JP2008178817A - Coating device and method of detecting bubble in coating device - Google Patents

Coating device and method of detecting bubble in coating device Download PDF

Info

Publication number
JP2008178817A
JP2008178817A JP2007015045A JP2007015045A JP2008178817A JP 2008178817 A JP2008178817 A JP 2008178817A JP 2007015045 A JP2007015045 A JP 2007015045A JP 2007015045 A JP2007015045 A JP 2007015045A JP 2008178817 A JP2008178817 A JP 2008178817A
Authority
JP
Japan
Prior art keywords
coating liquid
pressure
coating
bubbles
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007015045A
Other languages
Japanese (ja)
Other versions
JP4975454B2 (en
Inventor
Sadao Ka
▲貞▼雄 夏
Masami Aoki
正美 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2007015045A priority Critical patent/JP4975454B2/en
Priority to TW096145635A priority patent/TWI349583B/en
Priority to KR1020080007443A priority patent/KR100952810B1/en
Priority to CN2010102031167A priority patent/CN101850320B/en
Priority to CN2008100051718A priority patent/CN101229538B/en
Publication of JP2008178817A publication Critical patent/JP2008178817A/en
Application granted granted Critical
Publication of JP4975454B2 publication Critical patent/JP4975454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect air bubbles in a coating solution with high precision in a coating device. <P>SOLUTION: The coating device has a coating solution tank 1, a coating solution pump 2, a coating nozzle 3 discharging a coating solution pressure-delivered from the coating solution pump 2 onto a coating target member 12, pipes 11A to 11E and a tube 14. A pressure sensor 7 detects the pressure of the coating solution in the pipe 11C. A controller 8 detects bubbles in the coating solution according to the pressure detected with the pressure sensor 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液晶ディスプレイ、PDP(Plasma Display Panel)等の被塗布部材の表面に塗布液により塗膜を形成するための塗布装置及び、この塗布装置における気泡検知方法に関する。   The present invention relates to a coating apparatus for forming a coating film with a coating liquid on a surface of a member to be coated such as a liquid crystal display or a PDP (Plasma Display Panel), and a bubble detection method in the coating apparatus.

ダイコータ等の塗布装置によって被塗布部材の表面に塗布液を塗布して塗膜を形成する際、塗布液中に気泡が混入していると、塗布条件が変動するため塗膜に影響が生じ、不良品発生の原因となる。従来、塗布液中の気泡の検知方法としては、目視による確認の他、レーザ光を利用して光学的に塗布液中の気泡を検知することが知られている(特許文献1)。   When a coating solution is formed on the surface of a member to be coated by a coating device such as a die coater, and the air bubbles are mixed in the coating solution, the coating conditions change, and the coating film is affected. It may cause defective products. Conventionally, as a method for detecting bubbles in the coating liquid, it is known to detect the bubbles in the coating liquid optically using laser light in addition to visual confirmation (Patent Document 1).

しかし、塗布液は一般に高粘度であり、目視や光学的手法によって微小な気泡を高精度で検知することは困難である。   However, the coating liquid generally has high viscosity, and it is difficult to detect minute bubbles with high accuracy by visual observation or an optical method.

特開2005−144376号公報JP 2005-144376 A

本発明は、塗布液中の気泡を高精度で検知することを課題とする。   This invention makes it a subject to detect the bubble in a coating liquid with high precision.

本発明の第1の態様は、塗布液を貯留する塗布液槽と、この塗布液槽中の前記塗布液を圧送する塗布液ポンプと、この塗布液ポンプから圧送された前記塗布液を被塗布部材に向けて吐出する塗布ノズルと、前記塗布液槽、前記塗布液ポンプ、及び前記塗布ノズルを接続する配管とを備える塗布装置において、前記配管内の前記塗布液の圧力を検出する圧力センサと、前記塗布液ポンプの動作を制御すると共に、前記圧力センサにより検出された圧力に基づいて前記塗液中の気泡を検知する制御装置とを備えることを特徴とする、塗布装置を提供する。   A first aspect of the present invention includes a coating liquid tank that stores a coating liquid, a coating liquid pump that pumps the coating liquid in the coating liquid tank, and the coating liquid that is pumped from the coating liquid pump. A pressure sensor that detects a pressure of the coating liquid in the pipe in a coating apparatus including a coating nozzle that discharges toward the member, and a pipe that connects the coating liquid tank, the coating liquid pump, and the coating nozzle; And a controller for controlling the operation of the coating liquid pump and detecting bubbles in the coating liquid based on the pressure detected by the pressure sensor.

具体的には、前記制御装置は、気泡が存在しない場合における前記塗布液ポンプへ吐出動作開始を指令する吐出開始信号の出力から前記配管内の前記塗布液の圧力が予め定められた基準圧力値に達するまでの時間である参照時間を予め記憶し、前記吐出開始信号の出力から前記圧力センサにより検出される圧力が前記基準圧力値に達するまでの時間である実測時間と、前記参照時間とを比較し、かつ前記実測時間が前記参照時間を上回ると、前記塗液中に気泡が存在すると判定する。   Specifically, the control device determines a reference pressure value in which the pressure of the coating liquid in the pipe is determined in advance from an output of a discharge start signal that instructs the coating liquid pump to start a discharging operation when no bubbles are present. A reference time which is a time until reaching the reference pressure is stored in advance, an actual measurement time which is a time until the pressure detected by the pressure sensor from the output of the discharge start signal reaches the reference pressure value, and the reference time When the comparison and the actual measurement time exceed the reference time, it is determined that bubbles are present in the coating liquid.

圧力センサによって検出された圧力を使用して得た実測時間と、参照時間とを比較することで気泡を検知するので、目視や光学的手法と比較して、微少量の気泡を高精度で検知できる。   Bubbles are detected by comparing the measured time obtained by using the pressure detected by the pressure sensor with the reference time, so that a very small amount of bubbles can be detected with high accuracy compared to visual or optical methods. it can.

さらに具体的には、前記基準圧力値は、気泡が存在しない場合に、前記塗布液ポンプへ前記吐出開始信号を出力した後、前記配管内の前記塗布液の圧力が一定圧力に達する前の上昇中の圧力値である。   More specifically, the reference pressure value rises after the discharge start signal is output to the coating liquid pump and before the pressure of the coating liquid in the pipe reaches a constant pressure when bubbles do not exist. It is the pressure value inside.

上昇中の圧力を基準圧力値に設定することで、静止気泡と流動気泡の両方を確実に検知できる。   By setting the rising pressure to the reference pressure value, both stationary bubbles and flowing bubbles can be reliably detected.

代案としては、前記制御装置は、気泡が存在しない場合における前記塗布液ポンプへ吐出動作開始を指令する吐出開始信号の出力から予め定められた基準時間が経過した時点での前記配管内の前記塗布液の圧力である参照圧力値を予め記憶し、前記吐出開始信号の出力から前記基準時間が経過した時点で前記圧力センサにより検出される圧力である実測圧力値と、前記参照圧力値とを比較し、かつ前記実測圧力値が前記参照圧力値を下回ると、前記塗液中に気泡が存在すると判定する。   As an alternative, the control device may apply the coating in the pipe when a predetermined reference time has elapsed from the output of a discharge start signal instructing the coating liquid pump to start a discharge operation when bubbles are not present. A reference pressure value that is the pressure of the liquid is stored in advance, and the measured pressure value that is detected by the pressure sensor when the reference time has elapsed from the output of the discharge start signal is compared with the reference pressure value. When the measured pressure value falls below the reference pressure value, it is determined that bubbles are present in the coating liquid.

圧力センサによって検出された実測圧力値と、参照圧力値とを比較することで気泡を検知するので、目視や光学的手法と比較して高精度で気泡を検知できる。   Since the bubble is detected by comparing the actually measured pressure value detected by the pressure sensor and the reference pressure value, the bubble can be detected with higher accuracy than visual or optical methods.

