JP2008173925A - Densification processing method and pressurization densification apparatus of natural raw material - Google Patents

Densification processing method and pressurization densification apparatus of natural raw material Download PDF

Info

Publication number
JP2008173925A
JP2008173925A JP2007011551A JP2007011551A JP2008173925A JP 2008173925 A JP2008173925 A JP 2008173925A JP 2007011551 A JP2007011551 A JP 2007011551A JP 2007011551 A JP2007011551 A JP 2007011551A JP 2008173925 A JP2008173925 A JP 2008173925A
Authority
JP
Japan
Prior art keywords
pressure
natural material
densification
cylindrical
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007011551A
Other languages
Japanese (ja)
Inventor
Takao Fujikawa
隆男 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007011551A priority Critical patent/JP2008173925A/en
Publication of JP2008173925A publication Critical patent/JP2008173925A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily densifying without imparting damage to fibers or connective tissues of fibers by pressurizing and compressing natural raw materials comprising fiber tissues oriented in the axial direction and other tissues such as wood materials and bamboo materials two dimensionally or in axialy symmetrical manner from a direction vertical to an axial direction using hydraulic pressure. <P>SOLUTION: In the pressurization and densification processing method of the natural raw materials, (2)the natural raw materials such as the wood materials or the bamboo materials including the axial directional fiber tissues in the tissues is dried, thereafter (3)they are housed in a cylindrical high-pressure container while aligning the axial directions, they are densified by pressurizing and compressing by the hydraulic pressure from the direction perpendicular to the axial direction of the natural raw materials two dimensionally or in the axially symmetric manner, then (4) they are solidified by subjecting them to heating processing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、木材、竹材など組織内に軸方向の繊維組織を含む天然系素材を、流体圧力を利用して、前記軸方向に垂直な方向から二次元的もしくは軸対称的に加圧圧縮することにより緻密化する方法およびそのための加圧緻密化装置に関するものである。   The present invention compresses two-dimensionally or axially symmetrically a natural material including an axial fiber structure in a tissue such as wood or bamboo using a fluid pressure from a direction perpendicular to the axial direction. The present invention relates to a densification method and a pressure densification device therefor.

近年、環境保護の観点から天然資源の有効利用が重要視されて、自動車や家電製品等の部材としての利用が進みつつある。これらの分野では、天然のケナフの繊維にポリ乳酸をマトリックスとなるように加えて複合材料化しての利用が検討されているが、木材や竹材を、これらの欠点である低密度に起因する強度不足を補正することによって、そのままに近い形態での利用も検討されている。   In recent years, effective use of natural resources has been regarded as important from the viewpoint of environmental protection, and its use as a member of automobiles, home appliances, and the like is being advanced. In these fields, the use of natural kenaf fibers in the form of a composite material by adding polylactic acid as a matrix is being studied, but wood and bamboo are made of strength due to their low density, which is their drawback. By correcting the shortage, use in a form close to that is also being studied.

後者の場合、基本的に高密度化の処理が必要であり、このための研究開発が行われて、種々のプロセスが提案されている。最も単純な処理方法としては、高圧の水蒸気雰囲気内で木材を軟化させた後、高圧条件下で圧縮成形・固定化処理する方法(例えば、特許文献1参照)や、木材に吸水させた後、マイクロ波加熱の様な高周波誘電加熱をしてから加圧する方法(例えば、特許文献2参照)が提案されている。これらの方法では木材全体が緻密化される。   In the latter case, a densification process is basically required, and research and development for this purpose has been conducted and various processes have been proposed. As the simplest processing method, after softening wood in a high-pressure steam atmosphere, a method of compression molding / fixing treatment under high-pressure conditions (for example, refer to Patent Document 1), A method of applying pressure after high frequency dielectric heating such as microwave heating (see, for example, Patent Document 2) has been proposed. These methods densify the whole wood.

また、テーブルの天板や階段のステップ板、床材などでは、傷の発生防止のために軽量かつ表面のみ硬い材料を製造する方が好ましく、近年では表面層のみを緻密化(硬化)させる方法が実用化もしくは提案されている。基本的には、表面部のみを熱板プレスで加熱して軟化させて加圧する方法が採用されているが、熱圧ロールプレスを用いた方法(特許文献3参照)の提案もなされている。更に、特に有効利用が期待されているスギやヒノキなど比較的低密度の木材では、間伐材の利用の観点から複数の小径木を接着剤で接着しつつ緻密化して集成材とするために、高温高圧下にて水蒸気処理してから加圧圧縮する方法(特許文献4参照)が提案されている。   In addition, it is preferable to manufacture a light and hard material only on the surface of the table top plate, the step plate of the staircase, and the floor material in order to prevent scratches, and in recent years, a method of densifying (hardening) only the surface layer. Has been put to practical use or proposed. Basically, a method of heating only the surface portion with a hot plate press to soften and pressurizing is adopted, but a method using a hot press roll press (see Patent Document 3) has also been proposed. Furthermore, in the case of relatively low density wood such as cedar and cypress, which are expected to be used effectively, in order to make a laminated wood by densifying a plurality of small diameter trees with an adhesive from the viewpoint of using thinned wood, There has been proposed a method of performing pressure treatment and compression after steam treatment under high temperature and pressure (see Patent Document 4).

これらの多くの従来技術では、加圧圧縮は一方向にプレスもしくはロールで加圧することにより行われるが、ガスや水等の流体を加圧して、流体圧力をゴム等の弾性体を介して等方的に圧縮する方法も提案されており、古くは1910年代の英国特許(特許文献5参照)において、90〜150℃に加熱した木材を少なくとも200kg/cm2(≒20MPa)の圧力で流体(アスファルト)を用いて圧縮する方法が提案されている。 In many of these conventional techniques, pressure compression is performed by pressing in one direction with a press or roll, but fluid such as gas or water is pressurized and fluid pressure is applied via an elastic body such as rubber. A method of compressing in a lateral direction has also been proposed. In the old British patent in the 1910s (see Patent Document 5), wood heated to 90 to 150 ° C. was fluidized at a pressure of at least 200 kg / cm 2 (≈20 MPa). A method of compressing using asphalt has been proposed.

次に、他の従来技術に係る木材の圧力処理用装置について図8を用いて説明する。図8は、従来技術に係る一実施例による木材の圧力処理用装置の概略断面図である。この従来技術によれば、主として板材を含めて矩形断面の細長い木材要素25a,25b,25cを高圧容器21内で木材要素25a,25b,25cを、隔膜24を介して、更には気密なケーシング材23に収納して、圧力媒体によって加えられた圧力で緻密化する方法が提案されており、案内面26a,26bを持つ部材を使用して特定の面を案内面に沿った形状で成形することも提案されている(特許文献6参照)。   Next, a wood pressure processing apparatus according to another prior art will be described with reference to FIG. FIG. 8 is a schematic cross-sectional view of an apparatus for pressure treatment of wood according to an embodiment of the prior art. According to this prior art, elongated wood elements 25a, 25b, 25c having a rectangular cross section mainly including plate materials are placed in the high-pressure vessel 21 and the wood elements 25a, 25b, 25c are passed through the diaphragm 24 and further airtight casing material. 23, a method of densifying with pressure applied by a pressure medium has been proposed, and a specific surface is formed in a shape along the guide surface by using a member having guide surfaces 26a and 26b. Has also been proposed (see Patent Document 6).

これらの従来技術では、供試材を加熱した状態で加圧することを特徴としており、加圧緻密化処理の直前に加熱処理を行うか、加圧処理自体を120〜200℃の高温下で行うことを特徴としている。また、木材や竹材は熱伝導率が小さいために加熱には長時間を要することから、これを短縮するために、加熱に水蒸気それも加圧した加圧水蒸気を用いるものが多いが、加熱時間が大幅に短縮される訳ではない。また、熱圧ロールや平板上のプレスでは床材などの板材にしか適用できないという欠点を有している。
特開平3−231802号公報 特開平3−97503号公報 特公平4−3722号公報 特開平7−32325号公報 英国特許GB100.792号公報 特表平11−503377号公報
These conventional techniques are characterized by pressurizing the test material in a heated state, and the heat treatment is performed immediately before the pressure densification treatment, or the pressure treatment itself is performed at a high temperature of 120 to 200 ° C. It is characterized by that. In addition, because wood and bamboo have a low thermal conductivity, heating takes a long time, and in order to shorten this, in many cases, steam or pressurized steam is used for heating. It is not significantly shortened. Moreover, it has the fault that it can apply only to board | plate materials, such as a flooring, with a hot press roll and the press on a flat plate.
JP-A-3-231802 Japanese Patent Laid-Open No. 3-97503 Japanese Patent Publication No. 4-3722 JP-A-7-32325 British Patent GB100.792 Japanese National Patent Publication No. 11-503377

更に、等方圧による加圧緻密化では、流体の圧力は木材・竹材の繊維の方向と垂直な方向はもちろん繊維の方向である軸方向にも圧縮を受けるが、繊維方向の圧縮は繊維の弾性率が150〜300GPaと大きいため、通常の加圧圧力100〜1000MPaでは弾性変形するのみであり、減圧後には復元してしまい、実際は軸方向と垂直方向の圧力しか緻密化には寄与しない。更に、木材・竹材の軸方向の強度発現の要因である軸方向に並んだ繊維もしくは繊維同士の結合組織が損傷を受けるため、必ずしも最高の強度特性が得られず、強度部材としての使用を目的とする場合には有効ではないという欠点を有する。   Furthermore, in pressure densification by isotropic pressure, the fluid pressure is compressed not only in the direction perpendicular to the direction of the fibers of wood and bamboo, but also in the axial direction, which is the direction of the fibers. Since the elastic modulus is as large as 150 to 300 GPa, it is only elastically deformed at a normal pressure of 100 to 1000 MPa and is restored after decompression. In fact, only the pressure in the direction perpendicular to the axial direction contributes to densification. Furthermore, because the fibers or the connective structure of fibers that are aligned in the axial direction, which is the cause of the strength development in the axial direction of wood and bamboo, are damaged, the best strength characteristics are not always obtained, and the purpose is to use as a strength member In this case, there is a disadvantage that it is not effective.

