JP2008125290A - Isolated operation method and system of low voltage system - Google Patents

Isolated operation method and system of low voltage system Download PDF

Info

Publication number
JP2008125290A
JP2008125290A JP2006308308A JP2006308308A JP2008125290A JP 2008125290 A JP2008125290 A JP 2008125290A JP 2006308308 A JP2006308308 A JP 2006308308A JP 2006308308 A JP2006308308 A JP 2006308308A JP 2008125290 A JP2008125290 A JP 2008125290A
Authority
JP
Japan
Prior art keywords
low
load
voltage system
power
distributed power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006308308A
Other languages
Japanese (ja)
Other versions
JP4944578B2 (en
Inventor
Masahiro Asari
真宏 浅利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006308308A priority Critical patent/JP4944578B2/en
Publication of JP2008125290A publication Critical patent/JP2008125290A/en
Application granted granted Critical
Publication of JP4944578B2 publication Critical patent/JP4944578B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Abstract

<P>PROBLEM TO BE SOLVED: To utilize the capacity of a distributed power supply in the consumer of a low voltage system effectively when a high voltage system is faulty. <P>SOLUTION: A low voltage system 3 which is in system interconnection with distributed power supplies 1A and 1B and supplies power to a plurality of consumers 2A, 2B and 2C including at least one consumer 2A having a distributed power supply 1A, is isolated from its upper system, i.e. a high voltage system 4, when it is faulty, and the voltage of the low voltage system 3 is maintained by one distributed power supply which is in system interconnection with the low voltage system 3. Excess and deficiency of power are calculated for every consumer 2A, 2B, 2C, and surplus power is supplied from a consumer having excess power to a consumer for which power is insufficient. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、低圧系統の自立運転方法及び低圧系統の自立運転システムに関する。更に詳しくは、本発明は複数の需要家に電力を供給し且つ少なくとも1台の分散型電源が系統連系されている低圧系統をその上位系統である高圧系統から切り離した場合の低圧系統の自立運転方法及び低圧系統の自立運転システムに関する。   The present invention relates to a low-pressure system independent operation method and a low-voltage system independent operation system. More specifically, the present invention provides a self-supporting low-voltage system when supplying power to a plurality of consumers and disconnecting a low-voltage system in which at least one distributed power source is connected to the system from a high-voltage system that is a higher system. The present invention relates to an operation method and a self-sustaining operation system of a low-voltage system.

近年、環境意識の高まりと共に太陽光発電等の分散型電源の普及が拡大している。これら分散型電源は、一般的には電力会社の配電系統に系統連系され、晴天時の余剰電力については電力会社に売電し、夜間等出力が期待できない時には、電力会社から電気を買うことが可能となっている。   In recent years, the spread of distributed power sources such as photovoltaic power generation has been increasing with increasing environmental awareness. These distributed power sources are generally grid-connected to the power company's distribution system, and surplus power in sunny weather is sold to the power company. When output cannot be expected such as at night, electricity is purchased from the power company. Is possible.

しかしながら、商用配電系統に連系されている分散型電源は、商用配電系統の停電時には、単独運転防止の観点から発電を停止する必要がある。そして、需要家構内で電気を使う場合には、自立運転回路に対象機器(負荷)を手動で接続して使用する必要がある。この場合、負荷に対して分散型電源から電力が供給されることになるが、負荷の使用電力量が分散型電源の発電量を上回るときには機器保護のため分散型電源が停止し、供給が不可能となる。逆に、分散型電源の発電量が負荷の使用電力量を上回る場合には、負荷電力量に応じて分散型電源の出力を抑制するため、分散型電源の発電能力を有効に利用することができない。また、分散型電源を持たない需要家は、低圧系統が正常でも停電が続くことになる。さらに、系統復電後には再度機器を分散型電源の自立運転回路から常時回路に接続変更する必要がある。
日本電気協会分散型電源系統連系専門部会,「分散型電源系統連系技術指針 JEAG9701-2001」, 日本電気協会,2002年1月 エネルギーフォーラム編,「解説 電力系統連系技術要件ガイドライン2003」,エネルギーフォーラム社,2003年10月
However, a distributed power source connected to a commercial power distribution system needs to stop power generation from the standpoint of preventing isolated operation when a power failure occurs in the commercial power distribution system. When using electricity on the customer premises, it is necessary to manually connect the target device (load) to the self-sustaining operation circuit. In this case, power is supplied to the load from the distributed power source. However, when the power consumption of the load exceeds the power generation amount of the distributed power source, the distributed power source is stopped to protect the equipment, and supply is not possible. It becomes possible. Conversely, when the amount of power generated by the distributed power source exceeds the amount of power used by the load, it is possible to effectively use the power generation capacity of the distributed power source to suppress the output of the distributed power source according to the amount of load power. Can not. Also, customers who do not have a distributed power source will continue to be out of power even if the low-voltage system is normal. Furthermore, it is necessary to change the connection from the self-sustained operation circuit of the distributed power source to the constant circuit again after the system power is restored.
NEC Electronics Distributed Power System Interconnection Expert Group, “Distributed Power System Interconnection Technology Guidelines JEAG9701-2001”, NEC Corporation, January 2002 Energy Forum, “Guidelines for Power System Integration Technical Requirements 2003”, Energy Forum, October 2003

本発明は、高圧系統の異常時に、需要家が有する分散型電源の能力を有効に活用することが可能な低圧系統の自立運転方法及び低圧系統の自立運転システムを提供することを目的とする。また、本発明は、需要家の自立運転に手動で回路の接続変更を行なう必要がない低圧系統の自立運転方法及び低圧系統の自立運転システムを提供することを目的とする。   An object of the present invention is to provide a low-voltage system self-sustained operation method and a low-voltage system self-sustained operation system that can effectively utilize the capability of a distributed power source possessed by a customer when a high-voltage system is abnormal. Another object of the present invention is to provide a self-sustaining operation method for a low-voltage system and a self-sustaining operation system for a low-voltage system that do not require manual connection change for a customer's self-sustained operation.

