少なくとも一部を正電極板本体21で覆って、これを直接保持しているので、抵抗体となる結着剤が介在せず、正電極板本体21と活物質粒子22との間での導電性が向上する。また、結着剤、導電化剤を用いなくとも活物質粒子22を保持できるので、結着剤、導電化剤の分だけ正電極板20の体積および重量を低減できる。   On the other hand, as described above, the positive electrode plate 20 of Embodiment 1 covers at least a part of the active material particles 22 with the positive electrode plate main body 21 and directly holds the active material particles 22. The conductivity between the positive electrode plate main body 21 and the active material particles 22 is improved without interposing an adhesive. Further, since the active material particles 22 can be held without using a binder and a conductive agent, the volume and weight of the positive electrode plate 20 can be reduced by the amount of the binder and the conductive agent.

次に、本実施形態1にかかる電池1について説明する。図3(a)は電池1の斜視図、図3(b)はその断面図(図3(a)のB−Bを含む断面)、図4は電池断面図の拡大図(図3のC部)である。電池1は発電要素10、正極タブ60、負極タブ70、ラミネートフィルム50を備える積層型のリチウムイオン二次電池である。このうち、発電要素10は、正電極板20、負電極板30、セパレータ40、および図示しない電解液を含む。また、正極タブ60は電池内部の複数の正電極板20と、負極タブ70は電池内部の複数の負電極板30と、ラミネートフィルム50の内部でそれぞれ接続され、このラミネートフィルム50の外部へ突出している。   Next, the battery 1 according to the first embodiment will be described. 3A is a perspective view of the battery 1, FIG. 3B is a cross-sectional view thereof (a cross-section including BB in FIG. 3A), and FIG. 4 is an enlarged view of the battery cross-sectional view (C in FIG. 3). Part). The battery 1 is a laminated lithium ion secondary battery including a power generation element 10, a positive electrode tab 60, a negative electrode tab 70, and a laminate film 50. Among these, the electric power generation element 10 contains the positive electrode plate 20, the negative electrode plate 30, the separator 40, and the electrolyte solution which is not shown in figure. The positive electrode tab 60 is connected to a plurality of positive electrode plates 20 inside the battery, and the negative electrode tab 70 is connected to a plurality of negative electrode plates 30 inside the battery and inside the laminate film 50, and protrudes outside the laminate film 50. ing.

それぞれ板状の正電極板20および負電極板30は、セパレータ40を介して、交互に積層されている。電解液には、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)との混合有機溶媒に、溶質としてLiPF6を添加した有機電解質を用いる。
このうち、正電極板20は前述の正電極板である。一方、負電極板30は、銅からなる金属箔31と、この第1主面31aと第2主面31bとに塗布された、炭素からなる負極活物質層32とで構成されている。
ラミネートフィルム50は、金属箔53、およびその両面にコーティングされた第1樹脂層51および第2樹脂層52を有する。そして、2枚のラミネートフィルム50は、発電要素10を挟み込み、互いに熱溶着されて、発電要素10を密封している。
The plate-like positive electrode plates 20 and the negative electrode plates 30 are alternately stacked with separators 40 interposed therebetween. As the electrolytic solution, an organic electrolyte obtained by adding LiPF 6 as a solute to a mixed organic solvent of EC (ethylene carbonate) and DEC (diethyl carbonate) is used.
Among these, the positive electrode plate 20 is the aforementioned positive electrode plate. On the other hand, the negative electrode plate 30 includes a metal foil 31 made of copper and a negative electrode active material layer 32 made of carbon applied to the first main surface 31a and the second main surface 31b.
The laminate film 50 has a metal foil 53 and a first resin layer 51 and a second resin layer 52 coated on both surfaces thereof. The two laminated films 50 sandwich the power generation element 10 and are thermally welded to each other to seal the power generation element 10.

本実施形態1の電池1では、上述の通り、前述の正電極板本体21と活物質粒子22とからなる正電極板20を用いる。この正電極板20は、正電極板本体21と活物質粒子22との間の導電性が高いことから、電池1の内部抵抗を低減でき、電池出力を向上させることができる。また、正電極板20の体積および重量が小さいことから、電池1の体積および重量をも低減できる。   In the battery 1 according to the first embodiment, as described above, the positive electrode plate 20 including the positive electrode plate main body 21 and the active material particles 22 is used. Since the positive electrode plate 20 has high conductivity between the positive electrode plate main body 21 and the active material particles 22, the internal resistance of the battery 1 can be reduced and the battery output can be improved. Moreover, since the volume and weight of the positive electrode plate 20 are small, the volume and weight of the battery 1 can also be reduced.

