JP2008173717A - Electric discharge machining apparatus - Google Patents

Electric discharge machining apparatus Download PDF

Info

Publication number
JP2008173717A
JP2008173717A JP2007009593A JP2007009593A JP2008173717A JP 2008173717 A JP2008173717 A JP 2008173717A JP 2007009593 A JP2007009593 A JP 2007009593A JP 2007009593 A JP2007009593 A JP 2007009593A JP 2008173717 A JP2008173717 A JP 2008173717A
Authority
JP
Japan
Prior art keywords
voltage
capacitance
electrode
cable
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007009593A
Other languages
Japanese (ja)
Inventor
Masao Murai
正生 村井
Akihiro Sakurai
章博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2007009593A priority Critical patent/JP2008173717A/en
Priority to US11/944,568 priority patent/US20080173617A1/en
Priority to EP07121739A priority patent/EP1946872A2/en
Priority to CNA2008100034553A priority patent/CN101224515A/en
Publication of JP2008173717A publication Critical patent/JP2008173717A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for
    • B23H11/006Electrical contacts or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the effect of the stray capacity of the cable of a voltage measuring circuit upon the surface roughness of a machined surface in finish machining. <P>SOLUTION: Voltage between electrodes is measured by connecting a voltage measuring circuit 4 between an electrode 1 and the electrode of a workpiece 2 by means of a parallel reciprocation cable 3 via a resistor R. The parallel reciprocation cable 3 is formed such that two lead wires are so fixed as to be in parallel with each other at a constant interval with insulating and flexible materials, such as rubber and resin, like the feeder wire for a TV antenna. The stray capacitance of the parallel reciprocation cable is reduced by widening the interval between the two lead wires of the cable. As a result, the high frequency voltage in finish machining can be measured by the voltage measuring circuit without being attenuated. Further, the pulsation of the voltage to be input to the voltage measuring circuit can be suppressed because the resistor R is inserted therein. Because of the reduction of the stray capacitance, the electric discharge energy in the finish machining can be suppressed to be small, and the roughness of the machined surface can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、仕上げ加工における加工面の面粗度を向上させることができる放電加工装置に関する。   The present invention relates to an electric discharge machining apparatus capable of improving the surface roughness of a machined surface in finishing.

放電加工では、加工液中の電極とワーク間に電圧を印加して、アーク放電を発生させる。この放電の熱で、ワークが溶融すると同時に、加工液が急激に加熱され、気化爆発を起し、溶融したワークを吹き飛ばす。これを高頻度で繰返すことにより、加工が進行する。また、放電によってできる小さな放電痕が集まって、加工面を形成するので、個々の放電痕の大きさが、面粗さを決定することになる。
放電痕の大きさは、概ね個々の放電エネルギーの大きさに依存するので、仕上げ加工等においては、面粗さを向上させるために、単発放電エネルギーを極力小さく抑える必要がある。
In electric discharge machining, a voltage is applied between the electrode in the machining fluid and the workpiece to generate arc discharge. At the same time as the workpiece melts due to the heat of this discharge, the machining fluid is heated rapidly, causing a vaporization explosion and blowing off the melted workpiece. By repeating this frequently, processing proceeds. Further, since small discharge traces formed by discharge gather to form a processed surface, the size of each discharge trace determines the surface roughness.
Since the size of the discharge trace generally depends on the size of the individual discharge energy, it is necessary to suppress the single-shot discharge energy as small as possible in order to improve the surface roughness in finishing and the like.

ところで一般に、電気的に絶縁された導体間には、浮遊容量と呼ばれるコンデンサ成分が存在する。電極とワーク間(極間)にも、この浮遊容量が存在するため、極間に電圧を印加する場合には、必然的に、この浮遊容量が充電されることになる。従って、放電が発生すると、加工電源から供給されるエネルギーだけでなく、この浮遊容量に蓄積されたエネルギーも極間に供給されることになる。仕上げ加工などにおいて、放電エネルギーを小さく抑えるために、加工電源から供給するエネルギーを絞っていくと、極間の浮遊容量から放出されるエネルギーが、単発放電エネルギーに大きな影響を与えるようになる。これが加工面の面粗度に影響を与えることになる。
主な浮遊容量は、荒加工電源、荒加工ケーブル、ワークテーブル〜電極間、極間などに存在している。
In general, a capacitor component called stray capacitance exists between electrically insulated conductors. Since this stray capacitance exists also between the electrode and the workpiece (between the electrodes), this stray capacitance is inevitably charged when a voltage is applied between the electrodes. Therefore, when discharge occurs, not only the energy supplied from the machining power supply but also the energy stored in this stray capacitance is supplied between the electrodes. In finishing and the like, if the energy supplied from the machining power source is reduced in order to keep the discharge energy small, the energy released from the stray capacitance between the electrodes has a great influence on the single discharge energy. This affects the surface roughness of the processed surface.
The main stray capacitance exists in the rough machining power source, the rough machining cable, between the work table and the electrode, and between the electrodes.

そこで、荒加工ケーブルの極間側にスイッチを挿入して、仕上げ加工時にはこれをオフして、荒加工電源や荒加工ケーブルの浮遊容量を切り離すことや、ワークをテーブルから絶縁して固定することで、テーブル〜電極間の浮遊容量を切り離すようにした発明が知られている(特許文献1参照)。
この特許文献1に記載された発明による方法によって、大きな浮遊容量は排除されたが、電極とワーク間の極間電圧を測定する電圧測定回路にも浮遊容量が存在する。
Therefore, insert a switch between the poles of the roughing cable and turn it off during finishing to disconnect the roughing power supply or stray capacitance of the roughing cable, or to insulate and fix the workpiece from the table Thus, an invention in which stray capacitance between the table and the electrode is separated is known (see Patent Document 1).
Although a large stray capacitance is eliminated by the method according to the invention described in Patent Document 1, a stray capacitance also exists in a voltage measurement circuit that measures an interelectrode voltage between an electrode and a workpiece.