従って、本発明の目的は、木材、竹材などの様に、軸方向に配向した繊維組織とその他の組織からなる天然系素材を、流体圧力を利用して前記軸方向に垂直な方向から二次元的もしくは軸対称的に加圧圧縮することにより、繊維もしくは繊維同士の結合組織に損傷を与えることなく、かつ簡便に緻密化する方法および加圧緻密化装置を提供することにある。   Therefore, an object of the present invention is to use a natural material composed of a fiber structure oriented in the axial direction and other structures, such as wood and bamboo, from a direction perpendicular to the axial direction by using fluid pressure. An object of the present invention is to provide a pressure densification method and a pressure densification device that can be easily densified without damaging the fibers or the connective tissue between the fibers by subjecting them to pressure compression in a symmetrical or axially symmetrical manner.

上記目的を達成するために、本発明の請求項1に係る天然系素材の加圧緻密化処理方法が採用した手段は、木材、竹材など組織内に軸方向の繊維組織を含む天然系素材を乾燥処理した後、円筒状の高圧容器内に軸方向を揃えて収納して、前記天然系素材の軸方向に垂直な方向から流体圧力によって二次元的もしくは軸対称的に加圧圧縮して緻密化し、次いで、加熱処理を施して固定化することを特徴とするものである。   In order to achieve the above object, the means adopted by the pressure densification processing method of the natural material according to claim 1 of the present invention is a natural material containing an axial fiber structure in the tissue such as wood or bamboo. After drying treatment, it is stored in a cylindrical high-pressure vessel with its axial direction aligned, and is compressed and compressed in a two-dimensional or axisymmetric manner by fluid pressure from a direction perpendicular to the axial direction of the natural material. And then fixed by heat treatment.

尚、ここにおける「垂直」または「軸対称」の意味は、夫々ほぼ垂直またはほぼ軸対称であれば良く、完全に垂直または軸対称であることを要しない。また、ここにおける「揃える」の意味も概ね揃っていれば良く、完全に揃えることまでは要しない。   Here, the meaning of “vertical” or “axisymmetric” may be substantially vertical or substantially axially symmetric, and need not be completely vertical or axially symmetric. In addition, the meaning of “alignment” in this case should be almost uniform, and it is not necessary to completely align.

本発明の請求項2に係る天然系素材の加圧緻密化処理方法が採用した手段は、請求項1に記載の天然系素材の加圧緻密化処理方法において、前記乾燥処理を温度85〜120℃の大気中で行うことを特徴とするものである。   The means adopted by the pressure densification treatment method for a natural material according to claim 2 of the present invention is the pressure densification treatment method for a natural material according to claim 1, wherein the drying treatment is performed at a temperature of 85 to 120. It is characterized in that it is carried out in the atmosphere of ° C.

本発明の請求項3に係る天然系素材の加圧緻密化処理方法が採用した手段は、請求項1または2に記載の天然系素材の加圧緻密化処理方法において、前記流体圧力が30〜400MPaであることを特徴とするものである。   The means adopted by the pressure densification treatment method for a natural material according to claim 3 of the present invention is the pressure densification treatment method for a natural material according to claim 1 or 2, wherein the fluid pressure is 30 to 30. It is characterized by being 400 MPa.

本発明の請求項4に係る天然系素材の加圧緻密化処理方法が採用した手段は、請求項1乃至3のうちの何れか一つの項に記載の天然系素材の加圧緻密化処理方法において、前記加熱処理を150〜180℃の温度で行うことを特徴とするものである。   The method adopted by the pressure densification treatment method for a natural material according to claim 4 of the present invention is the pressure densification treatment method for a natural material according to any one of claims 1 to 3. In the above, the heat treatment is performed at a temperature of 150 to 180 ° C.

本発明の請求項5に係る天然系素材の加圧緻密化処理方法が採用した手段は、請求項1乃至4のうちの何れか一つの項に記載の天然系素材の加圧緻密化処理方法において、前記流体圧力が、円筒状の前記高圧容器内面に装着され流体圧力を封じ込める弾性体を介して、前記天然系素材の軸方向に垂直な方向から二次元的もしくは軸対称的に加圧圧縮して緻密化することを特徴とするものである。   The means adopted by the pressure densification treatment method of a natural material according to claim 5 of the present invention is the pressure densification treatment method of a natural material according to any one of claims 1 to 4. The fluid pressure is compressed and compressed two-dimensionally or axisymmetrically from a direction perpendicular to the axial direction of the natural material through an elastic body that is attached to the inner surface of the cylindrical high-pressure vessel and contains the fluid pressure. Thus, it is characterized by being densified.

本発明の請求項6に係る天然系素材の加圧緻密化処理方法が採用した手段は、請求項1乃至5のうちの何れか一つの項に記載の天然系素材の加圧緻密化処理方法において、前記天然系素材を複数個に分割すると共に、これら分割された複合素材間に剛性を有する型板を挟み込んで加圧圧縮し緻密化することを特徴とするものである。   The method adopted by the pressure densification processing method of a natural material according to claim 6 of the present invention is the pressure densification processing method of a natural material according to any one of claims 1 to 5. The natural material is divided into a plurality of parts, and a rigid template is sandwiched between the divided composite materials, and is compressed and densified.

本発明の請求項7に係る天然系素材の加圧緻密化装置が採用した手段は、円筒状の高圧容器の円筒部内面と、この円筒部内面に装着された弾性体からなる円筒状メンブランの外面とによって加圧空間が形成され、この加圧空間に加圧流体を導入する加圧流体導入孔が設けられると共に、前記円筒状メンブランの内側に、前記加圧流体による加圧圧縮力を伝達するため軸方向に有孔部を設けられた円柱状有孔弾性体が収納され、この円柱状有孔弾性体の有孔部に木材もしくは竹材等からなる天然系素材を装填して、前記加圧空間に導入された流体圧力によって、前記天然系素材をその軸方向に垂直な方向から二次元的もしくは軸対称的に、前記円柱状有孔弾性体を介して加圧圧縮するよう構成したことを特徴とするものである。   The means adopted by the pressure densification device for natural materials according to claim 7 of the present invention is that a cylindrical membrane comprising an inner surface of a cylindrical high-pressure vessel and an elastic body attached to the inner surface of the cylindrical portion. A pressurized space is formed by the outer surface, a pressurized fluid introduction hole for introducing a pressurized fluid into the pressurized space is provided, and a pressurized compression force by the pressurized fluid is transmitted to the inside of the cylindrical membrane. Therefore, a cylindrical perforated elastic body having a perforated portion in the axial direction is accommodated, and a natural material made of wood, bamboo, or the like is loaded into the perforated portion of the cylindrical perforated elastic body. The natural material is configured to be compressed and compressed through the cylindrical perforated elastic body two-dimensionally or axisymmetrically from the direction perpendicular to the axial direction by the fluid pressure introduced into the pressure space. It is characterized by.

本発明の請求項8に係る天然系素材の加圧緻密化装置が採用した手段は、請求項7に記載の天然系素材の加圧緻密化装置において、前記円柱状有孔弾性体の有孔部が、複数の孔から構成されたことを特徴とするものである。   The natural material pressure densification device according to claim 8 of the present invention employs the natural material pressure densification device according to claim 7, wherein the cylindrical perforated elastic body is perforated. The part is composed of a plurality of holes.

本発明の請求項1に係る天然系素材の加圧緻密化処理方法によれば、木材、竹材など組織内に軸方向の繊維組織を含む天然系素材を乾燥処理した後、円筒状の高圧容器内に軸方向を揃えて収納して、前記天然系素材の軸方向に垂直な方向から流体圧力によって二次元的もしくは軸対称的に加圧圧縮して緻密化し、次いで、加熱処理を施して固定化するので、収縮変形を防止して繊維組織を破壊することなく短時間に加圧緻密化処理でき、結果として高強度な天然系圧縮複合材を得ることが可能となる。   According to the pressure densification processing method of a natural material according to claim 1 of the present invention, a cylindrical high pressure vessel is obtained after drying a natural material including an axial fiber structure in a tissue such as wood or bamboo. It is stored in the same axial direction inside, and is compressed and compressed by fluid pressure two-dimensionally or axially symmetrically from the direction perpendicular to the axial direction of the natural material, and then fixed by heat treatment. Therefore, the pressure densification treatment can be performed in a short time without preventing the shrinkage deformation and destroying the fiber structure, and as a result, a high-strength natural compression composite material can be obtained.

また、本発明の請求項2に係る天然系素材の加圧緻密化処理方法によれば、前記乾燥処理を温度85〜120℃の大気中で行うので、前記天然系素材の真密度近くまで緻密化が可能となる上、残留した結合水が加圧時の変形の容易化に寄与する。   Moreover, according to the pressure densification processing method of the natural material according to claim 2 of the present invention, since the drying treatment is performed in the atmosphere at a temperature of 85 to 120 ° C., the natural material is densified close to the true density. In addition, the remaining bound water contributes to easier deformation during pressurization.