具体的には、前記基準時間は、気泡が存在しない場合に、前記塗布液ポンプへ前記吐出開始信号を出力した後この基準時間が経過した時点で、前記配管内の前記塗布液の圧力が一定圧力に達する前の上昇中の状態となるように設定されている。   Specifically, the reference time is a constant pressure when the reference time elapses after the discharge start signal is output to the coating liquid pump when bubbles do not exist. It is set to be in a rising state before reaching pressure.

基準時間をこのように設定することで、静止気泡と流動気泡の両方を確実に検知できる。   By setting the reference time in this way, both stationary bubbles and flowing bubbles can be reliably detected.

前記圧力センサを前記塗布液ポンプよりも前記塗布ノズル側の前記配管に設けることによって流動気泡をより確実に検知できる。   By providing the pressure sensor in the pipe closer to the coating nozzle than the coating liquid pump, the flowing bubbles can be detected more reliably.

本発明の第2の態様は、塗布液を貯留する塗布液槽と、この塗布液槽中の前記塗布液を圧送する塗布液ポンプと、この塗布液ポンプから圧送された前記塗布液を被塗布部材に向けて吐出する塗布ノズルと、前記塗布液槽、前記塗布液ポンプ、及び前記塗布ノズルを接続する配管とを備える塗布装置において、前記配管内の前記塗布液中の気泡を検知する方法であって、前記配管内の前記塗布液の圧力を検出する圧力センサを設け、気泡が存在しない場合における前記塗布液ポンプへ吐出動作開始を指令する吐出開始信号の出力から、前記配管内の前記塗布液の圧力が予め定められた基準圧力値に達するまでの時間である参照時間を予め記憶し、前記吐出開始信号の出力から前記圧力センサにより検出される圧力が前記基準圧力値に達するまでの時間である実測時間と、前記参照時間とを比較し、前記実測時間が前記参照時間を上回ると、前記塗液中に気泡が存在すると判定することを特徴とする、気泡検知方法を提供する。   According to a second aspect of the present invention, there is provided a coating liquid tank for storing a coating liquid, a coating liquid pump for pumping the coating liquid in the coating liquid tank, and the coating liquid pumped from the coating liquid pump. In a coating apparatus comprising a coating nozzle that discharges toward a member, and a pipe that connects the coating liquid tank, the coating liquid pump, and the coating nozzle, a method of detecting bubbles in the coating liquid in the pipe A pressure sensor for detecting the pressure of the coating liquid in the pipe, and from the output of a discharge start signal for instructing the coating liquid pump to start a discharge operation when there are no bubbles, the coating in the pipe A reference time, which is a time until the pressure of the liquid reaches a predetermined reference pressure value, is stored in advance, and the pressure detected by the pressure sensor from the output of the discharge start signal reaches the reference pressure value The measured time is the time, comparing the reference time, if the measured time exceeds the reference time, and judging with bubbles present in the coating liquid, to provide a bubble detection method.

本発明の第3の態様は、塗布液を貯留する塗布液槽と、この塗布液槽中の前記塗布液を圧送する塗布液ポンプと、この塗布液ポンプから圧送された前記塗布液を被塗布部材に向けて吐出する塗布ノズルと、前記塗布液槽、前記塗布液ポンプ、及び前記塗布ノズルを接続する配管とを備える塗布装置において、前記配管内の前記塗布液中の気泡を検知する方法であって、前記配管内の前記塗布液の圧力を検出する圧力センサを設け、気泡が存在しない場合における前記塗布液ポンプへ吐出動作開始を指令する吐出開始信号の出力から定められた基準時間が経過した時点での前記配管内の前記塗布液の圧力である参照圧力値を予め記憶し、前記吐出開始信号の出力から前記基準時間が経過した時点で前記圧力センサにより検出される圧力である実測圧力値と、前記参照圧力値とを比較し、前記実測圧力値が前記参照圧力値を下回ると、前記塗液中に気泡が存在すると判定することを特徴とする、気泡検知方法を提供する。   According to a third aspect of the present invention, there is provided a coating liquid tank for storing a coating liquid, a coating liquid pump for pumping the coating liquid in the coating liquid tank, and the coating liquid pumped from the coating liquid pump. In a coating apparatus comprising a coating nozzle that discharges toward a member, and a pipe that connects the coating liquid tank, the coating liquid pump, and the coating nozzle, a method of detecting bubbles in the coating liquid in the pipe A pressure sensor that detects the pressure of the coating liquid in the pipe is provided, and a reference time determined from the output of a discharge start signal that instructs the coating liquid pump to start a discharge operation when no bubbles are present. The reference pressure value, which is the pressure of the coating liquid in the pipe at the time when the discharge is performed, is stored in advance, and the pressure detected by the pressure sensor when the reference time has elapsed from the output of the discharge start signal. Compares the pressure value and the reference pressure value, when the measured pressure value is below the reference pressure value, and determines that bubbles are present in the coating liquid, to provide a bubble detection method.

本発明によれば、圧力センサによって検出される配管中の塗装液の圧力に基づいて気泡を検知するので、目視や光学的手法と比較して、塗布液中の気泡をより高精度で検知できる。   According to the present invention, since air bubbles are detected based on the pressure of the coating liquid in the pipe detected by the pressure sensor, it is possible to detect the air bubbles in the coating liquid with higher accuracy compared to visual or optical methods. .

(第1実施形態)
図1は、本実施形態に係る塗布装置の概略説明図である。この塗布装置は、大略、塗布液槽1、塗布液ポンプ2、塗布ノズル3、三方弁4、支持台5、圧力開放弁6、圧力センサ7、及び制御装置8を備える。
(First embodiment)
FIG. 1 is a schematic explanatory diagram of a coating apparatus according to the present embodiment. This coating apparatus generally includes a coating liquid tank 1, a coating liquid pump 2, a coating nozzle 3, a three-way valve 4, a support base 5, a pressure release valve 6, a pressure sensor 7, and a control device 8.

塗布液槽1には、塗布液が貯留されており、第1の配管11Aを介して三方弁4のポート4aに接続されている。塗布液としては、例えば、ガラス基板上に塗布されるPDP用ガラスペーストを使用できる。但し、このものに限定されるものではなく、被塗布部材12の種類に応じて、従来公知の種々の塗布液から適切なものを選定すればよい。   The coating liquid tank 1 stores the coating liquid and is connected to the port 4a of the three-way valve 4 through the first pipe 11A. As the coating solution, for example, a glass paste for PDP applied on a glass substrate can be used. However, the present invention is not limited to this, and an appropriate one may be selected from conventionally known various coating liquids according to the type of the member 12 to be coated.

塗布液ポンプ2は塗布液槽1中の塗布液を塗布ノズル3に圧送する。塗布液ポンプ2は、シリンダ2a、シリンダ2aの内部を摺動しながら往復移動するピストン2b、及びこのピストン2bを駆動するための駆動機構2cを備える。駆動機構2cとしては、直動モータやサーボモータを使用できる。塗布液ポンプ2は、第2の配管11Bを介して三方弁4のポート4bに接続されている。   The coating liquid pump 2 pumps the coating liquid in the coating liquid tank 1 to the coating nozzle 3. The coating liquid pump 2 includes a cylinder 2a, a piston 2b that reciprocates while sliding inside the cylinder 2a, and a drive mechanism 2c for driving the piston 2b. As the drive mechanism 2c, a direct acting motor or a servo motor can be used. The coating liquid pump 2 is connected to the port 4b of the three-way valve 4 via the second pipe 11B.