かかる目的を達成するために請求項1記載の低圧系統の自立運転方法は、分散型電源を有する需要家を少なくとも1軒含む複数の需要家に電力を供給すると共に分散型電源が系統連系されている低圧系統を、その上位系統である高圧系統の異常時に当該高圧系統から分離し、低圧系統に系統連系されている分散型電源の1台によって低圧系統の電圧を維持し、各需要家毎に電力の過不足を算出し、電力が余剰する需要家の余剰電力を電力が不足する需要家に供給するものである。   In order to achieve this object, the low-voltage system self-sustained operation method according to claim 1 supplies power to a plurality of consumers including at least one customer having a distributed power source, and the distributed power source is connected to the grid. The low-voltage system is separated from the high-voltage system when it is abnormal, and the voltage of the low-voltage system is maintained by one of the distributed power sources connected to the low-voltage system. The excess or deficiency of power is calculated every time, and the surplus power of the consumer with surplus power is supplied to the consumer with shortage of power.

したがって、上位系統である高圧系統に停電等の異常が発生すると、高圧系統から低圧系統が切り離されて低圧系統の自立運転が開始される。切り離し後の低圧系統全体の電圧は、予め定めた1台の分散型電源(マスター分散型電源)によって維持される。なお、マスター分散型電源が交流を発生させるものである場合には当該マスター分散型電源によってそのまま電圧維持が可能であるが、マスター分散型電源が直流を発生させるものである場合には、インバータの運転モードを電流制御モードから電圧制御モードに切り換えることでインバータを電圧源として電圧維持が行なわれる。   Therefore, when an abnormality such as a power failure occurs in the high-voltage system, which is the upper system, the low-voltage system is disconnected from the high-voltage system, and the low-voltage system starts independent operation. The voltage of the entire low-voltage system after disconnection is maintained by one predetermined distributed power source (master distributed power source). When the master distributed power source generates AC, the voltage can be maintained as it is by the master distributed power source. However, when the master distributed power source generates DC, By switching the operation mode from the current control mode to the voltage control mode, the voltage is maintained using the inverter as a voltage source.

分散型電源を有する需要家では、「分散型電源の発電量」が「負荷の使用電力量」よりも大きい場合には、余剰電力が発生する。発生した余剰電力は低圧系統へと逆潮流され、電力が不足する需要家に供給される。ここで、余剰電力の供給を受ける需要家として分散型電源を有しない需要家を対象にする場合が主であると考えられるが、場合によっては、分散型電源を有しない需要家と、分散型電源を有しているが「分散型電源の発電量」が「負荷の使用量」よりも小さく電力が不足する需要家とを対象にすることも考えられる。   A consumer having a distributed power source generates surplus power when the “power generation amount of the distributed power source” is larger than the “power consumption amount of the load”. The generated surplus power is reversely flowed to the low-voltage system and supplied to consumers who lack power. Here, it is thought that the case where the customer who does not have the distributed power source is the target as the customer who receives the supply of surplus power, but depending on the case, the customer who does not have the distributed power source and the distributed type It is also conceivable to target consumers who have a power source but whose “power generation amount of the distributed power source” is smaller than the “load usage amount” and lacks power.

また、請求項2記載の低圧系統の自立運転方法は、低圧系統の電圧を維持する分散型電源の出力変化速度で応答しきれない低圧系統の負荷変動を蓄電装置の充放電で賄うものである。したがって、低圧系統の負荷変動が分散型電源の出力変化よりも速い場合に対応することができる。   The self-sustained operation method of the low-voltage system according to claim 2 covers the load fluctuation of the low-voltage system that cannot respond at the output change rate of the distributed power source that maintains the voltage of the low-voltage system by charging and discharging the power storage device. . Therefore, it is possible to cope with the case where the load fluctuation of the low voltage system is faster than the output change of the distributed power source.

また、請求項3記載の低圧系統の自立運転方法は、分散型電源を有していない需要家について、余剰電力の供給を受けてもなお電力が不足する場合には、電力不足が解消されるまで負荷を優先順位の低いものから順番に遮断するものである。したがって、当該需要家構内において必要とされる負荷使用量が減少し、優先順位の高い負荷に継続して電力を供給し続けることができる。   Further, the self-sustaining operation method of the low-voltage system according to claim 3 solves the shortage of electric power when the electric power is still insufficient for a consumer who does not have a distributed power source even if surplus power is supplied. The load is cut off in order from the lowest priority. Therefore, the load usage required in the customer premises is reduced, and it is possible to continue to supply power to a load with high priority.

また、請求項4記載の低圧系統の自立運転方法は、分散型電源を有する需要家について、電力不足の場合には当該需要家を低圧系統から切り離し、電力不足が解消されるまで負荷を優先順位の低いものから順番に遮断するものである。したがって、当該需要家は自立運転となる。この需要家構内において必要とされる負荷使用量が減少し、優先順位の高い負荷に継続して電力を供給し続けることができる。   The self-sustained operation method of the low-voltage system according to claim 4 is for a consumer having a distributed power source, when power is insufficient, disconnects the consumer from the low-voltage system, and prioritizes the load until the power shortage is resolved. In order from the lowest to the lowest. Therefore, the customer is in an independent operation. The amount of load used required in the customer premises is reduced, and power can be continuously supplied to loads with high priority.

さらに、請求項5記載の発明は、分散型電源を有する需要家と分散型電源を有しない需要家が連系系統されている低圧系統の自立運転システムにおいて、低圧系統をその上位系統である高圧系統の異常時に当該高圧系統から分離する開閉器と、低圧系統が高圧系統から分離された場合に低圧系統の電圧を維持する1台のマスター分散型電源と、需要家毎に設けられて当該需要家内の電力の過不足を算出する需要家管理装置とを備え、マスター分散型電源以外の分散型電源を有する需要家の需要家管理装置は余剰電力が生じる場合に当該需要家の分散型電源を低圧系統に系統連系すると共に、余剰電力が生じない場合には当該需要家を低圧系統から切り離すものである。   Furthermore, the invention described in claim 5 is a self-operating system of a low voltage system in which a customer having a distributed power source and a customer not having a distributed power source are interconnected, and the low voltage system is a higher voltage A switch that is separated from the high-voltage system when the system is abnormal, a master distributed power source that maintains the voltage of the low-voltage system when the low-voltage system is separated from the high-voltage system, and the demand provided for each customer A consumer management device that calculates excess or deficiency of electric power in the house, and the consumer management device of a consumer having a distributed power source other than the master distributed power source uses the distributed power source of the consumer when surplus power is generated When the grid is connected to the low-voltage system and no surplus power is generated, the customer is disconnected from the low-voltage system.

