JP2008161798A - Nitrogen-containing waste liquid treatment method - Google Patents

Nitrogen-containing waste liquid treatment method Download PDF

Info

Publication number
JP2008161798A
JP2008161798A JP2006353838A JP2006353838A JP2008161798A JP 2008161798 A JP2008161798 A JP 2008161798A JP 2006353838 A JP2006353838 A JP 2006353838A JP 2006353838 A JP2006353838 A JP 2006353838A JP 2008161798 A JP2008161798 A JP 2008161798A
Authority
JP
Japan
Prior art keywords
waste liquid
nitrogen
dissolved oxygen
anaerobic process
intermittent aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006353838A
Other languages
Japanese (ja)
Other versions
JP4765931B2 (en
Inventor
Yutaka Mori
豊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006353838A priority Critical patent/JP4765931B2/en
Publication of JP2008161798A publication Critical patent/JP2008161798A/en
Application granted granted Critical
Publication of JP4765931B2 publication Critical patent/JP4765931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitrogen-containing waste liquid treatment method which prevents aerobic decomposition of organic matter in an anaerobic process during treatment of nitrogen-containing waste liquid with intermittent aeration to effectively utilize the organic matter as a hydrogen donor required in the anaerobic process. <P>SOLUTION: In the nitrogen-containing waste liquid treatment method where ammonia nitrogen-containing waste liquid is supplied to an intermittent aeration tank 20, and intermittent aeration treatment alternately repeating an aerobic process due to aeration of the waste liquid in the intermittent aeration tank 20 and the anaerobic process due to stop of the aeration is carried out to convert the ammonia nitrogen in the waste liquid into nitrogen gas to remove the ammonia nitrogen, supply of the waste liquid to the intermittent aeration tank 20 in each cycle is started at a predetermined time after the start of the anaerobic process, determined from the reduction time of dissolved oxygen concentration in the waste liquid, and is completed by the end of the anaerobic process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アンモニア性窒素を含有する廃液を生物化学的に処理し、窒素ガスとして除去する窒素含有廃液の処理方法に関する。   The present invention relates to a method for treating a nitrogen-containing waste liquid in which waste liquid containing ammoniacal nitrogen is treated biochemically and removed as nitrogen gas.

生ごみ等や下水の余剰汚泥等の有機性廃棄物(以下、「有機物」と記載する)をメタン菌等の存在下でメタン発酵処理し、メタンガスとしてエネルギーを回収する方法が、省資源、循環型社会形成の一環として採用されている。   Organic waste such as garbage and sewage surplus sludge (hereinafter referred to as “organic matter”) is treated with methane fermentation in the presence of methane bacteria to recover energy as methane gas. It is adopted as part of the formation of a type society.

メタン発酵処理では、有機物をメタンと炭酸ガスに分解することができるが、有機物を100%分解できるわけではなく、メタン発酵処理後の発酵廃液中には有機物が残存している。また、このメタン発酵廃液には、発酵残渣もしくはメタン発酵槽で増殖した菌体を含む汚泥や、有機物の分解生成物であるアンモニアも含まれている。したがって、発酵廃液は、そのまま下水道や河川には放流できず、有機物と窒素成分を分解除去し、放流レベル以下にまで低減することが必要とされている。   In the methane fermentation treatment, the organic matter can be decomposed into methane and carbon dioxide gas, but the organic matter cannot be decomposed 100%, and the organic matter remains in the fermentation waste liquid after the methane fermentation treatment. The methane fermentation waste liquid also contains sludge containing fermentation residues or bacterial cells grown in a methane fermentation tank, and ammonia, which is a decomposition product of organic matter. Therefore, the fermentation waste liquid cannot be discharged as it is into the sewer or the river, and it is necessary to decompose and remove organic substances and nitrogen components to reduce them to below the discharge level.

メタン発酵廃液の処理には、活性汚泥処理法の一つである間欠曝気式活性汚泥処理(以下、「間欠曝気処理」と記載する)が広く用いられている。   For the treatment of methane fermentation waste liquid, intermittent aeration activated sludge treatment (hereinafter referred to as “intermittent aeration treatment”), which is one of activated sludge treatment methods, is widely used.

間欠曝気処理とは、上記メタン発酵廃液のようなアンモニア性窒素を含有する廃液(以下、「窒素含有廃液」と記載する)に対し、空気曝気と曝気停止を交互に繰り返し、アンモニアと有機物とを、活性汚泥に培養させた微生物の食物として利用して分解除去する処理方法である。すなわち、アンモニア性窒素を、好気状態で硝化菌により亜硝酸窒素や硝酸性窒素に酸化させる硝化反応(好気工程)と、硝化反応で得られた亜硝酸性窒素や硝酸性窒素を、嫌気状態で脱窒菌の作用により還元して窒素ガスにまで分解する脱窒反応(嫌気工程)とからなる2段階の生物反応によって、窒素含有廃液中のアンモニアを窒素ガスとして除去する方法である。   Intermittent aeration treatment refers to a waste liquid containing ammoniacal nitrogen such as the above methane fermentation waste liquid (hereinafter referred to as “nitrogen-containing waste liquid”), in which air aeration and aeration stop are repeated alternately to remove ammonia and organic matter. This is a treatment method for decomposing and removing microorganisms cultivated in activated sludge. That is, the nitrification reaction (aerobic process) that oxidizes ammonia nitrogen to nitrite nitrogen and nitrate nitrogen by nitrifying bacteria in an aerobic state and the nitrite nitrogen and nitrate nitrogen obtained by the nitrification reaction are anaerobic. In this state, ammonia in the nitrogen-containing waste liquid is removed as nitrogen gas by a two-stage biological reaction consisting of a denitrification reaction (anaerobic process) that is reduced by the action of denitrifying bacteria and decomposed to nitrogen gas.

この間欠曝気処理には、例えば、下記特許文献1に開示されているような、単一の活性汚泥槽において、好気条件と嫌気条件とを繰り返し、時間的に区分して処理する方法等が知られている。   This intermittent aeration treatment includes, for example, a method in which aerobic conditions and anaerobic conditions are repeated in a single activated sludge tank as disclosed in Patent Document 1 below, and the treatment is divided in terms of time. Are known.