一般に、放電加工装置は、放電状態を認識し、ワークに対する電極の相対送りを制御するのに、加工中の電極とワーク間の極間電圧を計測し、この計測結果に基づいてワークに対する電極の相対送りを制御することが一般的に行われているが、この極間と制御回路を接続する測定ケーブルや測定回路自体にも浮遊容量が存在している。この浮遊容量が仕上げ加工の面粗さに影響をあたえないようにする対策として、極間電圧をフォトカプラ等で光絶縁した後、制御回路に伝送することによって、浮遊容量を小さくし、仕上げ加工の面粗度を向上させる方法が提案されている(特許文献2参照)。   In general, an electric discharge machining apparatus recognizes the discharge state and controls the relative feed of the electrode to the workpiece, and measures the voltage between the electrode being machined and the workpiece, and based on the measurement result, the electrode Controlling the relative feed is generally performed, but stray capacitance also exists in the measurement cable connecting the gap and the control circuit and the measurement circuit itself. As a measure to prevent this stray capacitance from affecting the surface roughness of the finishing process, the inter-electrode voltage is optically insulated with a photocoupler, etc., and then transmitted to the control circuit to reduce the stray capacitance and finish processing. A method for improving the surface roughness is proposed (see Patent Document 2).

又、電極とワーク間の極間電圧を検出する回路の極間側に直列に抵抗を挿入し、この抵抗によって、浮遊容量による放電を抑えて面粗度を向上させる発明も知られている(特許文献3参照)。   Also, an invention is known in which a resistor is inserted in series between the electrodes for detecting the voltage between the electrode and the workpiece, and the surface roughness is improved by suppressing discharge due to the stray capacitance by this resistor ( (See Patent Document 3).

特開2002−66843号公報JP 2002-66843 A 特開平7−328844号公報JP-A-7-328844 特開2000−42835号公報JP 2000-42835 A

仕上げ加工においては、その加工面の面粗度を向上させるために放電エネルギーを小さくする必要があるが、ワークと電極間の極間電圧を測定する電圧測定回路と電極間を接続するケーブル等に存在する浮遊容量による放電が、通常の意図した放電に付加されて、放電エネルギーを増大させて、加工面の面粗度を低下させる原因となる。この極間の電圧を測定する電圧測定回路のケーブルに存在する浮遊容量の影響を低下させる方法として、特許文献2に示されたようなフォトカプラ等を用いる方法は、原理的には可能と思われるが、仕上げ加工時の高周波電圧を精度よく絶縁伝送するのは、相当な困難が予想され、仮に実現できたとしても非常に高価なものとなってしまう。   In finishing processing, it is necessary to reduce the discharge energy in order to improve the surface roughness of the processed surface, but it is necessary to use a voltage measurement circuit that measures the voltage between the workpiece and the electrode and a cable that connects the electrode. The discharge due to the existing stray capacitance is added to the normal intended discharge, increasing the discharge energy and causing the surface roughness of the processed surface to decrease. As a method for reducing the influence of stray capacitance existing in the cable of the voltage measurement circuit for measuring the voltage between the electrodes, a method using a photocoupler as disclosed in Patent Document 2 is theoretically possible. However, it is anticipated that it will be quite difficult to accurately insulate and transmit the high-frequency voltage during finishing, and even if it can be realized, it will be very expensive.

又、特許文献2に記載されたような、極間電圧測定回路のケーブルに抵抗を挿入して極間電圧を検出すると共に、浮遊容量の放電を抑える方法では、測定する極間電圧の測定波形が鈍ってしまうという問題がある。ワークと電極間の極間電圧を測定する電圧測定線には同軸線やシールド線を用いるのが一般的であり、このようなケーブルは線間容量が大きいので、前述の直列抵抗とケーブル容量でローパスフィルターが形成され、測定波形が鈍ってしまうという問題がある。
図5は、極間電圧を測定する電圧測定回路のケーブルに抵抗200Ωを挿入して、極間に高周波電圧を印加し、極間電圧を測定したときの測定電圧を示す図で、横軸は時間、縦軸は電圧を表すものである。図5(a)はワークと電極間の極間電圧を示し、図5(b)は電圧測定回路の入力電圧を示している。この例では、電圧測定回路の入力電圧が35%程度低下している。
In addition, as described in Patent Document 2, a method of detecting a voltage between electrodes by inserting a resistor into a cable of a voltage measurement circuit between electrodes, and suppressing the discharge of stray capacitance, a measured waveform of the voltage measured between the electrodes. There is a problem that becomes dull. In general, coaxial cables and shielded wires are used as voltage measurement lines for measuring the voltage between the workpiece and the electrode. Since such cables have a large line capacitance, the above-mentioned series resistance and cable capacitance are used. There is a problem that a low-pass filter is formed and the measurement waveform becomes dull.
FIG. 5 is a diagram illustrating a measurement voltage when a resistance of 200Ω is inserted into a cable of a voltage measurement circuit for measuring a voltage between electrodes, a high-frequency voltage is applied between the electrodes, and the voltage between the electrodes is measured. Time and the vertical axis represent voltage. FIG. 5A shows the voltage between the workpiece and the electrode, and FIG. 5B shows the input voltage of the voltage measuring circuit. In this example, the input voltage of the voltage measurement circuit is reduced by about 35%.

