JP2008188633A - Apparatus and method for manufacturing outer member for constant velocity universal joint - Google Patents

Apparatus and method for manufacturing outer member for constant velocity universal joint Download PDF

Info

Publication number
JP2008188633A
JP2008188633A JP2007025708A JP2007025708A JP2008188633A JP 2008188633 A JP2008188633 A JP 2008188633A JP 2007025708 A JP2007025708 A JP 2007025708A JP 2007025708 A JP2007025708 A JP 2007025708A JP 2008188633 A JP2008188633 A JP 2008188633A
Authority
JP
Japan
Prior art keywords
punch
spherical
mold
slide
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007025708A
Other languages
Japanese (ja)
Inventor
Kuniaki Harada
邦明 原田
Original Assignee
Ntn Corp
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corp, Ntn株式会社 filed Critical Ntn Corp
Priority to JP2007025708A priority Critical patent/JP2008188633A/en
Publication of JP2008188633A publication Critical patent/JP2008188633A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an outer member for constant velocity universal joint excellent in a same axial degree and at the right angle degree between a shaft part and a cup part while avoiding as much as possible generating a core-shifting or an inclination between a punch and a die for forming the cup part at the forging-formation time. <P>SOLUTION: An extrusion molding device in the cup-part 7 includes a lower die 11 having the die 13 and an upper die 12 having the punch 14. In these, the upper die 12 is provided with the punch 14 as an inner die and a slide part holding the punch 14 and inserting the punch 14 into the inner periphery of the die 13 by integrally descending with the punch 14. The slide part is provided with a spherical surface seat 22 and the spherical surface seat 22 is abutted with the punch 14 through a recessed spherical surface 25 and a projected spherical surface 26 mutually formed as supplemental shape. The recessed spherical surface 25 is formed as the spherical surface seat 22 and the projected spherical surface 26 is formed as the punch 14. The recessed spherical surface 25 and the projected spherical surface 26 are constituted so as to relatively be slidable. In other words, with the recessed spherical surface 25 and the projected spherical surface 26, a sliding part 27 slidable of the projected spherical surface 26 to the recessed spherical surface 25, is constituted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、等速自在継手用外方部材、特に軸部を一体に有する等速自在継手用外方部材の製造装置とその製造方法に関する。   The present invention relates to an outer member for a constant velocity universal joint, and more particularly to an apparatus for manufacturing an outer member for a constant velocity universal joint having a shaft portion integrally therewith and a method for manufacturing the same.
自動車や各種産業機械の動力伝達系、例えば前輪駆動車や独立懸架方式の後輪駆動車の駆動軸には、自動車のエンジンから車輪に回転力を等速で伝達する手段として、角度変位のみを許容する固定式等速自在継手と、角度変位および軸方向変位の両方を許容する摺動式等速自在継手が使用されている。   For power transmission systems of automobiles and various industrial machines, such as front wheel drive vehicles and independent suspension type rear wheel drive vehicles, only angular displacement is used as a means to transmit the rotational force from the engine of the vehicle to the wheels at a constant speed. There are used fixed type constant velocity universal joints that allow and sliding type constant velocity universal joints that allow both angular displacement and axial displacement.
前述の駆動軸には、トランスミッションからディファレンシャルに回転駆動力を伝達するプロペラシャフトや、ディファレンシャルから車輪に回転駆動力を伝達するドライブシャフトがある。また、固定式等速自在継手としては、バーフィールド型等速自在継手(BJ)がよく知られており、摺動式等速自在継手としては、ダブルオフセット型等速自在継手(DOJ)が広く知られている。   Examples of the drive shaft include a propeller shaft that transmits a rotational drive force from a transmission to a differential, and a drive shaft that transmits a rotational drive force from a differential to a wheel. In addition, the Barfield type constant velocity universal joint (BJ) is well known as the fixed type constant velocity universal joint, and the double offset type constant velocity universal joint (DOJ) is widely used as the sliding type constant velocity universal joint. Are known.
例えば、BJタイプの固定式等速自在継手は、軸方向に延びる複数のトラック溝が球面状内周面に形成された外方部材(外側継手部材ともいう)と、外方部材のトラック溝と対をなして軸方向に延びるトラック溝が球面状外周面に形成された内方部材(内側継手部材ともいう)と、外方部材のトラック溝と内方部材のトラック溝との間に介在してトルクを伝達する複数のボールと、外方部材の球面状内周面と内方部材の球面状外周面との間に介在してボールを保持するケージとを主要な構成要素として備えている。   For example, a BJ type fixed type constant velocity universal joint includes an outer member (also referred to as an outer joint member) in which a plurality of track grooves extending in the axial direction are formed on a spherical inner peripheral surface, and a track groove of the outer member, A pair of axially extending track grooves are formed between an inner member (also referred to as an inner joint member) formed on a spherical outer peripheral surface, and a track groove of the outer member and a track groove of the inner member. A plurality of balls that transmit torque and a cage that holds the balls interposed between the spherical inner peripheral surface of the outer member and the spherical outer peripheral surface of the inner member as main components. .
また、DOJタイプの摺動式等速自在継手は、軸方向に延びる複数のトラック溝が円筒状内周面に形成された外方部材と、外方部材のトラック溝と対をなして軸方向に延びるトラック溝が球面状外周面に形成された内方部材と、外方部材のトラック溝と内方部材のトラック溝との間に介在してトルクを伝達する複数のボールと、外方部材の円筒状内周面と内方部材の球面状外周面との間に介在してボールを保持するケージとを主要な構成要素として備えている。   In addition, the DOJ type sliding constant velocity universal joint has an axial direction in which a plurality of axially extending track grooves are paired with an outer member in which a cylindrical inner peripheral surface is formed and a track groove of the outer member. An inner member in which a track groove extending in a spherical outer peripheral surface is formed, a plurality of balls that are interposed between the track groove of the outer member and the track groove of the inner member, and transmit the torque, and the outer member And a cage for holding the ball interposed between the cylindrical inner peripheral surface and the spherical outer peripheral surface of the inner member.
これらの等速自在継手における外方部材は、従来、以下の手順で製作されている。まず、素材としてのビレットを熱間鍛造、温間鍛造または冷間鍛造で外方部材の完成品形状あるいは当該完成品に近い形状に成形し、その後、当該成形品にしごき加工(サイジング加工)を施す。また、必要に応じて、この成形品の外周面、内周面および端面を旋削し、熱処理を行うことで、さらには、内周面とトラック溝を研削や焼入れ鋼切削などで仕上げ加工することで完成品を得る。   The outer members of these constant velocity universal joints are conventionally manufactured by the following procedure. First, a billet as a raw material is formed into a finished product shape of the outer member by hot forging, warm forging or cold forging or a shape close to the finished product, and then ironing (sizing processing) is performed on the molded product. Apply. If necessary, the outer peripheral surface, inner peripheral surface and end surface of this molded product are turned and heat treated, and the inner peripheral surface and track grooves are finished by grinding or hardened steel cutting. Get the finished product.
このうち、前鍛造では、棒状素材(ビレット)に対して前方押出し加工が施されて軸部と中実本体部とを一体に有する成形体が形成され、次いで、この成形体に据込み加工を施すことで、中実本体部が押し広げられて据込み部が形成され、この据込み部にさらに後方押出し加工を施すことでカップ部が形成される(例えば、特許文献1を参照)。   Among these, in pre-forging, a rod-shaped material (billet) is subjected to a forward extrusion process to form a molded body integrally having a shaft portion and a solid body portion, and then upsetting is performed on this molded body. By applying, a solid main-body part is expanded and an upsetting part is formed, and a cup part is formed by performing back extrusion processing further on this upsetting part (for example, refer to patent documents 1).