塗布ノズル3は、公知の構成のスリットノズルであり、御影石製の定盤である支持台5上に載置されたPDP等の被塗布部材12に向けて塗布液ポンプ2から圧送された塗布液を吐出しながら走行することで、被塗布部材12上に塗膜13を形成する。塗布ノズル3は、図示しない昇降装置と駆動装置により昇降及び走行する。塗布ノズル3は、第3の配管11C、塗布ノズル3の位置に応じて撓むチューブ14、及び第4の配管11Dを介して三方弁4のポート4cに接続されている。   The application nozzle 3 is a slit nozzle having a known configuration, and the application liquid pumped from the application liquid pump 2 toward the application target member 12 such as a PDP placed on a support base 5 which is a granite surface plate. The coating film 13 is formed on the coated member 12 by running while discharging. The application nozzle 3 moves up and down by a lifting device and a driving device (not shown). The application nozzle 3 is connected to the port 4c of the three-way valve 4 via the third pipe 11C, the tube 14 that bends according to the position of the application nozzle 3, and the fourth pipe 11D.

配管11Cの途中から圧力開放用の第5の配管11Eの一端が分岐している。第5配管11Eの他端は開口端であって大気に開放されている。配管11Eには、常閉のオンオフ型の電磁弁等からなる圧力開放弁6が設けられている。   One end of a fifth pipe 11E for releasing pressure is branched from the middle of the pipe 11C. The other end of the fifth pipe 11E is an open end and is open to the atmosphere. The pipe 11E is provided with a pressure release valve 6 composed of a normally closed on / off type electromagnetic valve or the like.

配管11Cの塗布ノズル3側、具体的には配管11Cのうち配管11Eの分岐する部位と塗布ノズル3との間に、配管中の塗布液の圧力を検出するための公知の構成の圧力センサ7が取り付けられている。圧力センサ7を配管11Cの塗布ノズル3に近接した部位に設けることで、後述する流動気泡をより確実に検知できる。   A pressure sensor 7 having a known configuration for detecting the pressure of the coating liquid in the piping between the coating nozzle 3 side of the piping 11C, specifically, between the portion of the piping 11C where the piping 11E branches and the coating nozzle 3. Is attached. By providing the pressure sensor 7 at a site close to the application nozzle 3 of the pipe 11C, it is possible to more reliably detect a flowing bubble to be described later.

制御装置8は、塗布液ポンプ2、塗布ノズル3、三方弁4、及び圧力開放弁6を含む塗布装置全体の動作を制御する。塗布液ポンプ2に塗布液槽1から塗布液を吸引する際には、ポート4a,4bを連通させると共に、ポート4cは他のポート4a,4bに対して遮断し、駆動機構2cによってシリンダ2a内でピストン2bを容積が増大する方向に移動させる。塗布液槽1内の塗布液は、配管11A、三方弁4、及び配管11Bを経て塗布液ポンプ2内に吸引される。塗布液ポンプ2から塗布ノズル3へ塗布液を圧送する際には、ポート4b,4cを連通させると共に、ポート4aは他のポート4b,4cに対して遮断し、駆動機構2cによってシリンダ2a内でピストン2bを容積が減少する方向に移動させる。塗布液ポンプ2から、配管11B、三方弁4、第4の配管11D、チューブ14、及び第3の配管11Cを経て塗布ノズル3に塗布液が圧送される。圧送された塗布液は塗布ノズル3から被塗布部材12に向けて吐出されることにより塗膜13が塗布される。   The control device 8 controls the operation of the entire coating apparatus including the coating liquid pump 2, the coating nozzle 3, the three-way valve 4, and the pressure release valve 6. When suctioning the coating liquid from the coating liquid tank 1 to the coating liquid pump 2, the ports 4a and 4b are communicated with each other, and the port 4c is shut off from the other ports 4a and 4b. The piston 2b is moved in the direction in which the volume increases. The coating liquid in the coating liquid tank 1 is sucked into the coating liquid pump 2 through the pipe 11A, the three-way valve 4, and the pipe 11B. When the coating liquid is pumped from the coating liquid pump 2 to the coating nozzle 3, the ports 4b and 4c are communicated with each other, and the port 4a is blocked from the other ports 4b and 4c, and is driven inside the cylinder 2a by the drive mechanism 2c. The piston 2b is moved in the direction in which the volume decreases. The coating solution is pumped from the coating solution pump 2 to the coating nozzle 3 through the piping 11B, the three-way valve 4, the fourth piping 11D, the tube 14, and the third piping 11C. The coating liquid 13 is applied by discharging the pumped coating liquid from the coating nozzle 3 toward the member to be coated 12.

次に、気泡検知の原理について説明する。   Next, the principle of bubble detection will be described.

図2は三方弁4よりも下流側の配管11C,11D及びチューブ14に気泡が存在しない場合の圧力曲線(塗布液ポンプ2で圧送動作を実行したときの時間と圧力センサ7により検出される圧力の関係)を示す。この図2において、圧力曲線L1,L2,L3,L4の順で塗布ノズル3からの単位時間当たりの塗布液の吐出量(以下、単に吐出量という。)が多く、それに対応して塗布液ポンプ2の吐出圧も高い。また、時刻tdisに制御装置8から塗布液ポンプ2に対して吐出動作開始を指令する吐出開始信号が出力され、塗布液ポンプ2が吐出動作を開始する。以下、吐出開始信号が出力された時刻tdisを「吐出開始時刻」と呼ぶ。この図2より、吐出量によって圧力曲線L1〜L4の上昇の態様は異なるが、いずれの圧力曲線L1〜L4でも最終的には圧力センサ7で検出される圧力は一定値となる。   FIG. 2 shows a pressure curve when no bubbles are present in the pipes 11C and 11D and the tube 14 on the downstream side of the three-way valve 4 (time when the pumping operation is performed by the coating liquid pump 2 and pressure detected by the pressure sensor 7). Relationship). In FIG. 2, the amount of coating liquid discharged from the coating nozzle 3 per unit time (hereinafter simply referred to as the amount of discharge) from the coating nozzle 3 increases in the order of the pressure curves L1, L2, L3, and L4. The discharge pressure of 2 is also high. At time tdis, the controller 8 outputs a discharge start signal that instructs the coating liquid pump 2 to start the discharging operation, and the coating liquid pump 2 starts the discharging operation. Hereinafter, the time tdis at which the discharge start signal is output is referred to as “discharge start time”. As shown in FIG. 2, the pressure curves L1 to L4 rise differently depending on the discharge amount, but in any pressure curve L1 to L4, the pressure finally detected by the pressure sensor 7 becomes a constant value.

次に、図3は三方弁4と圧力開放弁6との間の配管11E中の塗布液に気泡を混入させた場合の圧力曲線を示す。配管11Eに混入している気泡は、塗布ノズル3から塗布液と共に排出されない点で、非流動性ないしは静止の気泡である。以下、配管11E中の塗布液に混入している気泡を「静止気泡」と呼ぶ。図3において圧力曲線L1’は静止気泡が混入していない場合を示す。圧力曲線L2’〜L4’は静止気泡が混入している場合を示し、圧力曲線L4’,L3’,L2’の順で静止気泡の混入量が多い。塗布ノズル3からの単位時間当たりの塗布液の吐出量はすべての圧力曲線L1’〜L4’で同一である。   Next, FIG. 3 shows a pressure curve when bubbles are mixed in the coating liquid in the pipe 11E between the three-way valve 4 and the pressure release valve 6. FIG. The bubbles mixed in the pipe 11E are non-flowable or stationary bubbles in that they are not discharged together with the coating liquid from the coating nozzle 3. Hereinafter, the bubbles mixed in the coating liquid in the pipe 11E are referred to as “stationary bubbles”. In FIG. 3, the pressure curve L <b> 1 ′ shows a case where stationary bubbles are not mixed. The pressure curves L2 'to L4' show a case where stationary bubbles are mixed, and the amount of stationary bubbles mixed increases in the order of the pressure curves L4 ', L3', L2 '. The discharge amount of the coating liquid per unit time from the coating nozzle 3 is the same in all the pressure curves L1 'to L4'.