したがって、上位系統である高圧系統に停電等の異常が発生すると、開閉器が開いて高圧系統から低圧系統が切り離され、低圧系統の自立運転が開始される。切り離し後の低圧系統全体の電圧は、1台のマスター分散型電源によって維持される。マスター分散型電源以外の分散型電源は、マスター分散型電源に対し協調運転する。需要家管理装置は当該需要家内の電力の過不足を算出し、余剰電力が生じる場合には分散型電源を低圧系統に系統連系させる。このため、余剰電力は低圧系統へと逆潮流され、分散型電源を有しないために電力が不足する需要家に供給される。また、余剰電力が生じない場合は当該需要家は低圧系統から切り離されて自立運転が行なわれる。   Therefore, when an abnormality such as a power failure occurs in the high-voltage system, which is the host system, the switch is opened, the low-voltage system is disconnected from the high-voltage system, and the low-voltage system starts independent operation. The voltage of the entire low-voltage system after the disconnection is maintained by one master distributed power source. Distributed power sources other than the master distributed power source operate in cooperation with the master distributed power source. The customer management device calculates the excess or deficiency of the electric power in the customer, and if surplus electric power is generated, the distributed power source is connected to the low voltage system. For this reason, surplus electric power flows backward to the low-voltage system and is supplied to consumers who lack power because they do not have a distributed power source. Further, when no surplus power is generated, the customer is disconnected from the low-voltage system and autonomous operation is performed.

請求項1記載の低圧系統の自立運転方法では、分散型電源を有する需要家を少なくとも1軒含む複数の需要家に電力を供給すると共に分散型電源が系統連系されている低圧系統を、その上位系統である高圧系統の異常時に当該高圧系統から分離し、低圧系統に系統連系されている分散型電源の1台によって低圧系統の電圧を維持し、各需要家毎に電力の過不足を算出し、電力が余剰する需要家の余剰電力を電力が不足する需要家に供給するので、高圧系統の異常時に、低圧系統に連系された分散型電源の余剰電力を有効に活用することができる。即ち、需要家の有する分散型電源の発電量が当該需要家構内の負荷使用量よりも大きい場合、分散型電源の出力を落として発電量を負荷使用量に合わせるのではなく、負荷使用量を超える分を余剰電力として他の需要家に分配するので、分散型電源の能力を有効に活用することができる。また、分散型電源を有しない需要家は余剰電力の供給を受けることができるので、停電を免れることができる。さらに、分散型電源を有する需要家が商用配電系統の停電時に負荷を使用するために手動で回路の接続変更を行なう必要もなくなる。   In the self-sustained operation method of the low-voltage system according to claim 1, the low-voltage system in which power is supplied to a plurality of consumers including at least one customer having a distributed power source and the distributed power source is grid-connected, Separated from the high-voltage system in the event of an abnormality in the high-voltage system, and maintained the voltage of the low-voltage system with one of the distributed power sources connected to the low-voltage system. Calculate and supply surplus power of consumers with surplus power to consumers with shortage of power, so that it is possible to effectively utilize surplus power of distributed power sources linked to the low voltage system when the high voltage system is abnormal it can. That is, if the power generation amount of a distributed power source possessed by a consumer is larger than the load usage amount in the customer premises, the load usage amount is not adjusted by reducing the output of the distributed power source and adjusting the power generation amount to the load usage amount. Since the surplus power is distributed to other consumers as surplus power, the capacity of the distributed power source can be used effectively. In addition, a consumer who does not have a distributed power source can be supplied with surplus power, so that a power failure can be avoided. Furthermore, there is no need for a customer having a distributed power source to manually change the circuit connection in order to use a load when a commercial power distribution system fails.

また、請求項2記載の低圧系統の自立運転方法では、低圧系統の電圧を維持する分散型電源の出力変化速度で応答しきれない低圧系統の負荷変動を蓄電装置の充放電で賄うようにしているので、低圧系統の負荷変動が分散型電源の出力変化よりも速い場合であっても低圧系統の負荷変動に対応することができる。   In the self-sustaining operation method of the low-voltage system according to claim 2, the load fluctuation of the low-voltage system that cannot respond at the output change rate of the distributed power source that maintains the voltage of the low-voltage system is covered by charging and discharging of the power storage device. Therefore, even when the load fluctuation of the low-voltage system is faster than the output change of the distributed power supply, it is possible to cope with the load fluctuation of the low-voltage system.

また、請求項3記載の低圧系統の自立運転方法では、分散型電源を有していない需要家について、余剰電力の供給を受けてもなお電力が不足する場合には、電力不足が解消されるまで負荷を優先順位の低いものから順番に遮断するようにしているので、当該需要家構内において必要とされる電力が減少し、優先順位の高い負荷に継続して電力を供給し続けることができる。   Further, in the self-sustaining operation method of the low-voltage system according to claim 3, the shortage of power is solved when the customer who does not have the distributed power supply still receives the supply of surplus power and still lacks power. Since the load is cut off in order from the low priority, the power required in the customer premises is reduced, and the power can be continuously supplied to the high priority load. .

また、請求項4記載の低圧系統の自立運転方法では、分散型電源を有する需要家について、電力不足の場合には当該需要家を低圧系統から切り離し、電力不足が解消されるまで負荷を優先順位の低いものから順番に遮断するので、当該需要家は自立運転となる。この需要家構内において必要とされる電力は減少し、優先順位の高い負荷に継続して電力を供給し続けることができる。   Further, in the self-sustained operation method of the low-voltage system according to claim 4, for a consumer having a distributed power source, in the case of power shortage, the customer is disconnected from the low-voltage system, and the load is prioritized until the power shortage is resolved. Since the cut-off is performed in order from the lowest, the customer becomes independent operation. Electric power required in the customer premises is reduced, and electric power can be continuously supplied to a load having a high priority.

