JP2008183627A - Surface coated tool - Google Patents

Surface coated tool Download PDF

Info

Publication number
JP2008183627A
JP2008183627A JP2007016329A JP2007016329A JP2008183627A JP 2008183627 A JP2008183627 A JP 2008183627A JP 2007016329 A JP2007016329 A JP 2007016329A JP 2007016329 A JP2007016329 A JP 2007016329A JP 2008183627 A JP2008183627 A JP 2008183627A
Authority
JP
Japan
Prior art keywords
coating layer
crystal
columnar
rich
columnar crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007016329A
Other languages
Japanese (ja)
Other versions
JP4942495B2 (en
Inventor
Masato Matsuzawa
正人 松澤
Yousen Shu
ヨウセン シュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007016329A priority Critical patent/JP4942495B2/en
Publication of JP2008183627A publication Critical patent/JP2008183627A/en
Application granted granted Critical
Publication of JP4942495B2 publication Critical patent/JP4942495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated tool having high wear resistance and high chipping resistance. <P>SOLUTION: This surface coated tool 1 is obtained by coating the surface of a substrate 2 with a coating layer 3. The coating layer 3 is formed of Ti<SB>1-a-b</SB>Al<SB>a</SB>M<SB>b</SB>(CxN<SB>1-x</SB>) (wherein M is one more kinds selected from elements of fourth group, fifth group and sixth group of the periodic system, rare earth element, and Si, 0.4≤a≤0.65, 0≤b≤0.3, and 0≤x≤1). The coating layer 3 is formed of a structure mainly composed of a columnar crystal 5, and the columnar crystal 5 is formed so that when the Ti content ratio of the whole coating layer 3 is Ti<SB>t</SB>, rich Ti columnar crystal 5a having Ti content ratio of Ti<SB>r</SB>, the ratio Ti<SB>r</SB>/Ti<SB>t</SB>being 1.2-5, is dispersed. Thus, the surface coated tool having high wear resistance and high chipping resistance is formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は基体の表面に被覆層を成膜してなる表面被覆工具に関する。   The present invention relates to a surface-coated tool formed by forming a coating layer on the surface of a substrate.

現在、切削工具や耐摩部材、摺動部材といった表面被覆工具では耐摩耗性や摺動性、耐欠損性が必要とされるため、WC基超硬合金やTiCN基サーメット等の硬質基体の表面に様々な被覆層を成膜して表面被覆工具の耐摩耗性、摺動性、耐欠損性を向上させる手法が使われている。   Currently, surface-coated tools such as cutting tools, wear-resistant members, and sliding members require wear resistance, slidability, and fracture resistance, so that the surface of a hard substrate such as a WC-based cemented carbide or TiCN-based cermet is used. Various coating layers are formed to improve the wear resistance, slidability, and fracture resistance of surface-coated tools.

かかる被覆層として、TiCN層やTiAlN層が一般的に広く採用されているが、より高い耐摩耗性と耐欠損性の向上を目的として種々な被覆層が開発されつつある。   As the coating layer, a TiCN layer or a TiAlN layer is generally widely used, but various coating layers are being developed for the purpose of improving higher wear resistance and fracture resistance.

例えば、特許文献1では、TiAlN硬質膜を構成する結晶粒を横方向の結晶粒経が0.1〜0.4μmで、結晶粒経の縦/横比の平均値が1.5〜7の柱状結晶とすることにより、耐酸化性、強度、切削特性に優れた工具となることが記載されている。また、特許文献2では、工具母材の表面に、TiとAlの比率の異なる低硬度TiAlN皮膜と高硬度TiAlN皮膜の2層を順に積層した多層型硬質皮膜を被着形成した皮膜構造について開示されており、母材との密着性に優れるとともに耐摩耗性に優れる皮膜となることが記載されている。また、特許文献3では、TiとAlの比率を厚さ方向で周期的に変化させた高耐摩耗性工具が開示され、高速の断続切削に対する耐久性が向上することが記載されている。さらに、特許文献4では、工具母材の表面にTiAlN層を成膜した切削工具において、Ti/Alの比をエッジ部において最も高くなるように制御することによって工具寿命が長くなることが記載されている。
特許3526392号公報 特開平11−61380号公報 特開平7−48666号公報 特開平8−267306号公報
For example, in Patent Document 1, the crystal grains constituting the TiAlN hard film have a lateral grain diameter of 0.1 to 0.4 μm and an average value of the aspect ratio of the grain diameter of 1.5 to 7 It is described that by using columnar crystals, a tool excellent in oxidation resistance, strength, and cutting characteristics is obtained. Further, Patent Document 2 discloses a film structure in which a multilayer hard film in which two layers of a low-hardness TiAlN film and a high-hardness TiAlN film having different ratios of Ti and Al are sequentially deposited on the surface of a tool base material is disclosed. It is described that the film has excellent adhesion to the base material and is excellent in wear resistance. Patent Document 3 discloses a highly wear-resistant tool in which the ratio of Ti and Al is periodically changed in the thickness direction, and describes that durability against high-speed intermittent cutting is improved. Furthermore, Patent Document 4 describes that in a cutting tool in which a TiAlN layer is formed on the surface of a tool base material, the tool life is prolonged by controlling the Ti / Al ratio to be highest at the edge portion. ing.
Japanese Patent No. 3526392 JP-A-11-61380 JP 7-48666 A JP-A-8-267306