そこで、本発明の目的は、極間電圧を測定する電圧測定回路の電圧測定精度への影響を少なくして、該電圧測定回路のケーブルが有する浮遊容量による加工面粗度への影響を小さくした放電加工装置を提供することにある。   Accordingly, an object of the present invention is to reduce the influence on the voltage measurement accuracy of the voltage measurement circuit for measuring the voltage between the electrodes and reduce the influence on the surface roughness due to the stray capacitance of the cable of the voltage measurement circuit. An electrical discharge machining apparatus is provided.

加工中の電極とワークとの極間電圧を測定する電圧測定回路を有し、前記電圧測定回路による測定結果に基づき、放電状態及び電極の送りを制御する放電加工装置において、請求項1に係る発明は、前記電圧測定回路と電極とを接続する測定線と前記電圧測定回路とワークとを接続する測定線の2つの測定線を、絶縁性があり柔軟性がある材料で該測定線の半径の4倍以上の距離を隔てて平行に固定して配設すると共に、極間側に抵抗を挿入したことを特徴とするもので、この構成によって、測定線の浮遊容量を小さくし、浮遊容量による放電エネルギーを小さくして仕上げ加工時の加工面の面粗度を向上させ、かつ、電圧測定回路に入力される極間電圧の減衰を小さくするとともに、振動発生も抑制するようにしたものである。   An electric discharge machining apparatus having a voltage measurement circuit for measuring an interelectrode voltage between an electrode being processed and a workpiece, and controlling a discharge state and feeding of an electrode based on a measurement result by the voltage measurement circuit. The invention provides two measurement lines, a measurement line connecting the voltage measurement circuit and the electrode, and a measurement line connecting the voltage measurement circuit and the workpiece, with an insulating and flexible material and a radius of the measurement line. In addition to being fixed in parallel with a distance of 4 times or more, a resistor is inserted between the electrodes, and this configuration reduces the stray capacitance of the measurement line, thereby reducing the stray capacitance. This reduces the discharge energy caused by the surface to improve the surface roughness of the machined surface during finishing, reduces the attenuation of the interelectrode voltage input to the voltage measurement circuit, and suppresses vibration. is there.

請求項2に係る発明は、抵抗と容量を並列に接続したRC並列回路を直列に接続して極間電圧を分圧して出力する抵抗容量分圧器を前記電極間に接続し、該抵抗容量分圧器を介して極間電圧を前記電圧測定回路で測定し、前記抵抗容量分圧器の前記電圧測定回路に接続される側のRC並列回路の容量を、前記電圧測定回路の測定ケーブルが有する浮遊容量としたものであり、この構成によって、浮遊容量による放電エネルギーを小さくし、電圧測定回路に入力される極間電圧の減衰を小さくし、振動発生も抑制する。さらに、請求項3に係る発明は、前記抵抗容量分圧器の一方のRC並列回路の抵抗をR1、コンデンサの容量をC1とし、他方の並列回路の抵抗をR2、前記浮遊容量をC2とすると、R1・C1=R2・C2となるように、分圧比と測定ケーブルが有する浮遊容量C2によって、前記コンデンサの容量C1を決めるようにした。   According to the second aspect of the present invention, an RC parallel circuit in which a resistor and a capacitor are connected in parallel is connected in series, and a resistor-capacitance voltage divider that divides and outputs a voltage between the electrodes is connected between the electrodes. The voltage between the electrodes is measured by the voltage measurement circuit via the voltage divider, and the capacitance of the RC parallel circuit connected to the voltage measurement circuit of the resistance-capacitance voltage divider is the stray capacitance that the measurement cable of the voltage measurement circuit has. With this configuration, the discharge energy due to the stray capacitance is reduced, the attenuation of the interelectrode voltage input to the voltage measurement circuit is reduced, and the occurrence of vibration is also suppressed. Further, in the invention according to claim 3, when the resistance of one RC parallel circuit of the resistive voltage divider is R1, the capacitance of the capacitor is C1, the resistance of the other parallel circuit is R2, and the stray capacitance is C2, The capacitance C1 of the capacitor was determined by the voltage division ratio and the stray capacitance C2 of the measurement cable so that R1 · C1 = R2 · C2.

浮遊容量による放電エネルギーを小さくすることができ、仕上げ加工時の加工面の面粗度を向上させることができる。又、電圧測定回路に入力される測定電圧が減衰することを防止することができるとともに、該測定電圧の振動をも抑制することができる。   The discharge energy due to the stray capacitance can be reduced, and the surface roughness of the machined surface during finishing can be improved. Further, it is possible to prevent the measurement voltage input to the voltage measurement circuit from being attenuated, and to suppress the vibration of the measurement voltage.

以下、図面と共に本発明の実施形態を説明する。
図1は、本発明の第1の実施形態の要部概要図である。この第1の実施形態は、電極とワーク間の極間電圧を測定する電圧測定回路をテレビアンテナ用フィーダ線のような、線間距離が広い平行往復ケーブルを用いて接続した点に特徴を有するものである。
図1においても符号1は電極であり、符号2は、被加工物のワークである。この電極1とワーク2間の極間には、図示していない加工電源より電圧が印加される。又符号4は、この電極1とワーク2間の極間電圧を測定する電圧測定回路であり、該電圧測定回路4で測定した極間電圧によって、放電状態を監視し、ワーク2に対する電極1の相対送り速度の制御や電圧印加のオンタイム、オフタイム等の制御がなされるように構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a main part of a first embodiment of the present invention. This first embodiment is characterized in that a voltage measuring circuit for measuring an interelectrode voltage between an electrode and a workpiece is connected using a parallel reciprocating cable having a wide line distance, such as a feeder line for a television antenna. Is.
Also in FIG. 1, reference numeral 1 is an electrode, and reference numeral 2 is a workpiece of a workpiece. A voltage is applied between the electrode 1 and the work 2 from a machining power source (not shown). Reference numeral 4 denotes a voltage measuring circuit for measuring the voltage between the electrode 1 and the work 2. The discharge state is monitored by the voltage measured by the voltage measuring circuit 4, and the electrode 1 with respect to the work 2 is monitored. The relative feed speed is controlled, and the voltage application on time and off time are controlled.