また、同特許文献(特許文献1)には、図8に示すように、カップ部の外側を成形する上部形成ダイ46上に第1リングおよび第2リング48、50を固定すると共に、上型52の上部シュー54にホルダ56をねじ止め固定することで、パンチスリーブ58を有する成形パンチ60を上部シュー54に取り付けた構造の後方押出し成形装置が開示されている。ここで、成形パンチ60の外周に設けられたパンチスリーブ58は、第1リング48の内周面を摺動して成形パンチ60を案内するように構成されており、これにより軸部とカップ部との同軸度を確保するようにしている。
特開平11−179477号公報
Further, in the same patent document (Patent Document 1), as shown in FIG. 8, the first ring and the second rings 48 and 50 are fixed on the upper forming die 46 for molding the outside of the cup portion, and the upper mold A rear extrusion molding apparatus having a structure in which a molding punch 60 having a punch sleeve 58 is attached to the upper shoe 54 by screwing and fixing a holder 56 to the upper shoe 54 of 52 is disclosed. Here, the punch sleeve 58 provided on the outer periphery of the molding punch 60 is configured to guide the molding punch 60 by sliding on the inner peripheral surface of the first ring 48, thereby the shaft portion and the cup portion. The degree of coaxiality is ensured.
JP-A-11-179477
ところで、パンチスリーブ58をガイドリングとしての第1リング48内にスムーズに挿入するためには、パンチスリーブ58と第1リング48との間に、所定寸法の半径方向隙間を設ける必要がある。しかしながら、このガイド部分の隙間があまりに大きいと、当該隙間内で成形パンチ60がダイ46に対して自由に動いてしまい、成形パンチ60とダイ46との芯ずれを招く恐れがある。これではカップ部内周と軸部外周との間で所要の同軸度を満足することは難しい。また当該隙間の大きさによっては、その隙間内で成形パンチ60がダイ46に対して傾く場合がある。この場合、成形パンチ60が既に加工された軸部に対して傾いた状態で成形されるため、かかる成形により得られたカップ部内周の中心軸と軸部の中心軸とでずれが生じる恐れがある。これでは、カップ部と軸部との間で高い直角度を得ることは難しい。   Incidentally, in order to smoothly insert the punch sleeve 58 into the first ring 48 as a guide ring, it is necessary to provide a radial gap of a predetermined dimension between the punch sleeve 58 and the first ring 48. However, if the gap between the guide portions is too large, the molding punch 60 moves freely with respect to the die 46 in the gap, and there is a risk of misalignment between the molding punch 60 and the die 46. In this case, it is difficult to satisfy the required coaxiality between the inner periphery of the cup portion and the outer periphery of the shaft portion. Further, depending on the size of the gap, the forming punch 60 may be inclined with respect to the die 46 in the gap. In this case, since the forming punch 60 is formed in a state of being inclined with respect to the already processed shaft portion, there is a possibility that a deviation occurs between the central axis of the inner periphery of the cup portion and the central axis of the shaft portion obtained by the forming. is there. With this, it is difficult to obtain a high squareness between the cup portion and the shaft portion.
従って、上述の不具合を低減もしくは解消する目的で、ガイド部分の隙間を狭くすることが考えられるが、その場合には以下の新たな不具合が生じる恐れがある。すなわち、成形パンチ60は、通常、プレス機からの加圧力を受ける圧力座と呼ばれる部材と平面を介して当接している。そのため、圧力座(あるいはこれを備えたスライド部分)が傾くことで成形パンチ60もその傾きに倣い、ガイドリングとの間で焼き付きやかじり等が発生する可能性がある。これでは、所定寸法以下にガイド部分の隙間を設定することは困難である。ここで、プレススライド部は、複数の金型、例えば据込み用パンチやカップ部成形用パンチ、あるいはしごき加工用パンチなどを備えるのが通常である。また、その一方で、各成形加工ごとに必要となる荷重が異なるため、プレススライド部に偏荷重が作用することとなり、プレススライド部がベッド部に対して傾き易い。   Therefore, in order to reduce or eliminate the above-described problems, it is conceivable to narrow the gap between the guide portions, but in that case, the following new problems may occur. That is, the molding punch 60 is normally in contact with a member called a pressure seat that receives pressure from a press through a plane. Therefore, when the pressure seat (or the slide portion provided with the pressure seat) is tilted, the molding punch 60 may follow the tilt, and seizure or galling may occur between the pressure ring and the guide ring. In this case, it is difficult to set the gap of the guide portion below a predetermined dimension. Here, the press slide portion is usually provided with a plurality of dies, for example, upsetting punches, cup portion forming punches, or ironing punches. On the other hand, since the load required for each molding process is different, an offset load acts on the press slide portion, and the press slide portion is easily inclined with respect to the bed portion.
以上の事情に鑑み、本発明では、鍛造成形時に、カップ部成形用のパンチとダイとの間で芯ずれあるいは傾きが生じるのを極力避けて、軸部とカップ部との間の同軸度および直角度に優れた等速自在継手用外方部材を提供することを技術的課題とする。   In view of the above circumstances, in the present invention, at the time of forging, avoiding the occurrence of misalignment or inclination between the punch for forming the cup part and the die as much as possible, the coaxiality between the shaft part and the cup part and It is a technical object to provide an outer member for a constant velocity universal joint excellent in perpendicularity.
前記課題を解決するため、本発明は、トルク伝達のための転動体を含む内部部品を収容するカップ部と、カップ部の一端から延びる軸部とを一体に有する等速自在継手用外方部材を鍛造成形により製造する装置であって、後方押出し加工によりカップ部の内側を成形する内型と、カップ部の外側を成形する外型と、内型を保持し、内型を外型の内周に挿入するためのスライド部とを備えたものにおいて、互いに当接しかつ相補形状をなす凸曲面と凹曲面の何れか一方を内型に、他方をスライド部に設け、凸曲面が凹曲面に対して摺動するよう構成したことを特徴とする等速自在継手用外方部材の製造装置を提供する。   In order to solve the above-described problems, the present invention provides an outer member for a constant velocity universal joint that integrally includes a cup portion that houses an internal part including a rolling element for torque transmission and a shaft portion that extends from one end of the cup portion. An inner mold that molds the inside of the cup part by backward extrusion, an outer mold that molds the outside of the cup part, and holds the inner mold, and the inner mold is the inner mold of the outer mold. With a slide part for insertion around the circumference, one of the convex curved surface and the concave curved surface that are in contact with each other and complementary to each other is provided as an inner mold, the other is provided on the slide part, and the convex curved surface is formed into a concave curved surface. Provided is an apparatus for manufacturing an outer member for a constant velocity universal joint, characterized by being configured to slide with respect to the constant velocity universal joint.
このように、本発明は、内型とスライド部とを、相補形状にある凸曲面と凹曲面とを介して当接させ、これにより凸曲面が凹曲面に対して摺動可能に構成した点を特徴とするものである。かかる構成によれば、例えば偏荷重等の影響によりスライド部が所定の姿勢から傾いた場合であっても、相補形状にある凸曲面と凹曲面との間で、傾きに応じて滑りが生じ、内型がスライド部に対して傾動する。そのため、スライド部に保持される内型を、スライド部の傾きによらず所定の姿勢に維持した状態で、素材(中間成形体)に押込むことができる。よって、成形品におけるカップ部と軸部との間の直角度を確保して高品質の等速自在継手用外方部材を製造することが可能となる。   As described above, the present invention is configured such that the inner mold and the slide portion are brought into contact with each other via the convex curved surface and the concave curved surface that are complementary to each other so that the convex curved surface can slide with respect to the concave curved surface. It is characterized by. According to such a configuration, for example, even when the slide portion is tilted from a predetermined posture due to the influence of a biased load or the like, slip occurs between the complementary curved surface and the concave curved surface according to the tilt, The inner mold tilts with respect to the slide part. Therefore, the inner mold held by the slide part can be pushed into the material (intermediate molded body) in a state where the inner mold is maintained in a predetermined posture regardless of the inclination of the slide part. Therefore, it is possible to manufacture a high-quality outer member for a constant velocity universal joint while ensuring a perpendicularity between the cup portion and the shaft portion in the molded product.