しかしながら、特許文献1のようにTiAlNを単純に柱状結晶にすると被覆層内部に内部応力が発生してしまい、特に柱状結晶の横方向の結晶幅を短くすると被覆層の硬度は向上するものの内部応力が大きくなる傾向になって、切削性能の向上には限界があった。また、特許文献2や特許文献3のように被覆層の厚み方向にTiとAlの比率を変化させる方法では、被覆層内の結晶成長が阻害されて柱状結晶が成長しにくくなる結果、被覆層の硬度と靭性が不十分であった。また、特許文献4のように工具のエッジ部のみについてTi/Alの比を高くする方法では、Ti/Alの比を高くすると被覆層の硬度が低下するのでエッジ部における被覆層は低硬度であり、切削によって早期に被覆層が摩耗してしまうという問題があった。また、被覆層の切刃以外の他の均一な部分においては硬度が高いものの被覆層の内部応力も高くて部分的に基体からの剥離や自己破壊による被覆層の欠損が発生してしまうおそれがあった。   However, when TiAlN is simply made into columnar crystals as in Patent Document 1, internal stress is generated inside the coating layer. In particular, when the lateral crystal width of the columnar crystals is shortened, the hardness of the coating layer is improved, but the internal stress is increased. However, there was a limit to improving the cutting performance. Further, in the method of changing the ratio of Ti and Al in the thickness direction of the coating layer as in Patent Document 2 and Patent Document 3, as a result of inhibiting the crystal growth in the coating layer and making it difficult for columnar crystals to grow, the coating layer The hardness and toughness were insufficient. Further, in the method of increasing the Ti / Al ratio only for the edge portion of the tool as in Patent Document 4, the hardness of the coating layer decreases when the Ti / Al ratio is increased, so the coating layer at the edge portion has a low hardness. There was a problem that the coating layer was worn early by cutting. Also, in the uniform portion other than the cutting edge of the coating layer, although the hardness is high, the internal stress of the coating layer is also high, and there is a possibility that the coating layer may be partially detached from the substrate or self-destructed. there were.

そこで、本発明の表面被覆工具は上記問題を解決するためのものであり、その目的は、耐摩耗性が高く、かつ高い耐欠損性を有する表面被覆工具を提供することである。   Therefore, the surface-coated tool of the present invention is for solving the above-mentioned problems, and an object thereof is to provide a surface-coated tool having high wear resistance and high fracture resistance.

本発明の表面被覆工具は、基体の表面に、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0.4≦a≦0.65、0≦b≦0.3、0≦x≦1である。)からなる被覆層を被覆した表面被覆工具であって、前記被覆層は前記基体の表面に対して垂直に伸びる柱状結晶を主体とした組織からなるとともに、前記柱状結晶は、前記被覆層全体のTi含有比率をTiとしたとき、比Ti/Tiが1.2〜5となるTi含有比率がTiの富Ti柱状結晶が分散していることを特徴とする。 Surface coated tool of the present invention, the surface of the substrate, Ti 1-a-b Al a M b (C x N 1-x) ( however, M is the periodic table Group 4, 5 and 6 elements except Ti, 1 or more selected from rare earth elements and Si, 0.4 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, 0 ≦ x ≦ 1)) a is, together with the covering layer is made of tissue mainly composed of columnar crystals extending perpendicularly to the surface of the substrate, the columnar crystals, when the Ti content ratio of the entire coating layer was Ti t, the ratio Ti r / Ti t wealth Ti columnar crystals of Ti content ratio Ti r to be 1.2 to 5, characterized in that the dispersed.

ここで、上記構成において、前記被覆層中の柱状結晶の平均結晶幅に対して前記富Ti柱状結晶の結晶幅が3倍以上であることが望ましい。   Here, in the above configuration, it is desirable that the crystal width of the Ti-rich columnar crystal is three times or more than the average crystal width of the columnar crystal in the coating layer.

また、上記構成において、前記柱状結晶の平均結晶幅が0.02〜0.1μmであり、前記富Ti柱状結晶の平均結晶幅が0.1〜1μmであることが望ましい。   Moreover, in the said structure, it is desirable that the average crystal width of the said columnar crystal is 0.02-0.1 micrometer, and the average crystal width of the said rich Ti columnar crystal is 0.1-1 micrometer.

さらに、上記構成において、前記富Ti柱状結晶が平均0.5〜10μmの間隔で存在することが望ましい。   Furthermore, in the above configuration, it is desirable that the Ti-rich columnar crystals exist at an average interval of 0.5 to 10 μm.

また、上記構成において、前記富Ti柱状結晶の直下に、前記柱状結晶の平均結晶幅よりも大きい粒径の粒状結晶が存在していることが望ましい。   In the above configuration, it is desirable that a granular crystal having a grain size larger than the average crystal width of the columnar crystal exists immediately below the Ti-rich columnar crystal.

本発明の表面被覆工具は、被覆層がTiとAlを特定の比率で含む組成からなるとともに、基体の表面に対して垂直に伸びる柱状結晶を主体としてこれが基体の表面から並列に並んだ組織からなり、かつ前記柱状結晶中にTi含有比率がTiの富Ti柱状結晶が分散していることが大きな特徴である。これによって、被覆層の硬度、靭性および耐酸化性が向上して高い耐摩耗性を有するとともに、被覆層内に発生する内部応力を低減して工具の耐欠損性を改善することができる。 The surface-coated tool of the present invention has a composition in which the coating layer includes Ti and Al at a specific ratio, and has a columnar crystal that extends perpendicular to the surface of the substrate as a main component, and a structure in which the coating layer is arranged in parallel from the surface of the substrate. becomes, and the Ti content ratio of the columnar crystal is wealth Ti columnar crystals of Ti r is that a large technical feature are dispersed. As a result, the hardness, toughness and oxidation resistance of the coating layer are improved to have high wear resistance, and the internal stress generated in the coating layer can be reduced to improve the fracture resistance of the tool.

ここで、上記構成において、前記被覆層中の柱状結晶の平均結晶幅に対して前記富Ti柱状結晶の結晶幅が3倍以上であることが、被覆層中の内部応力を低減する効果が高い点で望ましい。また、この構成において、前記柱状結晶の平均結晶幅が0.02〜0.1μmであり、前記富Ti柱状結晶の平均結晶幅が0.1〜1μmであることが、被覆層中の高硬度を維持しつつ内部応力を効果的に低減することができる点で望ましい。   Here, in the above configuration, when the crystal width of the Ti-rich columnar crystal is three times or more than the average crystal width of the columnar crystal in the coating layer, the effect of reducing internal stress in the coating layer is high. Desirable in terms. In this configuration, the average crystal width of the columnar crystals is 0.02 to 0.1 μm, and the average crystal width of the rich Ti columnar crystals is 0.1 to 1 μm. This is desirable in that the internal stress can be effectively reduced while maintaining the above.