図3から明らかなように、静止気泡の有無にかかわらず、最終的には圧力センサ7で検出される圧力は一定となる。ただし、静止気泡が混入している場合(圧力曲線L2’〜L4’)における吐出開始時刻tdisから圧力が一定となるまでに要する時間T2’〜T4’は、静止気泡が存在しない場合(圧力曲線L1’)における吐出開始時刻tdisから圧力が一定となるまでに要する時間T1’よりも長い。また、静止気泡の混入量が多い程、すなわち圧力曲線L4’,L3’,L2’の順で一定圧力に到達するまでに要する時間が長い。このことから、気泡の圧縮性を利用して静止気泡の自動検知が可能であることが分かる。   As apparent from FIG. 3, the pressure finally detected by the pressure sensor 7 is constant regardless of the presence or absence of stationary bubbles. However, when stationary bubbles are present (pressure curves L2 ′ to L4 ′), the time T2 ′ to T4 ′ required from the discharge start time tdis until the pressure becomes constant is the time when no stationary bubbles exist (pressure curve). It is longer than the time T1 ′ required until the pressure becomes constant from the discharge start time tdis in L1 ′). Further, the larger the amount of stationary bubbles mixed, that is, the longer it takes to reach a constant pressure in the order of the pressure curves L4 ', L3', L2 '. From this, it is understood that the stationary bubbles can be automatically detected by utilizing the compressibility of the bubbles.

図4は、三方弁4と塗布ノズル3の間の配管11C、配管11D、又はチューブ14中の塗布液に気泡を混入させて、2回連続で塗布液ポンプ2よる吐出動作を実行した場合の圧力曲線を示す。配管11C、配管11D、又はチューブ14に混入している気泡は、塗布ノズル3から塗布液と共に排出され得る点で、流動性を有する気泡である。以下、配管11C、配管11D、又はチューブ14中の塗布液に混入している気泡を「流動気泡」と呼ぶ。図4において圧力曲線L1''は気泡が混入していない場合を示す。圧力曲線L2'',L3''は流動気泡が混入している場合を示し、圧力曲線L2''が1回目の吐出動作で圧力曲線L3''が2回目の吐出動作である。塗布ノズル3からの単位時間当たりの塗布液の吐出量はすべての圧力曲線L1''〜L3''で同一である。   FIG. 4 shows a case in which bubbles are mixed into the coating liquid in the pipe 11C, the pipe 11D, or the tube 14 between the three-way valve 4 and the coating nozzle 3 and the discharge operation by the coating liquid pump 2 is executed twice in succession. A pressure curve is shown. The bubbles mixed in the pipe 11C, the pipe 11D, or the tube 14 are bubbles having fluidity in that they can be discharged from the coating nozzle 3 together with the coating liquid. Hereinafter, the bubbles mixed in the coating liquid in the pipe 11C, the pipe 11D, or the tube 14 are referred to as “fluid bubbles”. In FIG. 4, a pressure curve L1 ″ indicates a case where bubbles are not mixed. The pressure curves L2 ″ and L3 ″ indicate a case where fluid bubbles are mixed. The pressure curve L2 ″ is the first discharge operation and the pressure curve L3 ″ is the second discharge operation. The discharge amount of the coating liquid per unit time from the coating nozzle 3 is the same in all the pressure curves L1 ″ to L3 ″.

図4から明らかなように、流動気泡の有無にかかわらず、最終的には圧力センサ7で検出される圧力は一定となる。ただし、流動気泡が混入している場合(圧力曲線L2'',L3'')における吐出開始時刻tdisから圧力が一定となるまでに要する時間T2'',T3''は、流動気泡が存在しない場合(圧力曲線L1'')における吐出開始時刻tdisから圧力が一定となるまでに要する時間T1''よりも長い。また、1回目の吐出動作によってある程度の量の流動気泡が塗布ノズル3から塗布液と共に排出されるので、1回目の吐出動作における一定圧力になるまでに要する時間T2''と比較すると、2回目の吐出動作における一定圧力になるまでに要する時間T3''は短縮されている。これらのことから、静止気泡の場合と同様に、気泡の圧縮性を利用して流動気泡の自動検知が可能であることが分かる。   As apparent from FIG. 4, the pressure detected by the pressure sensor 7 is finally constant regardless of the presence or absence of flowing bubbles. However, there is no fluid bubble during the time T2 ″, T3 ″ required for the pressure to become constant from the discharge start time tdis when the fluid bubble is mixed (pressure curves L2 ″, L3 ″). In this case (pressure curve L1 ″), it is longer than the time T1 ″ required until the pressure becomes constant from the discharge start time tdis. In addition, since a certain amount of flowing bubbles is discharged together with the coating liquid from the application nozzle 3 by the first discharge operation, the second time compared with the time T2 '' required to reach a constant pressure in the first discharge operation. The time T3 ″ required to reach a constant pressure in the discharge operation is shortened. From these facts, it can be seen that, as in the case of stationary bubbles, it is possible to automatically detect the flowing bubbles using the compressibility of the bubbles.

静止気泡が混入している場合と流動気泡が混入している場合では、塗布液ポンプ2の吐出動作によって最終的に到達する圧力の絶対値(絶対圧力値)が異なる。従って、この絶対圧力値を気泡検知の際に参照すると、静止気泡と流動気泡の両方を高精度で検知することは困難である。そこで、本発明では、圧力曲線のうち吐出開始時刻tdisから絶対圧力値に到達する前の圧力上昇中の領域を利用して気泡の検知を行う。以下、図5を参照して気泡検知の手法を説明する。   The absolute value (absolute pressure value) of the pressure finally reached differs depending on the discharge operation of the coating liquid pump 2 when the stationary bubbles are mixed and when the flowing bubbles are mixed. Therefore, when this absolute pressure value is referred to when detecting bubbles, it is difficult to detect both stationary bubbles and flowing bubbles with high accuracy. Therefore, in the present invention, bubbles are detected using a region in the pressure curve where the pressure is rising before reaching the absolute pressure value from the discharge start time tdis. Hereinafter, the bubble detection method will be described with reference to FIG.

図5において、圧力曲線Lsdは静止気泡も流動気泡も混入していない場合を示し、圧力曲線Lbは静止気泡と流動気泡のうちの少なくとも一方が混入している場合を示す。また、図5において、基準圧力値Psdは、予め設定された圧力値である。具体的には、基準圧力値Psdは、気泡が存在しない場合(圧力曲線Lsd)に、塗布液ポンプ2へ吐出開始信号を出力した(吐出開始時刻tdis)後、配管11B〜11E及びチューブ14内の塗布液の圧力が一定圧力に達する前の上昇中の圧力値である。圧力センサ7を使用して、気泡が存在しない場合における吐出開始時刻tdisから配管11B〜11E及びチューブ14内の塗布液の圧力が基準圧力値Psdに達するまでの時間が予め実測される。この時間は参照時間Trefとして制御装置8に予め記憶されている。   In FIG. 5, the pressure curve Lsd shows a case where neither stationary bubbles nor flowing bubbles are mixed, and the pressure curve Lb shows a case where at least one of stationary bubbles and flowing bubbles is mixed. In FIG. 5, the reference pressure value Psd is a preset pressure value. Specifically, the reference pressure value Psd is the value in the pipes 11B to 11E and the tube 14 after the discharge start signal is output to the coating liquid pump 2 (discharge start time tdis) when bubbles are not present (pressure curve Lsd). It is the pressure value during the rise before the pressure of the coating liquid reaches a constant pressure. Using the pressure sensor 7, the time from the discharge start time tdis when no bubbles are present until the pressure of the coating liquid in the pipes 11B to 11E and the tube 14 reaches the reference pressure value Psd is measured in advance. This time is stored in the control device 8 in advance as a reference time Tref.