次に、電池1の製造方法について説明する。
まず、正電極板20の製造方法について、図5、6を参照して説明する。
正電極板20の製造方法は、粒子混入工程、金属塊形成工程、圧延工程、および溶解工程を備えている。
まず、粒子混入工程では、溶解炉800のうち、るつぼ810にアルミニウム90を2.0kg投入し、大気雰囲気中で、ヒータ820でアルミニウム90を700℃に加熱し、熱溶解させる。そこに平均粒径20μmのLiMn24からなる活物質粒子22を2.0kg投入し、十分に撹拌させる(図5(a)および(b))。700℃はLiMn24である正極活物質の焼成温度に満たないため、活物質粒子22(LiMn24)は、その特性を維持したまま、溶融したアルミニウム90中に存在できる。
Next, a method for manufacturing the battery 1 will be described.
First, the manufacturing method of the positive electrode plate 20 will be described with reference to FIGS.
The manufacturing method of the positive electrode plate 20 includes a particle mixing step, a metal lump forming step, a rolling step, and a melting step.
First, in the particle mixing step, 2.0 kg of aluminum 90 is charged into the crucible 810 of the melting furnace 800, and the aluminum 90 is heated to 700 ° C. by the heater 820 in an air atmosphere and thermally melted. Then, 2.0 kg of active material particles 22 made of LiMn 2 O 4 having an average particle diameter of 20 μm are charged and sufficiently stirred (FIGS. 5A and 5B). Since 700 ° C. is less than the firing temperature of the positive electrode active material which is LiMn 2 O 4 , the active material particles 22 (LiMn 2 O 4 ) can exist in the molten aluminum 90 while maintaining the characteristics.

次いで金属塊形成工程では、撹拌された活物質粒子22を含むアルミニウム90を冷却固化させてアルミニウム金属塊91を鋳造する(図5(c)および(d))。   Next, in the metal lump forming step, the aluminum 90 containing the stirred active material particles 22 is cooled and solidified to cast the aluminum metal lump 91 (FIGS. 5C and 5D).

次いで圧延工程では、鋳造されたアルミニウム金属塊91をプレスローラ800を用いて圧延し、厚さTH2が55μmの正電極板120を作製する(図7)。   Next, in the rolling process, the cast aluminum metal ingot 91 is rolled using a press roller 800 to produce a positive electrode plate 120 having a thickness TH2 of 55 μm (FIG. 7).

上述の製造方法で製造された正電極板120は、正電極板本体121が活物質粒子22に直接接触しているので、結着剤AMが介在する従来の正電極板PP(図2参照)よりも、正極集電体として機能する正電極本体121と活物質粒子22との間に生じる電気抵抗が低くなり導電性が向上する。さらに、正電極板120の体積および重量を低減できる。   In the positive electrode plate 120 manufactured by the above-described manufacturing method, since the positive electrode plate body 121 is in direct contact with the active material particles 22, the conventional positive electrode plate PP with the binder AM interposed (see FIG. 2). As a result, the electrical resistance generated between the positive electrode main body 121 functioning as the positive electrode current collector and the active material particles 22 is lowered, and the conductivity is improved. Furthermore, the volume and weight of the positive electrode plate 120 can be reduced.

なお、この正電極板120でも、電池の正電極板として使用することができるが、その第1,第2主面120a,120bに露出する活物質粒子22の露出面22Hの面積が少ない場合がある。   Although this positive electrode plate 120 can also be used as a positive electrode plate of a battery, the area of the exposed surface 22H of the active material particles 22 exposed on the first and second main surfaces 120a and 120b may be small. is there.

そこで、さらに上述の圧延工程後に、以下の溶解工程を施すとよい。
この溶解工程では、図7に示す正電極板120の第1主面120aおよび第2主面120bのうち、正電極板本体121の第1本体主面121aおよび第2本体主面121bを、所定濃度の硝酸900による腐食処理で厚さTH3ずつ溶解させ、活物質粒子22の露出面22Hの面積を増加させる(図8参照)。
Therefore, the following melting step may be performed after the rolling step described above.
In the melting step, the first main body main surface 121a and the second main body main surface 121b of the positive electrode plate main body 121 out of the first main surface 120a and the second main surface 120b of the positive electrode plate 120 shown in FIG. The thickness TH3 is dissolved by corrosion treatment with nitric acid 900 at a concentration to increase the area of the exposed surface 22H of the active material particles 22 (see FIG. 8).

この溶解工程により、溶解前には電池反応に寄与できていなかった活物質粒子22あるいは活物質粒子22の表面22S(露出面22H)を、新たに電池反応に利用することができるので、電池1内のリチウムイオン量を増やして電池容量を増加させることができる。さらにこの溶解により、正電極板20のうちの正電極板本体21の重量を低減できるので、正電極板20のさらなる軽量化を図ることができる。かくして、正電極版20が完成する。   By this melting step, the active material particles 22 that have not contributed to the battery reaction before melting or the surface 22S (exposed surface 22H) of the active material particles 22 can be newly used for the battery reaction. The battery capacity can be increased by increasing the amount of lithium ions inside. Furthermore, since the weight of the positive electrode plate main body 21 in the positive electrode plate 20 can be reduced by this dissolution, the weight of the positive electrode plate 20 can be further reduced. Thus, the positive electrode plate 20 is completed.