さらに、請求項5記載の低圧系統の自立運転システムでは、低圧系統をその上位系統である高圧系統の異常時に当該高圧系統から分離する開閉器と、低圧系統が高圧系統から分離された場合に低圧系統の電圧を維持する1台のマスター分散型電源と、需要家毎に設けられて当該需要家内の電力の過不足を算出する需要家管理装置とを備え、マスター分散型電源以外の分散型電源を有する需要家の需要家管理装置は余剰電力が生じる場合に当該需要家の分散型電源を低圧系統に系統連系すると共に、余剰電力が生じない場合には当該需要家の分散型電源を低圧系統から切り離すので、高圧系統の異常時に、低圧系統に連系された分散型電源の余剰電力を有効に活用することができる。即ち、需要家の有する分散型電源の発電量が当該需要家構内の負荷使用量よりも大きい場合、分散型電源の出力を落として発電量を負荷使用量に合わせるのではなく、負荷使用量を超える分を余剰電力として他の需要家に分配するので、分散型電源の能力を有効に活用することができる。また、分散型電源を有しない需要家は余剰電力の供給を受けることができるので、停電を免れることができる。さらに、分散型電源を有する需要家が商用配電系統の停電時に負荷を使用するために手動で回路の接続変更を行なう必要もなくなる。   Furthermore, in the self-sustained operation system of the low-voltage system according to claim 5, a switch that separates the low-voltage system from the high-voltage system in the event of an abnormality in the high-voltage system that is a higher system, and a low-voltage system when the low-voltage system is separated from the high-voltage system A distributed power source other than the master distributed power source, comprising one master distributed power source for maintaining the system voltage and a customer management device that is provided for each customer and calculates excess or deficiency of power in the customer. When the surplus power is generated, the consumer management device of the customer having the power supply connects the customer's distributed power source to the low voltage system, and when the surplus power does not occur, the customer's distributed power source is Since it is disconnected from the system, surplus power of the distributed power source connected to the low-voltage system can be effectively utilized when the high-voltage system is abnormal. That is, if the power generation amount of a distributed power source possessed by a consumer is larger than the load usage amount in the customer premises, the load usage amount is not adjusted by reducing the output of the distributed power source and adjusting the power generation amount to the load usage amount. Since the surplus power is distributed to other consumers as surplus power, the capacity of the distributed power source can be used effectively. In addition, a consumer who does not have a distributed power source can be supplied with surplus power, so that a power failure can be avoided. Furthermore, there is no need for a customer having a distributed power source to manually change the circuit connection in order to use a load when a commercial power distribution system fails.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に、本発明の低圧系統の自立運転システムの実施形態の一例を示す。この低圧系統の自立運転システム(以下、単に自立運転システムという)は、分散型電源1A,1Bを有する需要家2A,2Bと分散型電源を有しない需要家2Cが連系系統されているものであって、低圧系統3をその上位系統である高圧系統4の異常時に当該高圧系統4から分離する開閉器5と、低圧系統3が高圧系統4から分離された場合に低圧系統3の電圧を維持する1台のマスター分散型電源1Aと、需要家2A,2B,2C毎に設けられて当該需要家2A,2B,2C内の電力の過不足を算出する需要家管理装置6とを備え、マスター分散型電源1A以外の分散型電源1Bを有する需要家2Bの需要家管理装置6は余剰電力が生じる場合に当該需要家2Bの分散型電源1Bを低圧系統3に系統連系すると共に、余剰電力が生じない場合には当該需要家2Bを低圧系統3から切り離すものである。また、本発明の低圧系統の自立運転方法(以下、単に自立運転方法という)は、分散型電源を有する需要家を少なくとも1軒含む複数の需要家に電力を供給すると共に分散型電源1A,1Bが系統連系されている低圧系統3を、その上位系統である高圧系統4の異常時に当該高圧系統4から分離し、低圧系統3に系統連系されている分散型電源の1台即ちマスター分散型電源1Aによって低圧系統3の電圧を維持し、各需要家2A,2B,2C毎に電力の過不足を算出し、電力が余剰する需要家の余剰電力を電力が不足する需要家に供給するものである。なお、本実施形態では、電力が不足する需要家として、分散型電源を有しない需要家2Cに余剰電力を供給する。   FIG. 1 shows an example of an embodiment of a low-pressure system self-sustaining operation system of the present invention. This low-voltage self-sustained operation system (hereinafter simply referred to as self-sustained operation system) is a system in which customers 2A, 2B having distributed power sources 1A, 1B and customers 2C having no distributed power sources are connected to each other. Then, the switch 5 that separates the low-voltage system 3 from the high-voltage system 4 in the event of an abnormality in the high-voltage system 4 that is the upper system, and the voltage of the low-voltage system 3 is maintained when the low-voltage system 3 is separated from the high-voltage system 4 A master distributed power source 1A, and a customer management device 6 provided for each of the consumers 2A, 2B, 2C to calculate the excess or deficiency of power in the consumers 2A, 2B, 2C. The customer management device 6 of the customer 2B having the distributed power source 1B other than the distributed power source 1A connects the distributed power source 1B of the customer 2B to the low voltage system 3 when surplus power is generated, and surplus power. Does not occur The case is intended to separate the consumer 2B from the low pressure line 3. In addition, the low-voltage system self-sustained operation method (hereinafter simply referred to as self-sustained operation method) of the present invention supplies power to a plurality of consumers including at least one consumer having a distributed power source and distributes power sources 1A and 1B. Is separated from the high-voltage system 4 when the high-voltage system 4 which is the higher-level system is abnormal, and one of the distributed power sources connected to the low-voltage system 3, that is, master distribution The voltage of the low voltage system 3 is maintained by the type power supply 1A, the excess or deficiency of power is calculated for each of the consumers 2A, 2B, and 2C, and the surplus power of the consumers with surplus power is supplied to the consumers with deficient power Is. In the present embodiment, surplus power is supplied to the consumer 2C that does not have a distributed power source as a consumer with insufficient power.

低圧系統3は、柱上変圧器7を介して高圧系統4に接続されている。柱上変圧器7のすぐ下流には、低圧系統3を高圧系統4から切り離す開閉器5が設けられている。開閉器5は例えば遠隔操作可能な半導体スイッチ付きの低圧開閉器5である。開閉器5は開閉サージを緩和すると共に高速な開閉操作を実現する。開閉器5は有線又は無線の通信回線を通じて低圧系統管理装置8によって開閉操作される。即ち、本発明では低圧系統3を保護するために、低圧開閉器5を設置しているが、これは原理的には一般家庭のブレーカと同じ開閉器と開閉サージを緩和する半導体スイッチ(ダイオードを大容量化したもの)とを備えており、低圧系統管理装置8からの操作によって開閉操作される。   The low voltage system 3 is connected to the high voltage system 4 via a pole transformer 7. A switch 5 that disconnects the low-voltage system 3 from the high-voltage system 4 is provided immediately downstream of the pole transformer 7. The switch 5 is, for example, a low-voltage switch 5 with a semiconductor switch that can be remotely operated. The switch 5 mitigates the switching surge and realizes a high-speed switching operation. The switch 5 is opened and closed by the low-voltage system management device 8 through a wired or wireless communication line. That is, in the present invention, in order to protect the low voltage system 3, the low voltage switch 5 is installed. In principle, this is the same switch as that of a general household breaker, and a semiconductor switch (diode is installed to alleviate the switching surge). And is opened / closed by an operation from the low-voltage system management device 8.