更に、本発明の請求項3に係る天然系素材の加圧緻密化処理方法によれば、前記流体圧力が30〜400MPaであるので、前記天然系素材の真密度の70%以上となる高密度化が図られる。   Furthermore, according to the pressure densification treatment method for a natural material according to claim 3 of the present invention, since the fluid pressure is 30 to 400 MPa, the density is 70% or more of the true density of the natural material. Is achieved.

また更に、本発明の請求項4に係る天然系素材の加圧緻密化処理方法によれば、前記加熱処理を150〜180℃の温度で行うので、リグニンの熱分解による炭素の発生や酸化現象による黒色化が防止される。   Still further, according to the pressure densification treatment method for natural materials according to claim 4 of the present invention, since the heat treatment is performed at a temperature of 150 to 180 ° C., generation of carbon and oxidation phenomenon due to thermal decomposition of lignin. Blackening due to is prevented.

また、本発明の請求項5に係る天然系素材の加圧緻密化処理方法によれば、前記流体圧力が、円筒状の前記高圧容器内面に装着され流体圧力を封じ込める弾性体を介して、前記天然系素材の軸方向に垂直な方向から二次元的もしくは軸対称的に加圧圧縮して緻密化するので、前記流体圧力の天然系素材への確実な伝達が可能となる。   Moreover, according to the pressure densification processing method for a natural material according to claim 5 of the present invention, the fluid pressure is attached to the inner surface of the cylindrical high-pressure vessel via the elastic body that contains the fluid pressure. Since the pressure is compressed and densified two-dimensionally or axisymmetrically from the direction perpendicular to the axial direction of the natural material, the fluid pressure can be reliably transmitted to the natural material.

更に、本発明の請求項6に係る天然系素材の加圧緻密化処理方法によれば、前記天然系素材を複数個に分割すると共に、これら分割された複合素材間に剛性を有する型板を挟み込んで加圧圧縮し緻密化するので、前記天然系素材が前記型板に接触する部分に、前記天然系素材は勿論型板にもいびつな変形を生じることなく、必要とする形状を賦形することが出来る。   Furthermore, according to the pressure densification processing method for a natural material according to claim 6 of the present invention, the natural material is divided into a plurality of parts, and a template having rigidity is provided between the divided composite materials. Since the material is pressed and compressed and densified, the shape of the natural material is touched to the template, and the natural material is of course shaped without distorting the template. I can do it.

一方、本発明の請求項7に係る天然系素材の加圧緻密化装置によれば、円筒状の高圧容器の円筒部内面と、この円筒部内面に装着された弾性体からなる円筒状メンブランの外面とによって加圧空間が形成され、この加圧空間に加圧流体を導入する加圧流体導入孔が設けられると共に、前記円筒状メンブランの内側に、前記加圧流体による加圧圧縮力を伝達するため軸方向に有孔部を設けられた円柱状有孔弾性体が収納されている。   On the other hand, according to the pressure densification apparatus for natural materials according to claim 7 of the present invention, the cylindrical membrane inner surface comprising a cylindrical portion inner surface of a cylindrical high pressure vessel and an elastic body attached to the inner surface of the cylindrical portion. A pressurized space is formed by the outer surface, a pressurized fluid introduction hole for introducing a pressurized fluid into the pressurized space is provided, and a pressurized compression force by the pressurized fluid is transmitted to the inside of the cylindrical membrane. Therefore, a cylindrical perforated elastic body provided with a perforated portion in the axial direction is accommodated.

そして、この円柱状有孔弾性体の有孔部に木材もしくは竹材等からなる天然系素材を装填して、前記加圧空間に導入された流体圧力によって、前記天然系素材をその軸方向に垂直な方向から二次元的もしくは軸対称的に、前記円柱状有孔弾性体を介して加圧圧縮するよう構成したので、前記天然系素材の繊維組織に損傷を与えることなく加圧圧縮し得る構成が可能となる。   Then, a natural material made of wood or bamboo is loaded into the perforated portion of the cylindrical perforated elastic body, and the natural material is perpendicular to the axial direction by the fluid pressure introduced into the pressurized space. Since it is configured to compress and compress two-dimensionally or axially symmetrically through the cylindrical perforated elastic body from any direction, a configuration capable of compressing and compressing without damaging the fiber structure of the natural material Is possible.

また、本発明の請求項8に係る天然系素材の加圧緻密化装置によれば、前記円柱状有孔弾性体の有孔部が複数の孔から構成されたので、これら複数の有孔部に夫々天然系素材を装填することによって、同時に複数個の天然系素材の加圧圧縮が可能となる。   According to the pressure densification device for natural materials according to claim 8 of the present invention, since the perforated portion of the cylindrical perforated elastic body is composed of a plurality of holes, the plurality of perforated portions. By loading each of the natural materials, a plurality of natural materials can be compressed at the same time.

本発明の実施の形態1に係る天然系素材の緻密化処理方法および加圧緻密化装置について、以下図1〜図3を参照しながら説明する。図1は本発明の実施の形態1に係る天然系素材の緻密化処理方法の工程を示す工程図、図2は本発明の実施の形態1に係る天然系素材の加圧緻密化装置の要部を示す模式的縦断面図、図3は本発明の実施の形態1に係り、図2の矢視X−Xを示す模式的断面図である。   A natural material densification treatment method and pressure densification apparatus according to Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a process diagram showing steps of a natural material densification treatment method according to Embodiment 1 of the present invention, and FIG. 2 is a schematic diagram of a natural material pressure densification apparatus according to Embodiment 1 of the present invention. FIG. 3 is a schematic cross-sectional view showing an arrow XX in FIG. 2 according to the first embodiment of the present invention.

図1において、本発明の実施の形態1に係る天然系素材の加圧緻密化方法は、先ず、木材や竹材等の天然系素材を、後述する加圧緻密化装置に収納可能な長さに切断すると共に、外形形状も整える(ステップ1)。次いで、大気中で乾燥炉を用いて乾燥処理を行う(ステップ2)。前記乾燥温度は85〜120℃の範囲で行い、この温度での保持時間は、前記天然系素材の寸法、特に厚さに依存し、竹材のように厚さ10mm以下の薄いものでは6時間以上、木材で厚さ50mm以上のものでは12〜48時間の乾燥処理を行うことが好ましい。   In FIG. 1, the pressure densification method for a natural material according to Embodiment 1 of the present invention is such that a natural material such as wood or bamboo is first accommodated in a pressure densification device described later. In addition to cutting, the outer shape is also adjusted (step 1). Next, a drying process is performed in the atmosphere using a drying furnace (step 2). The drying temperature is in the range of 85 to 120 ° C., and the holding time at this temperature depends on the dimensions of the natural material, particularly the thickness. For thin materials such as bamboo, the thickness is 10 hours or more. For wood having a thickness of 50 mm or more, it is preferable to carry out a drying treatment for 12 to 48 hours.

尚、前記乾燥温度が120℃を越えると、天然系素材の一部変質が生じるので好ましくない。前記乾燥処理は、緻密化を阻害する余分な水分の除去が目的であり、水の蒸気圧が十分で、かつ、水の蒸散を制御している弁構造組織が軟化する温度が120℃である。   In addition, when the said drying temperature exceeds 120 degreeC, since partial alteration of a natural material will arise, it is unpreferable. The purpose of the drying treatment is to remove excess moisture that hinders densification, the water vapor pressure is sufficient, and the temperature at which the valve structure that controls water evaporation is softened is 120 ° C. .

この様な乾燥処理により、木材・竹材の組織内部に包含された水のうち、いわゆる自由水と呼ばれる導管内の水の中でも閉塞状態にある導管内の水も除去される。この乾燥処理を行って閉空間内の水の除去がされていないと、加圧圧縮を行ってもこの水を包含した部分は圧縮されないために十分な緻密化が出来ない。   By such a drying process, the water in the conduit in a closed state is also removed from the water contained in the wood / bamboo tissue, so-called free water. If the water in the closed space is not removed by performing this drying process, even if pressure compression is performed, the portion including the water is not compressed, and thus sufficient densification cannot be achieved.

また、木材・竹材は繊維組織を構成するセルロースとそれ以外のヘミセルロースおよびリグニンから構成されるが、接着剤的な働きをするリグニンをこの乾燥処理による加熱により一部分解し、軟化させることが可能となる。軟化したリグニンの一部は室温に戻っても硬化しないため、加圧緻密化処理時にも圧力により自由に変形することを可能とするのである。   In addition, wood and bamboo are composed of cellulose constituting the fiber structure and other hemicelluloses and lignin, but it is possible to partially decompose and soften the lignin that acts as an adhesive by heating by this drying treatment. Become. Since some of the softened lignin does not harden even when it returns to room temperature, it can be freely deformed by pressure even during pressure densification treatment.

このような状態となった木材・竹材は、室温下での加圧でも高密度に緻密化が進み、100MPa以上の圧力で加圧することによって、容易に木材の真密度といわれる1.5×10kg/mに近い密度にまで緻密化される。因みに、温度85〜120℃での乾燥処理を施していない木材、例えば、市販の自然乾燥されたスギ材(通常の密度約0.35×10kg/m)やヒノキ材(通常の密度0.45×10kg/m)では、室温下1000MPaの圧力で加圧しても、密度は(0.9〜1.05)×10kg/mまでしか緻密化されない。 The wood / bamboo material in such a state has been densified to a high density even under pressure at room temperature, and can be easily said to be the true density of wood by pressing at a pressure of 100 MPa or more. It is densified to a density close to 3 kg / m 3 . Incidentally, wood that has not been subjected to a drying treatment at a temperature of 85 to 120 ° C., for example, commercially available cedar wood (normal density of about 0.35 × 10 3 kg / m 3 ) or cypress wood (normal density) In the case of 0.45 × 10 3 kg / m 3 ), the density is only densified to (0.9 to 1.05) × 10 3 kg / m 3 even when the pressure is increased to 1000 MPa at room temperature.