なお、本実施形態1の電池1の製造方法のうち、正電極板120,20の製造方法以外は、公知の手法によれば良いので、記載を省略する。   In addition, in the manufacturing method of the battery 1 according to the first embodiment, since a method other than the manufacturing method of the positive electrode plates 120 and 20 may be used, a description thereof is omitted.

本実施形態1の電池1の製造方法によれば、正電極板120、あるいは正電極板20に生じる抵抗を小さくできるので、ひいては電池1の全体の内部抵抗を低くできる。これにより、電池出力を向上させた電池1を製造することができる。   According to the manufacturing method of the battery 1 of the first embodiment, the resistance generated in the positive electrode plate 120 or the positive electrode plate 20 can be reduced, so that the overall internal resistance of the battery 1 can be reduced. Thereby, the battery 1 which improved the battery output can be manufactured.

次いで、本実施形態1にかかる電池1を用いた車両500について説明する。この車両500は、本実施形態1の電池1を、公知の手法で搭載したものである。具体的には図9に示すように、エンジン510、フロントモータ520、およびリアモータ530を併用して駆動するハイブリッド電気自動車である。この車両500は、車体570、エンジン510、これに取り付けられたフロントモータ520、リアモータ530、ケーブル550、インバータ560およびバッテリパック540を備えている。バッテリパック540は、車両500の車体570に取り付けられている。そして、バッテリパック540の内部には、詳細を図示しないが、複数の電池1が電気的に直列に連結されて配置されている。
このように、この車両500では、上述の電池1を用いているので、小型あるいは小数の電池1を用いれば足り、電池1の総体積、総重量(バッテリパック540の体積、重量)を低減した車両500とすることができる。
Next, the vehicle 500 using the battery 1 according to the first embodiment will be described. The vehicle 500 includes the battery 1 according to the first embodiment mounted by a known method. Specifically, as shown in FIG. 9, the hybrid electric vehicle is driven by using an engine 510, a front motor 520, and a rear motor 530 in combination. The vehicle 500 includes a vehicle body 570, an engine 510, a front motor 520, a rear motor 530, a cable 550, an inverter 560, and a battery pack 540 attached thereto. Battery pack 540 is attached to vehicle body 570 of vehicle 500. In the battery pack 540, although not shown in detail, a plurality of batteries 1 are electrically connected in series.
Thus, in this vehicle 500, since the battery 1 described above is used, it is sufficient to use a small or small number of batteries 1, and the total volume and total weight of the battery 1 (volume and weight of the battery pack 540) are reduced. The vehicle 500 can be used.

さらに、本実施形態1にかかる電池1を用いた電池搭載機器600について説明する。携帯電話600は、上述の方法で製造された電池1を、公知の手法で搭載したものである。具体的には、図10に示すように、電池パック610、本体620を有する電池搭載機器である。電池パック610は、携帯電話600の本体620に収容されており、電池パック610の内には、電池1が収容されている。
この携帯電話600でも、上述の電池1を用いているので、小型あるいは小数の電池1で足り、電池1(バッテリパック610)の体積、重量を低減した電池搭載機器600とすることができる。
Further, a battery-mounted device 600 using the battery 1 according to the first embodiment will be described. The mobile phone 600 is a battery in which the battery 1 manufactured by the above-described method is mounted by a known method. Specifically, as shown in FIG. 10, a battery-mounted device having a battery pack 610 and a main body 620. The battery pack 610 is accommodated in the main body 620 of the mobile phone 600, and the battery 1 is accommodated in the battery pack 610.
Since the above-described battery 1 is also used in the cellular phone 600, a small or small battery 1 is sufficient, and the battery-equipped device 600 in which the volume and weight of the battery 1 (battery pack 610) are reduced can be obtained.