また、処理効率を向上させるにあたって様々な試みがなされており、例えば下記特許文献2には、間欠曝気槽の運転温度を25〜35℃に制御して、アンモニアの酸化が終了する時間を検知し、曝気時間をアンモニアの酸化が終了する1〜1.5倍に設定することにより、硝化反応を亜硝酸型で制御して窒素含有廃液を処理する方法が開示されている。   Various attempts have been made to improve the processing efficiency. For example, in Patent Document 2 below, the operation temperature of the intermittent aeration tank is controlled to 25 to 35 ° C. to detect the time when the oxidation of ammonia ends. A method for treating a nitrogen-containing waste liquid by controlling the nitrification reaction with a nitrite type by setting the aeration time to 1 to 1.5 times that the oxidation of ammonia is completed is disclosed.

また、下記特許文献3には、間欠曝気槽に被処理液を供給し、活性汚泥の存在下に間欠的に曝気を行って好気工程と嫌気工程を繰り返し、好気工程ではBODの除去と窒素の硝化を行い、嫌気工程では脱窒に必要な量の水素供与体を別途、嫌気工程の1/2以上の時間にわたって注入して脱窒を行うことが開示されている。
特開平4−104896号公報 特開2005−144306号公報 特開平11−216493号公報
In Patent Document 3 below, a liquid to be treated is supplied to an intermittent aeration tank, and aeration is intermittently performed in the presence of activated sludge to repeat an aerobic process and an anaerobic process. It is disclosed that nitrogen nitrification is performed, and in the anaerobic process, the amount of hydrogen donor necessary for denitrification is separately injected over a period of 1/2 or more of the anaerobic process for denitrification.
JP-A-4-104896 JP 2005-144306 A JP-A-11-216493

嫌気工程における脱窒反応では、反応に水素供与体が必要である。このため、系外から有機物などの水素供与体を添加する必要があることから、嫌気工程における有機物の有効利用が処理コストの低下につながる。   In the denitrification reaction in the anaerobic process, a hydrogen donor is required for the reaction. For this reason, since it is necessary to add hydrogen donors, such as organic substance from the outside of a system, effective utilization of the organic substance in an anaerobic process leads to the reduction of processing cost.

ここで、好気工程から嫌気工程へ切替えた直後の間欠曝気槽内の廃液には酸素が溶存している。このため、嫌気工程へ切替えると同時に、間欠曝気槽へ有機物を供給すると、間欠曝気槽内は、しばらくの間好気状態が続くので、供給された有機物が好気的分解され易く、後の脱窒反応に利用できなくなることがあった。   Here, oxygen is dissolved in the waste liquid in the intermittent aeration tank immediately after switching from the aerobic process to the anaerobic process. For this reason, when the organic substance is supplied to the intermittent aeration tank at the same time as switching to the anaerobic process, the intermittent aeration tank continues to be in an aerobic state for a while. Sometimes it could not be used for the nitrogen reaction.

その結果、有機物の供給量が増加して、処理コストがかかったり、窒素含有廃液の処理効率が劣るという問題点があった。特に、間欠曝気槽内の活性汚泥濃度が低い場合や、好気性微生物の活性が低下している場合は、溶存酸素の低下速度が遅いので、このような問題が生じやすかった。   As a result, there is a problem that the supply amount of organic matter increases, processing costs increase, and processing efficiency of the nitrogen-containing waste liquid is inferior. In particular, when the concentration of activated sludge in the intermittent aeration tank is low, or when the activity of aerobic microorganisms is reduced, such a problem is likely to occur because the rate of decrease in dissolved oxygen is slow.

したがって、本発明の目的は、窒素含有廃液を間欠曝気処理によって処理する際にあたり、嫌気工程における有機物の好気的分解を防止して、該有機物を嫌気工程において必要とされる水素供与体として有効利用する窒素含有廃液の処理方法を提供することにある。   Therefore, the object of the present invention is to prevent the aerobic decomposition of organic substances in the anaerobic process when the nitrogen-containing waste liquid is processed by intermittent aeration treatment, and the organic substance is effective as a hydrogen donor required in the anaerobic process. The object is to provide a method for treating a nitrogen-containing waste liquid to be used.

上記の課題を解決するために、本発明の窒素含有廃液の処理方法は、アンモニア性窒素を含有する廃液を間欠曝気槽に供給し、該間欠曝気槽内で該廃液に対して空気曝気による好気工程と、曝気停止による嫌気工程とを交互に繰り返す間欠曝気処理を行い、前記廃液中のアンモニア性窒素を窒素ガスに転換して除去する窒素含有廃液の処理方法において、各サイクルにおける前記廃液の前記間欠曝気槽への供給を、前記嫌気工程開始から前記廃液中の溶存酸素濃度の低下時間によって定めた所定時間後に開始し、前記嫌気工程の修了時までには完了するようにしたことを特徴とする。   In order to solve the above-described problems, the nitrogen-containing waste liquid treatment method of the present invention supplies ammonia liquid containing ammonia nitrogen to an intermittent aeration tank, and the waste liquid is favorably obtained by air aeration in the intermittent aeration tank. In the method for treating a nitrogen-containing waste liquid in which an intermittent aeration process that alternately repeats an air process and an anaerobic process by stopping aeration is performed and ammonia nitrogen in the waste liquid is converted to nitrogen gas and removed, the waste liquid in each cycle The supply to the intermittent aeration tank is started after a predetermined time determined by a decrease time of the dissolved oxygen concentration in the waste liquid from the start of the anaerobic process, and is completed by the completion of the anaerobic process. And

本発明によれば、窒素含有廃液を間欠曝気処理によって処理する際に、各サイクルにおける前記廃液の前記間欠曝気槽への供給を、前記嫌気工程開始から前記廃液中の溶存酸素濃度の低下時間によって定めた所定時間後に開始し、前記嫌気工程の終了時までには完了するようにしたことにより、供給された窒素含有廃液中の有機物が好気的分解されることを防止でき、嫌気工程において必要とされる水素供与体として有効に利用されるため、メチルアルコールなどの資源の添加が必要なくなるか、あるいはその添加量を減少させることができるので、窒素含有廃液の処理コストを低減できる。   According to the present invention, when the nitrogen-containing waste liquid is processed by the intermittent aeration process, the supply of the waste liquid to the intermittent aeration tank in each cycle is performed according to the decrease time of the dissolved oxygen concentration in the waste liquid from the start of the anaerobic process. By starting after a predetermined time and completing by the end of the anaerobic process, it is possible to prevent the organic matter in the supplied nitrogen-containing waste liquid from being aerobically decomposed and necessary in the anaerobic process Therefore, it is not necessary to add resources such as methyl alcohol, or the amount of addition can be reduced, so that the processing cost of the nitrogen-containing waste liquid can be reduced.