また、上記構成において、前記富Ti柱状結晶が平均0.5〜10μmの間隔で存在することが、被覆層が局所的に摩耗することなく高い耐摩耗性を維持したまま被覆層中の内部応力を効果的に低減することができる点で望ましい。   Further, in the above configuration, the presence of the Ti-rich columnar crystals at an average interval of 0.5 to 10 μm means that the internal stress in the coating layer is maintained while maintaining high wear resistance without locally wearing the coating layer. Is desirable in that it can be effectively reduced.

さらに、上記構成において、前記富Ti柱状結晶の直下に、前記柱状結晶の平均結晶幅よりも大きい粒径の粒状結晶が存在していることが、富Ti柱状結晶の生成を促すことができるとともに、富Ti柱状結晶が被覆層中で脱落することなく強固に密着できる点で望ましい。   Furthermore, in the above configuration, the presence of granular crystals having a grain size larger than the average crystal width of the columnar crystals immediately below the Ti-rich columnar crystals can promote the formation of Ti-rich columnar crystals. This is desirable in that the Ti-rich columnar crystals can be firmly adhered without falling off in the coating layer.

本発明の表面被覆工具の好適例である表面被覆切削工具の一例について図1の概略斜視図並びに図2の被覆層断面についての模式図を基に説明する。   An example of the surface-coated cutting tool, which is a preferred example of the surface-coated tool of the present invention, will be described based on the schematic perspective view of FIG. 1 and the schematic diagram of the cross-section of the coating layer of FIG.

図1に示す表面被覆切削工具(以下、単に工具と略す)1は、すくい面10と逃げ面11との交差稜線が切刃12である形状をなし、かつ基体2の表面に被覆層3を成膜した構成となっている。   A surface-coated cutting tool (hereinafter simply referred to as a tool) 1 shown in FIG. 1 has a shape in which an intersecting ridge line between a rake face 10 and a flank 11 is a cutting edge 12, and a coating layer 3 is formed on the surface of a base 2. The film is formed.

被覆層3は、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0.4≦a≦0.65、0≦b≦0.3、0≦x≦1である。)からなる。そして、本発明の表面被覆工具は、図2に示すように、被覆層3は基体2の表面に対して垂直に伸びる柱状結晶5を主体とした組織からなるとともに、柱状結晶5は、被覆層3全体のTi含有比率をTiとしたとき、比Ti/Tiが1.2〜5となるTi含有比率がTiの富Ti柱状結晶5aが分散していることが大きな特徴である。 Coating layer 3, Ti 1-a-b Al a M b (C x N 1-x) ( however, M is the periodic table Group 4, 5 and 6 elements except Ti, selected from rare earth elements and Si 1 It is a seed or more, and 0.4 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1. In the surface-coated tool of the present invention, as shown in FIG. 2, the coating layer 3 has a structure mainly composed of columnar crystals 5 extending perpendicularly to the surface of the substrate 2, and the columnar crystals 5 are composed of coating layers. 3 when the entire Ti content ratio was Ti t, it is a major feature of rich Ti columnar crystals 5a of the ratio Ti r / Ti t is Ti content ratio which is 1.2 to 5 Ti r are dispersed .

これによって、被覆層3の硬度、靭性および耐酸化性が向上して高い耐摩耗性を有するとともに、被覆層3内に発生する内部応力を低減して工具1の耐欠損性を改善することができる。ここで、富Ti柱状結晶5aの比Ti/Tiが1.2未満では被覆層3中の内部応力の低減効果が小さく、比Ti/Tiが5より大きいと被覆層3の耐摩耗性が低下する。被覆層3の内部応力を低減しつつ被覆層3の高硬度を維持するためには、比Ti/Tiが1.8〜2.2であることが望ましい。 As a result, the hardness, toughness and oxidation resistance of the coating layer 3 are improved to have high wear resistance, and the internal stress generated in the coating layer 3 can be reduced to improve the fracture resistance of the tool 1. it can. Here, when the ratio Ti r / Ti t of the Ti-rich columnar crystal 5a is less than 1.2, the effect of reducing the internal stress in the coating layer 3 is small, and when the ratio Ti r / Ti t is larger than 5, the resistance of the coating layer 3 is increased. Abrasion is reduced. In order to maintain the high hardness of the coating layer 3 while reducing the internal stress of the coating layer 3, it is desirable that the ratio Ti r / Ti t is 1.8 to 2.2.

なお、柱状結晶中の各元素の含有比率は、透過型電子顕微鏡測定装置に備え付けられたエネルギー分散型X線(EDS)分析装置を用いて測定することができ、柱状結晶中のTi含有比率は各元素のピーク強度の総和とTi元素のピーク強度との比率で算出される。ここで、エネルギー分散型X線(EDS)分析におけるTiのLα線のピーク(エネルギー0.4keV付近)についてはN元素のKα線のピークと重なって正確な測定ができないために、N元素が含有される可能性がある場合にはこのピークは算出に用いるピークから外してTiのKα線のピーク(エネルギー4.5keV付近)を用いてTi、Tiとも算出し、その比Ti/Tiを求める。また、本発明によれば、Tiの測定に際しては被覆層3の任意5箇所以上の測定値に基づいてその平均値として求めるものとする。 In addition, the content ratio of each element in the columnar crystal can be measured using an energy dispersive X-ray (EDS) analyzer provided in the transmission electron microscope measurement apparatus, and the Ti content ratio in the columnar crystal is It is calculated by the ratio of the total peak intensity of each element and the peak intensity of the Ti element. Here, in the energy dispersive X-ray (EDS) analysis, the Ti Lα ray peak (energy around 0.4 keV) overlaps with the N element Kα ray peak and cannot be measured accurately. In this case, this peak is excluded from the peak used for calculation, and Ti t and Ti r are calculated using the peak of Ti Kα line (energy around 4.5 keV), and the ratio Ti r / Ti t is obtained. Further, according to the present invention, when measuring Ti t , the average value is obtained on the basis of measured values at five or more arbitrary positions of the coating layer 3.