スライド部は、例えばスライド部本体と、スライド部本体の移動方向と直交する向きに移動可能な直交スライド部材とで構成し、直交スライド部材と内型の何れか一方に凸曲面を、他方に凹曲面を設けた構成とすることもできる。かかる構成によれば、スライド部本体に対する傾動、および水平移動(直交方向への移動)の組合せに係る動作を内型(例えばパンチ)に与えることができる。従い、押込みが進行するにつれて、例えばスライド部の傾きやその水平方向位置が変化した場合であっても、内型のスライド部に対する位置、姿勢を維持した状態で素材への押込みを続行することができる。従って、カップ部を高精度に押出し成形することができる。また、成形精度が向上することで、成形後、軸部の芯ずれや傾きを矯正するための切削加工を施さずに済み、あるいは切削加工代を大幅に低減することができる。   The slide part is composed of, for example, a slide part main body and an orthogonal slide member that can move in a direction perpendicular to the moving direction of the slide part main body. It can also be set as the structure which provided the curved surface. According to such a configuration, an operation related to a combination of tilting with respect to the slide body and horizontal movement (movement in the orthogonal direction) can be given to the inner mold (for example, punch). Therefore, as the push-in progresses, for example, even when the inclination of the slide part or its horizontal position changes, the push-in to the material can be continued while maintaining the position and posture with respect to the inner-type slide part. it can. Therefore, the cup portion can be extruded with high accuracy. Further, since the forming accuracy is improved, it is not necessary to perform a cutting process for correcting the misalignment or inclination of the shaft after the forming process, or the cutting allowance can be greatly reduced.
相補形状をなす凸曲面および凹曲面は、共に摺接性やその摺動許容量を考慮すれば、部分球面形状をなすことが好ましい。また、凸曲面は、内型の成形側端部を中心とする球面の一部で構成されるものが好ましい。この場合、凸曲面は内型の側に設けられ、かつその曲率半径が内型の軸方向寸法に略等しくなる。もちろん、相補形状をなす凹曲面も同様の曲率半径を有する。   It is preferable that the convex curved surface and the concave curved surface that form complementary shapes are both partially spherical in consideration of the sliding contact property and the allowable sliding amount. Further, it is preferable that the convex curved surface is constituted by a part of a spherical surface centering on the molding side end portion of the inner mold. In this case, the convex curved surface is provided on the inner mold side, and the radius of curvature thereof is substantially equal to the axial dimension of the inner mold. Of course, the concave curved surface having a complementary shape also has a similar radius of curvature.
ここで、図6(a)に示すように、内型100に設けられた凸曲面101の曲率半径φRが、内型100の軸方向寸法Lより小さい場合、角度θ傾いた状態のスライド部から受ける荷重Bの作用線は、傾きがない状態のスライド部から受ける荷重Aの作用線と、内型100の成形側端部102よりもスライド部に近い箇所で交差する。これでは、スライド部から素材へと伝達される荷重のロスが大きくなり、成形には多大な荷重が必要となる。また、荷重の増大は内型等の金型に不要な変形をもたらし、金型精度の低下、ひいては成形精度の低下を招く恐れがある。   Here, as shown in FIG. 6A, when the radius of curvature φR of the convex curved surface 101 provided in the inner mold 100 is smaller than the axial dimension L of the inner mold 100, the sliding portion is tilted by an angle θ. The action line of the received load B intersects with the action line of the load A received from the slide part in a state where there is no inclination at a location closer to the slide part than the molding side end part 102 of the inner mold 100. This increases the loss of the load transmitted from the slide part to the material, and requires a large load for molding. In addition, an increase in load may cause unnecessary deformation of a mold such as an inner mold, which may lead to a decrease in mold accuracy and a decrease in molding accuracy.
また、図6(b)に示すように、凸曲面101の曲率半径φRが、内型100の軸方向寸法Lより大きい場合、角度θ傾いた状態のスライド部から受ける荷重Bの作用線が、傾きがない状態におけるスライド部からの荷重Aの作用線と、凸曲面101から見て成形側端部102よりも遠い箇所で交差する。そのため、曲率半径が小さい場合と比べて、伝達すべき荷重のロスは減少する。しかし、あまりに曲率半径が大きいと、徐々に平面間でスライド部と内型とが当接している状態に近づくため、構成本来の作用(内型の傾動)を得ることが難しくなる。   Further, as shown in FIG. 6B, when the radius of curvature φR of the convex curved surface 101 is larger than the axial dimension L of the inner mold 100, the line of action of the load B received from the slide portion inclined by the angle θ is It intersects with the line of action of the load A from the slide part in a state where there is no inclination at a position farther from the molding-side end part 102 as seen from the convex curved surface 101. Therefore, compared with the case where a curvature radius is small, the loss of the load which should be transmitted decreases. However, if the radius of curvature is too large, it gradually approaches the state where the slide portion and the inner mold are in contact with each other between the planes, making it difficult to obtain the original function (inner mold tilting).
これに対して、図7に示すように、凸曲面101の曲率半径φRを、内型100の軸方向寸法Lに等しくすれば、角度θ傾いた状態のスライド部から受ける荷重Bの作用線が、傾きがない状態におけるスライド部からの荷重Aの作用線と内型100の成形側端部102で交差する。そのため、非常に効率よくプレス部から(スライド部から)の荷重を素材へと伝達することができ、実質的に小さい負荷で上述の鍛造成形が可能となる。   On the other hand, as shown in FIG. 7, if the radius of curvature φR of the convex curved surface 101 is made equal to the axial dimension L of the inner mold 100, the line of action of the load B received from the slide portion inclined by the angle θ is obtained. The line of action of the load A from the slide portion in a state where there is no inclination intersects with the molding-side end portion 102 of the inner mold 100. Therefore, the load from the press part (from the slide part) can be transmitted to the material very efficiently, and the forging described above can be performed with a substantially small load.
また、何れの場合においても、外型と内型の少なくとも何れか一方に、内型の素材への押込みを案内する案内部を設けることができる。例えば、スライド部が直交スライド部材を有する場合、案内部に導入された内型は、案内部の働きにより外型に対して双方の型の中心軸が一致する位置に移動する(芯合わせがなされる)。そしてこの際、内型と摺接する直交スライド部材も内型に倣って同じ方向に移動することとなる。従い、案内部における半径方向隙間を小さく設定することができ、カップ部と軸部との間の同軸度および直角度を向上させることが可能となる。もちろん、互いに摺動可能な凸曲面と凹曲面の働きにより、案内部で焼付きやかじりが発生する恐れもないため、金型の精度維持および寿命向上を図ることも可能となる。   In any case, at least one of the outer mold and the inner mold can be provided with a guide portion that guides the pushing of the inner mold into the material. For example, when the slide part has an orthogonal slide member, the inner mold introduced into the guide part moves to a position where the center axes of both molds coincide with the outer mold by the action of the guide part (centering is performed). ) At this time, the orthogonal slide member that is in sliding contact with the inner mold also moves in the same direction following the inner mold. Accordingly, the radial gap in the guide portion can be set small, and the coaxiality and perpendicularity between the cup portion and the shaft portion can be improved. Of course, there is no possibility of seizure or galling in the guide portion due to the function of the convex curved surface and the concave curved surface slidable with each other, so that it is possible to maintain the accuracy of the mold and improve the life.
以上のように、本発明によれば、鍛造成形時に、カップ部成形用のパンチとダイとの間で芯ずれあるいは傾きが生じるのを極力避けて、軸部とカップ部との間の同軸度および直角度に優れた等速自在継手用の外方部材を低コストに提供することができる。   As described above, according to the present invention, at the time of forging, avoiding the occurrence of misalignment or inclination between the punch for forming the cup part and the die as much as possible, and the coaxiality between the shaft part and the cup part. In addition, an outer member for a constant velocity universal joint excellent in perpendicularity can be provided at a low cost.