(実施形態2)
次に、本実施形態2にかかる正電極板220について説明する。図11は、正電極板220の断面図(図13のE−E断面)である。
本実施形態2にかかる正電極板220は、第1主面220aおよび第2主面220bを有し、この第1主面220aと第2主面220bとの間の厚さTH4は、55μmである。この正電極板220は、正電極板本体221と、この表面部分に分散して配置された実施形態1と同様の活物質粒子22とからなる。このうち、正電極板本体221は、アルミニウムからなり、第1本体主面221aおよび第2本体主面221bを有する板状のアルミ箔である。また活物質粒子22は、前述したように、平均粒径が20μmの粒子形状で、正極活物質のLiMn24からなる。この活物質粒子22は、正電極板本体221の第1本体主面221aあるいは第2本体主面221bより内側に押し込まれることにより、その表面22Sの一部を正電極板本体221が覆う形態とされ、これによって、この正電極板本体221に保持されている。なお、本実施形態2ではいずれの活物質粒子22についても、表面22Sのうちの露出面22Hが、正電極板本体221の第1本体主面221aあるいは第2本体主面221bよりも外部に露出している。
(Embodiment 2)
Next, the positive electrode plate 220 according to the second embodiment will be described. 11 is a cross-sectional view of the positive electrode plate 220 (cross-section EE in FIG. 13).
The positive electrode plate 220 according to the second embodiment has a first main surface 220a and a second main surface 220b, and a thickness TH4 between the first main surface 220a and the second main surface 220b is 55 μm. is there. The positive electrode plate 220 includes a positive electrode plate main body 221 and active material particles 22 similar to those in the first embodiment that are dispersed and disposed on the surface portion. Among these, the positive electrode plate main body 221 is made of aluminum, and is a plate-like aluminum foil having a first main body main surface 221a and a second main body main surface 221b. Further, as described above, the active material particles 22 have a particle shape with an average particle diameter of 20 μm and are made of LiMn 2 O 4 as a positive electrode active material. The active material particles 22 are pushed inward from the first main body main surface 221a or the second main body main surface 221b of the positive electrode plate main body 221, so that the positive electrode plate main body 221 covers a part of the surface 22S. Thus, the positive electrode plate main body 221 holds the positive electrode plate. In the second embodiment, for any active material particle 22, the exposed surface 22H of the surface 22S is exposed to the outside of the first main body main surface 221a or the second main body main surface 221b of the positive electrode plate main body 221. is doing.

本実施形態2の正電極板220は、上述の通り、活物質粒子22の一部を正電極板本体221で覆って、これを直接に保持しているので、抵抗体となる結着剤が介在せず、正電極板本体221と活物質粒子22との間での導電性が向上する。また、結着剤、導電化剤を用いなくとも活物質粒子22を保持できるので、結着剤、導電化剤の分だけ正電極板220の体積および重量を低減できる。さらに、いずれの活物質粒子22も電池反応に寄与できる状態となっている。   As described above, the positive electrode plate 220 of the second embodiment covers a part of the active material particles 22 with the positive electrode plate main body 221 and directly holds the active material particle 22, so that the binder serving as a resistor is present. The conductivity between the positive electrode plate main body 221 and the active material particles 22 is improved without being interposed. Further, since the active material particles 22 can be held without using a binder and a conductive agent, the volume and weight of the positive electrode plate 220 can be reduced by the amount of the binder and the conductive agent. Furthermore, any active material particle 22 is in a state that can contribute to the battery reaction.

次に、本実施形態2にかかる電池201について図3および図12を用いて説明する。電池201は、図3に示すように、実施形態1にかかる電池1と同様、発電要素210、正極タブ60、負極タブ70、ラミネートフィルム50を備える積層型のリチウムイオン二次電池である。このうち、発電要素210は、正電極板220、負電極板30、セパレータ40、および図示しない電解液を含む。また、正極タブ60は電池内部の複数の正電極板220と、負極タブ70は電池内部の複数の負電極板30と、ラミネートフィルム50の内部でそれぞれ接続され、このラミネートフィルム50の外部へ突出している。   Next, the battery 201 according to the second embodiment will be described with reference to FIGS. 3 and 12. As shown in FIG. 3, the battery 201 is a stacked lithium ion secondary battery including a power generation element 210, a positive electrode tab 60, a negative electrode tab 70, and a laminate film 50, as with the battery 1 according to the first embodiment. Among these, the power generation element 210 includes a positive electrode plate 220, a negative electrode plate 30, a separator 40, and an electrolyte solution (not shown). Further, the positive electrode tab 60 is connected to a plurality of positive electrode plates 220 inside the battery, and the negative electrode tab 70 is connected to a plurality of negative electrode plates 30 inside the battery and inside the laminate film 50, and protrudes outside the laminate film 50. ing.

図12は電池201の拡大断面図(図3のC部)である。それぞれ板状の正電極板220と負電極板30とが、セパレータ40を介して交互に積層されている。
このうち、負電極板30、セパレータ40、ラミネートフィルム50、および電解液については、実施形態1にかかる電池1と同様である。
FIG. 12 is an enlarged cross-sectional view of the battery 201 (C portion in FIG. 3). The plate-like positive electrode plates 220 and the negative electrode plates 30 are alternately stacked with separators 40 interposed therebetween.
Among these, the negative electrode plate 30, the separator 40, the laminate film 50, and the electrolytic solution are the same as those of the battery 1 according to the first embodiment.