本発明の好ましい態様の一つにおいては、前記間欠曝気槽に溶存酸素計を設置し、嫌気工程開始後の処理液中の溶存酸素を測定して、溶存酸素濃度が所定値以下となった後に、前記廃液の供給を開始する。これによれば、嫌気工程開始後の処理液中の溶存酸素を測定して、溶存酸素濃度が所定値以下となった後に、前記廃液の供給を開始することにより、残存する酸素が充分に減少した時点で廃液を供給することが可能となるため、廃液中の有機物が好気的分解されることをより確実に防止できる。   In one of the preferable embodiments of the present invention, a dissolved oxygen meter is installed in the intermittent aeration tank, and the dissolved oxygen in the treatment liquid after the start of the anaerobic process is measured, and the dissolved oxygen concentration becomes a predetermined value or less. The supply of the waste liquid is started. According to this, the dissolved oxygen in the treatment liquid after the start of the anaerobic process is measured, and after the dissolved oxygen concentration becomes a predetermined value or less, the supply of the waste liquid is started to sufficiently reduce the remaining oxygen. Since it becomes possible to supply waste liquid at the time of having carried out, it can prevent more reliably that the organic substance in waste liquid is decomposed aerobically.

本発明の別の好ましい態様においては、好気工程で生成された亜硝酸又は硝酸の脱窒反応に必要とされる時間に基づいて、嫌気工程開始後から前記廃液の供給を開始するまでの限界遅延時間を設定しておき、前記間欠曝気槽に溶存酸素計を設置し、嫌気工程開始後の処理液中の溶存酸素を測定して、前記限界遅延時間内に溶存酸素濃度が所定値以下となった場合には、その時点で前記廃液の供給を開始し、前記限界遅延時間内に溶存酸素濃度が所定値以下とならなかった場合には、前記限界遅延時間が経過したときに前記廃液の供給を開始する。これによれば、嫌気工程開始後の処理液中の溶存酸素を測定して、前記限界遅延時間内に溶存酸素濃度が所定値以下となった場合には、その時点で前記廃液の供給を開始し、前記限界遅延時間内に溶存酸素濃度が所定値以下とならなかった場合には、前記限界遅延時間が経過したときに前記廃液の供給を開始することにより、嫌気工程において廃液中の有機物ができるだけ有効に利用されるようにすると共に、好気工程で生成された亜硝酸又は硝酸の脱窒反応が充分になされるようにすることができる。   In another preferred embodiment of the present invention, based on the time required for the denitrification reaction of nitrous acid or nitric acid produced in the aerobic process, the limit from the start of the anaerobic process to the start of the supply of the waste liquid Set a delay time, install a dissolved oxygen meter in the intermittent aeration tank, measure the dissolved oxygen in the treatment liquid after the start of the anaerobic process, and the dissolved oxygen concentration is below a predetermined value within the limit delay time In this case, the supply of the waste liquid is started at that time, and when the dissolved oxygen concentration does not become a predetermined value or less within the limit delay time, the waste liquid is discharged when the limit delay time has elapsed. Start supplying. According to this, when the dissolved oxygen in the treatment liquid after the start of the anaerobic process is measured and the dissolved oxygen concentration becomes a predetermined value or less within the limit delay time, the supply of the waste liquid is started at that time. In the case where the dissolved oxygen concentration does not become a predetermined value or less within the limit delay time, by starting the supply of the waste liquid when the limit delay time has elapsed, the organic matter in the waste liquid is removed in the anaerobic process. It can be used as effectively as possible, and a sufficient denitrification reaction of nitrous acid or nitric acid produced in the aerobic process can be performed.

本発明の更に別の好ましい態様においては、前記間欠曝気槽に溶存酸素計を設置し、所定サイクル数毎に、嫌気工程開始後の処理液中の溶存酸素を測定して、溶存酸素濃度が所定値以下となるのに必要な時間を設定し、嫌気工程開始後から上記で定めた所定時間が経過したときに前記廃液の供給を開始する。これによれば、所定サイクル数毎に、嫌気工程開始後の処理液中の溶存酸素を測定して、溶存酸素濃度が所定値以下となるのに必要な時間を設定し、嫌気工程開始後から上記で定めた所定時間が経過したときに前記廃液の供給を開始することにより、残存する酸素が充分に減少した時点で廃液を供給することが可能となるため、廃液中の有機物が好気的分解されることを効果的に防止できると共に、溶存酸素濃度の測定を各サイクル毎に行う必要がないので、操作を簡略化することができる。   In still another preferred embodiment of the present invention, a dissolved oxygen meter is installed in the intermittent aeration tank, and the dissolved oxygen concentration in the treatment liquid after the start of the anaerobic process is measured every predetermined number of cycles, so that the dissolved oxygen concentration is predetermined. The time required to be equal to or less than the value is set, and the supply of the waste liquid is started when the predetermined time defined above has elapsed since the start of the anaerobic process. According to this, for every predetermined number of cycles, the dissolved oxygen in the treatment liquid after the start of the anaerobic process is measured, the time required for the dissolved oxygen concentration to become a predetermined value or less is set, and after the start of the anaerobic process By starting the supply of the waste liquid when the predetermined time defined above has elapsed, it becomes possible to supply the waste liquid when the remaining oxygen is sufficiently reduced, so the organic matter in the waste liquid is aerobic. It is possible to effectively prevent the decomposition, and it is not necessary to measure the dissolved oxygen concentration every cycle, so that the operation can be simplified.

本発明によれば、窒素含有廃液を間欠曝気処理によって処理する際において、供給された窒素含有廃液中の有機物が好気的分解されることを防止でき、嫌気工程において必要とされる水素供与体として有効に利用できる。このため、メチルアルコールなどの資源の添加が必要なくなるか、あるいはその添加量を減少させることができ、窒素含有廃液の処理コストを低減できる。   According to the present invention, when a nitrogen-containing waste liquid is treated by intermittent aeration treatment, organic substances in the supplied nitrogen-containing waste liquid can be prevented from being aerobically decomposed, and a hydrogen donor required in an anaerobic process. Can be used effectively. For this reason, it is not necessary to add resources such as methyl alcohol, or the addition amount thereof can be reduced, and the processing cost of the nitrogen-containing waste liquid can be reduced.