低圧系統3は多数の需要家に電力を供給する配電系統である。需要家としては、分散型電源1A,1Bを有する需要家2A,2Bと、分散型電源を有しない需要家2Cとがいる。分散型電源1A,1Bは例えば直流を発生させるものであり、インバータ機能を有するパワーコンディショナ9A,9Bに接続され、パワーコンディショナ9A,9Bは低圧系統3に系統連系されている。また、分散型電源1A,1Bを有する需要家2A,2Bは蓄電装置10を備えている。ただし、蓄電装置10は必須のものではなく、蓄電装置10を省略しても良い。また、分散型電源を有しない需要家2Cが蓄電装置10を備えても良い。蓄電装置10は、例えば蓄電池である。   The low-voltage system 3 is a power distribution system that supplies power to a large number of consumers. As consumers, there are consumers 2A and 2B having distributed power sources 1A and 1B, and consumers 2C having no distributed power sources. The distributed power sources 1A and 1B generate, for example, direct current, and are connected to power conditioners 9A and 9B having an inverter function, and the power conditioners 9A and 9B are interconnected to the low voltage system 3. Further, the consumers 2A and 2B having the distributed power sources 1A and 1B are provided with the power storage device 10. However, the power storage device 10 is not essential, and the power storage device 10 may be omitted. Further, the consumer 2 </ b> C that does not have a distributed power source may include the power storage device 10. The power storage device 10 is, for example, a storage battery.

分散型電源1A,1Bを有する需要家2A,2Bのうち、後述するスレーブ需要家2Bの主幹は開閉器11を介して低圧系統3に接続されている。開閉器11は、例えば半導体スイッチ付きの開閉器である。開閉器11は開閉サージを緩和すると共に高速な開閉操作を実現する。開閉器11は有線又は無線の通信回線を通じて後述する需要家管理装置6によって開閉操作される。即ち、原理的に開閉器5と同様の半導体スイッチ付きの開閉器11がスレーブ需要家2Bと低圧系統3との間に設けられており、開閉サージの緩和と高速開閉操作が可能となっており、併せて外部からのオンオフ制御が可能となっている。外部からオンオフ制御するための信号は需要家管理装置6から送信される。   Among the consumers 2A and 2B having the distributed power sources 1A and 1B, the main of the slave customer 2B described later is connected to the low-voltage system 3 via the switch 11. The switch 11 is a switch with a semiconductor switch, for example. The switch 11 relieves switching surge and realizes high-speed switching operation. The switch 11 is opened and closed by a customer management device 6 described later through a wired or wireless communication line. That is, a switch 11 having a semiconductor switch similar to the switch 5 in principle is provided between the slave customer 2B and the low-voltage system 3, so that the switching surge can be reduced and the switching operation can be performed at high speed. In addition, on / off control from the outside is possible. A signal for on / off control from the outside is transmitted from the customer management device 6.

各需要家2A,2B,2Cの配電線には例えば複数の負荷12即ち電気機器が接続されている。なお、図1では各需要家2A,2B,2C毎に複数の負荷12をまとめて1つのブロックに現している。各負荷12には選択遮断を行なう場合の優先順位が予め設定されている。   For example, a plurality of loads 12, that is, electric devices are connected to the distribution lines of the consumers 2 </ b> A, 2 </ b> B, and 2 </ b> C. In FIG. 1, a plurality of loads 12 are collectively shown in one block for each customer 2A, 2B, 2C. Each load 12 is set in advance with a priority order for selective blocking.

優先順位を決定する際の要因の一例を図13に示す。例えば、需要家2A,2B,2Cの指定→負荷12の消費電力→負荷12の消費電力変動度→機器IDの順で優先順位を決定する。つまり、需要家2A,2B,2Cが優先順位を指定する場合にはこの優先順位が採用される。需要家2A,2B,2Cの指定が無い場合には、負荷12の消費電力に基づいて優先順位が決定される。例えば、消費電力の大きい負荷12の優先順位を低くして早い段階で遮断させると共に、消費電力の小さな負荷12の優先順位を高くして遅い段階で遮断させるようする。また、負荷12の消費電力に基づかない場合には、負荷12の消費電力変動度に基づいて優先順位が決定される。例えば、消費電力変動度の大きい負荷12の優先順位を低くして早い段階で遮断させると共に、消費電力変動度の小さな負荷12の優先順位を高くして遅い段階で遮断させるようする。これらの優先順位を採用しない場合には、機器IDに基づく優先順位を採用する。例えば、機器IDが大きい場合には優先順位を高くして遅い段階で遮断させるようにする。ここで、機器IDとは需要家が付与する家電機器(負荷)固有の識別番号であり、前記の優先順位、消費電力、消費電力変動度がすべて同じ場合に制御の優先順位を確定させるために採用したものである。   An example of factors for determining the priority order is shown in FIG. For example, the priority order is determined in the order of designation of consumers 2A, 2B, 2C → power consumption of load 12 → power consumption fluctuation degree of load 12 → device ID. That is, when the consumers 2A, 2B, and 2C specify the priority order, this priority order is adopted. When the consumers 2A, 2B, and 2C are not specified, the priority order is determined based on the power consumption of the load 12. For example, the priority order of the load 12 with high power consumption is lowered and shut off at an early stage, and the priority order of the load 12 with low power consumption is raised and shut off at a late stage. Further, when not based on the power consumption of the load 12, the priority order is determined based on the power consumption fluctuation degree of the load 12. For example, the priority of the load 12 having a large power consumption fluctuation is lowered and shut off at an early stage, and the priority of the load 12 having a small power consumption fluctuation is raised and shut off at a late stage. When these priority orders are not adopted, the priority order based on the device ID is adopted. For example, when the device ID is large, the priority is increased and the device ID is blocked at a later stage. Here, the device ID is an identification number unique to the home appliance (load) given by the consumer. In order to determine the control priority when the priority, power consumption, and power consumption fluctuation are all the same. Adopted.