以下、本発明の一実施形態を図1〜図5に基づき説明する。なお、以下の説明における『上下』方向は、単に各図における構成要素間の位置関係を容易に理解するために規定したものに過ぎず、製造装置の設置方向や使用態様等を特定するものではない。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. Note that the “up and down” direction in the following description is merely specified for easy understanding of the positional relationship between the components in each figure, and does not specify the installation direction or usage mode of the manufacturing apparatus. Absent.
図4および図5は、本発明に係る製造装置を用いて製造された外方部材を備えた等速自在継手の一形態を示すもので、ここではいわゆるダブルオフセット型の摺動式等速自在継手(DOJ)を例示している。この等速自在継手は、軸方向に延びる複数(6つ)のトラック溝32が円筒状内周面33に円周方向等間隔に形成された外方部材としての外輪31と、外輪31のトラック溝32と対をなして軸方向に延びる複数(6つ)のトラック溝35が球面状外周面36に円周方向等間隔に形成された内方部材としての内輪34と、外輪31のトラック溝32と内輪34のトラック溝35との間に介在してトルクを伝達する複数(6個)のボール37と、外輪31の円筒状内周面33と内輪34の球面状外周面36との間に介在してボール37を保持するケージ38とを備えている。複数のボール37は、ケージ38に形成されたポケット39に収容されて円周方向等間隔に配置されている。   4 and 5 show an embodiment of a constant velocity universal joint including an outer member manufactured by using the manufacturing apparatus according to the present invention. Here, a so-called double offset type sliding constant velocity universal is shown. A joint (DOJ) is illustrated. This constant velocity universal joint includes an outer ring 31 as an outer member in which a plurality of (six) track grooves 32 extending in the axial direction are formed on a cylindrical inner peripheral surface 33 at equal intervals in the circumferential direction, and a track of the outer ring 31. An inner ring 34 as an inner member in which a plurality (six) of track grooves 35 extending in the axial direction in pairs with the grooves 32 are formed on the spherical outer peripheral surface 36 at equal intervals in the circumferential direction, and the track grooves of the outer ring 31 Between a plurality of (six) balls 37 that are interposed between the track grooves 35 of the inner ring 34 and the inner ring 34 and transmit torque, and between the cylindrical inner peripheral surface 33 of the outer ring 31 and the spherical outer peripheral surface 36 of the inner ring 34. And a cage 38 for holding the ball 37 interposed therebetween. The plurality of balls 37 are accommodated in pockets 39 formed in the cage 38 and arranged at equal intervals in the circumferential direction.
このうち、外輪31は、カップ部41と、カップ部41の一端から延びる軸部40とを一体に備えるもので、以下に述べる前鍛造により鍛造成形される。   Among these, the outer ring | wheel 31 is integrally provided with the cup part 41 and the axial part 40 extended from the end of the cup part 41, and is forge-formed by the pre-forging described below.
前鍛造では、前方押出し加工(A)、据込み加工(B)、および後方押出し加工(C)が実施され、完成品としての外輪31に近い形状の鍛造成形品が得られる。また、この実施形態では、続いてしごき加工(D)が行われ、完成品形状をなす外輪31が得られる。   In the front forging, forward extrusion (A), upsetting (B), and backward extrusion (C) are performed, and a forged molded product having a shape close to the outer ring 31 as a finished product is obtained. Further, in this embodiment, ironing (D) is subsequently performed, and the outer ring 31 having a finished product shape is obtained.
(A)前方押出し加工
まず、図1(a)に示す形状の素材(ビレットともいう)1を用意し、この素材1に対して前方押出し加工を施すことで、図1(b)に示すように、中実本体部2と、中実本体部2の一端から延びた軸部3とを一体に有する初期成形体4が鍛造成形される。
(A) Forward Extrusion Processing First, a material (also referred to as a billet) 1 having the shape shown in FIG. 1A is prepared, and the material 1 is subjected to forward extrusion processing, as shown in FIG. In addition, the initial molded body 4 integrally including the solid body portion 2 and the shaft portion 3 extending from one end of the solid body portion 2 is forged.
(B)据込み加工
次に、前方押出し加工(A)で得られた初期成形体4に対して据込み加工を施し、中実本体部2を外径側に圧し拡げることで、図1(c)に示すように、軸部3と、軸部3より大径の中実大径部5とを一体に有する中間成形体6が鍛造成形される。
(B) Upsetting Next, upsetting is performed on the initial molded body 4 obtained by the forward extrusion processing (A), and the solid main body 2 is pressed and expanded to the outer diameter side, whereby FIG. As shown in c), the intermediate formed body 6 integrally having the shaft portion 3 and the solid large-diameter portion 5 larger in diameter than the shaft portion 3 is forged.
(C)後方押出し加工
そして、据込み加工(B)で得られた中間成形体6に対して後方押出し加工を施すことで、軸部3とカップ部7とを一体に有する前鍛造完了品8(図1(d)を参照)を成形する。図2はかかる押出し加工に用いる装置、およびこの装置内に配置された素材(中間成形体6)の断面図を示している。
(C) Back Extrusion Process And, by performing a back extrusion process on the intermediate molded body 6 obtained by the upsetting process (B), a pre-forged product 8 that integrally includes the shaft part 3 and the cup part 7. (See FIG. 1 (d)). FIG. 2 shows a cross-sectional view of an apparatus used for the extrusion process and a material (intermediate molded body 6) arranged in the apparatus.
この後方押出し成形装置は、大別して下型11と上型12とからなる。このうち、下型11には、中間成形体6の外側を保持・拘束し、軸部3およびカップ部7の外側を成形する外型としてのダイ13が設けられる。また、上型12には、ダイ13に向けて接近させ、中実大径部5に押込むことで、カップ部7の内側を成形する内型としてのパンチ14が設けられる。   This rear extrusion molding apparatus is roughly divided into a lower mold 11 and an upper mold 12. Among these, the lower mold 11 is provided with a die 13 as an outer mold that holds and restrains the outside of the intermediate molded body 6 and molds the outside of the shaft portion 3 and the cup portion 7. Further, the upper die 12 is provided with a punch 14 as an inner die for molding the inside of the cup portion 7 by being brought close to the die 13 and being pushed into the solid large diameter portion 5.
下型11について詳述すると、固定型としての下型11は、ダイ13の他、パンチ14の中実大径部5への押込みを案内するためのガイドリング15を備える。このガイドリング15は、ダイ13を内側に保持するダイリング16上に載置され、ダイリング16のさらに外側に配設される下部ダイホルダー17にダイ押え部18をボルト19で固定することで、下部ダイホルダー17とダイ押え部18との間に挟持固定される。ここで、ガイドリング15の内周面15aとこの面に対向し案内されるパンチ14の外周面14aとの間の半径方向隙間の大きさは、スライド部の傾きの程度や、被加工品(中間成形体6)ごとの寸法のばらつき等を考慮して設定される。   The lower die 11 will be described in detail. The lower die 11 as a fixed die includes a guide ring 15 for guiding the pressing of the punch 14 into the solid large-diameter portion 5 in addition to the die 13. The guide ring 15 is placed on a die ring 16 that holds the die 13 inside, and a die holding portion 18 is fixed to the lower die holder 17 disposed further outside the die ring 16 with a bolt 19. The lower die holder 17 and the die presser 18 are clamped and fixed. Here, the size of the gap in the radial direction between the inner peripheral surface 15a of the guide ring 15 and the outer peripheral surface 14a of the punch 14 opposed to the surface is determined by the degree of inclination of the slide portion, the workpiece ( It is set in consideration of the dimensional variation for each intermediate molded body 6).