以下、本発明について図面を用いて更に詳細に説明する。図1には、本発明の窒素含有廃液の処理に用いる処理装置の一実施形態の概略構成図が示されている。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows a schematic configuration diagram of an embodiment of a processing apparatus used for processing the nitrogen-containing waste liquid of the present invention.

本発明において処理対象となる窒素含有廃液とは、アンモニア性窒素を含む水であれば特に限定はなく、糞尿、生ゴミ、食品加工残滓等の有機性廃棄物をメタン発酵処理した際に排出されるメタン発酵処理廃液等が一例として挙げられる。   The nitrogen-containing waste liquid to be treated in the present invention is not particularly limited as long as it contains water containing ammoniacal nitrogen, and is discharged when methane fermentation treatment of organic waste such as manure, raw garbage, food processing residue, etc. An example is methane fermentation treatment waste liquid.

この処理装置は、窒素含有廃液を間欠曝気法にて硝化・脱窒処理する間欠曝気槽20を備えている。   This processing apparatus includes an intermittent aeration tank 20 that nitrifies and denitrifies a nitrogen-containing waste liquid by an intermittent aeration method.

間欠曝気槽20の底部には、空気噴出装置21が配置されており、外部に設置したブロア22を稼動させることで、間欠曝気槽20内に酸素を含む気体(通常空気)を供給し、槽内の廃液を曝気できるように構成されている。   An air ejection device 21 is disposed at the bottom of the intermittent aeration tank 20, and a gas (normal air) containing oxygen is supplied into the intermittent aeration tank 20 by operating a blower 22 installed outside. It is configured so that the waste liquid inside can be aerated.

間欠曝気槽20の上部もしくは側壁には、モータ23と、攪拌軸24と、攪拌羽根25とからなる攪拌機が設けられており、攪拌羽根25によって間欠曝気槽20内の廃液を攪拌できるように構成されている。   A stirrer including a motor 23, a stirring shaft 24, and a stirring blade 25 is provided on the upper part or the side wall of the intermittent aeration tank 20, and the waste liquid in the intermittent aeration tank 20 can be stirred by the stirring blade 25. Has been.

間欠曝気槽20の上部には、溶存酸素計26及び温度計27が配置されており、槽内の処理液の溶存酸素及び温度を経時的に測定できるように構成されている。   A dissolved oxygen meter 26 and a thermometer 27 are arranged on the upper part of the intermittent aeration tank 20 so that the dissolved oxygen and temperature of the treatment liquid in the tank can be measured over time.

間欠曝気槽20の下部又は側部には、温度調節装置28が設けられており、温度計27での測定値に基づいて温度調節装置28を作動させて、間欠曝気槽3内の温度を所定温度に調節できるように構成されている。   A temperature control device 28 is provided at the lower part or the side part of the intermittent aeration tank 20, and the temperature control device 28 is operated based on the measured value by the thermometer 27 to set the temperature in the intermittent aeration tank 3 to a predetermined value. It is configured to be adjustable to temperature.

間欠曝気槽20は、廃液貯留槽10から伸びる配管L1と接続している。この配管L1には、途中に供給ポンプP1が配置されている。   The intermittent aeration tank 20 is connected to a pipe L <b> 1 extending from the waste liquid storage tank 10. A supply pump P1 is disposed in the middle of the pipe L1.

上記廃液貯留槽10としては、特に限定はなく、貯留タンクのようなものでもよく、有機性廃棄物をメタン菌等でメタン発酵処理するメタン発酵処理槽等であってもよい。   The waste liquid storage tank 10 is not particularly limited, and may be a storage tank, or a methane fermentation treatment tank or the like for treating organic waste with methane bacteria or the like.

また、間欠曝気槽20から伸びる配管L2は、図示しない次工程に接続している。   Further, the pipe L2 extending from the intermittent aeration tank 20 is connected to a next process (not shown).

次に、この廃液処理装置を用いた、本発明の窒素含有廃液の処理方法の第1の実施形態について説明する。   Next, a first embodiment of the method for treating nitrogen-containing waste liquid of the present invention using this waste liquid treatment apparatus will be described.

まず、供給ポンプP1を稼動させて、廃液貯留槽10から間欠曝気槽20に窒素含有廃液を供給する。   First, the supply pump P <b> 1 is operated to supply the nitrogen-containing waste liquid from the waste liquid storage tank 10 to the intermittent aeration tank 20.

間欠曝気槽20では、まず、ブロア22を作動させて、空気噴出装置21のノズルから間欠曝気槽20内の廃液に空気を供給して曝気処理する(好気工程)。この状態では、硝化菌(アンモニア酸化菌、亜硝酸酸化菌)の作用によって、該廃液中のアンモニア性窒素が、亜硝酸性窒素や硝酸性窒素へと酸化(硝化反応)される。   In the intermittent aeration tank 20, first, the blower 22 is operated and air is supplied from the nozzle of the air ejection device 21 to the waste liquid in the intermittent aeration tank 20 to perform an aeration process (aerobic process). In this state, ammonia nitrogen in the waste liquid is oxidized into nitrite nitrogen or nitrate nitrogen (nitrification reaction) by the action of nitrifying bacteria (ammonia oxidizing bacteria, nitrite oxidizing bacteria).

間欠曝気槽20内の廃液の溶存酸素濃度は、0.5〜3mg/Lとなるように空気曝気量を調整することが好ましく、1.5〜2.5mg/Lとなるように空気曝気量を調整することがより好ましい。上記廃液の溶存酸素濃度が上記範囲内であれば、硝化菌の活性を向上できる。   It is preferable to adjust the air aeration amount so that the dissolved oxygen concentration of the waste liquid in the intermittent aeration tank 20 is 0.5 to 3 mg / L, and the air aeration amount is 1.5 to 2.5 mg / L. It is more preferable to adjust. If the dissolved oxygen concentration of the waste liquid is within the above range, the activity of nitrifying bacteria can be improved.

また、硝化反応に関係する微生物は、アンモニア酸化菌と亜硝酸酸化菌であるが、アンモニア酸化菌と亜硝酸酸化菌の増殖速度には違いがあり、15℃程度以上の温度条件においては、亜硝酸酸化菌よりアンモニア酸化菌の増殖速度の方が速く、高温条件ほどその差は大きくなることが知られている。   Microorganisms related to the nitrification reaction are ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, but there are differences in the growth rates of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. It is known that the growth rate of ammonia-oxidizing bacteria is faster than that of nitrate-oxidizing bacteria, and that the difference increases with increasing temperature.