制御装置8は実際に塗布液ポンプ2で塗布ノズル3への塗布液の圧送動作を実行する際に、吐出開始時刻tdisから圧力センサ7により検出される圧力が基準圧力値Psdに達するまでの時間(実測時間Tme)を測る。そして、この実測時間Tmeが参照時間Trefを上回る場合、すなわち気泡が存在しない場合と比較して圧力上昇が遅い場合には、配管11B〜11E及チューブ14のうちの少なくともいずれか1つの塗布液に気泡が混入していると判断する。   When the control device 8 actually performs the pressure feeding operation of the coating liquid to the coating nozzle 3 by the coating liquid pump 2, the time from the discharge start time tdis until the pressure detected by the pressure sensor 7 reaches the reference pressure value Psd. (Measurement time Tme) is measured. When the actual measurement time Tme exceeds the reference time Tref, that is, when the pressure rise is slower than when no bubbles are present, at least one of the pipes 11B to 11E and the tube 14 is applied to the coating liquid. Judge that air bubbles are mixed.

次に、図6を参照して本実施形態の塗布装置の動作を説明する。塗布工程(ステップS6−1)では、まず塗液ポンプ2が塗布液槽1内の塗布液を吸引する。次に、吐出開始信号を塗布液ポンプ2に出力し(ステップS6−2)、塗布液ポンプ2が塗布液の圧送動作を開始する。吐出開始信号の出力(吐出開始時刻tdis)と同時に、制御装置8が計時と圧力センサ7による圧力測定を開始する(ステップS6−3,S6−4)。計時と圧力測定は圧力センサ7の検出圧力Pdeが基準圧力Psdに達するまで継続される(ステップS6−5)。検出圧力Pdeが基準圧力Psdに達すると、制御装置8は計時と圧力測定を停止する(ステップS6−6,S6−7)。計時停止時の時刻と吐出開始時刻tdisの差が実測時間Tmeである。制御装置8は実測時間Tmeと基準時間Trefを比較する(ステップS6−8)。   Next, the operation of the coating apparatus of this embodiment will be described with reference to FIG. In the coating process (step S6-1), first, the coating liquid pump 2 sucks the coating liquid in the coating liquid tank 1. Next, a discharge start signal is output to the coating liquid pump 2 (step S6-2), and the coating liquid pump 2 starts a pressure feeding operation of the coating liquid. Simultaneously with the output of the discharge start signal (discharge start time tdis), the control device 8 starts time measurement and pressure measurement by the pressure sensor 7 (steps S6-3 and S6-4). Timekeeping and pressure measurement are continued until the detected pressure Pde of the pressure sensor 7 reaches the reference pressure Psd (step S6-5). When the detected pressure Pde reaches the reference pressure Psd, the control device 8 stops timing and pressure measurement (steps S6-6 and S6-7). The difference between the time when the timing is stopped and the discharge start time tdis is the actual measurement time Tme. The control device 8 compares the actual measurement time Tme with the reference time Tref (step S6-8).

ステップS6−8において実測時間Tmeが基準時間Trefを上回っている場合には、気泡(静止気泡と流動気泡の少なくとも一方)が検知されたと判定する(ステップS6−9)。この場合は、次回の塗布工程を行うことができないので、自動空気抜き動作(S6−10)と塗布条件での空吐出(ステップS6−11)を実行する。一方、ステップS6−8において実測時間Tmeが基準時間Tref以下である場合には、気泡は検出されないと判定し(ステップS6−12)、次の塗布工程に移る。   If the measured time Tme exceeds the reference time Tref in step S6-8, it is determined that a bubble (at least one of a stationary bubble and a flowing bubble) has been detected (step S6-9). In this case, since the next application process cannot be performed, an automatic air venting operation (S6-10) and idle discharge under application conditions (step S6-11) are executed. On the other hand, if the actual measurement time Tme is equal to or shorter than the reference time Tref in step S6-8, it is determined that no bubbles are detected (step S6-12), and the process proceeds to the next coating process.

ステップS6−10の自動空気抜き動作では、まず、圧力開放弁6を開放した状態で塗布液ポンプ2による圧送動作を実行し、配管11D中の静止気泡を配管11Dの開口端から排出する。次に、圧力開放弁6を閉弁状態に戻して塗布液ポンプ2による圧送動作を実行し、配管11C中の流動気泡を塗布ノズル3から排出する。ステップS6−11の空吐出では、被塗布部材12を使用せずに塗布液ポンプ2による圧送動作を実行する。ステップS6−8で実測時間Tmeが基準時間Tref以下となるまで、ステップS6−10とステップS6−11が繰り返される。   In the automatic air venting operation in step S6-10, first, the pressure feeding operation by the coating liquid pump 2 is executed with the pressure release valve 6 opened, and the static bubbles in the pipe 11D are discharged from the open end of the pipe 11D. Next, the pressure release valve 6 is returned to the closed state, the pressure feeding operation by the coating liquid pump 2 is executed, and the flowing bubbles in the pipe 11 </ b> C are discharged from the coating nozzle 3. In the idle discharge of step S6-11, the pressure feeding operation by the coating liquid pump 2 is executed without using the member 12 to be coated. Step S6-10 and step S6-11 are repeated until the actual measurement time Tme becomes equal to or less than the reference time Tref in step S6-8.

本実施形態の塗布装置では、圧力センサ7によって検出された圧力を使用して得た実測時間Tmeと、参照時間Trefとを比較することで気泡を検知するので、目視や光学的手法と比較して、微少量の気泡を高精度で検知できる。また、参照時間Trefは気泡が存在しない場合における圧力曲線の圧力上昇中の値である基準圧力値により定めているので、静止気泡と流動気泡の両方を確実に検知できる。   In the coating apparatus of the present embodiment, bubbles are detected by comparing the measured time Tme obtained using the pressure detected by the pressure sensor 7 with the reference time Tref, so that it is compared with visual or optical methods. Therefore, a very small amount of bubbles can be detected with high accuracy. In addition, since the reference time Tref is determined by the reference pressure value that is a value during the pressure increase of the pressure curve when no bubbles are present, both stationary bubbles and flowing bubbles can be reliably detected.

(第2実施形態)
本発明の第2実施形態にかかる塗布装置は、制御装置8により実行される気泡検知の手法が第1実施形態と異なる。
(Second Embodiment)
The coating apparatus according to the second embodiment of the present invention is different from the first embodiment in the method of detecting bubbles performed by the control device 8.

図7を参照して本実施形態における気泡検知の手法を説明する。図7において、圧力曲線Lsdは静止気泡も流動気泡も混入していない場合を示し、圧力曲線Lbは静止気泡と流動気泡のうちの少なくとも一方が混入している場合を示す。また、図7において、基準時間Tsdは予め設定された時間である。具体的には、基準時間Tsdは、気泡が存在しない場合(圧力曲線Lsd)に、塗布液ポンプ2へ吐出開始信号を出力した(吐出開始時刻tdis)後、この基準時間Tsdが経過した時点で、配管11B〜11E及びチューブ14内の塗布液の圧力が一定圧力に達する前の上昇中の状態となるように設定されている。気泡が存在しない場合における吐出開始時刻tdisから基準時間Tsdが経過した時点での配管11B〜11E及チューブ14内の塗布液の圧力が圧力センサ7を使用して予め測定され、この圧力は参照圧力値Prefとして制御装置8に予め記憶されている。   With reference to FIG. 7, a method of detecting bubbles in the present embodiment will be described. In FIG. 7, a pressure curve Lsd shows a case where neither stationary bubbles nor flowing bubbles are mixed, and a pressure curve Lb shows a case where at least one of stationary bubbles and flowing bubbles is mixed. In FIG. 7, the reference time Tsd is a preset time. Specifically, the reference time Tsd is the time when the reference time Tsd has elapsed after the discharge start signal is output to the coating liquid pump 2 (discharge start time tdis) when there are no bubbles (pressure curve Lsd). The pressure of the coating liquid in the pipes 11B to 11E and the tube 14 is set to be in a rising state before reaching a certain pressure. The pressure of the coating liquid in the pipes 11B to 11E and the tube 14 at the time when the reference time Tsd has elapsed from the discharge start time tdis when no bubbles are present is measured in advance using the pressure sensor 7, and this pressure is the reference pressure. The value Pref is stored in the control device 8 in advance.