しかも、上記構成によって、被覆層3の内部に発生する残留応力を低減できて被覆層3の厚みを厚くしても自己破壊することなく安定した成膜が可能であるとともに、被覆層3の靭性が高くて耐欠損性が向上する。そのため、上記被覆層3は厚膜化しても被覆層3がチッピングしにくく、被覆層3の膜厚が0.5〜6μmであっても、被覆層3が剥離やチッピングすることを防止できて十分な耐摩耗性を維持することができる。   In addition, with the above configuration, residual stress generated in the coating layer 3 can be reduced, and stable film formation is possible without self-destruction even when the coating layer 3 is thickened. Is high and the fracture resistance is improved. Therefore, even if the coating layer 3 is thickened, the coating layer 3 is difficult to chip, and even if the coating layer 3 has a thickness of 0.5 to 6 μm, the coating layer 3 can be prevented from peeling or chipping. Sufficient wear resistance can be maintained.

なお、被覆層3の組成については、上記組成の中でも、Ti1−a−b−c−dAlSi(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0.4≦a≦0.65、0≦b≦0.3、0≦x≦1である。)からなることが望ましく、この組成領域では、酸化開始温度が高くなって耐酸化性が高くて切削時の耐摩耗性が向上するとともに切刃先端に発生しやすいチッピングが抑制できて耐欠損性が高いものとなる。また、金属MはNb、Mo、Ta、Hf、Yから選ばれる1種以上であるが、中でもNbまたはMoを含有することが耐摩耗性・耐酸化性に最も優れる点で望ましい。 Note that the composition of the coating layer 3, among the above composition, Ti 1-a-b- c-d Al a M b W c Si d (C x N 1-x) ( however, M is excluding Ti cycle 1 or more types selected from Tables 4, 5, 6 elements, rare earth elements and Si, 0.4 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, 0 ≦ x ≦ 1.) In this composition region, the oxidation start temperature is high, the oxidation resistance is high, the wear resistance at the time of cutting is improved, and the chipping that tends to occur at the cutting edge tip can be suppressed, and the fracture resistance is reduced. It will be expensive. Further, the metal M is at least one selected from Nb, Mo, Ta, Hf, and Y. Among them, the inclusion of Nb or Mo is desirable in terms of the most excellent wear resistance and oxidation resistance.

さらに、被覆層3の非金属成分であるC、Nは切削工具に必要な硬度および靭性に優れたものであり、被覆層3表面に発生するドロップレットの過剰な発生を抑制するために、x(C含有比率)の特に望ましい範囲は0≦x≦0.5である。なお、被覆層3の組成はエネルギー分散型X線分析法(EDX)またはX線光電子分光分析法(XPS)にて測定できる。   Furthermore, C and N which are non-metallic components of the coating layer 3 are excellent in hardness and toughness required for the cutting tool, and in order to suppress excessive generation of droplets generated on the surface of the coating layer 3, x A particularly desirable range of (C content ratio) is 0 ≦ x ≦ 0.5. The composition of the coating layer 3 can be measured by energy dispersive X-ray analysis (EDX) or X-ray photoelectron spectroscopy (XPS).

ここで、被覆層3中の柱状結晶5の平均結晶幅に対して富Ti柱状結晶5aの結晶幅が3倍以上であることが、被覆層3中の内部応力を効果的に低減することができる点で望ましい。特に、被覆層3中の内部応力を低減しつつ被覆層3の硬度を維持するためには、被覆層3中の柱状結晶5の平均結晶幅に対して富Ti柱状結晶5aの結晶幅が5〜30倍の範囲であることが望ましい。また、この構成において、柱状結晶5の平均結晶幅が0.02〜0.1μmであり、富Ti柱状結晶5aの平均結晶幅が0.1〜1μmであることが、被覆層3中の内部応力をさらに効果的に低減することができるとともに、被覆層3の硬度および耐酸化性を維持できる点で望ましい。なお、被覆層3中の柱状結晶5の結晶幅は、図2に示すように、柱状結晶5をなす被覆層3の中間の厚さにあたる部分に引いた線Aにて測定する。被覆層3中の柱状結晶5の平均結晶幅wは線Aの100nm以上の長さLを特定し、この長さLの線Aを横切る粒界の数を数えて、長さL/粒界の数によって算出することができる。富Ti柱状結晶5aの結晶幅については、同様の位置にて各富Ti柱状結晶5aの結晶幅wをそれぞれ測定する。また、本発明における柱状結晶とは基体表面と平行な方向の結晶幅に対して基体表面と垂直な方向の結晶長さが1.5倍以上長い結晶のことを指す。 Here, if the crystal width of the rich Ti columnar crystal 5a is three times or more the average crystal width of the columnar crystal 5 in the coating layer 3, the internal stress in the coating layer 3 can be effectively reduced. This is desirable because it can be done. In particular, in order to maintain the hardness of the coating layer 3 while reducing the internal stress in the coating layer 3, the crystal width of the Ti-rich columnar crystal 5 a is 5 with respect to the average crystal width of the columnar crystal 5 in the coating layer 3. It is desirable to be in a range of ˜30 times. In this configuration, the average crystal width of the columnar crystal 5 is 0.02 to 0.1 μm, and the average crystal width of the rich Ti columnar crystal 5a is 0.1 to 1 μm. It is desirable in that the stress can be further effectively reduced and the hardness and oxidation resistance of the coating layer 3 can be maintained. In addition, the crystal width of the columnar crystal 5 in the coating layer 3 is measured by a line A drawn to a portion corresponding to an intermediate thickness of the coating layer 3 forming the columnar crystal 5 as shown in FIG. The average crystal width w t of the columnar crystals 5 in the coating layer 3 specifies a length L of 100 nm or more of the line A, counts the number of grain boundaries crossing the line A of this length L, and calculates the length L / grain It can be calculated by the number of fields. The crystal width wealth Ti columnar crystals 5a, respectively measured crystal width w r of the rich Ti columnar crystals 5a in the same position. The columnar crystal in the present invention refers to a crystal whose crystal length in the direction perpendicular to the substrate surface is 1.5 times or more of the crystal width in the direction parallel to the substrate surface.