この理由は、上記自由水の一部が閉空間に閉じ込められたままであるために、加圧された高圧時には圧縮状態にあっても、大気圧下に減圧後には元へ戻ってしまうためと考えられる。元の木材や竹材に含まれている水分の量は、自然乾燥の有無や保存状態にもよって異なり10〜130%の範囲であるが、前記乾燥処理後には5〜10%程度となる。この残留水分は、リグニンやセルロースなどの成分と結合した結合水であって、加圧処理時の変形の容易化にも寄与するものである。乾燥処理の温度を150℃以上に高くすると、この結合水までもが除去されてしまうため好ましくない。   This is because a part of the free water remains confined in the closed space, so that even if it is in a compressed state at a pressurized high pressure, it returns to its original state after depressurizing to atmospheric pressure. It is done. The amount of water contained in the original wood or bamboo varies depending on the presence or absence of natural drying and the storage state, and is in the range of 10 to 130%, but is about 5 to 10% after the drying treatment. This residual moisture is bound water combined with components such as lignin and cellulose, and contributes to facilitating deformation during pressure treatment. If the temperature of the drying process is increased to 150 ° C. or higher, even this combined water is removed, which is not preferable.

このような条件で乾燥処理を行った木材・竹材等の天然系素材は、次いで、後述する加圧緻密化装置を用いて、流体圧力によって二次元的もしくは軸対称的に加圧圧縮して緻密化処理する(ステップ3)。加圧緻密化の圧力は、処理後の密度をどの程度とするかに依存するが、真密度の70%以上の高密度化とするには、30〜400MPaの圧力で十分である。   Next, natural materials such as wood and bamboo that have been dried under such conditions are then compressed and compressed two-dimensionally or axisymmetrically with fluid pressure using a pressure densification device described later. (Step 3). The pressure for pressure densification depends on the density after treatment, but a pressure of 30 to 400 MPa is sufficient to increase the density to 70% or more of the true density.

前記圧力が30MPa未満では十分な緻密化が図れず、400MPaを越えて大きくしても効果は余り変わらない。前記圧力は、100〜200MPa程度の圧力が更に良い数値範囲である。また、保持時間は、木材が粘弾性特性を示すことから、数秒程度余りの短時間では不十分であるが、1分以上であれば緻密化には問題がない。   If the pressure is less than 30 MPa, sufficient densification cannot be achieved, and even if the pressure exceeds 400 MPa, the effect does not change much. The pressure is in a numerical range where a pressure of about 100 to 200 MPa is even better. Further, since the wood has viscoelastic properties, a short time of about several seconds is insufficient, but if it is 1 minute or longer, there is no problem in densification.

このようにして加圧緻密化処理された木材や竹材は、そのままでは寸法・形状の保持が十分ではない不安定状態であって、雰囲気条件によっては一旦緻密化された組織がある程度復元状態に戻ってしまう。例えば、加圧緻密化処理された木材を煮沸水の中に数時間以上浸漬するとかなり膨潤してしまう。加圧緻密化処理後の緻密化状態を固定するためには、150〜200℃の温度範囲で加熱処理するのが有効なことが知られている。処理時間は24時間程度必要とされているが、多くの木材では180℃以上で24時間も保持をすると、リグニンの一部の熱分解による炭素の発生や酸化現象により、黒色化が生じる。   The wood and bamboo that have been pressed and densified in this way are in an unstable state where the size and shape cannot be maintained as they are, and the densified structure returns to a restored state to some extent depending on the atmospheric conditions. End up. For example, if a pressure-densified wood is immersed in boiling water for several hours or more, it will swell considerably. In order to fix the densified state after the pressure densification treatment, it is known that heat treatment is effective in a temperature range of 150 to 200 ° C. The treatment time is required to be about 24 hours. However, when many woods are kept at 180 ° C. or more for 24 hours, blackening occurs due to generation of carbon or oxidation due to thermal decomposition of a part of lignin.

このような黒色化を防止するため、本発明においては、緻密化処理後に温度150〜180℃の範囲で加熱する固定化熱処理をする(ステップ4)ことが推奨される。加熱保持時間は、処理温度150℃であれば24〜36時間、温度170℃では12〜24時間、温度180℃では6〜12時間で十分であるが、ある程度黒色化しても強度特性等は損なわれないため、この保持時間には限定されない。前記処理温度が150℃未満では処理時間がかかり過ぎ、180℃より高いと黒色化と強度低下が生じるので望ましくない。   In order to prevent such blackening, in the present invention, it is recommended to perform a fixing heat treatment (step 4) in which heating is performed in a temperature range of 150 to 180 ° C. after the densification treatment. The heating and holding time is 24 to 36 hours at a processing temperature of 150 ° C, 12 to 24 hours at a temperature of 170 ° C, and 6 to 12 hours at a temperature of 180 ° C. Therefore, the holding time is not limited. If the processing temperature is less than 150 ° C, it takes too much processing time. If the processing temperature is higher than 180 ° C, blackening and strength reduction occur, which is not desirable.

また、短時間での処理を行う方法として水蒸気加熱を組み合わせることが有効であることも知られており、本発明でも採用が可能である。この場合、温度180℃であれば5分程度で固定化が可能である。そして最後に、固定化熱処理された天然系素材は、最終製品や中間製品としての形状や寸法を整えるための仕上げ加工が施される(ステップ5)   Further, it is also known that combining steam heating is effective as a method for performing treatment in a short time, and can be adopted in the present invention. In this case, if the temperature is 180 ° C., it can be fixed in about 5 minutes. Finally, the natural heat-treated material is subjected to a finishing process for adjusting the shape and dimensions of the final product or intermediate product (step 5).

前記加圧緻密化処理(ステップ3)を行なうための本発明の実施の形態1に係る加圧緻密化装置は、図2に示す如く、耐圧性を有する円筒部11と、この円筒部11の上端を密封するためのリング状上蓋12a及び上プラグ12bと、前記円筒部11の下端を密封するためのリング状下蓋13a及び下蓋13bからなる高圧容器を備えている。符号20は、前記リング状上蓋12a及び上プラグ12bを上部より押圧支持するプレスフレームである。   As shown in FIG. 2, a pressure densification apparatus according to Embodiment 1 of the present invention for performing the pressure densification process (step 3) includes a cylindrical portion 11 having pressure resistance, and the cylindrical portion 11 A high-pressure vessel comprising a ring-shaped upper lid 12a and an upper plug 12b for sealing the upper end, and a ring-shaped lower lid 13a and a lower lid 13b for sealing the lower end of the cylindrical portion 11 is provided. Reference numeral 20 denotes a press frame that presses and supports the ring-shaped upper lid 12a and the upper plug 12b from above.

そして、本発明の実施の形態1に係る加圧緻密化装置10は、この高圧容器の円筒部11内面に加圧空間14が形成されるように、両端に耳部15aを有する弾性体からなる円筒状メンブラン15が装着されると共に、この円筒状メンブラン15の内側には、図3にも示される如く、加圧流体による加圧圧縮力を天然系素材である円柱状木材16に伝達するため、円形断面を有する有孔部17aを軸方向に設けられた円柱状有孔弾性体17が収納されている。   And the pressure densification apparatus 10 which concerns on Embodiment 1 of this invention consists of an elastic body which has the ear | edge part 15a at both ends so that the pressurization space 14 may be formed in the cylindrical part 11 inner surface of this high pressure container. A cylindrical membrane 15 is mounted, and inside the cylindrical membrane 15, as shown in FIG. 3, in order to transmit the pressurized compression force by the pressurized fluid to the columnar wood 16 that is a natural material. A cylindrical perforated elastic body 17 having a perforated portion 17a having a circular cross section provided in the axial direction is accommodated.

同時に、この円柱状有孔弾性体17の有孔部17aに、前記円柱状木材16が装填出来るように構成されている。そして、前記加圧空間14に加圧流体が導入され、前記円筒状メンブラン15が加圧された時に、前記円柱状木材16が、その軸方向に垂直な方向から二次元的もしくは軸対称的に加圧圧縮されるよう構成されている。   At the same time, the cylindrical wood 16 can be loaded into the perforated portion 17a of the cylindrical perforated elastic body 17. When a pressurized fluid is introduced into the pressurized space 14 and the cylindrical membrane 15 is pressurized, the columnar wood 16 is two-dimensionally or axially symmetrical from a direction perpendicular to the axial direction. It is configured to be compressed under pressure.