この電圧測定回路4で電極1とワーク2の極間の電圧を測定するための測定線の導線が電極1とワーク2の極間の両側に接続されている。この測定線の導線のケーブルは、テレビアンテナ用フィーダ線のように、2つの導線がその線間距離を広くした平行往復ケーブル3で構成している。即ち、2つの導線は、絶縁性がありかつ柔軟性のあるゴムや樹脂等の材料により、その線間間隔を平行にして固定されている。さらに、電極1側と接続する導線は抵抗Rを直列に配して接続されている。平行往復ケーブル3の線間距離を広くすることで、平行往復ケーブル3の浮遊容量Cを低減させている。平行往復ケーブル3の浮遊容量Cが小さくなることにより、抵抗Rを挿入してもローパスフィルターの効果は少なく、仕上げ加工時に印加される高周波電圧を減衰せず伝送し、電圧測定回路4で測定できるようにしている。これにより、電極1とワーク2間の極間電圧を正確に測定することができる。   In this voltage measuring circuit 4, a measuring wire for measuring the voltage between the electrodes 1 and 2 is connected to both sides between the electrodes 1 and 2. The cable of the conducting wire of the measuring wire is constituted by a parallel reciprocating cable 3 in which two conducting wires have a wide distance between the wires, like a feeder wire for a television antenna. That is, the two conducting wires are fixed with an insulating and flexible material such as rubber or resin so that the distance between the wires is parallel. Furthermore, the conducting wire connected to the electrode 1 side is connected with a resistor R arranged in series. The stray capacitance C of the parallel reciprocating cable 3 is reduced by increasing the distance between the parallel reciprocating cables 3. Since the stray capacitance C of the parallel reciprocating cable 3 is reduced, the effect of the low-pass filter is small even if the resistor R is inserted, and the high-frequency voltage applied during finishing processing is transmitted without being attenuated and can be measured by the voltage measuring circuit 4. I am doing so. Thereby, the voltage between the electrodes 1 and the workpiece 2 can be accurately measured.

又、浮遊容量が小さくなることから、電極1とワーク2間に放電が生じたときに、この浮遊容量に蓄えられたエネルギーが放電されても、その放電エネルギーは小さくなり、浮遊容量が与える放電への影響が小さくなり、仕上げ加工における放電エネルギーを小さくすることができ、仕上げ加工の加工面の面粗度を向上させることができる。   In addition, since the stray capacitance becomes small, even when the discharge is generated between the electrode 1 and the work 2, even if the energy stored in the stray capacitance is discharged, the discharge energy becomes small and the discharge given by the stray capacitance. As a result, the discharge energy in the finishing process can be reduced, and the surface roughness of the finished surface can be improved.

図2は、この平行往復ケーブル3が有する静電容量(浮遊容量)C、インダクタンスLの説明図である。該平行往復ケーブル3を構成する一対の測定線の導線を3a、3bとし、該導線3a、3bの半径をa、平行に配置された導線3a、3bの中心軸線間の距離をdとすると、単位長さ当たりの静電容量(浮遊容量)Cは次の(1)式で表される。インダクタンスLは、(2)式で表される。   FIG. 2 is an explanatory diagram of the electrostatic capacitance (floating capacitance) C and the inductance L of the parallel reciprocating cable 3. When the conducting wires of the pair of measurement wires constituting the parallel reciprocating cable 3 are 3a and 3b, the radius of the conducting wires 3a and 3b is a, and the distance between the central axes of the conducting wires 3a and 3b arranged in parallel is d. The electrostatic capacitance (floating capacitance) C per unit length is expressed by the following equation (1). The inductance L is expressed by equation (2).

C=πε/log(d/a) …(1)
L=(μ/π)×log(d/a) …(2)
ここで、εは導線間の絶縁物の誘導率、μは空間の透磁率である。
C = πε / log (d / a) (1)
L = (μ / π) × log (d / a) (2)
Here, ε is the inductivity of the insulator between the conductors, and μ is the magnetic permeability of the space.

この(1)式から明らかのように、静電容量(浮遊容量)Cは(d/a)が大きくなればなるほど、小さくなる。即ち、導線3a、3bの中心軸線間の距離dを大きく取ることによって、静電容量(浮遊容量)Cを小さくすることができる。一方、インダクタンスLは、導線3a、3bの中心軸線間の距離dを大きく取るほど増大することになり、静電容量(浮遊容量)CとインダクタンスLは密接な関係にある。   As is clear from the equation (1), the electrostatic capacitance (floating capacitance) C decreases as (d / a) increases. That is, the capacitance (floating capacitance) C can be reduced by increasing the distance d between the central axes of the conducting wires 3a and 3b. On the other hand, the inductance L increases as the distance d between the central axes of the conducting wires 3a and 3b increases, and the electrostatic capacitance (stray capacitance) C and the inductance L are in a close relationship.