また、上記構成において、富Ti柱状結晶5aが平均0.5〜10μmの間隔で存在することが、被覆層3の高硬度を維持したまま被覆層3中の内部応力を効果的に低減することができる点で望ましい。   In the above configuration, the presence of the Ti-rich columnar crystals 5a at an average interval of 0.5 to 10 μm effectively reduces internal stress in the coating layer 3 while maintaining the high hardness of the coating layer 3. It is desirable in that it can.

さらに、上記構成において、富Ti柱状結晶5aの直下に、柱状結晶5の平均結晶幅よりも大きい粒径の粒状結晶7が存在していることが、富Ti柱状結晶5aの生成を促すことができるとともに、富Ti柱状結晶5aが被覆層3中で脱落することなく強固に密着できる点で望ましい。   Furthermore, in the above configuration, the presence of the granular crystal 7 having a grain size larger than the average crystal width of the columnar crystal 5 immediately below the Ti-rich columnar crystal 5a promotes the generation of the Ti-rich columnar crystal 5a. This is desirable because the Ti-rich columnar crystals 5a can be firmly adhered without falling off in the coating layer 3.

さらに、粒状結晶7は、Alを主成分とするか、TiまたはM(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上である。)を主成分とする粒状結晶からなり、平均粒径が0.05〜1μmであることが、被覆層3の硬度と靭性を両立できる点で望ましい。特に、粒状結晶7は、少なくともAlの含有比率が前記被覆層の全体における含有比率より多いAl系粒状結晶と、TiまたはMの含有比率が被覆層3の全体における含有比率より多いTi/M系粒状結晶とを含むことが望ましい。これによって、異なった硬度および靭性を有する粒状結晶7が存在し、これらの粒状結晶7の分散状態を制御することによって、被覆層3の耐摩耗性および耐欠損性のバランスを調整ことができる。なお、M(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上である。)元素としては、特にW、Nb、Mo、Siが上方に富Ti柱状結晶5aが形成しやすい大きさの粒状結晶7を形成する点で望ましい。   Further, the granular crystal 7 is mainly composed of Al, or Ti or M (where M is one or more selected from Group 4, 5, 6 elements of the periodic table excluding Ti, rare earth elements, and Si). ) And having an average particle diameter of 0.05 to 1 μm is desirable from the viewpoint of achieving both the hardness and toughness of the coating layer 3. In particular, the granular crystal 7 includes at least an Al-based granular crystal in which the Al content ratio is higher than the total content ratio of the coating layer, and a Ti / M-based content ratio in which the Ti or M content ratio is higher than the total content ratio of the coating layer 3. It is desirable to include granular crystals. Accordingly, there are granular crystals 7 having different hardness and toughness, and by controlling the dispersion state of these granular crystals 7, the balance of the wear resistance and fracture resistance of the coating layer 3 can be adjusted. In addition, as the element M (where M is one or more selected from Group 4, 5, 6 elements, rare earth elements and Si in the periodic table excluding Ti), W, Nb, Mo, and Si are particularly upward. It is desirable in that the granular crystals 7 having a size that can easily form the Ti-rich columnar crystals 5a are formed.

なお、断面組織観察における粒状結晶7の存在比率は0.1〜30面積%であることが、被覆層3の耐欠損性を高めることができるとともに、被覆層3の耐摩耗性を維持できる点で望ましい。   Note that the abundance ratio of the granular crystals 7 in the cross-sectional structure observation is 0.1 to 30% by area, so that the fracture resistance of the coating layer 3 can be improved and the wear resistance of the coating layer 3 can be maintained. Is desirable.

また、基体2としては、炭化タングステンや、炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの他、窒化ケイ素や、酸化アルミニウムを主成分とするセラミック、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相と、セラミックや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。   In addition, as the substrate 2, in addition to cemented carbide or cermet composed of tungsten carbide, a hard phase mainly composed of titanium carbonitride, and a binder phase mainly composed of an iron group metal such as cobalt or nickel, silicon nitride And hard materials such as ceramics mainly composed of aluminum oxide, hard phases composed of polycrystalline diamond or cubic boron nitride, and ultra-high-pressure sintered bodies that fire a binder phase such as ceramics or iron group metals under ultra-high pressure. Materials are preferably used.

(製造方法)
次に、本発明の表面被覆工具の一例である表面被覆切削工具の製造方法について説明する。
(Production method)
Next, the manufacturing method of the surface coating cutting tool which is an example of the surface coating tool of this invention is demonstrated.

まず、工具形状の基体2を従来公知の方法を用いて作製する。次に、基体2の表面に、被覆層3を成膜する。被覆層3の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。成膜方法の一例についての詳細について説明すると、被覆層3をイオンプレーティング法で作製する場合には、金属チタン(Ti)、金属アルミニウム(Al)、金属M(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上)をそれぞれ独立に含有する金属ターゲットまたは複合化した合金ターゲットに用いる。   First, the tool-shaped substrate 2 is manufactured using a conventionally known method. Next, the coating layer 3 is formed on the surface of the substrate 2. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as a method for forming the coating layer 3. The details of an example of the film forming method will be described. When the coating layer 3 is formed by the ion plating method, metal titanium (Ti), metal aluminum (Al), metal M (where M is a period excluding Ti). 1 or more selected from Tables 4, 5, and 6 elements, rare earth elements and Si) are used for a metal target or a composite alloy target containing each independently.