低圧系統3を高圧系統4から分離した場合、低圧系統3の電圧は系統連系されている分散型電源の1台によって維持される。ここで、この電圧維持に用いられる分散型電源がマスター分散型電源1Aであり、マスター分散型電源1Aを有する需要家2Aをマスター需要家2A、マスター分散型電源1A以外の分散型電源1Bを有する需要家2Bをスレーブ需要家2Bである。低圧系統3に系統連系されている分散型電源が1台しかない場合には、当該分散型電源がマスター分散型電源1Aとなる。一方、低圧系統3に複数の分散型電源が系統連系されている場合には、より大容量で出力制御可能な分散型電源をマスター分散型電源1Aとして選択することが望ましい。マスター分散型電源1Aが接続されたパワーコンディショナ9Aのインバータ機能は運転制御モードを電流制御から電圧制御に瞬時に切り換え可能となっている。運転制御モードを電流制御から電圧制御に切り換えることで、高圧系統4から切り離した低圧系統3の自立運転を可能とする。マスター分散型電源1Aのパワーコンディショナ9Aは、運転制御モードを電圧制御モードに切り換えた場合、例えば200V50Hzの電圧を発生させる。   When the low voltage system 3 is separated from the high voltage system 4, the voltage of the low voltage system 3 is maintained by one of the distributed power sources connected to the system. Here, the distributed power source used for maintaining the voltage is the master distributed power source 1A, the customer 2A having the master distributed power source 1A is the master customer 2A, and the distributed power source 1B is other than the master distributed power source 1A. The customer 2B is the slave customer 2B. When there is only one distributed power source connected to the low-voltage system 3, the distributed power source is the master distributed power source 1A. On the other hand, when a plurality of distributed power sources are connected to the low-voltage system 3, it is desirable to select a distributed power source having a larger capacity and capable of output control as the master distributed power source 1A. The inverter function of the power conditioner 9A to which the master distributed power source 1A is connected can instantaneously switch the operation control mode from current control to voltage control. By switching the operation control mode from current control to voltage control, the low voltage system 3 separated from the high voltage system 4 can be operated independently. When the operation control mode is switched to the voltage control mode, the power conditioner 9A of the master distributed power source 1A generates, for example, a voltage of 200 V 50 Hz.

図1では便宜的に4軒の需要家2A,2B,2B,2Cを記載している。即ち、需要家として後述するように3種類4状況の需要家2A,2B,2B,2Cが存在するので、これらを1軒ずつ記載している。マスター需要家2Aの数は必ず1軒である必要があるが、その他の需要家2B,2B,2Cの数は1軒に限るものではない。ただし、本実施形態の自立運転は、分散型電源を有しない需要家2Cに余剰電力を供給するものであるので、分散型電源を有しない需要家2Cは少なくとも1軒必要である。これに対し、スレーブ需要家2Bは0軒であっても良い。   In FIG. 1, four customers 2A, 2B, 2B, and 2C are shown for convenience. In other words, as will be described later, there are three types of four-state customers 2A, 2B, 2B, and 2C, which are listed one by one. The number of master customers 2A must be one, but the number of other customers 2B, 2B, 2C is not limited to one. However, since the self-sustained operation of this embodiment supplies surplus power to the customer 2C that does not have a distributed power source, at least one customer 2C that does not have a distributed power source is required. On the other hand, the slave customer 2B may be zero.

分散型電源1A,1Bは例えば直流を発生させるもので、例えば太陽光発電装置、風力発電装置、マイクロガスタービン(MGT)発電装置、燃料電池発電装置等である。なかでもマスター分散型電源1Aは、高圧系統4から低圧系統3を切り離した場合に分散型電源を有しない需要家2Cに電力を供給できる程度に大きな出力を有していることが望ましく、例えばマイクロガスタービン発電装置等の比較的大容量かつ出力制御可能な電源が好ましい。マスター需要家2Aの分散型電源1Aの出力変化速度で応答しきれない低圧系統3の負荷変動は蓄電装置10からの充放電で賄う。即ち、低圧系統3には系統の周波数や電圧を計測する計測装置14が設けられており、この計測装置14からの信号に基づいてマスター需要家2Aの需要家管理装置6は低圧系統3内の負荷状態即ち使用電力量を常時監視している。マスター需要家2Aの需要家管理装置6は、低圧系統3内の負荷状況とマスター分散型電源1Aの発電量のバランスが崩れると低圧系統3内の周波数や電圧が変化するため、その周波数や電圧の偏差量をフィードバック制御し、周波数や電圧を目標値に近づけるよう蓄電装置10の充放電量の制御を行う。マスター分散型電源1A自体も(同期発電機の場合には調速機等の制御や)発電量の指令値変更により出力変化が可能であるが、マスター分散型電源1Aの制御遅れや指令値の計算のために制御遅れが発生する。上記偏差量がある量以上になると低圧系統3を維持できなくなるので、マスター分散型電源1Aの制御遅れの分を制御速度の速い蓄電装置10で補う。   The distributed power sources 1A and 1B generate direct current, for example, and are, for example, a solar power generation device, a wind power generation device, a micro gas turbine (MGT) power generation device, a fuel cell power generation device, or the like. In particular, it is desirable that the master distributed power source 1A has such a large output that power can be supplied to the consumer 2C that does not have the distributed power source when the low voltage system 3 is disconnected from the high voltage system 4. A relatively large capacity power source capable of output control such as a gas turbine power generator is preferable. Load fluctuations of the low-voltage system 3 that cannot respond at the output change rate of the distributed power source 1A of the master customer 2A are covered by charging / discharging from the power storage device 10. That is, the low-voltage system 3 is provided with a measuring device 14 that measures the frequency and voltage of the system. Based on the signal from the measuring device 14, the customer management device 6 of the master customer 2A The load state, that is, the amount of power used is constantly monitored. The customer management device 6 of the master customer 2A changes the frequency and voltage in the low-voltage system 3 when the balance between the load status in the low-voltage system 3 and the power generation amount of the master distributed power source 1A is lost. The deviation amount of the power storage device 10 is feedback-controlled, and the charge / discharge amount of the power storage device 10 is controlled so that the frequency and voltage approach the target value. The master distributed power source 1A itself (control of the speed governor and the like in the case of a synchronous generator) can change its output by changing the command value of the power generation amount, but the control delay of the master distributed power source 1A and the command value Control delay occurs for calculation. Since the low voltage system 3 cannot be maintained when the deviation amount exceeds a certain amount, the power storage device 10 having a high control speed compensates for the control delay of the master distributed power source 1A.