即ち、前記加圧緻密化装置10において、円筒状メンブラン15外面及びその両端の耳部15aと円筒部11内面とで形成された加圧空間14に、加圧ポンプ(図示せず)により加圧された加圧流体が、加圧流体導入孔14aを介して導入され、前記円柱状木材16は、円筒状メンブラン15の内側に配置された円柱状有孔弾性体17を介して、二次元的もしくは軸対称的に求心方向の加圧圧縮力を受けるのである。この加圧圧縮力により、前記円柱状木材16は求心方向に収縮し、この変形は圧力を除去しても弾性的な回復分を除いて変形状態が維持される。   That is, in the pressure densification apparatus 10, the pressure space 14 formed by the outer surface of the cylindrical membrane 15 and the ear portions 15a at both ends and the inner surfaces of the cylindrical portion 11 is pressurized by a pressure pump (not shown). The pressurized fluid thus introduced is introduced through a pressurized fluid introduction hole 14 a, and the columnar wood 16 is two-dimensionally transmitted through a columnar perforated elastic body 17 disposed inside the cylindrical membrane 15. Alternatively, it receives a pressure and compression force in the centripetal direction in an axisymmetric manner. The cylindrical wood 16 is contracted in the centripetal direction by the pressure and compression force, and this deformation is maintained in the deformed state except for the elastic recovery even if the pressure is removed.

尚、木材の組織は、スギ材やヒノキ材のような多くの針葉樹では年輪に代表される密な濃色の組織部分と疎な淡色の組織部分から構成され、かつ一様ではない。このため、円形断面の木材を加圧処理すると、疎な淡色部分がより多く圧縮され、断面形状は非円形状のいびつな形状となる。   In many coniferous trees such as cedar and cypress, the structure of wood is composed of a dense dark-colored tissue part represented by annual rings and a sparsely light-colored tissue part, and is not uniform. For this reason, when pressure is applied to wood having a circular cross section, the sparse light-colored portion is compressed more, and the cross-sectional shape becomes a non-circular irregular shape.

また、木材に枝が出ていた部分を採取して円柱状木材16として形成した場合には、枝を除去した痕部にはこの枝の軸方向組織が半径方向に向いているために圧縮されても収縮量は少なくなり、加圧処理後には周囲から突出していびつな形状となる。そのため前記円柱状有孔弾性体17に損傷を与え易く、これを防止するために円柱状木材16の外周に緩衝材18を配置するのが好ましい。   In addition, when the portion where the branches are taken out of the wood is collected and formed as the cylindrical wood 16, the traces from which the branches are removed are compressed because the axial structure of the branches is directed in the radial direction. However, the amount of shrinkage is reduced, and after pressurizing, the shape protrudes from the surroundings. Therefore, the cylindrical perforated elastic body 17 is easily damaged, and in order to prevent this, it is preferable to dispose the cushioning material 18 on the outer periphery of the cylindrical wood 16.

円筒状メンブラン15と円柱状木材16との間に配置された前記円柱状有孔弾性体17は、このいびつな変形により円筒状メンブラン15が損傷を受けるのを防ぐ機能を有している。もちろん、円柱状木材16の直径は素材ごとに異なるため、この円柱状有孔弾性体17はこの寸法や形状が若干異なっても、その形状に合わせて対応が可能という機能をも有している。円筒状メンブラン15の内側に配置される前記円柱状有孔弾性体17の役割は非常に重要であり、以下の実施の形態2〜5に示す如く、加圧処理する天然系素材の形状や数に応じて種々の対応が可能である。   The columnar perforated elastic body 17 disposed between the cylindrical membrane 15 and the columnar wood 16 has a function of preventing the cylindrical membrane 15 from being damaged by this distorted deformation. Of course, since the diameter of the columnar wood 16 differs depending on the material, the columnar perforated elastic body 17 also has a function of being able to cope with the shape even if the size and shape are slightly different. . The role of the columnar perforated elastic body 17 disposed inside the cylindrical membrane 15 is very important. As shown in the following Embodiments 2 to 5, the shape and number of natural materials to be pressure-treated Various measures can be taken depending on the situation.

次に、本発明の実施の形態2に係る天然系素材の緻密化処理方法および加圧緻密化装置について、図4を参照しながら説明する。図4は本発明の実施の形態2に係り、図2の矢視X−Xを示す模式的断面図である。但し、本発明の実施の形態2が上記実施の形態1と相違するところは、天然系素材の形態とこれに伴う円柱状有孔弾性体の形状に相違があり、これ以外は上記実施の形態1と全く同構成であるから、上記実施の形態1と同一のものに同一符号を付して、その相違する点について説明する。   Next, a densification treatment method and pressure densification apparatus for natural materials according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view according to Embodiment 2 of the present invention and showing an arrow XX in FIG. However, the difference between the second embodiment of the present invention and the first embodiment is that there is a difference in the form of the natural material and the shape of the cylindrical perforated elastic body, and other than that, the above embodiment. Since the configuration is exactly the same as that of the first embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and different points will be described.

即ち、上記実施の形態1に係る天然系素材の形態が円柱状木材であり、これに伴って前記円柱状有孔弾性体が円筒形状を有するのに対し、本実施の形態2に係る天然系素材は4本の細い円柱状木材16aからなり、これら4本の円柱状木材16aを一回で加圧処理するため、円柱状有孔弾性体17には軸方向に4本の有孔部17aが形成されており、夫々の有孔部17aに緩衝材18を介して細い円柱状木材16aが装填される。この様に比較的細い天然系素材の加圧処理においては、前記円柱状有孔弾性体17の軸方向に複数の孔部17aを形成することによって、複数の天然系素材を一回の加圧圧縮によって緻密化できる。   That is, the form of the natural material according to the first embodiment is columnar wood, and the columnar perforated elastic body has a cylindrical shape along with this, whereas the natural system according to the second embodiment is provided. The material is composed of four thin columnar timbers 16a, and these four columnar timbers 16a are subjected to pressure treatment at a time, and therefore the columnar perforated elastic body 17 has four perforated portions 17a in the axial direction. Are formed, and thin cylindrical timbers 16 a are loaded into the respective perforated portions 17 a via the cushioning material 18. In such a pressure treatment of a relatively thin natural material, a plurality of natural materials are pressed once by forming a plurality of hole portions 17a in the axial direction of the cylindrical perforated elastic body 17. It can be densified by compression.

次に、本発明の実施の形態3に係る天然系素材の緻密化処理方法および加圧緻密化装置について、図5を参照しながら説明する。図5は本発明の実施の形態3に係り、図2の矢視X−Xを示す模式的断面図である。但し、本発明の実施の形態3が上記実施の形態1と相違するところは、天然系素材の形態とこれに伴う円柱状有孔弾性体の形状に相違があり、これ以外は上記実施の形態1と全く同構成であるから、上記実施の形態1と同一のものに同一符号を付して、その相違する点について説明する。   Next, a natural material densification method and a pressure densification apparatus according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 5 is a schematic cross-sectional view according to Embodiment 3 of the present invention and showing an arrow XX in FIG. However, the third embodiment of the present invention differs from the first embodiment in that there is a difference in the form of the natural material and the shape of the cylindrical perforated elastic body, and other than that, the above-described embodiment. Since the configuration is exactly the same as that of the first embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and different points will be described.

即ち、上記実施の形態1に係る天然系素材の形態が円柱状木材であり、これに伴って前記円柱状有孔弾性体が円筒形状を有するのに対し、本実施の形態3に係る天然系素材は四角柱状木材16bからなり、これに伴って円柱状有孔弾性体17には矩形状断面の有孔部17aを設けたものを使用する。   That is, the form of the natural material according to the first embodiment is columnar wood, and the columnar perforated elastic body has a cylindrical shape along with this, whereas the natural system according to the third embodiment is provided. The material is a quadrangular columnar wood 16b, and a cylindrical perforated elastic body 17 having a perforated portion 17a having a rectangular cross section is used as the material.

前記四角柱状木材16bが複数個の場合には、前記実施の形態2と同様にその数に応じた複数の矩形断面の有孔部を設けても良い。前記円柱状有孔弾性体17に設けられた矩形状断面の有孔部17aは、隅部をスムーズ化するために通常R(曲面)加工が施されるので、四角柱状木材16bとの隙間が生じ易く、緩衝材18となる新聞紙等で前記四角柱状木材16bを包んで装填することが推奨される。   In the case where there are a plurality of the quadrangular columnar timbers 16b, similarly to the second embodiment, a plurality of perforated portions having a rectangular cross section corresponding to the number may be provided. The perforated portion 17a having a rectangular cross section provided in the cylindrical perforated elastic body 17 is usually subjected to R (curved surface) processing in order to smooth the corner portion, so that there is a gap with the quadrangular columnar wood 16b. It is recommended that the quadrangular columnar wood 16b be wrapped and loaded with newspaper or the like serving as the cushioning material 18.

次に、本発明の実施の形態4に係る木材・竹材の緻密化処理方法および加圧緻密化装置について、図6を参照しながら説明する。図6は本発明の実施の形態4に係り、図2の矢視X−Xを示す模式的断面図である。但し、本発明の実施の形態4が上記実施の形態1と相違するところは、天然系素材の形態とこれに伴う円柱状有孔弾性体の形状に相違があり、これ以外は上記実施の形態1と全く同構成であるから、上記実施の形態1と同一のものに同一符号を付して、その相違する点について説明する。   Next, a wood / bamboo material densification method and a pressure densification device according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 6 is a schematic cross-sectional view according to Embodiment 4 of the present invention and showing an arrow XX in FIG. However, the difference between the fourth embodiment of the present invention and the first embodiment is that there is a difference in the form of the natural material and the shape of the cylindrical perforated elastic body, and other than that, the above-described embodiment. Since the configuration is exactly the same as that of the first embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and different points will be described.