このとき、本発明によれば、金属または合金ターゲット中のTi金属とともにTiの炭化物、窒化物、酸化物、硼化物、炭窒化物等の化合物を分散させたターゲットを用いることによって、成膜された被覆層3中に富Ti柱状結晶5aを生成させることができる。また、ターゲット中に0.05〜0.3質量%の酸素を含有するように調整することによって、被覆層3内にドロップレット(粒状結晶7)が付着した場合でも、その粒状結晶7の表面が酸化されることから粒状結晶7の上部に微細な柱状結晶5が成長しやすい。また、理由は不明であるが、上記本発明の粒状結晶7の上部には富Ti柱状結晶5aが成長しやすい傾向にある。   At this time, according to the present invention, a film is formed by using a target in which a compound of Ti carbide, nitride, oxide, boride, carbonitride or the like is dispersed together with Ti metal in a metal or alloy target. In addition, a Ti-rich columnar crystal 5 a can be generated in the coating layer 3. Moreover, even if a droplet (granular crystal 7) adheres in the coating layer 3 by adjusting the target so as to contain 0.05 to 0.3% by mass of oxygen, the surface of the granular crystal 7 As a result, the columnar crystal 5 is likely to grow on the granular crystal 7. Although the reason is unknown, the Ti-rich columnar crystal 5a tends to grow on the upper part of the granular crystal 7 of the present invention.

そして、このターゲットを用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させて成膜する。このとき、窒素に対するアルゴンガス流量が1:9〜4:6の割合の窒素(N)ガスとアルゴン(Ar)ガスの混合ガスを用いて、イオンプレーティング法またはスパッタリング法によって被覆層3を成膜する。このとき、ターゲット中の各金属元素が蒸発して基体2の表面に付着するが、Ti化合物は不均一な蒸発状態となるので、結果的に成膜された被覆層3中に富Ti柱状結晶5aが生成しやすくなる。また、蒸気圧の低いAlやM元素は大きな球状の塊として蒸発してそのまま基体2の表面に、いわゆるドロップレット(粒状結晶7)として付着する。このとき、M元素はTiとのなじみが良いのでM元素を多く含む粒状結晶中にはTiも多く固溶してM元素またはTiのいずれも多く含まれ、いずれかが主成分となる。そして、粒状結晶7の上部にも富Ti粒状結晶が成長しやすくなる。その結果、成膜された被覆層3中に富Ti柱状結晶5aが分散した組織となる。 Then, using this target, the metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C 2 H 2 ) as a carbon source. A film is formed by reacting with a gas. At this time, the coating layer 3 is formed by an ion plating method or a sputtering method using a mixed gas of nitrogen (N 2 ) gas and argon (Ar) gas at a flow rate of argon gas to nitrogen of 1: 9 to 4: 6. Form a film. At this time, each metal element in the target evaporates and adheres to the surface of the substrate 2, but the Ti compound is in a non-uniform evaporation state, and as a result, a Ti-rich columnar crystal is formed in the coating layer 3 formed as a result. 5a is easily generated. Further, Al or M element having a low vapor pressure evaporates as a large spherical mass and adheres directly to the surface of the substrate 2 as a so-called droplet (granular crystal 7). At this time, since the M element has a good familiarity with Ti, the granular crystal containing a large amount of the M element contains a large amount of Ti and contains a large amount of either the M element or Ti, and one of them is the main component. And it becomes easy to grow a Ti-rich granular crystal also on the upper part of the granular crystal 7. FIG. As a result, a structure in which the Ti-rich columnar crystals 5a are dispersed in the formed coating layer 3 is obtained.

なお、イオンプレーティング法やスパッタリング法で上記被覆層3を成膜する際には、被覆層3の結晶構造および配向性を制御して高硬度な被覆層3を作製できるとともに基体2との密着性を高めるために30〜200Vのバイアス電圧を印加することが好ましい。   When the coating layer 3 is formed by an ion plating method or a sputtering method, the crystal structure and orientation of the coating layer 3 can be controlled to produce a highly hard coating layer 3 and adhere to the substrate 2. In order to improve the property, it is preferable to apply a bias voltage of 30 to 200V.

平均粒径0.5μmの炭化タングステン(WC)粉末に対して、金属コバルト(Co)粉末を10質量%、炭化バナジウム(VC)粉末と炭化クロム(Cr)粉末を合計で1質量%の割合で添加、混合し、刃先交換式切削工具(CNMG0408)インサート形状に成型して焼成した。そして、研削工程を経た後、アルカリ、酸、蒸留水の順によって表面を洗浄してインサート基体を作製した。 10% by mass of metallic cobalt (Co) powder and 1% by mass of vanadium carbide (VC) powder and chromium carbide (Cr 3 C 2 ) powder with respect to tungsten carbide (WC) powder having an average particle size of 0.5 μm The mixture was added and mixed at a ratio of, and was formed into an insert shape with a replaceable cutting edge (CNMG0408) and fired. After the grinding process, the surface was washed in the order of alkali, acid, and distilled water to produce an insert substrate.

そして、表1に示すターゲットを装着したアークイオンプレーティング装置内に上記基体をセットし基体を550℃に加熱して表1に示す被覆層を成膜した。なお、成膜条件は窒素ガスとアルゴンガスの混合ガスを総圧力4Paの雰囲気中、アーク電流150A、バイアス電圧50Vとした。   Then, the substrate was set in an arc ion plating apparatus equipped with a target shown in Table 1, and the substrate was heated to 550 ° C. to form a coating layer shown in Table 1. The film forming conditions were an arc current of 150 A and a bias voltage of 50 V in a mixed gas of nitrogen gas and argon gas in an atmosphere having a total pressure of 4 Pa.