そして、亜硝酸型の間欠曝気処理は、硝酸型の間欠曝気処理に比べて好気工程における空気曝気量や、嫌気工程における有機物の消費量を低減できるので、処理コストを低減できることが知られている。   And, it is known that the nitrous acid type intermittent aeration treatment can reduce the processing cost because it can reduce the air aeration amount in the aerobic process and the consumption amount of organic matter in the anaerobic process compared with the nitric acid type intermittent aeration treatment. Yes.

したがって、好気工程時における間欠曝気槽20内の廃液の温度は、25〜35℃が好ましい。好気工程時において、上記廃液の温度を上記範囲内とすることで、アンモニア酸化菌の活性を損なうことなく、亜硝酸酸化菌のみを選択的に減少できるので、間欠曝気処理を亜硝酸型で運転することができる。   Therefore, the temperature of the waste liquid in the intermittent aeration tank 20 during the aerobic process is preferably 25 to 35 ° C. In the aerobic process, by setting the temperature of the waste liquid within the above range, only the nitrite oxidizing bacteria can be selectively reduced without impairing the activity of the ammonia oxidizing bacteria. You can drive.

また、好気工程時間、すなわち、空気曝気時間は、アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間の1〜1.5倍とすることが好ましい。空気曝気を、アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間未満(1倍未満)とした場合、アンモニア酸化菌は増殖するより、死滅および系外に流出する量が勝ってしまうため、アンモニア酸化菌は徐々に減少し、アンモニアの酸化が進行しなくなるおそれがある。また、空気曝気の時間が、アンモニア性窒素を前記亜硝酸性窒素に転換させる反応が終了する時間の1.5倍を超えると、亜硝酸酸化菌も増殖できる条件となり、亜硝酸から硝酸への反応が進むので、亜硝酸型の間欠曝気処理で運転することが困難となる。   Further, the aerobic process time, that is, the air aeration time is preferably 1 to 1.5 times as long as the reaction time for converting ammoniacal nitrogen to nitrite nitrogen is completed. When the air aeration is less than the time (less than 1 time) when the reaction for converting ammonia nitrogen to nitrite nitrogen is completed (less than 1 time), the amount of ammonia oxidizing bacteria that die and flows out of the system is better than the growth. Therefore, ammonia oxidizing bacteria may gradually decrease, and ammonia oxidation may not proceed. In addition, when the time of air aeration exceeds 1.5 times the time for completing the reaction for converting ammonia nitrogen to nitrite nitrogen, it becomes a condition that nitrite-oxidizing bacteria can also grow, and nitrite is converted to nitric acid. Since the reaction proceeds, it becomes difficult to operate with a nitrous acid type intermittent aeration treatment.

そして、所定時間経過後、ブロア22を停止して、空気曝気を停止する(嫌気工程)。   And after predetermined time progress, the blower 22 is stopped and air aeration is stopped (anaerobic process).

ここで、上述したように、ブロア22を停止して、好気工程から嫌気工程へ切替えた直後の間欠曝気槽20内の窒素含有廃液には、酸素が残存している。   Here, as described above, oxygen remains in the nitrogen-containing waste liquid in the intermittent aeration tank 20 immediately after the blower 22 is stopped and switched from the aerobic process to the anaerobic process.

本発明においては、ブロア22を停止してから、間欠曝気槽20内の廃液の溶存酸素濃度の低下時間によって定めた所定時間後に、供給ポンプP1を作動させて、間欠曝気槽20内に廃液貯留槽10から窒素含有廃液を一定量供給し、モータ23を稼動させて攪拌羽根25により間欠曝気槽20内の廃液を攪拌する。   In the present invention, after the blower 22 is stopped, the supply pump P1 is operated after a predetermined time determined by the decrease time of the dissolved oxygen concentration of the waste liquid in the intermittent aeration tank 20, and the waste liquid is stored in the intermittent aeration tank 20. A certain amount of nitrogen-containing waste liquid is supplied from the tank 10, the motor 23 is operated, and the waste liquid in the intermittent aeration tank 20 is stirred by the stirring blade 25.

具体的には、この実施形態においては、間欠曝気槽20内の廃液の溶存酸素濃度を、溶存酸素計26により測定し、該廃液の溶存酸素が所定値以下、好ましくは0mg/Lとなった後に、供給ポンプP1を作動させて、廃液貯留槽10から間欠曝気槽20へ窒素含有廃液を供給する。   Specifically, in this embodiment, the dissolved oxygen concentration of the waste liquid in the intermittent aeration tank 20 is measured by the dissolved oxygen meter 26, and the dissolved oxygen of the waste liquid is not more than a predetermined value, preferably 0 mg / L. Later, the supply pump P <b> 1 is operated to supply the nitrogen-containing waste liquid from the waste liquid storage tank 10 to the intermittent aeration tank 20.

このように、間欠曝気槽20内の廃液の溶存酸素濃度が所定値を下回った時点で、間欠曝気槽20へ窒素含有廃液を供給することで、窒素含有廃液中の有機物が好気状態に曝されにくくなって、好気的分解されにくくなり、窒素含有廃棄物中の有機物を脱窒反応において有効利用できる。この結果、メチルアルコールなどの資源の添加が必要なくなるか、あるいはその添加量を減少させることができるので、窒素含有廃液の処理コストを低減できる。   In this way, when the dissolved oxygen concentration of the waste liquid in the intermittent aeration tank 20 falls below a predetermined value, the nitrogen-containing waste liquid is supplied to the intermittent aeration tank 20 so that the organic matter in the nitrogen-containing waste liquid is exposed to an aerobic state. It becomes difficult to be aerobically decomposed and the organic matter in the nitrogen-containing waste can be effectively used in the denitrification reaction. As a result, it is not necessary to add resources such as methyl alcohol, or the amount added can be reduced, so that the processing cost of the nitrogen-containing waste liquid can be reduced.

嫌気工程における廃液貯留槽10からの窒素含有廃液の供給は、供給開始の初期の段階で、そのサイクルで必要とする窒素含有廃液の供給が終了するように供給してもよく、嫌気工程中連続的に供給してもよい。脱窒反応で必要な有機物を嫌気工程の初期の段階で投入することで、そのサイクルにおいて、有機物が不足することがなく、脱窒反応を安定して行うことができる。   The supply of the nitrogen-containing waste liquid from the waste liquid storage tank 10 in the anaerobic process may be performed at the initial stage of the supply start so that the supply of the nitrogen-containing waste liquid required in the cycle is completed. May be supplied. By introducing the organic matter necessary for the denitrification reaction at the initial stage of the anaerobic process, the denitrification reaction can be performed stably without running out of organic matter in the cycle.