静電容量(浮遊容量)Cの低減を主眼として、導線3a、3bの線間の距離dを決め、一定に固定して、平行に配置することによって静電容量(浮遊容量)Cを決めれば、(2)式よりインダクタンスLが一義的に決まる。即ち、目標とする静電容量(浮遊容量)Cの上限を設定すれば、線間距離dの下限が決まり、インダクタンスLの下限も自ずと定まる。   If the capacitance (floating capacitance) C is determined by deciding the distance d between the conductors 3a and 3b, fixing the fixed distance, and arranging them in parallel, with the main objective of reducing the capacitance (floating capacitance) C. , (2), inductance L is uniquely determined. That is, if the upper limit of the target electrostatic capacitance (stray capacitance) C is set, the lower limit of the line-to-line distance d is determined, and the lower limit of the inductance L is naturally determined.

一般的な信号伝送用の同軸ケーブルにおける単位長さ当たりの静電容量は100pF程度であるが、上記(d/a)を4程度にすれば、静電容量(浮遊容量)Cを半分以下に抑えることができる。しかし、(d/a)を大きくするほど、静電容量(浮遊容量)Cを小さくできるが、その効果は急速に低下することから、(d/a)<50が実用的な範囲である。   The capacitance per unit length in a general signal transmission coaxial cable is about 100 pF, but if the above (d / a) is set to about 4, the capacitance (floating capacitance) C is reduced to half or less. Can be suppressed. However, as (d / a) is increased, the electrostatic capacitance (floating capacitance) C can be reduced. However, since its effect is rapidly reduced, (d / a) <50 is a practical range.

又、前述したように、線間距離dを大きくすると平行往復ケーブル3のインダクタンスLが大きくなる傾向があり、このインダクタンスLと静電容量(浮遊容量)Cとの間で共振が発生しやすく、測定波形が振動する場合がある。   Further, as described above, when the line distance d is increased, the inductance L of the parallel reciprocating cable 3 tends to increase, and resonance easily occurs between the inductance L and the electrostatic capacitance (floating capacitance) C. The measurement waveform may vibrate.

図6は、図1において、抵抗Rをなくし、電極1とワーク2間の極間の両側と電圧測定回路4を平行往復ケーブル3で接続した状態で、電極1とワーク2間の極間に高周波電圧を印加したときの極間電圧(図6(a))、及び、電圧測定回路4の入力電圧(図6(b))を示す図である。横軸は時間、縦軸は電圧を示す。この図6(a)に示されるように極間電圧は、減衰はしていないが、図6(b)に示す電圧測定回路の入力電圧に振動が発生している。   FIG. 6 shows a state in which the resistance R is eliminated and the voltage measuring circuit 4 is connected by the parallel reciprocating cable 3 between the electrode 1 and the work 2 in FIG. It is a figure which shows the voltage (FIG. 6 (a)) between electrodes when a high frequency voltage is applied, and the input voltage (FIG. 6 (b)) of the voltage measurement circuit 4. FIG. The horizontal axis represents time, and the vertical axis represents voltage. As shown in FIG. 6A, the inter-electrode voltage is not attenuated, but the input voltage of the voltage measuring circuit shown in FIG. 6B is oscillated.

そこで、この第1の実施形態は、図1に示すように、電極1とワーク2間の極間電圧を測定する電圧測定回路4を、抵抗Rを介して平行往復ケーブル3で電極1とワーク2の極間に接続し、d/a(=線間距離/導線半径)を4倍以上とし、電圧測定回路4に入力される電圧の振動発生を抑制するようにしている。   Therefore, in the first embodiment, as shown in FIG. 1, the voltage measuring circuit 4 for measuring the interelectrode voltage between the electrode 1 and the work 2 is connected to the electrode 1 and the work with a parallel reciprocating cable 3 via a resistor R. 2 is connected, and d / a (= inter-wire distance / conductor radius) is set to four times or more to suppress the vibration of the voltage input to the voltage measuring circuit 4.

図4は、本第1の実施形態において測定した電極1とワーク2間の極間電圧(図4(a))と、電圧測定回路の入力電圧(図4(b))を示す図である。横軸は時間、縦軸は電圧を示す。図5と比較し、図4(b)に示す電圧測定回路の入力電圧の減衰は小さいものとなっている。線間距離dが広くなっていることで、平行往復ケーブル3の静電容量(浮遊容量)Cが低減され、平行往復ケーブル3の静電容量(浮遊容量)Cが小さいので、抵抗Rを挿入してもローパスフィルターの効果は少なく、仕上げ加工時の高周波信号も減衰せず伝送できることが示されている。又、前述したように、平行往復ケーブル3の線間距離dと導線の半径a比(d/a)を4以上で50より小さい値とすることによって(4≦(d/a)<50)、インダクタンスLの増加を最小に抑えるとともに、直列に抵抗Rを挿入することによって、電圧測定回路4に入力される電圧の振動を抑制している。   FIG. 4 is a diagram showing the interelectrode voltage (FIG. 4A) between the electrode 1 and the workpiece 2 measured in the first embodiment and the input voltage (FIG. 4B) of the voltage measurement circuit. . The horizontal axis represents time, and the vertical axis represents voltage. Compared with FIG. 5, the attenuation of the input voltage of the voltage measurement circuit shown in FIG. 4B is small. Since the inter-line distance d is increased, the electrostatic capacity (floating capacity) C of the parallel reciprocating cable 3 is reduced, and the electrostatic capacity (floating capacity) C of the parallel reciprocating cable 3 is small, so that a resistor R is inserted. Even so, the effect of the low-pass filter is small, and it has been shown that high-frequency signals at the time of finishing can be transmitted without being attenuated. Further, as described above, by setting the distance d between the parallel reciprocating cables 3 and the radius a ratio (d / a) of the conducting wire to 4 or more and less than 50 (4 ≦ (d / a) <50). In addition to minimizing the increase in inductance L, the resistor R is inserted in series to suppress the oscillation of the voltage input to the voltage measuring circuit 4.