得られたインサートについて、キーエンス社製走査型電子顕微鏡(VE8800)を用いて倍率500倍にて観察を行い、同装置に付随のEDAXアナライザ(AMETEK EDAX-VE9800)を用いて加速電圧15kVにてエネルギー分散型X線分光分析(EDX)法の一種であるZAF法により被覆層の組成の定量分析を行った。また、この方法で測定できなかった元素については、PHI社製X線光電子分光分析装置(Quantum2000)を用い、X線源はモノクロAlK(200μm、35W、15kV)を測定領域約200μmに照射して測定を行った。結果は表1に示した。

Figure 2008183627
The obtained insert was observed at a magnification of 500 times using a scanning electron microscope (VE8800) manufactured by Keyence, and energy was used at an acceleration voltage of 15 kV using an EDAX analyzer (AMETEK EDAX-VE9800) attached to the apparatus. The composition of the coating layer was quantitatively analyzed by the ZAF method, which is a type of dispersive X-ray spectroscopy (EDX) method. For elements that could not be measured by this method, a PHI X-ray photoelectron spectrometer (Quantum2000) was used, and the X-ray source was irradiated with monochrome AlK (200 μm, 35 W, 15 kV) to a measurement region of about 200 μm. Measurements were made. The results are shown in Table 1.
Figure 2008183627

さらに、上記被覆層を透過型電子顕微鏡(TEM)にて観察して分散粒子の有無を確認し、さらに分散粒子についてはエネルギー分散分光分析法(EDS)によって中心部と外周部の組成を定量した。また、1μm×5μmの任意領域3箇所について分散粒子の存在割合を算出した。結果は表2に記載した。

Figure 2008183627
Further, the coating layer was observed with a transmission electron microscope (TEM) to confirm the presence or absence of dispersed particles, and the composition of the central portion and the outer peripheral portion of the dispersed particles was quantified by energy dispersive spectroscopy (EDS). . Further, the existence ratio of dispersed particles was calculated for three arbitrary regions of 1 μm × 5 μm. The results are shown in Table 2.
Figure 2008183627

次に、得られたインサートを用いて以下の切削条件にて切削試験を行った。結果は表3に記載した。   Next, a cutting test was performed using the obtained insert under the following cutting conditions. The results are shown in Table 3.

切削方法:旋削
被削材 :SCM450(4本溝)
切削速度:150m/min
送り :0.2mm/rev
切り込み:1.5mm
切削状態:乾式
評価方法:欠損するまでの衝撃回数及び摩耗・欠損状態の確認

Figure 2008183627
Cutting method: Turning work material: SCM450 (4 grooves)
Cutting speed: 150 m / min
Feeding: 0.2mm / rev
Cutting depth: 1.5mm
Cutting condition: Dry evaluation method: Number of impacts until breakage and confirmation of wear / breakage state
Figure 2008183627

表1〜3より、分散化合物を含有しないターゲットを用いて成膜し富Ti柱状結晶が分散しない試料No.9では、切刃にチッピングが発生して早期に欠損に至った。また、粒状結晶からなる試料No.10では耐摩耗性が悪く工具寿命の短いものであった。さらに、比Ti/Tiが1.2より小さく富Ti柱状結晶がない試料No.11でも、切刃にチッピングが発生して早期に欠損に至った。 From Tables 1 to 3, Sample No. No. in which the film was formed using a target containing no dispersed compound and the Ti-rich columnar crystals were not dispersed. In No. 9, chipping occurred on the cutting edge, leading to a loss early. Also, sample No. consisting of granular crystals. No. 10 had poor wear resistance and a short tool life. Furthermore, the sample No. 1 with a ratio Ti r / Ti t smaller than 1.2 and no Ti-rich columnar crystals was present. In No. 11, chipping occurred on the cutting edge, leading to defects early.

これに対し、前記基体の表面に対して垂直に伸びる柱状結晶を主体としてこれが並んだ組織からなるとともに、前記柱状結晶は、前記被覆層全体のTi含有比率をTiとしたとき、比Ti/Tiが1.2〜5となるTi含有比率がTiの富Ti柱状結晶が分散している試料No.1〜8では、耐欠損性と耐摩耗性が良くて切削性能に優れたものであった。 On the other hand, the columnar crystal is composed mainly of columnar crystals extending perpendicularly to the surface of the substrate, and the columnar crystals have a ratio Ti r when the Ti content ratio of the entire coating layer is Ti t. / sample Ti t is 1.2 to 5 Ti content ratio are dispersed rich Ti columnar crystals of Ti r No. In Nos. 1 to 8, the chipping resistance and wear resistance were good and the cutting performance was excellent.

本発明の表面被覆工具の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the surface coating tool of this invention. 本発明の表面被覆工具の一例を示し、被覆層についての要部断面模式図である。It is an example of the surface coating tool of this invention, and is a principal part cross-section schematic diagram about a coating layer.

符号の説明Explanation of symbols

1 工具
2 基体
3 被覆層
5 柱状結晶
5a 富Ti柱状結晶
7 粒状結晶
10 すくい面
11 逃げ面
12 切刃
DESCRIPTION OF SYMBOLS 1 Tool 2 Base | substrate 3 Coating layer 5 Columnar crystal 5a Rich Ti columnar crystal 7 Granular crystal 10 Rake face 11 Flank 12 Cutting edge

Claims (5)

基体の表面に、Ti1−a−bAl(C1−x)(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上であり、0.4≦a≦0.65、0≦b≦0.3、0≦x≦1である。)からなる被覆層を被覆した表面被覆工具であって、前記被覆層は前記基体の表面に対して垂直に伸びる柱状結晶を主体としてこれが並んだ組織からなるとともに、前記柱状結晶は、前記被覆層全体のTi含有比率をTiとしたとき、比Ti/Tiが1.2〜5となるTi含有比率がTiの富Ti柱状結晶が分散していることを特徴とする表面被覆工具。 Ti 1-ab Al a M b (C x N 1-x ) (where M is a group selected from Group 4, 5, 6 elements of the periodic table excluding Ti, rare earth elements, and Si) A surface coating tool coated with a coating layer comprising: 0.4 ≦ a ≦ 0.65, 0 ≦ b ≦ 0.3, and 0 ≦ x ≦ 1. together consists tissue which took mainly of columnar crystals extending perpendicularly to the surface of the substrate, the columnar crystals, when the Ti content ratio of the entire coating layer was Ti t, the ratio Ti r / Ti t is surface-coated tool Ti content ratio to be 1.2 to 5 wealth Ti columnar crystals Ti r is characterized in that it dispersed. 前記被覆層中の柱状結晶の平均結晶幅に対して前記富Ti柱状結晶の結晶幅が3倍以上であることを特徴とする請求項1記載の表面被覆工具。 The surface-coated tool according to claim 1, wherein the crystal width of the Ti-rich columnar crystal is three times or more than the average crystal width of the columnar crystal in the coating layer. 前記柱状結晶の平均結晶幅が0.02〜0.1μmであり、前記富Ti柱状結晶の平均結晶幅が0.1〜1μmであることを特徴とする請求項2記載の表面被覆工具。 The surface-coated tool according to claim 2, wherein an average crystal width of the columnar crystals is 0.02 to 0.1 µm, and an average crystal width of the Ti-rich columnar crystals is 0.1 to 1 µm. 前記富Ti柱状結晶が平均0.5〜10μmの間隔で存在することを特徴とする請求項1乃至3のいずれか記載の表面被覆工具。 The surface-coated tool according to any one of claims 1 to 3, wherein the Ti-rich columnar crystals are present at an average interval of 0.5 to 10 µm. 前記富Ti柱状結晶の直下に、前記柱状結晶の平均結晶幅よりも大きい粒径の粒状結晶が存在していることを特徴とする請求項1乃至4のいずれか記載の表面被覆工具。 The surface-coated tool according to any one of claims 1 to 4, wherein a granular crystal having a grain size larger than an average crystal width of the columnar crystal exists immediately below the rich Ti columnar crystal.
JP2007016329A 2007-01-26 2007-01-26 Surface coating tool Active JP4942495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016329A JP4942495B2 (en) 2007-01-26 2007-01-26 Surface coating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016329A JP4942495B2 (en) 2007-01-26 2007-01-26 Surface coating tool