好気工程時間と嫌気工程時間の合計は、タイマー等によって1〜4時間にサイクル時間を設定することが好ましい。この場合、好気工程時間は、1サイクルで供給された窒素含有廃液中のアンモニア態窒素が全て亜硝酸又は硝酸態窒素に変換されるのに必要な時間を考慮して定められ、嫌気工程時間は、好気工程を経た廃液中に存在する亜硝酸及び硝酸態窒素が全て脱窒されるのに必要な時間を考慮して定められる。   The total of the aerobic process time and the anaerobic process time is preferably set to 1 to 4 hours by a timer or the like. In this case, the aerobic process time is determined in consideration of the time required for all ammonia nitrogen in the nitrogen-containing waste liquid supplied in one cycle to be converted into nitrous acid or nitrate nitrogen, and the anaerobic process time. Is determined in consideration of the time required for denitrification of all nitrous acid and nitrate nitrogen present in the waste liquid that has undergone the aerobic process.

次に、図1の処理装置を用いた、本発明の窒素含有廃液の処理方法の第2の実施形態について説明する。   Next, a second embodiment of the nitrogen-containing waste liquid treatment method of the present invention using the treatment apparatus of FIG. 1 will be described.

基本的には、上記第1の実施形態と同様にして窒素含有廃液の処理が行われる。   Basically, the treatment of the nitrogen-containing waste liquid is performed in the same manner as in the first embodiment.

この実施形態においては、ブロア22を停止(嫌気工程)して、間欠曝気槽20内を好気工程から嫌気工程へ切替えた後の廃液貯留槽10からの窒素含有廃液の供給を以下のようにすることが上記第1の実施形態との相違点である。   In this embodiment, the supply of nitrogen-containing waste liquid from the waste liquid storage tank 10 after the blower 22 is stopped (anaerobic process) and the inside of the intermittent aeration tank 20 is switched from the aerobic process to the anaerobic process is as follows. This is a difference from the first embodiment.

すなわち、この実施形態では、好気工程を経た廃液中に存在する亜硝酸及び硝酸態窒素を嫌気工程中に全て脱窒するのに必要な時間を考慮して、嫌気工程開始後から窒素含有廃液の供給を開始するまでの限界遅延時間を設定する。そして、嫌気工程開始から、間欠曝気槽20内の廃液の溶存酸素濃度を溶存酸素計26で測定し、該廃液の溶存酸素が限界遅延時間内に溶存酸素濃度が所定値以下、好ましくは0mg/Lとなった場合、その時点で供給ポンプP1を作動させて廃液貯留槽10からの窒素含有廃液の供給を開始する。一方、限界遅延時間内に溶存酸素濃度が上記所定値以下とならなかった場合には、限界遅延時間が経過した時点で供給ポンプP1を作動させて廃液貯留槽10からの窒素含有廃液の供給を開始する。   That is, in this embodiment, considering the time required to denitrify all nitrous acid and nitrate nitrogen present in the waste liquid that has undergone the aerobic process, the nitrogen-containing waste liquid after the start of the anaerobic process. Set the limit delay time until the start of supply. Then, from the start of the anaerobic process, the dissolved oxygen concentration of the waste liquid in the intermittent aeration tank 20 is measured by the dissolved oxygen meter 26, and the dissolved oxygen concentration of the waste liquid is within a predetermined delay time, and the dissolved oxygen concentration is not more than a predetermined value, preferably 0 mg / When it becomes L, the supply pump P1 is operated at that time and supply of the nitrogen-containing waste liquid from the waste liquid storage tank 10 is started. On the other hand, if the dissolved oxygen concentration does not fall below the predetermined value within the limit delay time, the supply pump P1 is operated when the limit delay time has elapsed to supply the nitrogen-containing waste liquid from the waste liquid storage tank 10. Start.

ここで、限界遅延時間は、例えば、下式(1)に示すようにして設定することが好ましい。すなわち、予め、通常負荷運転時に脱窒に要する時間(脱窒時間)を測定しておき、この脱窒時間を嫌気工程で設定した時間内に確保できるようにして設定する。   Here, the limit delay time is preferably set as shown in the following formula (1), for example. That is, the time required for denitrification during normal load operation (denitrification time) is measured in advance, and the denitrification time is set so as to be secured within the time set in the anaerobic process.

嫌気工程に要する時間−脱窒時間=限界遅延時間・・・(1)
この態様によれば、上記限界遅延時間内に、間欠曝気槽20内の廃液の溶存酸素濃度が所定値以下となった場合には、その時点で廃液貯留槽10からの窒素含有廃液の供給を開始することで、間欠曝気槽20へ供給した窒素含有廃液中の有機物が好気状態に曝されにくくなるので、好気的分解されにくく、有機物を脱窒反応に有効利用できる。
Time required for anaerobic process-denitrification time = limit delay time (1)
According to this aspect, when the dissolved oxygen concentration of the waste liquid in the intermittent aeration tank 20 becomes a predetermined value or less within the limit delay time, the supply of the nitrogen-containing waste liquid from the waste liquid storage tank 10 is performed at that time. By starting, the organic matter in the nitrogen-containing waste liquid supplied to the intermittent aeration tank 20 becomes difficult to be exposed to the aerobic state, so that it is difficult to be aerobically decomposed and the organic matter can be effectively used for the denitrification reaction.

また、間欠曝気槽20内の活性汚泥濃度が低い場合や、硝化菌等の好気性微生物の活性が低下している場合は、溶存酸素の低下速度が遅く、嫌気工程時間内に、溶存酸素濃度が所定値以下にならない場合がある。このため、限界遅延時間内に、溶存酸素濃度が所定値以下とならなかった場合には、限界遅延時間が経過した時点で廃液貯留槽10からの窒素含有廃液の供給を開始することで、活性の低下していた好気性微生物が、廃液中の有機物を栄養源とすることでその活性が上昇する。その結果、溶存酸素濃度の低下が促進されるので、嫌気工程時に供給する窒素含有廃液中の有機物の好気的分解を最小限に抑制でき、脱窒反応において有機物を有効的に利用できる。   Further, when the activated sludge concentration in the intermittent aeration tank 20 is low or the activity of aerobic microorganisms such as nitrifying bacteria is reduced, the rate of decrease of dissolved oxygen is slow, and the dissolved oxygen concentration is within the anaerobic process time. May not fall below a predetermined value. For this reason, when the dissolved oxygen concentration does not become a predetermined value or less within the limit delay time, the supply of the nitrogen-containing waste liquid from the waste liquid storage tank 10 is started when the limit delay time has elapsed. The activity of the aerobic microorganisms having decreased is increased by using the organic matter in the waste liquid as a nutrient source. As a result, since the decrease in dissolved oxygen concentration is promoted, the aerobic decomposition of the organic substance in the nitrogen-containing waste liquid supplied during the anaerobic process can be suppressed to the minimum, and the organic substance can be effectively used in the denitrification reaction.