制御装置8は塗布液ポンプ2で塗布ノズル3への塗布液の圧送動作を実行する際に、吐出開始時刻tdisから基準時間Tsdが経過した時点での圧力を実測する。この測定された圧力(実測圧力値Pme)が参照圧力値Prefを下回る場合、すなわち気泡が存在しない場合と比較して圧力上昇が遅い場合には、配管11B〜11E及チューブ14のうちの少なくともいずれか1つの塗布液に気泡が混入していると判断する。   The control device 8 measures the pressure when the reference time Tsd has elapsed from the discharge start time tdis when the coating liquid pump 2 performs the operation of feeding the coating liquid to the coating nozzle 3. When the measured pressure (actually measured pressure value Pme) is lower than the reference pressure value Pref, that is, when the pressure rise is slower than when no bubbles are present, at least one of the pipes 11B to 11E and the tube 14 is used. It is determined that bubbles are mixed in one coating liquid.

次に、図8を参照して本実施形態の塗布装置の動作を説明する。塗布工程(ステップS8−1)では、まず塗液ポンプ2が塗布液槽1内の塗布液を吸引する。次に、吐出開始信号を塗布液ポンプ2に出力し(ステップS8−2)、塗布液ポンプ2が塗布液の圧送動作を開始する。吐出開始信号の出力(吐出開始時刻tdis)と同時に、制御装置8が計時を開始する(ステップS8−3)。吐出開始時刻tdisからの経過時間Teが基準時間Tsdに達すると(ステップS8−4)、制御装置8は圧力センサ7による圧力測定を行う(ステップS8−5)。このステップS8−5において測定された圧力が実測圧力値Pmeである。また、制御装置8は計時を停止する(ステップS8−6)。続いて、制御装置8は実測圧力値Pmeと参照圧力値Prefを比較する(ステップS8−7)。   Next, the operation of the coating apparatus of this embodiment will be described with reference to FIG. In the coating process (step S8-1), first, the coating liquid pump 2 sucks the coating liquid in the coating liquid tank 1. Next, a discharge start signal is output to the coating liquid pump 2 (step S8-2), and the coating liquid pump 2 starts the pressure feeding operation of the coating liquid. Simultaneously with the output of the discharge start signal (discharge start time tdis), the control device 8 starts measuring time (step S8-3). When the elapsed time Te from the discharge start time tdis reaches the reference time Tsd (step S8-4), the control device 8 performs pressure measurement with the pressure sensor 7 (step S8-5). The pressure measured in step S8-5 is the actually measured pressure value Pme. Further, the control device 8 stops timing (step S8-6). Subsequently, the control device 8 compares the actually measured pressure value Pme with the reference pressure value Pref (step S8-7).

ステップS8−7において実測圧力値Pmeが基準圧力値Prefを下回っている場合には、気泡(静止気泡と流動気泡の少なくとも一方)が検知されたと判定する(ステップS8−8)。この場合は、次回の塗布工程を行うことができないので、自動空気抜き動作(S8−9)と塗布条件での空吐出(ステップS8−10)を実行する。一方、ステップS8−7において実測圧力値Pmeが参照圧力値Pref以上である場合には、気泡は検出されないと判定し(ステップS8−11)、次の塗布工程に移る。   If the measured pressure value Pme is lower than the reference pressure value Pref in step S8-7, it is determined that bubbles (at least one of stationary bubbles and fluid bubbles) have been detected (step S8-8). In this case, since the next application process cannot be performed, an automatic air venting operation (S8-9) and idle discharge under application conditions (step S8-10) are executed. On the other hand, if the measured pressure value Pme is greater than or equal to the reference pressure value Pref in step S8-7, it is determined that no bubbles are detected (step S8-11), and the process proceeds to the next coating process.

本実施形態の塗布装置では、圧力センサ7で測定した実測圧力値Pmeと、参照圧力値Prefとを比較することで気泡を検知するので、目視や光学的手法と比較して、微少量の気泡を高精度で検知できる。また、参照圧力値Prefは気泡が存在しない場合における圧力曲線の圧力上昇中の値であるので、静止気泡と流動気泡の両方を確実に検知できる。   In the coating apparatus of the present embodiment, bubbles are detected by comparing the measured pressure value Pme measured by the pressure sensor 7 with the reference pressure value Pref, so that a very small amount of bubbles is compared with visual or optical methods. Can be detected with high accuracy. Further, since the reference pressure value Pref is a value during the pressure increase of the pressure curve when no bubbles are present, it is possible to reliably detect both stationary bubbles and flowing bubbles.

第2実施形態のその他の構成及び作用は第1実施形態と同様である。   Other configurations and operations of the second embodiment are the same as those of the first embodiment.

本発明の塗布装置を示す模式図。The schematic diagram which shows the coating device of this invention. 塗布液に気泡が混入していない場合の圧力と時間の関係を示す模式的なグラフ。The typical graph which shows the relationship between the pressure and time when the bubble is not mixed in the coating liquid. 塗布液に静止気泡が混入している場合の圧力と時間の関係を示す模式的なグラフ。The typical graph which shows the relationship between the pressure and time when a stationary bubble is mixed in the coating liquid. 塗布液に流動気泡が混入している場合の圧力と時間の関係を示す模式的なグラフ。The typical graph which shows the relationship between the pressure and time when fluid bubbles are mixed in the coating liquid. 第1実施形態における気泡検知の手法を説明するための模式的なグラフ。The typical graph for demonstrating the method of the bubble detection in 1st Embodiment. 第1実施形態における塗布装置の動作を説明するためのフローチャート。The flowchart for demonstrating operation | movement of the coating device in 1st Embodiment. 第2実施形態における気泡検知の手法を説明するための模式的なグラフ。The typical graph for demonstrating the method of the bubble detection in 2nd Embodiment. 第2実施形態における塗布装置の動作を説明するためのフローチャート。The flowchart for demonstrating operation | movement of the coating device in 2nd Embodiment.

符号の説明Explanation of symbols

1 塗布液槽
2 塗布液ポンプ
2a シリンダ
2b ピストン
2c 駆動機構
3 塗布ノズル
4 三方弁
4a〜4c ポート
5 支持台
6 圧力開放弁
7 圧力センサ
8 制御装置
11A〜11E 配管
12 被塗布部材
13 塗膜
14 チューブ
Psd 基準圧力値
Pref 参照圧力値
Pme 実測圧力値
Tsd 基準時間
Tref 参照時間
Tme 実測時間
DESCRIPTION OF SYMBOLS 1 Coating liquid tank 2 Coating liquid pump 2a Cylinder 2b Piston 2c Drive mechanism 3 Coating nozzle 4 Three-way valve 4a-4c Port 5 Support stand 6 Pressure release valve 7 Pressure sensor 8 Controller 11A-11E Piping 12 Coating member 13 Coating film 14 Tube Psd Standard pressure value Pref Reference pressure value Pme Actual measurement pressure value Tsd Standard time Tref Reference time Tme Actual measurement time

Claims (8)