上型12は、内型としてのパンチ14の他、このパンチ14を保持し、パンチ14と一体的に下降することで、パンチ14をダイ13の内周に挿入するためのスライド部とを備える。ここでスライド部は、パンチ14を取り付けるための上部ダイホルダー20と、上部ダイホルダー20の内周に設けられ、プレス荷重を受けるための圧力座21と、同じく上部ダイホルダー20の内周に設けられ、圧力座21とパンチ14との間に介在する球面座22とを主に有する。ここでは、パンチ押え部23をボルト24で上部ダイホルダー20に固定することにより、パンチ14が球面座22とパンチ押え部23との間に挟持固定される。   In addition to the punch 14 as an inner mold, the upper mold 12 includes a slide portion for holding the punch 14 and lowering it integrally with the punch 14 to insert the punch 14 into the inner periphery of the die 13. . Here, the slide portion is provided on the inner periphery of the upper die holder 20 for attaching the punch 14, the pressure seat 21 for receiving a press load, and the inner periphery of the upper die holder 20. And mainly includes a spherical seat 22 interposed between the pressure seat 21 and the punch 14. Here, the punch 14 is clamped between the spherical seat 22 and the punch presser 23 by fixing the punch presser 23 to the upper die holder 20 with the bolt 24.
球面座22とパンチ14とは、互いに相補形状をなす凹球面25と凸球面26を介して当接している。この実施形態では、凹球面25が球面座22に形成され、凸球面26がパンチ14に形成される。これら凹球面25と凸球面26とは相対的に摺動可能なよう構成される。言い換えると、凹球面25と凸球面26とで、凸球面26を凹球面25に対して摺動可能とする摺動部27が構成される。この実施形態では、凸球面26は、パンチ14の成形側端部を中心とする球面の一部で構成される。そのため、凸球面26はパンチ14の側に設けられると共に、その曲率半径SφAは、パンチ14の軸方向寸法に等しい。   The spherical seat 22 and the punch 14 are in contact with each other via a concave spherical surface 25 and a convex spherical surface 26 that are complementary to each other. In this embodiment, a concave spherical surface 25 is formed on the spherical seat 22 and a convex spherical surface 26 is formed on the punch 14. The concave spherical surface 25 and the convex spherical surface 26 are configured to be relatively slidable. In other words, the concave spherical surface 25 and the convex spherical surface 26 constitute a sliding portion 27 that allows the convex spherical surface 26 to slide relative to the concave spherical surface 25. In this embodiment, the convex spherical surface 26 is constituted by a part of a spherical surface centering on the molding side end portion of the punch 14. Therefore, the convex spherical surface 26 is provided on the punch 14 side, and the curvature radius SφA is equal to the axial dimension of the punch 14.
また、球面座22と、球面座22を内側に収容する上部ダイホルダー20との間には、半径方向の隙間28が設けられており、球面座22が上部ダイホルダー20に対して水平方向にスライド可能なように構成されている。言い換えると、球面座22が、上部ダイホルダー20のスライド方向に直交する向きに移動可能な直交スライド部材として機能する。なお、パンチ押え部23と、パンチ押え部23に挿入されるパンチ14との間には、ガイドリング15の内周面15aとパンチ14の外周面14aとの間の半径方向隙間と同程度の隙間が設けられており、ガイドリング15によるパンチ14の水平移動を妨げないようになっている。   In addition, a radial gap 28 is provided between the spherical seat 22 and the upper die holder 20 that accommodates the spherical seat 22 inside, and the spherical seat 22 is in a horizontal direction with respect to the upper die holder 20. It is configured to be slidable. In other words, the spherical seat 22 functions as an orthogonal slide member that can move in a direction orthogonal to the slide direction of the upper die holder 20. It should be noted that the gap between the punch retainer 23 and the punch 14 inserted into the punch retainer 23 is approximately the same as the radial clearance between the inner peripheral surface 15 a of the guide ring 15 and the outer peripheral surface 14 a of the punch 14. A gap is provided so that the horizontal movement of the punch 14 by the guide ring 15 is not hindered.
以上の構成をなす成形装置を用いたカップ部7の押出し成形を、図3に基づき説明する。ここで、図3左側は押出し成形前、右側は押出し成形完了時における断面図をそれぞれ示している。まず、図3左側に示す位置までパンチ14を備えた上型12を下降させ、下型11に設けたガイドリング15内にパンチ14を挿入する。この際、ガイドリング15の働きにより、パンチ14の中心軸がダイ13のそれと合致する位置にまでパンチ14が案内(水平移動)され、これによりパンチ14とダイ13との間で芯合わせが行われる。また、凹球面25を介してパンチ14と当接している球面座22が、ガイドリング15によりパンチ14が案内された分だけ水平方向に移動する。   Extrusion molding of the cup portion 7 using the molding apparatus having the above configuration will be described with reference to FIG. Here, the left side of FIG. 3 shows a cross-sectional view before extrusion molding, and the right side shows a cross-sectional view when extrusion molding is completed. First, the upper die 12 provided with the punch 14 is lowered to the position shown on the left side of FIG. 3, and the punch 14 is inserted into the guide ring 15 provided on the lower die 11. At this time, the guide ring 15 causes the punch 14 to be guided (horizontally moved) to a position where the central axis of the punch 14 coincides with that of the die 13, thereby aligning the center between the punch 14 and the die 13. Is called. Further, the spherical seat 22 that is in contact with the punch 14 via the concave spherical surface 25 moves in the horizontal direction by the amount that the punch 14 is guided by the guide ring 15.
そして、ガイドリング15の案内下でさらにパンチ14を下降させ、ダイ13に拘束される中実大径部5にかかるパンチ14を押込む。この際、プレス機からの偏荷重等により、上部ダイホルダー20等からなるスライド部が所定の姿勢から傾く場合、その傾斜角に応じて、摺動部27を構成する凸球面26が凹球面25に対して摺動する。これにより、凸球面26を有するパンチ14が、その成形側端部を基点として凹球面25を有する球面座22、および球面座22を備えたスライド部に対して回転傾動する。よって、ダイ13に対する同軸度、および直角度が維持された状態でパンチ14の中実大径部5に対する押込みが実施され、カップ部7が押出し成形される。図3右側は、カップ部7の押出し成形が完了する位置までパンチ14を下降し終えた状態を示している。   Then, the punch 14 is further lowered under the guidance of the guide ring 15, and the punch 14 applied to the solid large-diameter portion 5 restrained by the die 13 is pushed. At this time, when the slide portion made of the upper die holder 20 or the like is tilted from a predetermined posture due to an offset load from the press machine, the convex spherical surface 26 constituting the sliding portion 27 corresponds to the concave spherical surface 25 according to the tilt angle. Slide against. As a result, the punch 14 having the convex spherical surface 26 rotates and tilts with respect to the spherical seat 22 having the concave spherical surface 25 and the slide portion including the spherical seat 22 with the molding side end as a base point. Therefore, the punch 14 is pushed into the solid large-diameter portion 5 while maintaining the coaxiality and squareness with respect to the die 13, and the cup portion 7 is extruded. The right side of FIG. 3 shows a state where the punch 14 has been lowered to the position where the extrusion molding of the cup portion 7 is completed.
(D)しごき加工
上述のようにして図1(d)に示す前鍛造完了品8を成形した後、例えば図示は省略するが、しごき用パンチ、およびしごき用ダイスを用いて前鍛造完了品8、特にカップ部7にしごき加工を施す。これにより、カップ部7が所定の形状寸法に仕上げられる。また、この際、しごき用パンチの外周に、成形すべきトラック溝32および円筒状内周面33(図4を参照)に対応する形状の成形部を設けておくことで、カップ部7のしごき成形と共に、トラック溝32および円筒状内周面33がカップ部7の内側に成形される。
(D) Ironing process After forming the pre-forging completed product 8 shown in FIG. 1D as described above, for example, although illustration is omitted, the pre-forging completed product 8 using the ironing punch and the ironing die is used. Particularly, ironing is applied to the cup portion 7. Thereby, the cup part 7 is finished to a predetermined shape dimension. At this time, the ironing of the cup part 7 is provided by providing a molding part having a shape corresponding to the track groove 32 to be molded and the cylindrical inner peripheral surface 33 (see FIG. 4) on the outer periphery of the ironing punch. Together with the molding, the track groove 32 and the cylindrical inner peripheral surface 33 are molded inside the cup portion 7.