この挿入する抵抗Rは、平行往復ケーブル3のインダクタンスLによる振動を抑えるためだけであれば、抵抗は平行往復ケーブル3のどちら側の線にあってもよいが、平行往復ケーブル3及び電圧測定回路4と対地間にも静電容量C’が存在し、この容量の放電電流が極間に回り込まないように阻止するためには、例えば図1に示すようにワーク2が接地されていれば、抵抗Rは電極1側に挿入する必要がある。また、ワーク2を接地せず、電極1、ワーク2共に浮かせて加工する場合は、電極1側、ワーク2側の両方に抵抗を挿入する必要がある。   If the resistance R to be inserted is only to suppress vibration due to the inductance L of the parallel reciprocating cable 3, the resistance may be on either side of the parallel reciprocating cable 3, but the parallel reciprocating cable 3 and the voltage measurement circuit In order to prevent the discharge current of this capacitance from flowing between the electrodes, for example, as shown in FIG. 1, for example, if the work 2 is grounded, The resistor R needs to be inserted on the electrode 1 side. In addition, when the workpiece 2 is not grounded and the electrode 1 and the workpiece 2 are both lifted and processed, it is necessary to insert resistors on both the electrode 1 side and the workpiece 2 side.

また、テレビアンテナ用のフィーダ線のような、絶縁性があり、柔軟性のあるゴムや樹脂等の材料で導線が一定の幅を持って平行に連結された平行往復ケーブル3は、従来使用されてきたシールド線や同軸線と比較して、耐ノイズ性が低いという問題があるが、仕上げ加工であれば、発生するノイズも小さくなり実用上の問題は発生しない。荒加工でノイズの影響が出るようであれば、荒加工と仕上げ加工で測定ケーブルを切換えるようにしてもよい。また、ケーブルを螺旋状に捻じって実装すれば、ノイズによる磁場の影響をキャンセルすることができる。   In addition, a parallel reciprocating cable 3 in which conductive wires are connected in parallel with a certain width using a material such as rubber or resin that is insulative and flexible, such as a feeder wire for a television antenna, has been conventionally used. Compared to conventional shielded wires and coaxial wires, there is a problem that the noise resistance is low. However, if it is finished, the generated noise is reduced and no practical problem occurs. If the influence of noise appears in roughing, the measurement cable may be switched between roughing and finishing. Moreover, if the cable is twisted and mounted, the influence of the magnetic field due to noise can be canceled.

なお、本第1の実施形態でいう「平行」とは、インダクタンスの低減が目的であるから、幾何学的な「平行」を意味している訳ではなく、巨視的にみて「平行」であれば十分な効果が得られる。   Note that “parallel” in the first embodiment is intended to reduce inductance, and does not mean geometric “parallel”, but may be “parallel” macroscopically. A sufficient effect can be obtained.

図3は、本発明の第2の実施形態の概要図である。この第2の実施形態は、測定ケーブルの極間側に抵抗容量分圧器5を挿入する方法であり、該抵抗容量分圧器の一方の容量を測定ケーブル6が有する浮遊容量C2として、該抵抗容量分圧器5を構成するようにしたものである。
抵抗容量分圧器5は、抵抗とコンデンサを並列に接続したRC並列回路を直列接続して、電圧を測定しようとする両端に接続し、電圧を分圧して取り出すものであり、RC並列回路の時定数を揃える(R1・C1=R2・C2)ことにより、周波数特性がフラットになり、直流から高周波まで分圧比を一定とすることができる。この第2の実施形態では、抵抗R1と容量C1のコンデンサで構成されるRC並列回路の一端を電極1側に接続し、抵抗R2と電圧測定回路4の測定ケーブル6等が有する浮遊容量C2が並列に接続されたRC並列回路を前記抵抗R1と容量C1のコンデンサのRC並列回路に接続し、かつ、他端をワーク2に接続するようにしている。すなわち、抵抗容量分圧器5を構成する一方のRC並列回路の容量を、電圧測定回路4の測定ケーブル6等が有する浮遊容量C2で構成した抵抗容量分圧器5とし、該抵抗容量分圧器5を介して極間電圧を電圧測定回路4で測定するようにしている。
FIG. 3 is a schematic diagram of the second embodiment of the present invention. This second embodiment is a method of inserting a resistive capacitance divider 5 between the poles of a measurement cable. One capacitance of the resistive capacitance divider is used as a stray capacitance C2 included in the measurement cable 6, and the resistive capacitance is divided. The voltage divider 5 is configured.
The resistor-capacitance voltage divider 5 is an RC parallel circuit in which a resistor and a capacitor are connected in parallel, connected in series, connected to both ends of the voltage to be measured, and divided to extract the voltage. By aligning the constants (R1 · C1 = R2 · C2), the frequency characteristic becomes flat and the voltage division ratio can be made constant from DC to high frequency. In the second embodiment, one end of an RC parallel circuit composed of a resistor R1 and a capacitor C1 is connected to the electrode 1 side, and the stray capacitance C2 included in the measurement cable 6 of the resistor R2 and the voltage measurement circuit 4 is provided. The RC parallel circuit connected in parallel is connected to the RC parallel circuit of the resistor R1 and the capacitor C1, and the other end is connected to the work 2. That is, the capacitance of one of the RC parallel circuits constituting the resistive capacitance divider 5 is the resistive capacitance divider 5 constituted by the stray capacitance C2 included in the measurement cable 6 of the voltage measurement circuit 4, and the resistive capacitance divider 5 is Thus, the voltage between the electrodes is measured by the voltage measuring circuit 4.