本実施形態2の電池201は、前述の正電極板本体221と活物質粒子22とからなる正電極板220を用いる。この正電極板220は、正電極板本体221と活物質粒子22との間の導電性が高いことから、電池201の内部抵抗を低減でき、電池出力を向上させることができる。また、電池201の体積および重量を低減できる。さらに、すべての活物質粒子22を無駄なく電池反応に利用することができ、電池201内のリチウムイオン量を増やして電池容量を増加させることができる。   The battery 201 according to the second embodiment uses the positive electrode plate 220 including the positive electrode plate main body 221 and the active material particles 22 described above. Since the positive electrode plate 220 has high conductivity between the positive electrode plate main body 221 and the active material particles 22, the internal resistance of the battery 201 can be reduced and the battery output can be improved. Further, the volume and weight of the battery 201 can be reduced. Furthermore, all the active material particles 22 can be utilized for the battery reaction without waste, and the battery capacity can be increased by increasing the amount of lithium ions in the battery 201.

次に、本実施形態2の正電極板220の製造方法について、図13を参照して説明する。まず、図13のうち上部に示すように、アルミニウムからなり、長尺で、第1板主面291aおよび第2板主面291bを有し、厚さTH5が50μmの金属板291を用意する。この金属板291をローラ840で送ると共に、その第1板主面291aおよび第2板主面291bをヒータ850で加熱し、軟化させて、それぞれ第1軟化面291cおよび第2軟化面291dとする。
なお、軟化面291c,291dの温度は、次述するように、この第1軟化面291c(第1板主面291a)および第2軟化面(第2板主面291b)が、活物質粒子22を押し込んだ際に、活物質粒子22に圧壊、変形等を生じず、その形状を保って圧入できる状態にまで軟化させる温度とする。また、第1軟化面291cおよび第2軟化面291dは、活物質粒子22、具体的には正極活物質のLiMn24の焼成温度に満たない温度とする。これにより、活物質粒子22は、押し込まれた後もその特性を維持できるからである。本実施形態2においては概略600℃とする。
Next, a method for manufacturing the positive electrode plate 220 of the second embodiment will be described with reference to FIG. First, as shown in the upper part of FIG. 13, a metal plate 291 made of aluminum, having a long first plate main surface 291a and a second plate main surface 291b, and having a thickness TH5 of 50 μm is prepared. The metal plate 291 is fed by the roller 840, and the first plate main surface 291a and the second plate main surface 291b are heated by the heater 850 and softened to form the first softened surface 291c and the second softened surface 291d, respectively. .
The temperature of the softened surfaces 291c and 291d is such that the first softened surface 291c (first plate main surface 291a) and the second softened surface (second plate main surface 291b) are active material particles 22 as described below. When the is pressed, the active material particles 22 are set to a temperature at which the active material particles 22 are softened to a state where the active material particles 22 can be press-fitted while maintaining their shapes without deformation. In addition, the first softened surface 291c and the second softened surface 291d are set to a temperature lower than the firing temperature of the active material particles 22, specifically, the positive electrode active material LiMn 2 O 4 . This is because the active material particles 22 can maintain their characteristics even after being pushed in. In the second embodiment, the temperature is approximately 600 ° C.

次いで粒子押込み工程では、活物質粒子22を金属板291の第1軟化面291cおよび第2軟化面291dにホッパ860を用いて散布する。
次いでプレスローラ870により、活物質粒子22を第1軟化面291cおよび第2軟化面291dから、金属板291の内側に向けて押し込む。上述したように、第1軟化面291cおよび第2軟化面291dの温度を調整してあるので、活物質粒子22を押し込む際、この活物質粒子22が圧壊、変形することはない。なお、プレスローラ870同士の間隔を、金属板291の厚さTH5より若干大きい値に調製しておく。かくして、正電極板220が完成する。
Next, in the particle pushing step, the active material particles 22 are dispersed using the hopper 860 on the first softened surface 291c and the second softened surface 291d of the metal plate 291.
Next, the active material particles 22 are pushed by the press roller 870 toward the inside of the metal plate 291 from the first softened surface 291c and the second softened surface 291d. As described above, since the temperatures of the first softened surface 291c and the second softened surface 291d are adjusted, the active material particles 22 are not crushed and deformed when the active material particles 22 are pushed in. The interval between the press rollers 870 is adjusted to a value slightly larger than the thickness TH5 of the metal plate 291. Thus, the positive electrode plate 220 is completed.