Publications (2)

Publication Number Publication Date
JP2008183627A true JP2008183627A (en) 2008-08-14
JP4942495B2 JP4942495B2 (en) 2012-05-30

Family

ID=39726996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016329A Active JP4942495B2 (en) 2007-01-26 2007-01-26 Surface coating tool

Country Status (1)

Country Link
JP (1) JP4942495B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207920A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
JP2014087861A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Surface-coated cutting tool having excellent fracture resistance and wear resistance
JP2014097536A (en) * 2012-11-13 2014-05-29 Mitsubishi Materials Corp Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
CN103878555A (en) * 2012-12-20 2014-06-25 三菱综合材料株式会社 Excellent Cubic Boron Nitride Ultrahigh Pressure Sintering Material Surface Coated Cutting Tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254187A (en) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd Hard film-coated member
JP2001277005A (en) * 2000-03-30 2001-10-09 Toshiba Tungaloy Co Ltd Covered cutting tool and its manufacturing method
JP2002003284A (en) * 2000-06-14 2002-01-09 Toshiba Tungaloy Co Ltd Hard coating ultrahigh temperature high pressure sintered material
JP2002129306A (en) * 2000-10-25 2002-05-09 Toshiba Tungaloy Co Ltd Dispersion strengthened composite hard coating and tools coated by the same
JP2002346812A (en) * 2001-05-25 2002-12-04 Ngk Spark Plug Co Ltd Cutting tool and tool with holder
JP2004243494A (en) * 2003-02-17 2004-09-02 Kyocera Corp Surface coated cutting tool
JP2008075178A (en) * 2006-08-24 2008-04-03 Hitachi Tool Engineering Ltd Thick coating film-coated member and thick coating film-coated member production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254187A (en) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd Hard film-coated member
JP2001277005A (en) * 2000-03-30 2001-10-09 Toshiba Tungaloy Co Ltd Covered cutting tool and its manufacturing method
JP2002003284A (en) * 2000-06-14 2002-01-09 Toshiba Tungaloy Co Ltd Hard coating ultrahigh temperature high pressure sintered material
JP2002129306A (en) * 2000-10-25 2002-05-09 Toshiba Tungaloy Co Ltd Dispersion strengthened composite hard coating and tools coated by the same
JP2002346812A (en) * 2001-05-25 2002-12-04 Ngk Spark Plug Co Ltd Cutting tool and tool with holder
JP2004243494A (en) * 2003-02-17 2004-09-02 Kyocera Corp Surface coated cutting tool
JP2008075178A (en) * 2006-08-24 2008-04-03 Hitachi Tool Engineering Ltd Thick coating film-coated member and thick coating film-coated member production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207920A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
JP2014087861A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Surface-coated cutting tool having excellent fracture resistance and wear resistance
JP2014097536A (en) * 2012-11-13 2014-05-29 Mitsubishi Materials Corp Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
CN103878555A (en) * 2012-12-20 2014-06-25 三菱综合材料株式会社 Excellent Cubic Boron Nitride Ultrahigh Pressure Sintering Material Surface Coated Cutting Tool
JP2014121748A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool made of cubic crystal boron nitride group superhigh pressure sintered material excellent in crack resistance
CN103878555B (en) * 2012-12-20 2017-09-05 三菱综合材料株式会社 Cubic boron nitride base ultra-high pressure sintered material control surface coated cutting tool

Also Published As

Publication number Publication date
JP4942495B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5038303B2 (en) Surface coating tool and method for machining workpiece
JP5046726B2 (en) Surface coated cutting tool
JP5383019B2 (en) End mill
JPWO2010050374A1 (en) Surface coating tool
JP5883161B2 (en) Cutting tools
JP2009293111A (en) Hard film layer and its forming method
JP2006305714A (en) Surface coated cutting tool
JP5127477B2 (en) Cutting tools
JP2008075178A (en) Thick coating film-coated member and thick coating film-coated member production method
JP4942495B2 (en) Surface coating tool
JP2008238336A (en) Rotating tool
JP2008155328A (en) Surface-coated tool
JP5038017B2 (en) Coated cutting tool
JP2008155329A (en) Surface-coated tool
JP2008284636A (en) Coated cutting tool
JP2009082993A (en) Surface-coated tool
JP2008284638A (en) Coated cutting tool
JP6794604B1 (en) Cutting tools
JP5094348B2 (en) Surface coating tool
JP2010125539A (en) Cutting tool
JP4808972B2 (en) Surface coated cutting tool
JP6780222B1 (en) Cutting tools
JP6743350B2 (en) Cutting tools
JP6743349B2 (en) Cutting tools
JP2006150530A (en) Coating and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4942495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3