そして、R1・C1=R2・C2となるように、抵抗R1、R2による分圧比と浮遊容量C2に合わせてコンデンサの容量C1を決定する。これにより、周波数特性がフラットになり、直流から高周波まで分圧比が一定となり、測定ケーブル6の浮遊容量C2が大きくても、測定波形が鈍るようなことはない。また、電圧測定回路4に抵抗が入ることから、測定ケーブル6の浮遊容量C2が極間に放電して面粗度を悪化させることもなく、また抵抗容量分圧器5から電極1とワーク2間の極間までの測定ケーブル6が多少長くなっても、電圧測定回路4に入力される電圧波形の振動を抑制することができる。   Then, the capacitance C1 of the capacitor is determined in accordance with the voltage dividing ratio by the resistors R1 and R2 and the stray capacitance C2 so that R1 · C1 = R2 · C2. As a result, the frequency characteristics become flat, the voltage division ratio is constant from direct current to high frequency, and the measurement waveform does not become dull even if the stray capacitance C2 of the measurement cable 6 is large. In addition, since resistance enters the voltage measurement circuit 4, the stray capacitance C2 of the measurement cable 6 is not discharged between the electrodes and the surface roughness is not deteriorated, and the resistance capacitance divider 5 is connected between the electrode 1 and the workpiece 2. Even if the measurement cable 6 between the electrodes is somewhat longer, the vibration of the voltage waveform input to the voltage measurement circuit 4 can be suppressed.

本発明の第1の実施形態の要部概要図である。It is a principal part schematic diagram of the 1st Embodiment of this invention. 平行往復ケーブルが有する静電容量(浮遊容量)とインダクタンスを説明する説明図である。It is explanatory drawing explaining the electrostatic capacitance (stray capacitance) and inductance which a parallel reciprocating cable has. 本発明の第2の実施形態の要部概要図である。It is a principal part schematic diagram of the 2nd Embodiment of this invention. 本発明の第1の実施形態において、極間に高周波電圧を印加したときの極間電圧と、電圧測定回路の入力電圧を示す図である。In the 1st Embodiment of this invention, it is a figure which shows the voltage between electrodes when a high frequency voltage is applied between electrodes, and the input voltage of a voltage measurement circuit. 従来の電圧測定回路のケーブルに抵抗を挿入し、極間に高周波電圧を印加して測定した極間電圧と、電圧測定回路の入力電圧を示す図である。It is a figure which shows the input voltage of the voltage between electrodes which measured by inserting resistance into the cable of the conventional voltage measurement circuit, and applying a high frequency voltage between electrodes, and a voltage measurement circuit. 極間に電圧測定回路を平行往復ケーブルで接続した状態で、極間に高周波電圧を印加したとき、測定した極間電圧と、電圧測定回路の入力電圧を示す図である。It is a figure which shows the voltage between electrodes measured when the high frequency voltage was applied between the poles in the state which connected the voltage measurement circuit between the poles with the parallel reciprocating cable, and the input voltage of the voltage measurement circuit.

符号の説明Explanation of symbols

1 電極
2 ワーク
3 平行往復ケーブル
4 電圧測定回路
5 抵抗容量分圧器
6 測定ケーブル
1 Electrode 2 Workpiece 3 Parallel Reciprocating Cable 4 Voltage Measurement Circuit 5 Resistance Capacitance Voltage Divider 6 Measurement Cable

Claims (3)

加工中の電極とワークとの極間電圧を測定する電圧測定回路を有し、前記電圧測定回路による測定結果に基づき、放電状態及び電極の送りを制御する放電加工装置において、
前記電圧測定回路と電極とを接続する測定線と前記電圧測定回路とワークとを接続する測定線の2つの測定線を、絶縁性があり柔軟性がある材料で該測定線の半径の4倍以上の距離を隔てて平行に固定して配設すると共に、極間側に抵抗を挿入したことを特徴とする放電加工装置。
In an electric discharge machining apparatus that has a voltage measurement circuit that measures the voltage between the electrode and the workpiece being processed, and controls the discharge state and the feed of the electrode based on the measurement result by the voltage measurement circuit,
Two measurement lines, a measurement line connecting the voltage measurement circuit and the electrode and a measurement line connecting the voltage measurement circuit and the workpiece, are made of an insulating and flexible material and are four times the radius of the measurement line. An electric discharge machining apparatus characterized by being fixed and arranged in parallel with a distance therebetween, and a resistor inserted between the electrodes.
加工中の電極とワークとの極間電圧を測定する電圧測定回路を有し、前記電圧測定回路による測定結果に基づき、放電状態及び電極の送りを制御する放電加工装置において、
抵抗と容量を並列に接続したRC並列回路を直列に接続して極間電圧を分圧して出力する抵抗容量分圧器を前記電極間に接続し、該抵抗容量分圧器を介して極間電圧を前記電圧測定回路で測定し、前記抵抗容量分圧器の前記電圧測定回路に接続される側のRC並列回路の容量を、前記電圧測定回路の測定ケーブルが有する浮遊容量としたことを特徴とする放電加工装置。
In an electric discharge machining apparatus that has a voltage measurement circuit that measures the voltage between the electrode and the workpiece being processed, and controls the discharge state and the feed of the electrode based on the measurement result by the voltage measurement circuit,
An RC parallel circuit in which a resistor and a capacitor are connected in parallel is connected in series, and a resistor-capacitance voltage divider that divides and outputs an inter-electrode voltage is connected between the electrodes, and the inter-electrode voltage is supplied via the resistor-capacitor voltage divider. Discharge characterized in that the capacitance of the RC parallel circuit measured by the voltage measurement circuit and connected to the voltage measurement circuit of the resistance-capacitance voltage divider is the stray capacitance of the measurement cable of the voltage measurement circuit Processing equipment.
前記抵抗容量分圧器の一方のRC並列回路の抵抗をR1、コンデンサの容量をC1とし、他方の並列回路の抵抗をR2、前記浮遊容量をC2とすると、R1・C1=R2・C2
となるように、分圧比と測定ケーブルが有する浮遊容量C2によって、前記コンデンサの容量C1を決めることを特徴とする請求項2に記載の放電加工装置。
When the resistance of one RC parallel circuit of the resistor-capacitance voltage divider is R1, the capacitance of the capacitor is C1, the resistance of the other parallel circuit is R2, and the stray capacitance is C2, R1 · C1 = R2 · C2
The electric discharge machining apparatus according to claim 2, wherein the capacitance C1 of the capacitor is determined by the voltage division ratio and the stray capacitance C2 of the measurement cable.
JP2007009593A 2007-01-18 2007-01-18 Electric discharge machining apparatus Pending JP2008173717A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007009593A JP2008173717A (en) 2007-01-18 2007-01-18 Electric discharge machining apparatus
US11/944,568 US20080173617A1 (en) 2007-01-18 2007-11-23 Electric discharge machining apparatus
EP07121739A EP1946872A2 (en) 2007-01-18 2007-11-28 Electric discharge machining apparatus
CNA2008100034553A CN101224515A (en) 2007-01-18 2008-01-15 Electric discharge machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009593A JP2008173717A (en) 2007-01-18 2007-01-18 Electric discharge machining apparatus