本実施形態2の製造方法で製造された正電極板220は、活物質粒子22のすべてが、電池反応に寄与できる状態で、金属板291である正電極板本体221に担持されるので、活物質粒子22を無駄なく電池反応に利用することができる。さらに、正電極板本体221(金属板291)と活物質粒子22とが直接接触してなるので、その間に生じる電気抵抗が低くなり導電性が向上する。また、結着剤や導電化剤を要しないので、その分、正電極板220の体積および重量が低減できている。   The positive electrode plate 220 manufactured by the manufacturing method of the second embodiment is supported on the positive electrode plate body 221 that is the metal plate 291 in a state where all of the active material particles 22 can contribute to the battery reaction. The substance particles 22 can be used for battery reaction without waste. Furthermore, since the positive electrode plate main body 221 (metal plate 291) and the active material particles 22 are in direct contact with each other, the electrical resistance generated therebetween is reduced and the conductivity is improved. Further, since no binder or conductive agent is required, the volume and weight of the positive electrode plate 220 can be reduced accordingly.

さらに、本実施形態2の電池201は、正電極板220を上述の製造方法で製造するほかは、公地の手法を用いて製造する。   Furthermore, the battery 201 according to the second embodiment is manufactured using a public method except that the positive electrode plate 220 is manufactured by the above-described manufacturing method.

さらに、この電池201も、実施形態1の電池1を用いた車両500(バッテリパック540)と同様、車両501(バッテリパック541)に搭載することができる。
この車両501は、上述の電池201を用いたバッテリパック541を搭載しているので、小型あるいは小数の電池201で足り、電池201の総体積、総重量、従ってバッテリパック541の体積、重量を低減することができる。
Furthermore, this battery 201 can also be mounted on the vehicle 501 (battery pack 541), similarly to the vehicle 500 (battery pack 540) using the battery 1 of the first embodiment.
Since the vehicle 501 includes the battery pack 541 using the above-described battery 201, a small or small battery 201 is sufficient, and the total volume and weight of the battery 201, and thus the volume and weight of the battery pack 541 are reduced. can do.

また、電池201も、実施形態1の電池を用いた携帯電話600と同様、携帯電話601(図10参照)に搭載することができる。
この携帯電話601は、上述の電池201を用いたバッテリパック611を搭載しているので、小型あるいは小数の電池201で足り、電池201の、従って携帯電話601の体積、重量を低減することができる。
In addition, the battery 201 can be mounted on the mobile phone 601 (see FIG. 10), similarly to the mobile phone 600 using the battery of Embodiment 1.
Since the mobile phone 601 is equipped with the battery pack 611 using the above-described battery 201, a small or small battery 201 is sufficient, and the volume and weight of the battery 201, and hence the mobile phone 601 can be reduced. .

以上において、本発明を実施形態1および2に即して説明したが、本発明は上記実施形態1および2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the first and second embodiments. However, the present invention is not limited to the first and second embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say.

例えば、本実施形態1および2として電池1,201をリチウムイオン二次電池としたが、本発明は、リチウムイオン二次電池に限らず、正電極板を使用した発電要素を有する電池であれば、いずれの種類の電池にも適用することができる。   For example, as the first and second embodiments, the batteries 1 and 201 are lithium ion secondary batteries. However, the present invention is not limited to lithium ion secondary batteries, and any battery having a power generation element using a positive electrode plate may be used. It can be applied to any type of battery.

実施形態1にかかる正電極板20を示す図であり、(a)は斜視図、(b)はA−A断面図である。It is a figure which shows the positive electrode plate 20 concerning Embodiment 1, (a) is a perspective view, (b) is AA sectional drawing. 従来の正電極板PPの模式例を示す断面図である。It is sectional drawing which shows the schematic example of the conventional positive electrode plate PP. 実施形態1および2にかかる電池1,201を示す図であり、(a)は斜視図、(b)はB−B断面図である。It is a figure which shows the batteries 1 and 201 concerning Embodiment 1 and 2, (a) is a perspective view, (b) is BB sectional drawing. 実施形態1にかかる電池1の部分拡大断面図(図3のC部)である。FIG. 3 is a partial enlarged cross-sectional view (part C of FIG. 3) of the battery 1 according to the first embodiment. 実施形態1にかかる正電極板120,20の製造方法のうち、粒子混入工程および金属塊形成工程を説明するための説明図であり、(a)は活物質粒子22の投入、(b)は活物質粒子22の撹拌、(c)は活物質粒子22が分散した金属の冷却、および(d)は、取り出しの様子を示す。It is explanatory drawing for demonstrating a particle mixing process and a metal lump formation process among the manufacturing methods of the positive electrode plates 120 and 20 concerning Embodiment 1, (a) is injection | throwing-in of the active material particle 22, (b) is. Agitation of the active material particles 22, (c) shows cooling of the metal in which the active material particles 22 are dispersed, and (d) shows the state of removal. 実施形態1にかかる正電極板の製造方法のうち、圧延工程を説明するための説明図である。It is explanatory drawing for demonstrating a rolling process among the manufacturing methods of the positive electrode plate concerning Embodiment 1. FIG. 圧延により形成された正電極板120を示す断面図(図6のD−D断面)である。It is sectional drawing (DD cross section of FIG. 6) which shows the positive electrode plate 120 formed by rolling. 溶解工程後の正電極板20の断面図である。It is sectional drawing of the positive electrode plate 20 after a melt | dissolution process. 実施形態1および2にかかる電池1,201を搭載した車両500,501(ハイブリッド電気自動車)を示す説明図である。It is explanatory drawing which shows the vehicles 500 and 501 (hybrid electric vehicle) carrying the batteries 1 and 201 concerning Embodiment 1 and 2. FIG. 実施形態1および2にかかる電池1,201を搭載した携帯電話600,601を示す説明図である。It is explanatory drawing which shows the mobile telephones 600 and 601 carrying the batteries 1 and 201 concerning Embodiment 1 and 2. FIG. 実施形態2にかかる正電極板220の断面図である。FIG. 4 is a cross-sectional view of a positive electrode plate 220 according to a second embodiment. 実施形態2にかかる電池201の部分拡大断面図(図3のC部)である。FIG. 6 is a partial enlarged cross-sectional view (part C of FIG. 3) of the battery 201 according to the second embodiment. 実施形態2にかかる正電極板220の製造方法の、軟化工程および粒子押込み工程を説明するための説明図である。It is explanatory drawing for demonstrating the softening process and particle pushing process of the manufacturing method of the positive electrode plate 220 concerning Embodiment 2. FIG.