次に、図1の処理装置を用いた、本発明の窒素含有廃液の処理方法の第3の実施形態について説明する。   Next, a third embodiment of the method for treating a nitrogen-containing waste liquid of the present invention using the treatment apparatus of FIG. 1 will be described.

基本的には、上記第1の実施形態と同様にして窒素含有廃液の処理が行われる。   Basically, the treatment of the nitrogen-containing waste liquid is performed in the same manner as in the first embodiment.

この実施形態においては、ブロア22を停止(嫌気工程)して、間欠曝気槽20内を好気工程から嫌気工程へ切替えた後の廃液貯留槽10からの窒素含有廃液の供給を、所定サイクル数毎に、間欠曝気槽20内の窒素含有廃液の溶存酸素濃度を測定して該窒素含有廃液の溶存酸素が所定値以下となるのに必要な時間を設定し、嫌気工程開始後から上記で定めた所定時間が経過したときに、廃液貯留槽10からの窒素含有廃液の供給を開始することが、上記第1の実施形態との相違点である。   In this embodiment, the supply of nitrogen-containing waste liquid from the waste liquid storage tank 10 after the blower 22 is stopped (anaerobic process) and the inside of the intermittent aeration tank 20 is switched from the aerobic process to the anaerobic process is a predetermined number of cycles. Every time, the dissolved oxygen concentration of the nitrogen-containing waste liquid in the intermittent aeration tank 20 is measured to set the time required for the dissolved oxygen of the nitrogen-containing waste liquid to be a predetermined value or less, and determined above after the start of the anaerobic process. The difference from the first embodiment is that the supply of the nitrogen-containing waste liquid from the waste liquid storage tank 10 is started when the predetermined time has elapsed.

例えば、窒素含有廃液の水質が安定しており、性状等が特に変動しにくい場合においては、嫌気工程開始後から、上記で定めた所定時間が経過した時点で、廃液貯留槽10からの窒素含有廃液の供給を開始することにより、残存する酸素が充分に減少した時点で廃液貯留槽10から窒素含有廃液を供給することが可能となるため、廃液中の有機物が好気的分解されることを効果的に防止できると共に、溶存酸素濃度の測定を各サイクル毎に行う必要がないので、操作を簡略化できる。   For example, in the case where the water quality of the nitrogen-containing waste liquid is stable and the properties and the like are not particularly likely to fluctuate, the nitrogen content from the waste liquid storage tank 10 is reached when the predetermined time has elapsed since the start of the anaerobic process. By starting the supply of the waste liquid, it becomes possible to supply the nitrogen-containing waste liquid from the waste liquid storage tank 10 when the remaining oxygen is sufficiently reduced, so that the organic matter in the waste liquid is aerobically decomposed. It can be effectively prevented, and the operation can be simplified because it is not necessary to measure the dissolved oxygen concentration every cycle.

本発明の窒素含有廃液の処理に用いる処理装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the processing apparatus used for a process of the nitrogen-containing waste liquid of this invention.

符号の説明Explanation of symbols

10:廃液貯留槽
20:間欠曝気槽
21:空気噴出装置
22:ブロア
23:モータ
24:攪拌軸
25:攪拌羽根
26:溶存酸素計
27:温度計
28:温度調節装置
P1:供給ポンプ
10: Waste liquid storage tank 20: Intermittent aeration tank 21: Air ejection device 22: Blower 23: Motor 24: Stirrer shaft 25: Stirrer blade 26: Dissolved oxygen meter 27: Thermometer 28: Temperature controller P1: Supply pump

Claims (4)

アンモニア性窒素を含有する廃液を間欠曝気槽に供給し、該間欠曝気槽内で該廃液に対して空気曝気による好気工程と、曝気停止による嫌気工程とを交互に繰り返す間欠曝気処理を行い、前記廃液中のアンモニア性窒素を窒素ガスに転換して除去する窒素含有廃液の処理方法において、
各サイクルにおける前記廃液の前記間欠曝気槽への供給を、前記嫌気工程開始から前記廃液中の溶存酸素濃度の低下時間によって定めた所定時間後に開始し、前記嫌気工程の修了時までには完了するようにしたことを特徴とする窒素含有廃液の処理方法。
Supplying a waste liquid containing ammonia nitrogen to the intermittent aeration tank, and performing an intermittent aeration process that alternately repeats an aerobic process by air aeration and an anaerobic process by aeration stop for the waste liquid in the intermittent aeration tank, In the method for treating a nitrogen-containing waste liquid in which ammonia nitrogen in the waste liquid is converted to nitrogen gas and removed,
The supply of the waste liquid to the intermittent aeration tank in each cycle is started after a predetermined time determined by the decrease time of the dissolved oxygen concentration in the waste liquid from the start of the anaerobic process, and is completed by the end of the anaerobic process. A method for treating a nitrogen-containing waste liquid, which is characterized by the above.
前記間欠曝気槽に溶存酸素計を設置し、嫌気工程開始後の処理液中の溶存酸素を測定して、溶存酸素濃度が所定値以下となった後に、前記廃液の供給を開始する請求項1記載の窒素含有廃液の処理方法。   The dissolved oxygen meter is installed in the intermittent aeration tank, the dissolved oxygen in the treatment liquid after the start of the anaerobic process is measured, and the supply of the waste liquid is started after the dissolved oxygen concentration becomes a predetermined value or less. The processing method of the nitrogen-containing waste liquid as described. 好気工程で生成された亜硝酸又は硝酸の脱窒反応に必要とされる時間に基づいて、嫌気工程開始後から前記廃液の供給を開始するまでの限界遅延時間を設定しておき、前記間欠曝気槽に溶存酸素計を設置し、嫌気工程開始後の処理液中の溶存酸素を測定して、前記限界遅延時間内に溶存酸素濃度が所定値以下となった場合には、その時点で前記廃液の供給を開始し、前記限界遅延時間内に溶存酸素濃度が所定値以下とならなかった場合には、前記限界遅延時間が経過したときに前記廃液の供給を開始する請求項1記載の窒素含有廃液の処理方法。   Based on the time required for the denitrification reaction of nitrous acid or nitric acid generated in the aerobic process, a limit delay time from the start of the anaerobic process to the start of the supply of the waste liquid is set, and the intermittent Install a dissolved oxygen meter in the aeration tank, measure the dissolved oxygen in the treatment liquid after the start of the anaerobic process, and if the dissolved oxygen concentration falls below the predetermined value within the limit delay time, 2. The nitrogen according to claim 1, wherein the supply of the waste liquid is started, and when the dissolved oxygen concentration does not become a predetermined value or less within the limit delay time, the supply of the waste liquid is started when the limit delay time has elapsed. Treatment method for waste liquid. 前記間欠曝気槽に溶存酸素計を設置し、所定サイクル数毎に、嫌気工程開始後の処理液中の溶存酸素を測定して、溶存酸素濃度が所定値以下となるのに必要な時間を設定し、嫌気工程開始後から上記で定めた所定時間が経過したときに前記廃液の供給を開始する請求項1記載の窒素含有廃液の処理方法。   Install the dissolved oxygen meter in the intermittent aeration tank, measure the dissolved oxygen in the treatment liquid after the start of the anaerobic process every predetermined number of cycles, and set the time required for the dissolved oxygen concentration to be less than the predetermined value The method for treating a nitrogen-containing waste liquid according to claim 1, wherein the supply of the waste liquid is started when the predetermined time defined above has elapsed after the start of the anaerobic process.
JP2006353838A 2006-12-28 2006-12-28 Nitrogen-containing waste liquid treatment method Active JP4765931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353838A JP4765931B2 (en) 2006-12-28 2006-12-28 Nitrogen-containing waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353838A JP4765931B2 (en) 2006-12-28 2006-12-28 Nitrogen-containing waste liquid treatment method