Publications (1)

Publication Number Publication Date
JP2008173717A true JP2008173717A (en) 2008-07-31

Family

ID=39387317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009593A Pending JP2008173717A (en) 2007-01-18 2007-01-18 Electric discharge machining apparatus

Country Status (4)

Country Link
US (1) US20080173617A1 (en)
EP (1) EP1946872A2 (en)
JP (1) JP2008173717A (en)
CN (1) CN101224515A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012007069B4 (en) * 2012-10-30 2020-03-12 Mitsubishi Electric Corporation Electro discharge processing device
DE112012007077B4 (en) * 2012-10-31 2021-12-09 Mitsubishi Electric Corporation Electric discharge machining device
CN111266680B (en) * 2020-03-30 2020-12-18 常州工学院 Automatic feeding device for electrolytic grinding boring machine tool
CN114340165A (en) * 2021-12-28 2022-04-12 深圳飞骧科技股份有限公司 Method and device for reducing parasitic parameters of radio frequency power amplifier and related equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119195A (en) * 1978-03-07 1979-09-14 Inoue Japax Res Inc Electric discharge processing device
JPS6179448A (en) * 1984-09-25 1986-04-23 株式会社東芝 X-ray ct scanner
US4646000A (en) * 1984-11-08 1987-02-24 The Yellow Springs Instrument Company Method and apparatus for measuring soil salinity
US4736069A (en) * 1986-09-30 1988-04-05 Motorola, Inc. Housing for vibration sensitive circuits
US5136250A (en) * 1989-04-28 1992-08-04 Seagate Technology, Inc. Capacitance height gauge
JPH033289A (en) * 1989-05-30 1991-01-09 Gurafuiko:Kk Twisted printed wiring
US6452410B1 (en) * 2000-01-05 2002-09-17 Agilent Technologies, Inc. Apparatus and method for electrolytic bare board testing
JP2005321379A (en) * 2004-04-07 2005-11-17 Agilent Technol Inc Integrated connecting means and cable assembly of measuring system for semiconductor characteristics

Also Published As

Publication number Publication date
US20080173617A1 (en) 2008-07-24
CN101224515A (en) 2008-07-23
EP1946872A2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US20090298344A1 (en) Connector system
JP5202639B2 (en) Electric discharge machine power supply
JP2008173717A (en) Electric discharge machining apparatus
US20120019267A1 (en) High frequency detection device and coaxial cable including the same
KR20180021726A (en) Power combiner and power combiner equipment including symmetrically arranged coolers
US11152973B2 (en) Communication apparatus
JP2021083083A (en) Apparatus for filtering at least one signal
CN1144057C (en) Device for measuring capacitance of electrical wires
EP3470367B1 (en) Ozone generation device
WO1994016542A1 (en) Instrument for measuring plasma excited by high-frequency
CN109417249A (en) Adapter and cable with adapter
JPH07185937A (en) Method and device for electric discharge machining
AU2003296046B2 (en) Supply-line filter
US9440300B2 (en) Electric discharge machining apparatus
US6222149B1 (en) Power supply device for electric discharge machining apparatus
US6836124B2 (en) Capacitance monitoring systems
US10948843B2 (en) Method of monitoring partial discharges in a high voltage electric machine, and connection cable therefore
KR101211699B1 (en) Capacitor compansation apparatus and method for low loss of high frequency cable
JP2000055567A (en) Induction heating device
KR101184670B1 (en) Power cable for alternating current
US11002570B2 (en) Fixed element and position detection device
US11075591B2 (en) Device for integrating electric conductors into low-frequency electric tank circuits
JP2020010418A (en) Insulation type lightning protection system
US9847892B2 (en) Embedded wire feed forward equalization
US6707364B1 (en) Remote feeder reactance coil

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080522

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104