各需要家2A,2B,2Cには、需要家管理装置6が設けられている。需要家管理装置6は通信機能を有しており、低圧系統管理装置8との間で情報のやり取りを行なうことができる。また、需要家管理装置6は各需要家2A,2B,2Cの分電盤・負荷12・分散型電源の制御や電力量の計測を行う。分散型電源1A,1Bの制御は、分散型電源1A,1Bに運転/停止指令や有効電力・無効電力発生量を専用通信回路を通して送信することにより行う。分散型電源1A,1Bの発電量も同じ通信回路を通じて分散型電源1A,1Bから取得する。即ち、分散型電源1A,1Bには需要家管理装置6との間で通信を行なう通信装置が設けられている。また、負荷12自体が通信機能を有していない場合には、負荷12の使用電力量の計測は、需要家構内の各分岐回路に電流センサを設置し、当該電流センサの情報と、分電盤の電圧センサの情報と合わせ、需要家管理装置6内でデジタル演算を行って算出する。また、負荷12自体が通信機能を有する場合には、例えば家庭内LAN等を通じて負荷12自体から直接使用電力量を収集する。   Each customer 2A, 2B, 2C is provided with a customer management device 6. The customer management device 6 has a communication function, and can exchange information with the low-voltage system management device 8. Further, the consumer management device 6 controls the distribution boards / loads 12 / distributed power sources of each consumer 2A, 2B, 2C and measures the amount of power. The distributed power sources 1A and 1B are controlled by transmitting an operation / stop command and active / reactive power generation amounts to the distributed power sources 1A and 1B through a dedicated communication circuit. The power generation amounts of the distributed power sources 1A and 1B are also acquired from the distributed power sources 1A and 1B through the same communication circuit. That is, the distributed power sources 1A and 1B are provided with a communication device that communicates with the customer management device 6. In addition, when the load 12 itself does not have a communication function, the power consumption of the load 12 is measured by installing a current sensor in each branch circuit in the customer premises, Along with the information on the voltage sensor of the panel, the calculation is performed by performing digital calculation in the customer management device 6. Further, when the load 12 itself has a communication function, the amount of power used is directly collected from the load 12 itself through, for example, a home LAN.

マスター需要家2Aの需要家管理装置6は、パワーコンディショナ9Aとの間の通信網を使用して設定変更指令を供給し、パワーコンディショナ9Aのインバータ機能の運転制御モードを操作することができる。   The customer management device 6 of the master customer 2A can supply a setting change command using the communication network with the power conditioner 9A, and can operate the operation control mode of the inverter function of the power conditioner 9A. .

需要家管理装置6は、需要家構内の回路構成、分散型電源1A,1Bの種類や性能、接続されている負荷12の種類、数、位置等を予め記憶している。   The customer management device 6 stores in advance the circuit configuration within the customer premises, the type and performance of the distributed power sources 1A and 1B, the type, number, and position of the connected load 12.

需要家管理装置6は分散型電源1A,1Bの発電量を算出(分散型電源出力推定)することができる。分散型電源1A,1Bが太陽光発電装置、風力発電装置の場合には日射量予測情報、風速予測情報に基づいて予測発電量を算出する。需要家管理装置6は日射量・風速と発電量との対応関係を予め記憶しており、日射量予測情報・風速予測情報をこの対応関係に当てはめることで予測発電量を算出する。これら日射量予測情報・風速予測情報は、例えば運用管理サブ装置13から低圧系統管理装置8を通じて提供される。また、分散型電源1A,1Bが太陽光発電装置及び風力発電装置以外のものの場合には、過去の負荷12の稼働状況についてのデータから今後の負荷12の稼働状況を予測し、この予測に基づいて分散型電源1A,1Bの運転パターンを決定し、この運転パターンから発電量を算出する。なお、分散型電源1A,1Bがガスエンジン等コージェネレーション機器の場合には、運転の際に電気のみならず熱も同時に発生する。需要家の熱負荷(主に給湯負荷)と電力負荷のバランスを考慮し、両方がうまく使い切れるように分散型電源1A,1Bの運転を行なう。   The customer management device 6 can calculate the power generation amount of the distributed power sources 1A and 1B (distributed power source output estimation). When the distributed power sources 1A and 1B are solar power generators or wind power generators, the predicted power generation amount is calculated based on the solar radiation amount prediction information and the wind speed prediction information. The customer management device 6 stores a correspondence relationship between the solar radiation amount / wind speed and the power generation amount in advance, and calculates the predicted power generation amount by applying the solar radiation amount prediction information / wind speed prediction information to the correspondence relationship. These solar radiation amount prediction information and wind speed prediction information are provided from the operation management sub-device 13 through the low-voltage system management device 8, for example. In the case where the distributed power sources 1A and 1B are other than the solar power generation device and the wind power generation device, the operation status of the future load 12 is predicted from the data on the operation status of the past load 12, and based on this prediction Then, the operation pattern of the distributed power sources 1A and 1B is determined, and the power generation amount is calculated from the operation pattern. When the distributed power sources 1A and 1B are cogeneration equipment such as a gas engine, not only electricity but also heat is generated simultaneously during operation. Considering the balance between the customer's heat load (mainly hot water supply load) and the power load, the distributed power sources 1A and 1B are operated so that both can be used up well.

需要家管理装置6は、蓄電装置10の利用可能な電力量を推定することができる。蓄電装置10の利用可能な電力量と蓄電装置10の電圧との間には一定の関係がある。この関係の一例を図14に示す。例えば蓄電装置10の電圧が250Vであれば需要家管理装置6は利用可能な電力量が約2000Wであると推定する。例えば、蓄電装置10には図示しない電圧センサが設けられており、この電圧センサからの信号に基づいて蓄電装置10の電圧を計測し、利用可能な電力量を推定する。   The customer management device 6 can estimate the amount of power that can be used by the power storage device 10. There is a certain relationship between the amount of power that can be used by the power storage device 10 and the voltage of the power storage device 10. An example of this relationship is shown in FIG. For example, if the voltage of the power storage device 10 is 250 V, the customer management device 6 estimates that the available power amount is about 2000 W. For example, the power storage device 10 is provided with a voltage sensor (not shown), and the voltage of the power storage device 10 is measured based on a signal from the voltage sensor to estimate the amount of power that can be used.