Publications (2)

Publication Number Publication Date
JP2008161798A true JP2008161798A (en) 2008-07-17
JP4765931B2 JP4765931B2 (en) 2011-09-07

Family

ID=39691975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353838A Active JP4765931B2 (en) 2006-12-28 2006-12-28 Nitrogen-containing waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP4765931B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044472A (en) * 2018-09-14 2020-03-26 日立造船株式会社 Solution treatment system and solution treatment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342453A (en) * 1976-09-28 1978-04-17 Agency Of Ind Science & Technol Intermittent type active sludge process and device
JPS60244393A (en) * 1984-05-21 1985-12-04 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPH04104896A (en) * 1990-08-24 1992-04-07 Unitika Ltd Method for controlling drainage
JPH0550092A (en) * 1991-08-16 1993-03-02 Kubota Corp Treatment of sewage
JPH07116684A (en) * 1993-10-26 1995-05-09 Fuji Electric Co Ltd Controlling method for intermittent aeration type activated sludge method
JPH09187794A (en) * 1996-01-10 1997-07-22 Ataka Kogyo Kk Method for treatment of waste water and its apparatus
JP2001017992A (en) * 1999-07-09 2001-01-23 Yamada Kogyo Kk Biological nitrification and denitrification method for night soil, or the like
JP2005144306A (en) * 2003-11-14 2005-06-09 Fuji Electric Holdings Co Ltd Method for treatment by methane fermentation
JP2005218939A (en) * 2004-02-04 2005-08-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing waste liquid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342453A (en) * 1976-09-28 1978-04-17 Agency Of Ind Science & Technol Intermittent type active sludge process and device
JPS60244393A (en) * 1984-05-21 1985-12-04 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPH04104896A (en) * 1990-08-24 1992-04-07 Unitika Ltd Method for controlling drainage
JPH0550092A (en) * 1991-08-16 1993-03-02 Kubota Corp Treatment of sewage
JPH07116684A (en) * 1993-10-26 1995-05-09 Fuji Electric Co Ltd Controlling method for intermittent aeration type activated sludge method
JPH09187794A (en) * 1996-01-10 1997-07-22 Ataka Kogyo Kk Method for treatment of waste water and its apparatus
JP2001017992A (en) * 1999-07-09 2001-01-23 Yamada Kogyo Kk Biological nitrification and denitrification method for night soil, or the like
JP2005144306A (en) * 2003-11-14 2005-06-09 Fuji Electric Holdings Co Ltd Method for treatment by methane fermentation
JP2005218939A (en) * 2004-02-04 2005-08-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing waste liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044472A (en) * 2018-09-14 2020-03-26 日立造船株式会社 Solution treatment system and solution treatment method
JP7048462B2 (en) 2018-09-14 2022-04-05 日立造船株式会社 Solution treatment system and solution treatment method

Also Published As

Publication number Publication date
JP4765931B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
AU2010321102B2 (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
JP6448382B2 (en) Nitrogen-containing wastewater denitrification method and denitrification apparatus
US20130319938A1 (en) Method for Treating Water Within a Sequencing Batch Reactor, Including an In-Line Measurement of the Nitrite Concentration
CN106865773A (en) Add the apparatus and method that azanol realizes part short distance nitration Anammox
JP2016512169A5 (en)
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
US10556816B2 (en) Wastewater treatment apparatus
WO2011134011A1 (en) Production of nitrite
JP3772882B2 (en) Methane fermentation treatment method
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
JP4622958B2 (en) Nitrogen-containing waste liquid treatment method
JP5148642B2 (en) Wastewater nitrogen treatment method and equipment
JP4765931B2 (en) Nitrogen-containing waste liquid treatment method
JP2004290921A (en) Methane fermentation method and system
JP6306298B2 (en) Sewage treatment plant operation method, operation control device, and sewage treatment plant
JP4716265B2 (en) Organic waste liquid treatment method and organic waste liquid treatment apparatus
TWI564253B (en) Wastewater treatment system
JP4904738B2 (en) Nitrogen-containing waste liquid treatment method
JP4835580B2 (en) Nitrogen-containing waste liquid treatment method
JP2004275820A (en) Wastewater treatment apparatus
JP4423982B2 (en) Operation method of methane fermentation treatment equipment
KR20010086936A (en) High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus
CN111320269B (en) Method for denitrifying ammonia-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Ref document number: 4765931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250