即ち、上記実施の形態1に係る天然系素材の形態が円柱状木材であり、これに伴って前記円柱状有孔弾性体が円筒形状を有するのに対し、本実施の形態4に係る天然系素材は2個の四角柱状木材16cからなり、これに伴って円柱状有孔弾性体17には矩形断面の有孔部17aを設けたものを使用している。   That is, the form of the natural material according to the first embodiment is columnar wood, and the columnar perforated elastic body has a cylindrical shape along with this, whereas the natural material according to the fourth embodiment is The material is composed of two quadrangular columnar timbers 16c, and the cylindrical perforated elastic body 17 is provided with a perforated portion 17a having a rectangular cross section.

但し、前記2個の四角柱状木材16cは、加圧緻密化後に平面部分16c′が形成される様に、円柱状有孔弾性体17と金属やセラミックスからなり剛性のある型板19とを組み合わせて装填されている。この場合、前記四角柱状木材16cを2個として、型板19を挟むように対向して配置することが好ましい。四角柱状木材16cを1個とすると、この四角柱状木材16cは勿論、型板19にもいびつな変形を生じてしまうからである。   However, the two quadrangular columnar timbers 16c are formed by combining the cylindrical perforated elastic body 17 and the rigid template 19 made of metal or ceramic so that a flat portion 16c 'is formed after pressure densification. Is loaded. In this case, it is preferable that two pieces of the quadrangular columnar timber 16c are disposed so as to face each other with the template 19 interposed therebetween. This is because if the square columnar wood 16c is one piece, the square plate-like wood 16c and the template 19 are deformed distorted.

次に、本発明の実施の形態5に係る天然系素材の緻密化処理方法および加圧緻密化装置について、図7を参照しながら説明する。図7は本発明の実施の形態5に係り、図2の矢視X−Xを示す模式的断面図である。但し、本発明の実施の形態5が上記実施の形態1と相違するところは、天然系素材の形態とこれに伴う円柱状有孔弾性体の形状に相違があり、これ以外は上記実施の形態1と全く同構成であるから、上記実施の形態1と同一のものに同一符号を付して、その相違する点について説明する。   Next, a natural material densification method and a pressure densification apparatus according to Embodiment 5 of the present invention will be described with reference to FIG. FIG. 7 is a schematic cross-sectional view according to the fifth embodiment of the present invention and showing an arrow XX in FIG. However, the fifth embodiment of the present invention is different from the first embodiment in that there is a difference in the form of the natural material and the shape of the cylindrical perforated elastic body, and other than that, the above embodiment. Since the configuration is exactly the same as that of the first embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and different points will be described.

即ち、上記実施の形態1に係る天然系素材の形態が円柱状木材であり、これに伴って前記円柱状有孔弾性体が円筒形状を有するのに対し、本実施の形態5に係る天然系素材は4個の四角柱状木材16dからなり、これに伴って円柱状有孔弾性体17には矩形状断面の有孔部17aを設けたものを使用している。そして、一回の加圧緻密化処理によって、前記4個の四角柱状木材16dの各々において直交する2面の平面部分16d′が形成される様に、型板19を組み合わせたものである。   That is, the form of the natural material according to the first embodiment is a columnar wood, and the columnar perforated elastic body has a cylindrical shape along with this, whereas the natural system according to the fifth embodiment is provided. The material is composed of four quadrangular columnar timbers 16d, and the cylindrical perforated elastic body 17 is provided with a perforated portion 17a having a rectangular cross section. Then, the template 19 is combined so that two orthogonal plane portions 16d 'are formed in each of the four quadrangular columnar timbers 16d by one press densification treatment.

尚、上記本発明の実施の形態1〜5の如く、天然系素材16〜16dや型板19の断面形状に合わせて前記円柱状有孔弾性体17に設けられた有孔部17aに、前記天然系素材16〜16dを装填する際、周囲に緩衝材18を用いた例で説明したが、このような緩衝材18としては、新聞紙等の紙類や粒径が比較的大きな(数10〜数100μm)のアルミナ等のセラミック粒子等を用いることが推奨される。   As in the first to fifth embodiments of the present invention, the perforated portion 17a provided in the cylindrical perforated elastic body 17 in accordance with the cross-sectional shape of the natural material 16-16d and the template 19 is provided in the perforated portion 17a. When the natural material 16 to 16d is loaded, the example in which the buffer material 18 is used in the surroundings has been described. However, as such a buffer material 18, paper such as newspaper or a particle size is relatively large (several 10 to 10). It is recommended to use ceramic particles such as alumina (several hundred μm).

前記円柱状有孔弾性体17は半消耗品であるが、このような配慮を施すことにより、前記有孔部17a内面と天然系素材16〜16d外面との間に過大な隙間があったとしても、不要な損傷が回避されて、長期の使用も可能となる。   The cylindrical perforated elastic body 17 is a semi-consumable product. However, with such consideration, there is an excessive gap between the inner surface of the perforated portion 17a and the outer surface of the natural material 16-16d. However, unnecessary damage is avoided and long-term use is possible.

以上説明した様に、本発明に係る天然系素材の加圧緻密化処理方法は、天然系素材を乾燥処理した後、円筒状の高圧容器内に軸方向を揃えて収納して、前記天然系素材の軸方向に垂直な方向から流体圧力によって二次元的もしくは軸対称的に加圧圧縮して緻密化し、次いで、加熱処理を施して固定化するので、収縮変形を防止して繊維組織を破壊することなく短時間に加圧緻密化処理できる。   As described above, the pressure densification treatment method for a natural material according to the present invention includes drying the natural material and then storing the natural material in a cylindrical high-pressure vessel with the axial direction aligned. It compresses and compresses two-dimensionally or axisymmetrically with fluid pressure from the direction perpendicular to the axial direction of the material, and then densifies, and then heat-treats to fix it, preventing shrinkage deformation and destroying the fiber structure The pressure densification treatment can be performed in a short time without any trouble.

また、本発明に係る天然系素材の加圧緻密化装置は、高圧容器の円筒部内面と、この円筒部内面に装着された弾性体からなる円筒状メンブランの外面とによって加圧空間が形成され、この加圧空間に加圧流体を導入する加圧流体導入孔が設けられると共に、前記円筒状メンブランの内側に、前記加圧流体による加圧圧縮力を伝達するため円柱状有孔弾性体が収納され、この円柱状有孔弾性体の有孔部に前記天然系素材を装填して、前記加圧空間に導入された流体圧力によって、前記天然系素材をその軸方向に垂直な方向から二次元的もしくは軸対称的に、前記円柱状有孔弾性体を介して加圧圧縮するよう構成したので、前記天然系素材の繊維組織に損傷を与えることなく加圧圧縮し得る構成が可能となった。   In the pressure densification device for natural materials according to the present invention, a pressurized space is formed by the inner surface of the cylindrical portion of the high-pressure vessel and the outer surface of the cylindrical membrane made of an elastic body attached to the inner surface of the cylindrical portion. In addition, a pressurized fluid introduction hole for introducing a pressurized fluid into the pressurized space is provided, and a cylindrical perforated elastic body is provided inside the cylindrical membrane for transmitting a pressurized compressive force by the pressurized fluid. The natural material is loaded into the perforated portion of the cylindrical perforated elastic body, and the natural material is removed from the direction perpendicular to the axial direction by the fluid pressure introduced into the pressurized space. Since it is configured to compress and compress through the cylindrical perforated elastic body in a dimensional or axisymmetric manner, a configuration capable of compressing and compressing without damaging the fiber structure of the natural material becomes possible. It was.

次に、本発明に係る天然系素材の緻密化処理方法および加圧緻密化装置の実施例及び比較例について、前図2及び図5を併用しながら以下に説明する。
<実施例1>
自然乾燥されたスギの柾目材(寸法:幅30mm×長さ100mm×厚さ12mm、密度:0.35×10kg/m)を天然系素材16bとして、大気中105℃の温度で24時間の乾燥処理を行った後、3枚を重ね合わせて断面が略正方形(幅30mm×厚さ36mm)となるようにして新聞紙に包み、硬度70度のラテックスゴム製で矩形状の有孔部17aが形成された図5に示した円柱状有孔弾性体17に収納して、図2に示した加圧緻密化装置10に装填した。
Next, examples and comparative examples of the natural material densification method and pressure densification apparatus according to the present invention will be described below with reference to FIGS.
<Example 1>
Naturally dried cedar grid material (dimensions: width 30 mm x length 100 mm x thickness 12 mm, density: 0.35 x 10 3 kg / m 3 ) is used as a natural material 16b at a temperature of 105 ° C in the atmosphere. After drying for a period of time, the three sheets are overlapped and wrapped in newspaper so that the cross section becomes a substantially square (width 30 mm × thickness 36 mm), and a rectangular perforated portion made of latex rubber with a hardness of 70 degrees It was accommodated in the cylindrical perforated elastic body 17 shown in FIG. 5 in which 17a was formed, and loaded into the pressure densification apparatus 10 shown in FIG.

次いで、加圧ポンプを駆動して、約50MPa/minの速度で150MPaまで加圧容器内を加圧した後1分間保持した。減圧後、この加圧緻密化装置10から取り出したところ、前記天然系素材16bは、年輪の間隔が縮まる方向に圧縮されて厚さが約4mmに収縮していることが確認された。この天然系素材16bを、更に大気中170℃の温度で24時間熱処理を行った。   Next, the pressurization pump was driven to pressurize the inside of the pressurization container to 150 MPa at a speed of about 50 MPa / min and then held for 1 minute. After depressurization, it was taken out from the pressure densification device 10, and it was confirmed that the natural material 16b was compressed in a direction in which the interval between the annual rings was reduced and the thickness was reduced to about 4 mm. This natural material 16b was further heat-treated in the atmosphere at a temperature of 170 ° C. for 24 hours.