符号の説明Explanation of symbols

1,201 電池
20,120,220 正電極板
20a,120a,220a 第1主面
20b,120b,220b 第2主面
21,121,221 正電極板本体
22 活物質粒子
22S 表面
90 アルミニウム(金属)
91 金属塊
291 金属板
291a 第1板主面
291b 第2板主面
291c 第1軟化面
291d 第2軟化面
500,501 車両
600,601 携帯電話(電池搭載機器)
1,201 Batteries 20, 120, 220 Positive electrode plates 20a, 120a, 220a First main surfaces 20b, 120b, 220b Second main surfaces 21, 121, 221 Positive electrode plate main body 22 Active material particles 22S Surface 90 Aluminum (metal)
91 Metal lump 291 Metal plate 291a First plate main surface 291b Second plate main surface 291c First softened surface 291d Second softened surface 500, 501 Vehicle 600, 601 Mobile phone (battery-equipped device)

Claims (8)

第1主面および第2主面を有する板状で、電池の正電極に用いる正電極板であって、
粒子形状を有し、正極活物質からなる多数の活物質粒子と、
金属からなり、上記活物質粒子の表面の少なくとも一部を覆って、上記活物質粒子を保持してなる正電極板本体と、を備え、
上記第1主面および第2主面の少なくともいずれかに、上記活物質粒子が露出してなる、
正電極板。
A plate having a first main surface and a second main surface, a positive electrode plate used for a positive electrode of a battery,
A number of active material particles having a particle shape and made of a positive electrode active material;
A positive electrode plate body made of metal, covering at least part of the surface of the active material particles and holding the active material particles, and
The active material particles are exposed on at least one of the first main surface and the second main surface.
Positive electrode plate.
請求項1に記載の正電極板を用いてなる電池。 A battery comprising the positive electrode plate according to claim 1. 請求項2に記載の電池を搭載した車両。 A vehicle equipped with the battery according to claim 2. 請求項2に記載の電池を搭載した電池搭載機器。 The battery mounting apparatus which mounts the battery of Claim 2. 粒子形状を有し、正極活物質からなる多数の活物質粒子を、上記正極活物質の焼成温度より低い温度で溶融させた金属の中に混入する粒子混入工程と、
上記活物質粒子が混入した上記金属を冷却固化して金属塊を形成する金属塊形成工程と、
上記金属塊を圧延して、上記第1主面および第2主面を有する板状で、上記金属で上記活物質粒子を保持した正電極板を形成する圧延工程と、を備える
正電極板の製造方法。
A particle mixing step of mixing a large number of active material particles having a particle shape and made of a positive electrode active material into a metal melted at a temperature lower than the firing temperature of the positive electrode active material,
A metal lump forming step of cooling and solidifying the metal mixed with the active material particles to form a metal lump,
Rolling the metal lump to form a positive electrode plate having the first main surface and the second main surface and holding the active material particles with the metal. Production method.
請求項5に記載の正電極板の製造方法であって、
前記圧延工程の後に、前記正電極板の前記第1主面および第2主面の少なくともいずれかに露出する前記金属を溶解し、前記活物質粒子の露出面積を増加させる溶解工程を備える
正電極板の製造方法。
It is a manufacturing method of the positive electrode plate according to claim 5,
After the rolling step, a melting step of melting the metal exposed on at least one of the first main surface and the second main surface of the positive electrode plate and increasing an exposed area of the active material particles is provided. A manufacturing method of a board.
第1板主面および第2板主面を有する板状の金属板の、上記第1板主面および第2板主面の少なくともいずれかを、正極活物質の焼成温度より低い温度で軟化させて軟化面とする軟化工程と、
粒子形状を有し上記正極活物質からなる活物質粒子を多数、上記金属板の上記軟化面にそれぞれ配置した後に、上記活物質粒子の形状を保ちつつ上記金属板の内側に向けて押し込む粒子押込み工程と、を備える
正電極板の製造方法。
At least one of the first plate main surface and the second plate main surface of the plate-shaped metal plate having the first plate main surface and the second plate main surface is softened at a temperature lower than the firing temperature of the positive electrode active material. Softening process to make the surface soft,
Particle indentation in which a large number of active material particles having a particle shape and made of the positive electrode active material are arranged on the softened surface of the metal plate and then pushed toward the inside of the metal plate while maintaining the shape of the active material particles And a method for producing a positive electrode plate.
正電極板を備える電池の製造方法であって、
上記正電極板を、請求項5〜7のいずれか1項に記載の正電極板の製造方法で製造する電池の製造方法。
A method for producing a battery comprising a positive electrode plate,
The manufacturing method of the battery which manufactures the said positive electrode plate with the manufacturing method of the positive electrode plate of any one of Claims 5-7.
JP2007027998A 2007-02-07 2007-02-07 Positive electrode plate, manufacturing method thereof, battery, manufacturing method thereof, vehicle, and battery-mounted equipment Withdrawn JP2008192547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027998A JP2008192547A (en) 2007-02-07 2007-02-07 Positive electrode plate, manufacturing method thereof, battery, manufacturing method thereof, vehicle, and battery-mounted equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027998A JP2008192547A (en) 2007-02-07 2007-02-07 Positive electrode plate, manufacturing method thereof, battery, manufacturing method thereof, vehicle, and battery-mounted equipment