以上の前鍛造およびしごき加工を施すことにより完成品としての外輪31が得られる。なお、ここでは、しごき加工完了品をもって完成品としての外輪31とした場合を例示したが、必要に応じて、仕上げ研削や熱処理を施しても構わない。   The outer ring 31 as a finished product is obtained by performing the above forging and ironing. In addition, although the case where the ironing finished product is used as the outer ring 31 as a finished product is illustrated here, finish grinding or heat treatment may be performed as necessary.
このように、スライド部を構成する球面座22との間に摺動部27を設け、球面座22に対して傾動可能としたパンチ14を用いてカップ部7の成形を行うことで、スライド部(上部ダイホルダー20や球面座22など)が正規の姿勢から傾いた場合であっても、互いに当接しかつ相補形状にある凸球面26と凹球面25との間で、その傾きに応じて滑りが生じる。そのため、スライド部に保持されるパンチ14を、スライド部の傾きに倣わせることなく、中間成形体6に押込むことができる。従い、前鍛造完了品8におけるカップ部7と軸部3との間の直角度を維持して高品質の等速自在継手用外方部材(外輪31)を製造することができる。   Thus, by providing the sliding portion 27 between the spherical seat 22 constituting the sliding portion and forming the cup portion 7 using the punch 14 that can be tilted with respect to the spherical seat 22, the sliding portion is formed. Even when the upper die holder 20 or the spherical seat 22 is tilted from the normal posture, it slides according to the tilt between the convex spherical surface 26 and the concave spherical surface 25 that are in contact with each other and in a complementary shape. Occurs. Therefore, the punch 14 held by the slide portion can be pushed into the intermediate molded body 6 without following the inclination of the slide portion. Accordingly, it is possible to manufacture a high-quality outer member for the constant velocity universal joint (outer ring 31) while maintaining the perpendicularity between the cup portion 7 and the shaft portion 3 in the pre-forged product 8.
また、この実施形態では、凹球面25を有する球面座22と上部ダイホルダー20との間に半径方向の隙間28を設け、球面座22を、上部ダイホルダー20のスライド方向に対して直交する向き(ここでは水平方向)に移動可能とした。このように、パンチ14を球面座22に対して傾動可能とし、かつ球面座22を上部ダイホルダー20に対して水平移動可能とすることで、パンチ14の傾動と水平移動との組合せに係る動作をパンチ14に与えることができる。これにより、上部ダイホルダー20(を有するスライド部本体)の傾きの大きさやその変動量に応じて、パンチ14を適正な位置および姿勢で中実大径部5に押込むことができる。そのため、軸部3との間で同軸度や直角度に優れた高精度なカップ部7を成形することが可能となる。また、成形精度が向上することで、例えば成形後、軸部3の芯ずれや傾きを矯正するため切削加工を施さずに済み、あるいは切削加工代を大幅に低減することができる。   In this embodiment, a radial gap 28 is provided between the spherical seat 22 having the concave spherical surface 25 and the upper die holder 20, and the spherical seat 22 is oriented in a direction orthogonal to the sliding direction of the upper die holder 20. It is possible to move in the horizontal direction. Thus, the punch 14 can be tilted with respect to the spherical seat 22, and the spherical seat 22 can be moved horizontally with respect to the upper die holder 20, whereby the operation related to the combination of tilt and horizontal movement of the punch 14 is performed. Can be applied to the punch 14. Thereby, the punch 14 can be pushed into the solid large-diameter portion 5 at an appropriate position and posture according to the magnitude of the inclination of the upper die holder 20 (the slide portion main body having the upper die holder 20) and its fluctuation amount. Therefore, it is possible to mold a highly accurate cup portion 7 that is excellent in coaxiality and squareness with the shaft portion 3. Further, by improving the molding accuracy, for example, after the molding, it is not necessary to perform a cutting process to correct the misalignment or inclination of the shaft portion 3, or the machining cost can be greatly reduced.
また、この実施形態では、凸球面26を、パンチ14の成形側端部を中心とする半径SφAの球面の一部で構成した。このように、凸球面26をパンチ14の側に設け、かつその曲率半径SφAをパンチ14の軸方向寸法に等しくすることで、圧力座21ひいては球面座22から受ける荷重の作用線と、傾きがない状態における球面座22からの荷重の作用線とが、パンチ14の成形側端部で常に交差する。そのため、非常に効率よく圧力座21から(球面座22から)の荷重を素材への押込み力として使用することができ、多大な負荷を要することなくカップ部7を成形することができる。また、荷重伝達時のロスが少ないことから、パンチ14に不要な変形力を与えることもなく、あるいはガイドリング15との摺動摩耗も小さくて済む。そのため、成形精度に優れたカップ部7の押出し加工を安定して継続実施することが可能となる。   In this embodiment, the convex spherical surface 26 is constituted by a part of a spherical surface having a radius SφA centering on the molding side end of the punch 14. Thus, by providing the convex spherical surface 26 on the punch 14 side and making its radius of curvature SφA equal to the axial dimension of the punch 14, the action line of the load received from the pressure seat 21, and hence the spherical seat 22, and the inclination are increased. The line of action of the load from the spherical seat 22 in the absence state always intersects at the molding side end of the punch 14. Therefore, the load from the pressure seat 21 (from the spherical seat 22) can be used as the pushing force into the material very efficiently, and the cup portion 7 can be molded without requiring a great load. Further, since there is little loss during load transmission, unnecessary deformation force is not applied to the punch 14 or sliding wear with the guide ring 15 is small. Therefore, it becomes possible to carry out the extrusion process of the cup part 7 excellent in molding accuracy stably and continuously.
また、この実施形態では、下型11に、パンチ14の中間成形体6への押込みを案内するガイドリング15(案内部)を設けるようにしたので、ガイドリング15の内側に導入したパンチ14を球面座22と共に、ダイ13との間で同軸となる位置まで水平移動させる(案内する)ことができる。そしてこの位置で、傾きに応じてパンチ14が傾動した状態で中間成形体6への押込みがなされる。このように、球面座22を水平方向に移動可能に構成し、かつガイドリング15を設けるようにすれば、ガイドリング15とパンチ14との間の半径方向隙間を小さく設定することができ、カップ部7と軸部3との間の同軸度および直角度をさらに向上させることが可能となる。特に、この実施形態のように、パンチ14が傾動可能でかつ水平移動可能に構成されている場合、ガイドリング15との間で焼付きやかじりが発生する恐れも非常に少ないため、これら成形金型の精度維持および寿命向上を図ることも可能となる。   In this embodiment, since the lower die 11 is provided with the guide ring 15 (guide portion) for guiding the pressing of the punch 14 into the intermediate molded body 6, the punch 14 introduced inside the guide ring 15 is provided. Together with the spherical seat 22, it can be horizontally moved (guided) to a position coaxial with the die 13. At this position, the punch 14 is pushed into the intermediate molded body 6 in a state where the punch 14 is tilted according to the tilt. Thus, if the spherical seat 22 is configured to be movable in the horizontal direction and the guide ring 15 is provided, the radial gap between the guide ring 15 and the punch 14 can be set small, and the cup It becomes possible to further improve the coaxiality and perpendicularity between the portion 7 and the shaft portion 3. In particular, as in this embodiment, when the punch 14 is configured to be tiltable and horizontally movable, there is very little possibility of seizure or galling with the guide ring 15, so these molding metals It is also possible to maintain the accuracy of the mold and improve the service life.
以上、本発明の一実施形態に係る等速自在継手用外方部材(外輪31)の製造装置およびその使用方法(製造方法)を説明したが、もちろん、これに限定されることなく、上記以外の構成および方法を採ることも可能である。   As mentioned above, although the manufacturing apparatus and the usage method (manufacturing method) of the outer member (outer ring 31) for constant velocity universal joints which concern on one Embodiment of this invention were demonstrated, of course, it is not limited to this, Other than the above It is also possible to adopt the following configuration and method.