処理後の前記天然系素材16bは、寸法形状に大きな変化は認められず、処理後の前記天然系素材16bの密度を測定したところ、1.4×10kg/mであることが確認された。この処理後の前記天然系素材16bを、煮沸水中で3時間処理したが、大きな膨潤現象等は観察されず、高密度で寸法変化を生じにくい材料に改質されていることが確認された。 The natural material 16b after the treatment was found to be 1.4 × 10 3 kg / m 3 when the density of the natural material 16b after the treatment was measured without any significant change in size and shape. It was done. The natural material 16b after this treatment was treated in boiling water for 3 hours, but no large swelling phenomenon or the like was observed, and it was confirmed that the material was modified to a material with high density and less dimensional change.

<実施例2>
自然乾燥された直径約90mmの孟宗竹材を長さ200mmに裁断し、更に軸方向に切断してこれらを束ね、幅約15mm、厚さ約10mmの天然系素材16bを形成した。これら孟宗竹材素材の密度は約0.65×10kg/mであった。このような天然系素材16bを、大気中90℃の温度で24時間乾燥処理を行った後、新聞紙に包み図5に示した様な矩形状断面の有孔部17aを有する円柱状有孔弾性体17に収納して、図2に示した構成の加圧緻密化装置10に装着し、200MPaで1分間の加圧処理を行った。
<Example 2>
The natural dried bamboo slab with a diameter of about 90 mm was cut into a length of 200 mm and further cut in the axial direction to bundle them to form a natural material 16b having a width of about 15 mm and a thickness of about 10 mm. The density of these Buddhist bamboo materials was about 0.65 × 10 3 kg / m 3 . After such a natural material 16b is dried in the atmosphere at a temperature of 90 ° C. for 24 hours, it is wrapped in newspaper and provided with a cylindrical perforated elasticity having a perforated portion 17a having a rectangular cross section as shown in FIG. It accommodated in the body 17 was mounted | worn with the press densification apparatus 10 of the structure shown in FIG. 2, and the pressurizing process for 1 minute was performed at 200 MPa.

処理後の前記天然系素材16bは主として厚さ方向に収縮して、厚さは約半分になっていることが確認された。この天然系素材を、大気中180℃の温度で12時間熱処理を行った。処理後の天然系素材16bは、色が若干濃色化してこげ茶色となったが、密度約1.3×10kg/mに緻密化されていることが確認された。材料の安定性を確認するために、煮沸水中で3時間の処理を行ったが、膨潤現象等は観察されず、非常に高密度で安定性が良好な材料に改質されていることが確認された。 It was confirmed that the natural material 16b after the treatment contracted mainly in the thickness direction, and the thickness was reduced to about half. This natural material was heat-treated at a temperature of 180 ° C. in the atmosphere for 12 hours. The natural material 16b after the treatment was slightly darkened in color and turned dark brown, but it was confirmed that the density was increased to a density of about 1.3 × 10 3 kg / m 3 . In order to confirm the stability of the material, it was treated in boiling water for 3 hours, but no swelling phenomenon was observed, and it was confirmed that the material was modified to a very high density and good stability. It was done.

<比較例1>
実施例1と同一のスギの柾目材を、自然乾燥されたままの状態で、実施例1と同様に加圧処理、固定処理を行った。密度は0.93×10kg/mまで緻密化はされたものの、水の密度である1.00×10kg/mを超えるほどの緻密化は達成できなかった。
<Comparative Example 1>
The same cedar grain material as in Example 1 was subjected to a pressure treatment and a fixing treatment in the same manner as in Example 1 while being naturally dried. Although the density was densified to 0.93 × 10 3 kg / m 3 , the densification could not be achieved to exceed the water density of 1.00 × 10 3 kg / m 3 .

<比較例2>
実施例2と同一の孟宗竹材を、自然乾燥されたままの状態で実施例2と同一条件で加圧処理を行い、固定化処理は行わずに評価を行った。密度は1.0×10kg/mと緻密化はある程度達成されたものの、煮沸水中3時間の安定性評価試験後、若干の膨潤化現象が観察された。
<Comparative example 2>
The same Buddhist bamboo material as in Example 2 was subjected to a pressure treatment under the same conditions as in Example 2 while being naturally dried, and evaluation was performed without performing the immobilization treatment. Although the density was 1.0 × 10 3 kg / m 3 and densification was achieved to some extent, a slight swelling phenomenon was observed after a stability evaluation test for 3 hours in boiling water.

以上の様に、本発明に係る天然系素材の加圧緻密化処理方法によれば、木材、竹材など組織内に軸方向の繊維組織を含む天然系素材を乾燥処理した後、円筒状の高圧容器内に軸方向を揃えて収納して、前記天然系素材の軸方向に垂直な方向から流体圧力によって二次元的もしくは軸対称的に加圧圧縮して緻密化し、次いで、加熱処理を施して固定化するので、収縮変形を防止して繊維組織を破壊することなく短時間に加圧緻密化処理することが可能となった。   As described above, according to the pressure densification processing method of a natural material according to the present invention, a cylindrical high pressure is applied after drying a natural material including an axial fiber structure in a tissue such as wood or bamboo. Store in a container with the axial direction aligned, pressurize and compress two-dimensionally or axisymmetrically with fluid pressure from the direction perpendicular to the axial direction of the natural material, and then heat-treat. Since it is fixed, it is possible to perform pressure densification treatment in a short time without preventing shrinkage deformation and destroying the fiber structure.

また、本発明に係る天然系素材の加圧緻密化処理方法によれば、前記乾燥処理を温度80〜120℃の大気中で行うので、前記天然系素材の真密度近くまで緻密化が可能となる上、残留した結合水が加圧時の変形の容易化に寄与し得る。   In addition, according to the pressure densification treatment method of a natural material according to the present invention, the drying treatment is performed in the atmosphere at a temperature of 80 to 120 ° C., so that the densification can be made close to the true density of the natural material. In addition, the remaining bound water can contribute to facilitating deformation during pressurization.

一方、本発明に係る天然系素材の加圧緻密化装置によれば、高圧容器の円筒部内面と、この円筒部内面に装着された弾性体からなる円筒状メンブランの外面とによって加圧空間が形成され、この加圧空間に加圧流体を導入する加圧流体導入孔が設けられると共に、前記円筒状メンブランの内側に、前記加圧流体による加圧圧縮力を伝達するため円柱状有孔弾性体が収納され、この円柱状有孔弾性体の有孔部に前記天然系素材を装填して、前記加圧空間に導入された流体圧力によって、前記天然系素材をその軸方向に垂直な方向から二次元的もしくは軸対称的に、前記円柱状有孔弾性体を介して加圧圧縮するよう構成したので、前記天然系素材の繊維組織に損傷を与えることなく加圧圧縮し得る構成が可能となった。   On the other hand, according to the pressure densification device for natural materials according to the present invention, the pressurized space is formed by the inner surface of the cylindrical portion of the high-pressure vessel and the outer surface of the cylindrical membrane made of an elastic body attached to the inner surface of the cylindrical portion. A pressurized fluid introduction hole is formed and a pressurized fluid introduction hole for introducing a pressurized fluid into the pressurized space is provided, and a cylindrical perforated elasticity is provided inside the cylindrical membrane to transmit a pressurized compressive force by the pressurized fluid. The natural material is loaded into the perforated portion of the cylindrical perforated elastic body, and the natural material is perpendicular to the axial direction by the fluid pressure introduced into the pressurized space. Since it is configured to compress and compress two-dimensionally or axisymmetrically through the cylindrical perforated elastic body, it is possible to configure so that it can be compressed without damaging the fiber structure of the natural material. It became.

尚、上記の実施の形態では、木材・竹材の例を説明したが、天然系素材としては木材・竹材に限定されず、葦材等の草類やこれらを組み合わせた素材であっても良い。   In the above-described embodiment, an example of wood / bamboo has been described. However, natural materials are not limited to wood / bamboo, and grass such as firewood or a combination of these may be used.

本発明の実施の形態1に係る天然系素材の緻密化処理方法の工程を示す工程図である。It is process drawing which shows the process of the densification processing method of the natural material which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る天然系素材の加圧緻密化装置の要部を示す模式的縦断面図である。It is a typical longitudinal cross-sectional view which shows the principal part of the pressure densification apparatus of the natural raw material which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係り、図2の矢視X−Xを示す模式的断面図である。FIG. 3 is a schematic cross-sectional view according to Embodiment 1 of the present invention and showing an arrow XX in FIG. 2. 本発明の実施の形態2に係り、図2の矢視X−Xを示す模式的断面図である。FIG. 5 is a schematic cross-sectional view according to Embodiment 2 of the present invention and showing an arrow XX in FIG. 2. 本発明の実施の形態3に係り、図2の矢視X−Xを示す模式的断面図である。FIG. 6 is a schematic cross-sectional view according to a third embodiment of the present invention and showing an arrow XX in FIG. 2. 本発明の実施の形態4に係り、図2の矢視X−Xを示す模式的断面図である。FIG. 7 is a schematic cross-sectional view according to Embodiment 4 of the present invention and showing an arrow XX in FIG. 2. 本発明の実施の形態5に係り、図2の矢視X−Xを示す模式的断面図である。FIG. 9 is a schematic cross-sectional view according to the fifth embodiment of the present invention and showing an arrow XX in FIG. 2. 従来技術に係る一実施例による木材の圧力処理用装置の概略断面図である。It is a schematic sectional drawing of the apparatus for the pressure processing of the timber by one Example which concerns on a prior art.