Publications (1)

Publication Number Publication Date
JP2008192547A true JP2008192547A (en) 2008-08-21

Family

ID=39752436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027998A Withdrawn JP2008192547A (en) 2007-02-07 2007-02-07 Positive electrode plate, manufacturing method thereof, battery, manufacturing method thereof, vehicle, and battery-mounted equipment

Country Status (1)

Country Link
JP (1) JP2008192547A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668184A (en) * 2009-12-18 2012-09-12 Jx日矿日石金属株式会社 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US20220231333A1 (en) * 2021-01-18 2022-07-21 Global Graphene Group, Inc. Quasi-solid and solid-state electrolyte for lithium-ion and lithium metal batteries and manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
KR101450978B1 (en) * 2009-12-18 2014-10-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
CN102668184A (en) * 2009-12-18 2012-09-12 Jx日矿日石金属株式会社 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US20220231333A1 (en) * 2021-01-18 2022-07-21 Global Graphene Group, Inc. Quasi-solid and solid-state electrolyte for lithium-ion and lithium metal batteries and manufacturing method

Similar Documents

Publication Publication Date Title
JP2008192547A (en) Positive electrode plate, manufacturing method thereof, battery, manufacturing method thereof, vehicle, and battery-mounted equipment
US9837651B2 (en) Electric core for thin film battery
CN101369671B (en) Battery, battery set incorporating the battery and vehicle incorporating the battery set
JP5333576B2 (en) Bipolar secondary battery and manufacturing method thereof
US9350055B2 (en) Electric vehicle propulsion system and method utilizing solid-state rechargeable electrochemical cells
JP2008021614A (en) Electrode for battery
JP2009224239A (en) Electrode for battery
JP2007109636A (en) Electrode for battery
JP2015526859A (en) Sustainable current collector for lithium batteries
CN111799440B (en) Nonaqueous electrolyte secondary battery
JP5515267B2 (en) Nonaqueous electrolyte secondary battery
CN111211323A (en) Soft package lithium ion battery of lithium iron phosphate system and preparation method thereof
JP2016134254A (en) Method of manufacturing all-solid battery
JP2007188747A (en) Lithium ion secondary battery, and battery pack using it
JP5733915B2 (en) Lithium ion secondary battery
JP2013507726A5 (en)
CN111384451A (en) Laminated body
JP5776722B2 (en) Nonaqueous electrolyte secondary battery
JP5118905B2 (en) Electrode active material, electrode, non-aqueous electrolyte secondary battery, vehicle, battery-mounted device, and method for producing electrode active material
CN202019028U (en) Cell core of lithium cell and lithium cell
KR101772416B1 (en) Lithium Secondary Battery Comprising Current Collector Having Graphene Coating Layer
JP5665387B2 (en) Lithium ion secondary battery
JP2019071178A (en) Method of manufacturing power storage element
CN218867198U (en) Battery and electric equipment
WO2013146454A1 (en) Electrode material, all-solid-state lithium secondary battery, and manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511