例えば上記実施形態では、摺動部27を、一対の凹球面25と凸球面26とで構成した場合を説明したが、必ずしもこの形態に限るものではない。互いに相補形状をなすと共に一方の面が他方の面に対して摺動し、これによりパンチ14が球面座22に対して傾動可能である限りにおいて、任意形状の凹曲面と凸曲面とを採用することができる。なお、相補形状をなすことを条件としているのは、パンチ14が球面座22からの荷重をこれら凹曲面と凸曲面を介して受けることから、その当接(摺動)面積をある程度確保する必要があることによる。もちろん、上述の条件を満たす限りにおいて、凸曲面の形状と凹曲面の形状とが完全に一致することは求めない。   For example, in the above-described embodiment, the case where the sliding portion 27 is configured by a pair of concave spherical surface 25 and convex spherical surface 26 has been described, but the present invention is not necessarily limited to this configuration. As long as they are complementary to each other and one surface slides with respect to the other surface, so that the punch 14 can be tilted with respect to the spherical seat 22, an arbitrarily shaped concave curved surface and convex curved surface are adopted. be able to. Note that the complementary shape is required because the punch 14 receives the load from the spherical seat 22 through the concave curved surface and the convex curved surface, so that it is necessary to secure a certain contact (sliding) area. Because there is. Of course, as long as the above-described conditions are satisfied, it is not required that the shape of the convex curved surface and the shape of the concave curved surface completely match.
また、上記実施形態では、凸球面26をパンチ14の側に、凹球面25を球面座22の側にそれぞれ設けた場合を説明したが、特にこの態様に限る必要はない。例えば凹球面25をパンチ14の側に、凸球面26を球面座22の側に設けることによっても摺動部27を構成することができる。   In the above embodiment, the case where the convex spherical surface 26 is provided on the punch 14 side and the concave spherical surface 25 is provided on the spherical seat 22 side has been described. However, the present invention is not particularly limited to this mode. For example, the sliding portion 27 can also be configured by providing the concave spherical surface 25 on the punch 14 side and the convex spherical surface 26 on the spherical seat 22 side.
また、上記実施形態では、スライド部をなす上型12のうち、球面座22を除く部分(図示した構成要素でいえば上部ダイホルダー20と圧力座21とパンチ押え部23、およびボルト24)でスライド部本体を構成した場合を例示したが、かかる構成は任意である。パンチ14を保持しかつ一体的に上下動可能である限りにおいて、あるいはパンチ14との間に摺動部27を形成する部材(ここでは球面座22)が、パンチ14と一体的に水平移動可能である限りにおいて、種々の構成を採ることができる。   Moreover, in the said embodiment, in the upper mold | type 12 which makes a slide part, in the part (The upper die holder 20, the pressure seat 21, the punch pressing part 23, and the volt | bolt 24 in the component shown in figure) except the spherical seat 22. Although the case where the slide part main body was comprised was illustrated, this structure is arbitrary. As long as the punch 14 is held and can be moved up and down integrally, or a member (here, the spherical seat 22) that forms a sliding portion 27 between the punch 14 and the punch 14 can be moved horizontally with the punch 14. As long as it is, various configurations can be adopted.
同様に、下型11についても、外型としてのダイ13を備える限りにおいて任意の構成が可能である。例えば、パンチ14の成形側端部が押込みを開始するまでにかかるパンチ14を案内可能な構成を有するのであれば、特にガイドリング15としての形状を保つ必要はない。案内面(内周面15a)をダイ13と一体に設けた構成や、ダイリング16と一体に設けた構成、あるいはダイ押え部18と一体に設けた構成などが採用可能である。   Similarly, the lower mold 11 can have any configuration as long as it includes the die 13 as an outer mold. For example, if the molding side end of the punch 14 has a configuration capable of guiding the punch 14 until the pressing starts, the shape of the guide ring 15 does not need to be maintained. A configuration in which the guide surface (inner peripheral surface 15a) is provided integrally with the die 13, a configuration provided integrally with the die ring 16, a configuration provided integrally with the die pressing portion 18, or the like can be employed.
なお、以上の説明では、前鍛造として、前方押出し加工(A)、据込み加工(B)、および後方押出し加工(C)を順に実施する場合を例示したが、本発明に係る製造方法は、この工程に限るものではない。軸部3と中実大径部5とを一体に有する中間成形体6に対して後方押出し加工を施す限りにおいて、中間成形体6の成形方法は任意である。   In addition, in the above description, the case where the forward extrusion (A), the upsetting (B), and the backward extrusion (C) are sequentially performed as the pre-forging is illustrated, but the manufacturing method according to the present invention is It is not restricted to this process. As long as the intermediate molded body 6 integrally having the shaft portion 3 and the solid large-diameter portion 5 is subjected to backward extrusion, the molding method of the intermediate molded body 6 is arbitrary.
また、以上の説明では、いわゆるダブルオフセット型の摺動式等速自在継手(DOJ)の外方部材に本発明を適用した場合を説明したが、本発明は、上記構成に限らず、他の構成をなす等速自在継手用の外方部材にも適用可能である。例えば、摺動式等速自在継手であれば、ボールに代えてローラを介在させたいわゆるトリポード型等速自在継手、あるいはバーフィールド型等速自在継手に代表される固定式等速自在継手用の外方部材にも本発明を適用することも可能である。   In the above description, the case where the present invention is applied to the outer member of a so-called double offset type sliding constant velocity universal joint (DOJ) has been described. However, the present invention is not limited to the above-described configuration. The present invention can also be applied to an outer member for a constant velocity universal joint having a configuration. For example, in the case of a sliding type constant velocity universal joint, a so-called tripod type constant velocity universal joint in which a roller is interposed instead of a ball or a fixed type constant velocity universal joint represented by a barfield type constant velocity universal joint is used. The present invention can also be applied to the outer member.
本発明の一実施形態に係る等速自在継手用外方部材の前鍛造工程に係る素材の形態変化を概念的に示す側面図であって、(a)は前鍛造前の素材の側面図、(b)は前方押出し加工によって得られた初期成形体の側面図、(c)は据込み加工によって得られた中間成形体の側面図、(d)は後方押出し加工によって得られた前鍛造完了品の一部断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a side view which shows notionally the form change of the raw material which concerns on the pre-forging process of the outer member for constant velocity universal joints which concerns on one Embodiment of this invention, (a) is a side view of the raw material before pre-forging, (B) is a side view of an initial molded body obtained by forward extrusion, (c) is a side view of an intermediate molded body obtained by upsetting, and (d) is a completion of pre-forging obtained by backward extrusion. It is a partial sectional view of goods. 後方押出し加工に係る成形装置の断面図である。It is sectional drawing of the shaping | molding apparatus which concerns on back extrusion. 後方押出し加工を概念的に示す断面図である。It is sectional drawing which shows a back extrusion process notionally. 本発明の一実施形態に係る等速自在継手を示す断面図であって、図5のB−O−B線に沿う断面図である。It is sectional drawing which shows the constant velocity universal joint which concerns on one Embodiment of this invention, Comprising: It is sectional drawing which follows the BOB line of FIG. 本発明の一実施形態に係る等速自在継手を示す断面図であって、図4のA−A線に沿う断面図である。It is sectional drawing which shows the constant velocity universal joint which concerns on one Embodiment of this invention, Comprising: It is sectional drawing which follows the AA line of FIG. (a)は、内型に設けた凸曲面の曲率半径を内型の軸方向寸法より小さくした場合の荷重の作用方向の変化を説明する図、(b)は、内型に設けた凸曲面の曲率半径を内型の軸方向寸法より大きくした場合の荷重の作用方向の変化を説明する図である。(A) is a figure explaining the change of the acting direction of a load when the curvature radius of the convex curve provided in the inner mold is made smaller than the axial dimension of the inner mold, and (b) is the convex curve provided in the inner mold. It is a figure explaining the change of the acting direction of a load at the time of making the curvature radius of this larger than the axial direction dimension of an inner type | mold. 内型に設けた凸曲面の曲率半径を内型の軸方向寸法と一致させた場合の荷重の作用方向の変化を説明する図である。It is a figure explaining the change of the action direction of a load at the time of making the curvature radius of the convex curve provided in the inner mold | type correspond with the axial direction dimension of an inner mold | type. 従来の後方押出し加工に係る成形装置の断面図である。It is sectional drawing of the shaping | molding apparatus which concerns on the conventional back extrusion process.