符号の説明Explanation of symbols

1〜5:天然系素材の緻密化処理方法の工程を示すステップ
10:加圧緻密化装置, 11:円筒部
12a:リング状上蓋, 12b:上プラグ
13a:リング状下蓋, 13b:下蓋
14:加圧空間, 14a:加圧流体導入孔
15:円筒状メンブレン, 15a:耳部
16,16a:円柱状木材(天然系素材)
16b,16c,16d:四角柱状木材(天然系素材)
16c′,16d′:平面部分
17:円柱状有孔弾性体, 17a:有孔部
18:緩衝材, 19:型板, 20:プレスフレーム
1 to 5: Steps of the densification treatment method for natural materials Step 10: Pressure densification device, 11: Cylindrical portion 12a: Ring-shaped upper lid, 12b: Upper plug 13a: Ring-shaped lower lid, 13b: Lower lid 14: Pressurized space, 14a: Pressurized fluid introduction hole 15: Cylindrical membrane, 15a: Ear part 16, 16a: Columnar wood (natural material)
16b, 16c, 16d: Square pillar-shaped wood (natural material)
16c ', 16d': plane part 17: cylindrical perforated elastic body, 17a: perforated part 18: cushioning material, 19: template, 20: press frame

Claims (8)

木材、竹材など組織内に軸方向の繊維組織を含む天然系素材を乾燥処理した後、円筒状の高圧容器内に軸方向を揃えて収納して、前記天然系素材の軸方向に垂直な方向から流体圧力によって二次元的もしくは軸対称的に加圧圧縮して緻密化し、次いで、加熱処理を施して固定化することを特徴とする天然系素材の加圧緻密化処理方法。   A natural material containing an axial fiber structure in a tissue such as wood or bamboo is dried and then stored in a cylindrical high-pressure container with the axial direction aligned, and the direction perpendicular to the axial direction of the natural material. A pressure densification treatment method for a natural material characterized in that it is compressed and compressed two-dimensionally or axisymmetrically with fluid pressure to be densified, and then subjected to heat treatment to be fixed. 前記乾燥処理を温度85〜120℃の大気中で行うことを特徴とする請求項1に記載の天然系素材の加圧緻密化処理方法。   The method for pressure densification treatment of a natural material according to claim 1, wherein the drying treatment is performed in an atmosphere at a temperature of 85 to 120 ° C. 前記流体圧力が30〜400MPaであることを特徴とする請求項1または2に記載の天然系素材の加圧緻密化処理方法。   The pressure densification treatment method for a natural material according to claim 1 or 2, wherein the fluid pressure is 30 to 400 MPa. 前記加熱処理を150〜180℃の温度で行うことを特徴とする請求項1乃至3のうちの何れか一つの項に記載の天然系素材の加圧緻密化処理方法。   The pressure densification treatment method for a natural material according to any one of claims 1 to 3, wherein the heat treatment is performed at a temperature of 150 to 180 ° C. 前記流体圧力が、円筒状の前記高圧容器内面に装着され流体圧力を封じ込める弾性体を介して、前記天然系素材の軸方向に垂直な方向から二次元的もしくは軸対称的に加圧圧縮して緻密化することを特徴とする請求項1乃至4のうちの何れか一つの項に記載の天然系素材の加圧緻密化処理方法。   The fluid pressure is compressed and compressed two-dimensionally or axisymmetrically from a direction perpendicular to the axial direction of the natural material through an elastic body that is attached to the inner surface of the cylindrical high-pressure vessel and contains the fluid pressure. The pressure densification treatment method for a natural material according to any one of claims 1 to 4, wherein the densification is performed. 前記天然系素材を複数個に分割すると共に、これら分割された素材間に剛性を有する型板を挟み込んで加圧圧縮し緻密化することを特徴とする請求項1乃至5のうちの何れか一つの項に記載の天然系素材の加圧緻密化処理方法。   6. The natural material is divided into a plurality of parts, and a rigid template is sandwiched between the divided materials to compress and compress the material to make it dense. The pressure densification processing method of the natural material as described in one item. 円筒状の高圧容器の円筒部内面と、この円筒部内面に装着された弾性体からなる円筒状メンブランの外面とによって加圧空間が形成され、この加圧空間に加圧流体を導入する加圧流体導入孔が設けられると共に、前記円筒状メンブランの内側に、前記加圧流体による加圧圧縮力を伝達するため軸方向に有孔部を設けられた円柱状有孔弾性体が収納され、この円柱状有孔弾性体の有孔部に木材もしくは竹材等からなる天然系素材を装填して、前記加圧空間に導入された流体圧力によって、前記天然系素材をその軸方向に垂直な方向から二次元的もしくは軸対称的に、前記円柱状有孔弾性体を介して加圧圧縮するよう構成したことを特徴とする天然系素材の加圧緻密化装置。   A pressurized space is formed by the inner surface of the cylindrical portion of the cylindrical high-pressure vessel and the outer surface of the cylindrical membrane made of an elastic body attached to the inner surface of the cylindrical portion, and pressurization for introducing a pressurized fluid into the pressurized space. A fluid introduction hole is provided, and a cylindrical perforated elastic body provided with a perforated portion in an axial direction for transmitting a pressurized compressive force by the pressurized fluid is housed inside the cylindrical membrane. A natural material made of wood or bamboo is loaded into the perforated portion of the cylindrical perforated elastic body, and the natural material is removed from the direction perpendicular to the axial direction by the fluid pressure introduced into the pressurized space. A pressure densification apparatus for natural materials, wherein the apparatus is configured to compress and compress two-dimensionally or axisymmetrically through the cylindrical perforated elastic body. 前記円柱状有孔弾性体の有孔部が、複数の孔から構成されたことを特徴とする請求項7に記載の天然系素材の加圧緻密化装置。
The pressure densification device for natural materials according to claim 7, wherein the perforated portion of the cylindrical perforated elastic body is composed of a plurality of holes.
JP2007011551A 2007-01-22 2007-01-22 Densification processing method and pressurization densification apparatus of natural raw material Pending JP2008173925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007011551A JP2008173925A (en) 2007-01-22 2007-01-22 Densification processing method and pressurization densification apparatus of natural raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007011551A JP2008173925A (en) 2007-01-22 2007-01-22 Densification processing method and pressurization densification apparatus of natural raw material

Publications (1)

Publication Number Publication Date
JP2008173925A true JP2008173925A (en) 2008-07-31

Family

ID=39701305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007011551A Pending JP2008173925A (en) 2007-01-22 2007-01-22 Densification processing method and pressurization densification apparatus of natural raw material

Country Status (1)

Country Link
JP (1) JP2008173925A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8096064B2 (en) * 2007-01-26 2012-01-17 Forestry And Forest Products Research Institute Method for drying lumber, method of impregnating lumber with chemicals, and drying apparatus
CN110978159A (en) * 2019-12-16 2020-04-10 王龙晋 All-bamboo floor for container and preparation method thereof
CN112025899A (en) * 2020-09-10 2020-12-04 唐天宁 Production method for surface layer rolling energy storage densification of wood and obtained wood

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8096064B2 (en) * 2007-01-26 2012-01-17 Forestry And Forest Products Research Institute Method for drying lumber, method of impregnating lumber with chemicals, and drying apparatus
CN110978159A (en) * 2019-12-16 2020-04-10 王龙晋 All-bamboo floor for container and preparation method thereof
CN110978159B (en) * 2019-12-16 2022-04-29 王龙晋 All-bamboo floor for container and preparation method thereof
CN112025899A (en) * 2020-09-10 2020-12-04 唐天宁 Production method for surface layer rolling energy storage densification of wood and obtained wood

Similar Documents

Publication Publication Date Title
Shams et al. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin I: effects of pressing pressure and pressure holding
JP5775825B2 (en) Surface-reinforced natural wood mold material and method for producing the same
EP2517851B1 (en) Preparation method for a wood section
Navi et al. Property changes in thermo-hydro-mechanical processing: COST Action FP0904 2010–2014: Thermo-hydro-mechanical wood behavior and processing
US6098679A (en) Dimensionally stable oriented strand board (OSB) and method for making the same
JP2006240032A (en) Compaction of wood by combination treatment of steam treatment and resin impregnation treatment
Wang et al. Effect of grain orientation and surface wetting on vertical density profiles of thermally compressed fir and spruce
JP2008173925A (en) Densification processing method and pressurization densification apparatus of natural raw material
JP2009279934A5 (en)
Lykidis et al. The effect of melamine formaldehyde impregnation and hot-pressing parameters on the density profile of densified poplar wood
CA2475969A1 (en) Method of manufacturing incombustible wood
KR20130113176A (en) Method of fabricating eco-friendly bamboo wood
Shams et al. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin III: effects of sodium chlorite treatment
KR101042298B1 (en) Artificial lumber using bamboo tree and method for manufacturing thereof
JP2008036954A (en) Manufacturing process of compressed single wood board
JP2006218831A (en) Manufacturing method of compressed veneer
JP3107482B2 (en) Wood material heat treatment method
Rousek et al. Beechwood modification with ammonia gas-improved properties.
JP2008194948A (en) Pressurizing and densifying processor for natural raw material
JP2012056303A (en) Hot-press treated wood and production method thereof
JP2007296811A (en) Consolidating and fixing method of wood plate material
JP3113744B2 (en) Method for manufacturing consolidated wood
JP2011251486A (en) Laminate plastic worked timber
NO308943B1 (en) Process for producing impregnated wood products
JP2006305842A (en) Modifying treatment method of wood