塗布液を貯留する塗布液槽と、この塗布液槽中の前記塗布液を圧送する塗布液ポンプと、この塗布液ポンプから圧送された前記塗布液を被塗布部材に向けて吐出する塗布ノズルと、前記塗布液槽、前記塗布液ポンプ、及び前記塗布ノズルを接続する配管とを備える塗布装置において、
前記配管内の前記塗布液の圧力を検出する圧力センサと、
前記塗布液ポンプの動作を制御すると共に、前記圧力センサにより検出された圧力に基づいて前記塗液中の気泡を検知する制御装置と
を備えることを特徴とする、塗布装置。
A coating liquid tank for storing the coating liquid, a coating liquid pump for pumping the coating liquid in the coating liquid tank, and a coating nozzle for discharging the coating liquid pumped from the coating liquid pump toward a member to be coated; In the coating apparatus comprising the coating liquid tank, the coating liquid pump, and a pipe connecting the coating nozzle,
A pressure sensor for detecting the pressure of the coating liquid in the pipe;
And a control device that controls the operation of the coating liquid pump and detects air bubbles in the coating liquid based on the pressure detected by the pressure sensor.
前記制御装置は、
気泡が存在しない場合における前記塗布液ポンプへ吐出動作開始を指令する吐出開始信号の出力から前記配管内の前記塗布液の圧力が予め定められた基準圧力値に達するまでの時間である参照時間を予め記憶し、
前記吐出開始信号の出力から前記圧力センサにより検出される圧力が前記基準圧力値に達するまでの時間である実測時間と、前記参照時間とを比較し、かつ
前記実測時間が前記参照時間を上回ると、前記塗液中に気泡が存在すると判定することを特徴とする、請求項1に記載の塗布装置。
The controller is
A reference time, which is the time from when the discharge start signal is output to the coating liquid pump when the bubbles are not present until the pressure of the coating liquid in the pipe reaches a predetermined reference pressure value, is determined. Remember in advance,
When the measured time that is the time from the output of the discharge start signal to the pressure detected by the pressure sensor reaching the reference pressure value is compared with the reference time, and the measured time exceeds the reference time The coating apparatus according to claim 1, wherein it is determined that bubbles are present in the coating liquid.
前記基準圧力値は、気泡が存在しない場合に、前記塗布液ポンプへ前記吐出開始信号を出力した後、前記配管内の前記塗布液の圧力が一定圧力に達する前の上昇中の圧力値であることを特徴とする請求項2に記載の塗布装置。   The reference pressure value is a pressure value that is rising before the pressure of the coating liquid in the pipe reaches a constant pressure after outputting the discharge start signal to the coating liquid pump when bubbles do not exist. The coating apparatus according to claim 2. 前記制御装置は、
気泡が存在しない場合における前記塗布液ポンプへ吐出動作開始を指令する吐出開始信号の出力から予め定められた基準時間が経過した時点での前記配管内の前記塗布液の圧力である参照圧力値を予め記憶し、
前記吐出開始信号の出力から前記基準時間が経過した時点で前記圧力センサにより検出される圧力である実測圧力値と、前記参照圧力値とを比較し、かつ
前記実測圧力値が前記参照圧力値を下回ると、前記塗液中に気泡が存在すると判定することを特徴とする、請求項1に記載の塗布装置。
The controller is
A reference pressure value that is a pressure of the coating liquid in the pipe at a time when a predetermined reference time has elapsed from the output of a discharge start signal that instructs the coating liquid pump to start a discharge operation when there is no bubble. Remember in advance,
The measured pressure value, which is the pressure detected by the pressure sensor when the reference time has elapsed from the output of the discharge start signal, is compared with the reference pressure value, and the measured pressure value matches the reference pressure value. The coating apparatus according to claim 1, wherein when it falls below, it is determined that air bubbles are present in the coating liquid.
前記基準時間は、気泡が存在しない場合に、前記塗布液ポンプへ前記吐出開始信号を出力した後この基準時間が経過した時点で、前記配管内の前記塗布液の圧力が一定圧力に達する前の上昇中の状態となるように設定されていることを特徴とする、請求項4に記載の塗布装置。   The reference time is the time before the pressure of the coating liquid in the pipe reaches a constant pressure when the reference time has elapsed after the discharge start signal is output to the coating liquid pump when bubbles do not exist. The coating apparatus according to claim 4, wherein the coating apparatus is set to be in a rising state. 前記圧力センサは前記塗布液ポンプよりも前記塗布ノズル側の前記配管に設けられていることを特徴とする、請求項1から請求項5のいずれか1項に記載の塗布装置。   6. The coating apparatus according to claim 1, wherein the pressure sensor is provided in the pipe closer to the coating nozzle than the coating liquid pump. 塗布液を貯留する塗布液槽と、この塗布液槽中の前記塗布液を圧送する塗布液ポンプと、この塗布液ポンプから圧送された前記塗布液を被塗布部材に向けて吐出する塗布ノズルと、前記塗布液槽、前記塗布液ポンプ、及び前記塗布ノズルを接続する配管とを備える塗布装置において、前記配管内の前記塗布液中の気泡を検知する方法であって、
前記配管内の前記塗布液の圧力を検出する圧力センサを設け、
気泡が存在しない場合における前記塗布液ポンプへ吐出動作開始を指令する吐出開始信号の出力から、前記配管内の前記塗布液の圧力が予め定められた基準圧力値に達するまでの時間である参照時間を予め記憶し、
前記吐出開始信号の出力から前記圧力センサにより検出される圧力が前記基準圧力値に達するまでの時間である実測時間と、前記参照時間とを比較し、
前記実測時間が前記参照時間を上回ると、前記塗液中に気泡が存在すると判定することを特徴とする、気泡検知方法。
A coating liquid tank for storing the coating liquid, a coating liquid pump for pumping the coating liquid in the coating liquid tank, and a coating nozzle for discharging the coating liquid pumped from the coating liquid pump toward a member to be coated; In a coating apparatus comprising the coating liquid tank, the coating liquid pump, and a pipe connecting the coating nozzle, a method for detecting bubbles in the coating liquid in the pipe,
A pressure sensor for detecting the pressure of the coating liquid in the pipe is provided;
A reference time, which is a time from when a discharge start signal is output to command the start of a discharge operation to the coating liquid pump when bubbles do not exist, until the pressure of the coating liquid in the pipe reaches a predetermined reference pressure value Is stored in advance,
Comparing the reference time with the actual measurement time, which is the time from the output of the discharge start signal until the pressure detected by the pressure sensor reaches the reference pressure value,
If the measured time exceeds the reference time, it is determined that bubbles are present in the coating liquid.
塗布液を貯留する塗布液槽と、この塗布液槽中の前記塗布液を圧送する塗布液ポンプと、この塗布液ポンプから圧送された前記塗布液を被塗布部材に向けて吐出する塗布ノズルと、前記塗布液槽、前記塗布液ポンプ、及び前記塗布ノズルを接続する配管とを備える塗布装置において、前記配管内の前記塗布液中の気泡を検知する方法であって、
前記配管内の前記塗布液の圧力を検出する圧力センサを設け、
気泡が存在しない場合における前記塗布液ポンプへ吐出動作開始を指令する吐出開始信号の出力から定められた基準時間が経過した時点での前記配管内の前記塗布液の圧力である参照圧力値を予め記憶し、
前記吐出開始信号の出力から前記基準時間が経過した時点で前記圧力センサにより検出される圧力である実測圧力値と、前記参照圧力値とを比較し、
前記実測圧力値が前記参照圧力値を下回ると、前記塗液中に気泡が存在すると判定することを特徴とする、気泡検知方法。
A coating liquid tank for storing the coating liquid, a coating liquid pump for pumping the coating liquid in the coating liquid tank, and a coating nozzle for discharging the coating liquid pumped from the coating liquid pump toward a member to be coated; In a coating apparatus comprising the coating liquid tank, the coating liquid pump, and a pipe connecting the coating nozzle, a method for detecting bubbles in the coating liquid in the pipe,
A pressure sensor for detecting the pressure of the coating liquid in the pipe is provided;
A reference pressure value that is the pressure of the coating liquid in the pipe at the time when a predetermined reference time has elapsed from the output of a discharge start signal that instructs the coating liquid pump to start the discharge operation when no bubbles are present is previously stored. Remember,
Comparing the measured pressure value, which is the pressure detected by the pressure sensor when the reference time has elapsed from the output of the discharge start signal, with the reference pressure value;
When the measured pressure value falls below the reference pressure value, it is determined that bubbles are present in the coating liquid.
JP2007015045A 2007-01-25 2007-01-25 Coating device and bubble detection method in coating device Active JP4975454B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007015045A JP4975454B2 (en) 2007-01-25 2007-01-25 Coating device and bubble detection method in coating device
TW096145635A TWI349583B (en) 2007-01-25 2007-11-30 Application device and method for detecting an air bubble in the application device
KR1020080007443A KR100952810B1 (en) 2007-01-25 2008-01-24 Application device and method for detecting an air bubble in the application device
CN2010102031167A CN101850320B (en) 2007-01-25 2008-01-24 Application device and method for detecting an air bubble in the application device
CN2008100051718A CN101229538B (en) 2007-01-25 2008-01-24 Film coating device and bubble detecting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015045A JP4975454B2 (en) 2007-01-25 2007-01-25 Coating device and bubble detection method in coating device