符号の説明Explanation of symbols
1 素材
3 軸部
5 中実大径部
6 中間成形体
7 カップ部
8 前鍛造完了品
11 下型
12 上型
13 ダイ
14 パンチ
15 ガイドリング
22 球面座
25 凹球面
26 凸球面
27 摺動部
28 半径方向隙間
31 等速自在継手用外方部材
34 内輪部材
37 ボール
40 軸部
41 カップ部
100 内型
101 凸曲面
102 成形側端部
DESCRIPTION OF SYMBOLS 1 Material 3 Shaft part 5 Solid large diameter part 6 Intermediate molded object 7 Cup part 8 Pre-forging completed product 11 Lower die 12 Upper die 13 Die 14 Punch 15 Guide ring 22 Spherical seat 25 Concave spherical surface 26 Convex spherical surface 27 Sliding part 28 Radial gap 31 Outer member 34 for constant velocity universal joint Inner ring member 37 Ball 40 Shaft part 41 Cup part 100 Inner mold 101 Convex curve 102 Molding side end part

Claims (5)

  1. トルク伝達のための転動体を含む内部部品を収容するカップ部と、該カップ部の一端から延びる軸部とを一体に有する等速自在継手用外方部材を鍛造成形により製造する装置であって、後方押出し加工により前記カップ部の内側を成形する内型と、前記カップ部の外側を成形する外型と、前記内型を保持し、前記内型を前記外型の内周に挿入するためのスライド部とを備えたものにおいて、
    互いに当接しかつ相補形状をなす凸曲面と凹曲面の何れか一方を前記内型に、他方を前記スライド部に設け、前記凸曲面が前記凹曲面に対して摺動するよう構成したことを特徴とする等速自在継手用外方部材の製造装置。
    An apparatus for manufacturing an outer member for a constant velocity universal joint by integrally forming a cup portion containing an internal part including a rolling element for torque transmission and a shaft portion extending from one end of the cup portion. An inner mold for molding the inner side of the cup part by backward extrusion, an outer mold for molding the outer side of the cup part, and holding the inner mold, and inserting the inner mold into the inner periphery of the outer mold With a slide part of
    One of a convex curved surface and a concave curved surface that are in contact with each other and have a complementary shape is provided on the inner mold and the other is provided on the slide portion, and the convex curved surface is configured to slide with respect to the concave curved surface. An apparatus for manufacturing an outer member for a constant velocity universal joint.
  2. 前記スライド部を、スライド部本体と、該スライド部本体の移動方向と直交する向きに移動可能な直交スライド部材とで構成し、該直交スライド部材と前記内型の何れか一方に前記凸曲面を、他方に前記凹曲面を設けた請求項1記載の等速自在継手用外方部材の製造装置。   The slide part is composed of a slide part main body and an orthogonal slide member movable in a direction orthogonal to the moving direction of the slide part main body, and the convex curved surface is provided on either the orthogonal slide member or the inner mold. The apparatus for manufacturing an outer member for a constant velocity universal joint according to claim 1, wherein the concave curved surface is provided on the other side.
  3. 前記凸曲面が、前記内型の成形側端部を中心とする球面の一部で構成されている請求項1記載の等速自在継手用外方部材の製造装置。   The manufacturing apparatus of the outer member for constant velocity universal joints of Claim 1 with which the said convex curved surface is comprised by a part of spherical surface centering on the shaping | molding side edge part of the said inner mold | type.
  4. 前記外型と前記内型の少なくとも何れか一方に設けられ、前記内型の前記外型への挿入を案内する案内部をさらに備えた請求項1記載の等速自在継手用外方部材の製造装置。   2. The outer member for a constant velocity universal joint according to claim 1, further comprising a guide portion that is provided on at least one of the outer mold and the inner mold and guides insertion of the inner mold into the outer mold. apparatus.
  5. 請求項1記載の製造装置を用いて前記カップ部を押出し成形することで、前記カップ部と前記軸部との一体品を得る、等速自在継手用外方部材の製造方法。   The manufacturing method of the outer member for constant velocity universal joints which obtains the integral product of the said cup part and the said axial part by extruding the said cup part using the manufacturing apparatus of Claim 1.
JP2007025708A 2007-02-05 2007-02-05 Apparatus and method for manufacturing outer member for constant velocity universal joint Withdrawn JP2008188633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025708A JP2008188633A (en) 2007-02-05 2007-02-05 Apparatus and method for manufacturing outer member for constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025708A JP2008188633A (en) 2007-02-05 2007-02-05 Apparatus and method for manufacturing outer member for constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2008188633A true JP2008188633A (en) 2008-08-21

Family

ID=39749238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025708A Withdrawn JP2008188633A (en) 2007-02-05 2007-02-05 Apparatus and method for manufacturing outer member for constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2008188633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861847A (en) * 2011-07-06 2013-01-09 江苏威鹰机械有限公司 Warm forging finish-forging die of rzeppa universal joint bell housing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861847A (en) * 2011-07-06 2013-01-09 江苏威鹰机械有限公司 Warm forging finish-forging die of rzeppa universal joint bell housing

Similar Documents

Publication Publication Date Title
US9289814B2 (en) Spur toothing on a coupling element for transmitting torques
CN103917795B (en) The welding method and outside joint member of the outside joint member of constant-speed universal coupling
US8635775B2 (en) Process for manufacturing a bearing ring member as a constituent of a rolling bearing unit for wheel support
JP5138449B2 (en) Constant velocity universal joint
US6877350B2 (en) Hub member and shaft journal assembly and method
US8808097B2 (en) Fixed type constant velocity universal joint
KR101195279B1 (en) Hub unit, rolling bearing device, producing method for rolling bearing device, and assembling device and assembling method for rolling bearing device
US8800341B2 (en) Ball screw for producing a threaded nut of a ball screw drive
JP5882172B2 (en) Torque transmission device, method for manufacturing a component having two functional areas for transmitting torque, and joint shaft
EP2599640B1 (en) Bearing unit and method for producing a raceway ring member for a bearing unit
JP2009274515A (en) Method for machining wheel bearing device
JP2012057696A (en) External joint member of constant velocity universal joint and friction pressure welding method thereof
JP6786597B2 (en) Methods and equipment for manufacturing internal cooling valves for internal combustion engines and internal cooling valves for internal combustion engines
CN101910660B (en) Roller bearing retainer, needle roller bearing, and method of producing roller bearing retainer
US20030168126A1 (en) Outer ring member for constant velocity joint and method of manufacturing the member
JP2011112117A (en) Stationary constant-velocity universal joint
JP4644072B2 (en) Tube expansion tool
CN101389424B (en) Process for manufacturing outer ring member for constant-velocity joint
JP6316659B2 (en) Method for manufacturing outer joint member of constant velocity universal joint and outer joint member
JP2010529383A (en) Method of manufacturing a rolling bearing without machining
JP3060340B2 (en) Rotary constant velocity joint
GB2346671A (en) Constant velocity joint
US9839291B2 (en) Connecting rod and double reclining mechanism
EP2388490B1 (en) Outer joint member for fixed constant velocity universal joint
EP1705395B1 (en) Fixed-type constant-velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406