Publications (2)

Publication Number Publication Date
JP2008178817A true JP2008178817A (en) 2008-08-07
JP4975454B2 JP4975454B2 (en) 2012-07-11

Family

ID=39723125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015045A Active JP4975454B2 (en) 2007-01-25 2007-01-25 Coating device and bubble detection method in coating device

Country Status (4)

Country Link
JP (1) JP4975454B2 (en)
KR (1) KR100952810B1 (en)
CN (2) CN101229538B (en)
TW (1) TWI349583B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519829A (en) * 2010-02-18 2013-05-30 グルンドフォス マネージメント アー/エス Metering pump device
JP2015066485A (en) * 2013-09-27 2015-04-13 日本電気株式会社 Coating equipment, and coating method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954339B (en) * 2010-10-28 2012-10-10 中天科技光纤有限公司 Feeding system for preventing bubble generation during optical fiber coating
TWI554408B (en) * 2014-03-21 2016-10-21 鴻積科機股份有限公司 Glue film sticking device with a function of removing bubbles
KR200477660Y1 (en) * 2015-01-22 2015-07-06 주식회사 지앤씨 Leak detecting apparatus of pipeline for semiconductor fabrication
KR101927920B1 (en) * 2016-11-24 2018-12-11 세메스 주식회사 Substrate treating apparatus and substrate treating method
CN107356729A (en) * 2017-06-20 2017-11-17 巴斯夫上海涂料有限公司 Water colour paint film build method and its application in the detection of pin hole foams performance
CN107596939B (en) * 2017-10-24 2020-05-05 武汉华星光电半导体显示技术有限公司 Detection device, stirrer and defoaming method
CN109712125A (en) * 2018-12-19 2019-05-03 汕头大学 A kind of dip roll coating application process generation bubble machine vision detection method
CN110479550A (en) * 2019-06-11 2019-11-22 汉腾汽车有限公司 A kind of application of pressure transmitter in Glue Spreading Robot system
CN114894811B (en) * 2022-07-12 2022-11-18 武汉鹏恒包装印务有限公司 Packing carton illumination detection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217255A (en) * 1985-03-22 1986-09-26 Minolta Camera Co Ltd Ink jet pump
JPS63191643A (en) * 1986-12-10 1988-08-09 イマージユ・エス・アー Multifunctional cell with variable capacity chamber and fluid supply circuit for ink jet type printing head with said cell
JPH01150549A (en) * 1987-12-08 1989-06-13 Fuji Xerox Co Ltd Bubble detecting device for ink flow path in ink jet printer
JPH03161345A (en) * 1989-11-20 1991-07-11 Canon Inc Liquid injection recording device
JPH11260680A (en) * 1998-03-09 1999-09-24 Dainippon Screen Mfg Co Ltd Coating method and apparatus thereof
JP2003182116A (en) * 2001-12-19 2003-07-03 Canon Inc Ink jet recorder
JP2004058531A (en) * 2002-07-30 2004-02-26 Fuji Photo Film Co Ltd Bubble detector and bubble detecting method of liquid ejector
JP2006321188A (en) * 2005-05-20 2006-11-30 Fujifilm Holdings Corp Liquid discharge device and method for detecting temperature change

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254568A (en) 1999-03-09 2000-09-19 Hitachi Ltd Pressurized transfer device for viscous liquid and method therefor
US6848625B2 (en) * 2002-03-19 2005-02-01 Tokyo Electron Limited Process liquid supply mechanism and process liquid supply method
KR20060057706A (en) * 2004-11-24 2006-05-29 삼성전자주식회사 Apparatus for controlling filter housing and method for controlling filter housing
KR100780718B1 (en) * 2004-12-28 2007-12-26 엘지.필립스 엘시디 주식회사 Slit coater having apparatus of supplying coating fluid
KR20070007450A (en) * 2005-07-11 2007-01-16 삼성전자주식회사 Device for detecting condition of chemical filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217255A (en) * 1985-03-22 1986-09-26 Minolta Camera Co Ltd Ink jet pump
JPS63191643A (en) * 1986-12-10 1988-08-09 イマージユ・エス・アー Multifunctional cell with variable capacity chamber and fluid supply circuit for ink jet type printing head with said cell
JPH01150549A (en) * 1987-12-08 1989-06-13 Fuji Xerox Co Ltd Bubble detecting device for ink flow path in ink jet printer
JPH03161345A (en) * 1989-11-20 1991-07-11 Canon Inc Liquid injection recording device
JPH11260680A (en) * 1998-03-09 1999-09-24 Dainippon Screen Mfg Co Ltd Coating method and apparatus thereof
JP2003182116A (en) * 2001-12-19 2003-07-03 Canon Inc Ink jet recorder
JP2004058531A (en) * 2002-07-30 2004-02-26 Fuji Photo Film Co Ltd Bubble detector and bubble detecting method of liquid ejector
JP2006321188A (en) * 2005-05-20 2006-11-30 Fujifilm Holdings Corp Liquid discharge device and method for detecting temperature change

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519829A (en) * 2010-02-18 2013-05-30 グルンドフォス マネージメント アー/エス Metering pump device
US9382904B2 (en) 2010-02-18 2016-07-05 Grundfos Management A/S Dosing pump unit
JP2015066485A (en) * 2013-09-27 2015-04-13 日本電気株式会社 Coating equipment, and coating method

Also Published As

Publication number Publication date
CN101229538A (en) 2008-07-30
KR20080070551A (en) 2008-07-30
TWI349583B (en) 2011-10-01
JP4975454B2 (en) 2012-07-11
CN101850320B (en) 2012-08-15
CN101850320A (en) 2010-10-06
CN101229538B (en) 2010-12-29
TW200902164A (en) 2009-01-16
KR100952810B1 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4975454B2 (en) Coating device and bubble detection method in coating device
KR101281210B1 (en) System and method for valve sequencing in a pump
JP2000024571A (en) Slit coat type coating apparatus and slit coat type coating method
US7717295B2 (en) Treatment solution supply apparatus
KR20080071582A (en) System and method for correcting for pressure variations using a motor
KR20080061318A (en) Coating device and coating method
WO2015181918A1 (en) Coating device and coating method
JP2007222768A (en) Material applying apparatus
JPWO2016103369A1 (en) Low pressure casting apparatus and low pressure casting method
EP2745310B1 (en) System and method for detecting air in a fluid
KR101656933B1 (en) Coating apparatus and coating method
JP2004321932A (en) Coater for adhesive and coating method for adhesive
TWI660792B (en) Method and apparatus for preventing liquid condensation in dispenser
KR20070029345A (en) Apparatus for dispensing photosensitive solution in semiconductor device fabrication equipment
JP2009041553A (en) Liquid leak measurement device for fuel injection valve
KR20200047984A (en) Method for injecting monomer in mold for manufacturing optical material
JP5349443B2 (en) Coating device control method
JPH1197829A (en) Adjustment of application quantity for bond for adhering electronic component
KR101767566B1 (en) Paste dispensing head being able to measure residual quantity of paste and method of measuring residual quantity of paste inside syringe
JP2000126664A (en) Slit coat type coating device and slit coat type coating method
JPH07149397A (en) Method for filling liquid into device of vehicle
JP2005199208A (en) Coating device
JP2007229635A (en) Coating liquid supply apparatus
JP5176359B2 (en) Coating apparatus and coating method, and display member manufacturing method and manufacturing apparatus
JP2005262081A (en) Coating method, coator and method and apparatus for manufacturing member of display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250