需要家管理装置6は各負荷12の稼働・停止状態を常時監視すると共に、各負荷12毎の使用電力量を予め記憶している。需要家管理装置6は稼働中の負荷12の使用電力量の合計を算出することで、当該需要家全体の負荷使用量を算出する。負荷12が通信機能を有している場合には、当該負荷12から例えば屋内LAN等を通じて需要家管理装置6に当該負荷12の運転状態が送信される。これにより、需要家管理装置6は各負荷12の稼働・停止状態を監視することができる。   The customer management device 6 constantly monitors the operating / stopped state of each load 12 and stores the power consumption for each load 12 in advance. The customer management device 6 calculates the total amount of power used by the load 12 in operation, thereby calculating the load usage of the entire consumer. When the load 12 has a communication function, the operating state of the load 12 is transmitted from the load 12 to the consumer management device 6 through, for example, an indoor LAN. Thereby, the customer management apparatus 6 can monitor the operating / stopped state of each load 12.

需要家管理装置6は、分散型電源1A,1Bの発電量と、蓄電装置10の利用可能な電力量と、負荷使用量とに基づいて電力の過不足を算出する。即ち、電力を発生させる側である分散型電源1A,1Bの発電量と蓄電装置10の利用可能な電力量との合計から、電力を消費する側である負荷使用量を引くことで、電力の過不足を算出する。算出した値が正の場合には余剰電流が生じている。なお、需要家2Cの分散型電源の発電量と、蓄電装置の利用可能な電力量は0である。   The customer management device 6 calculates the excess or deficiency of power based on the power generation amount of the distributed power sources 1A and 1B, the amount of power available to the power storage device 10, and the load usage. That is, by subtracting the load usage on the power consuming side from the total of the power generation amount of the distributed power sources 1A and 1B on the power generation side and the available power amount on the power storage device 10, Calculate excess and deficiency. When the calculated value is positive, surplus current is generated. Note that the amount of power generated by the distributed power source of the customer 2C and the amount of power that can be used by the power storage device are zero.

需要家管理装置6は、例えばコンピュータによって構成されている。即ち、上述の機能の手順を示すプログラムをコンピュータにインストールすることで、演算装置や記憶装置や入出力装置等のハードウェア資源と協働して操作手段や制御手段を構成し、需要家管理装置6は上述の機能を発揮する。   The customer management device 6 is configured by a computer, for example. That is, by installing a program showing the procedure of the above-described function in a computer, an operation unit and a control unit are configured in cooperation with hardware resources such as an arithmetic device, a storage device, and an input / output device. 6 exhibits the above-mentioned function.

低圧系統管理装置8は需要家管理装置6の上位装置であり、通信機能を有し需要家管理装置6との間で信号の送受信を行なうことができる。また、低圧系統管理装置8は開閉器5を開閉操作することができる。また、低圧系統管理装置8は、更に上位の運用管理サブ装置13との間で信号の送受信を行うことができる。低圧系統管理装置8は、例えばコンピュータによって構成されている。即ち、開閉器5、需要家管理装置6、運用管理サブ装置13等との間で信号の送受信を行なってこれらを操作したり監視等を行なう上述の機能の手順を示すプログラムをコンピュータにインストールすることで、演算装置や記憶装置や入出力装置等のハードウェア資源と協働して操作手段や制御手段を構成し、低圧系統管理装置8は上述の機能を発揮する。   The low-voltage system management device 8 is a host device of the customer management device 6, has a communication function, and can send and receive signals to and from the customer management device 6. Further, the low-voltage system management device 8 can open and close the switch 5. Further, the low-voltage system management device 8 can transmit and receive signals to and from the higher-level operation management sub-device 13. The low-voltage system management device 8 is configured by a computer, for example. That is, a program indicating the procedure of the above-described functions for operating and monitoring signals by transmitting / receiving signals to / from the switch 5, customer management device 6, operation management sub-device 13 and the like is installed in the computer. Thus, the operation means and the control means are configured in cooperation with hardware resources such as an arithmetic device, a storage device, and an input / output device, and the low-voltage system management device 8 exhibits the above-described functions.

運用管理サブ装置13は、例えば開閉器5と図示しないループコントローラにはさまれた高圧系統4の区間(高圧配電ユニット)の停電や電圧低下等の異常を監視している。高圧系統4には図示しないセンサー付き開閉器が設置されており、運用管理サブ装置13はこのセンサー付き開閉器からの情報(零相電流、零相電圧についての情報)により、高圧系統4の異常を検出する。運用管理サブ装置13の管理する両端の零相電圧・電流がある閾値を超え、その電流方向が正常時の方向と異なる場合に運用管理サブ装置13は高圧系統4に異常が発生したと判断する。また、運用管理サブ装置13は例えば気象関係の情報源から通信回線を通じて日射量予測情報や風速予測情報を収集する。運用管理サブ装置13は、例えばコンピュータによって構成されている。即ち、上述の機能の手順を示すプログラムをコンピュータにインストールすることで、演算装置や記憶装置や入出力装置等のハードウェア資源と協働して判断手段や情報収集手段等を構成し、運用管理サブ装置13は上述の機能を発揮する。   The operation management sub-device 13 monitors abnormalities such as a power failure or a voltage drop in a section (high-voltage distribution unit) of the high-voltage system 4 sandwiched between the switch 5 and a loop controller (not shown), for example. A switch with sensor (not shown) is installed in the high-voltage system 4, and the operation management sub-device 13 detects an abnormality in the high-voltage system 4 based on information from this sensor-equipped switch (information on zero-phase current and zero-phase voltage). Is detected. When the zero-phase voltage / current at both ends managed by the operation management sub-device 13 exceeds a certain threshold and the current direction is different from the normal direction, the operation management sub-device 13 determines that an abnormality has occurred in the high-voltage system 4. . Further, the operation management sub-device 13 collects solar radiation amount prediction information and wind speed prediction information from, for example, a weather-related information source through a communication line. The operation management sub apparatus 13 is configured by a computer, for example. That is, by installing a program showing the procedure of the above-described functions in a computer, a judgment unit, an information collection unit, etc. are configured in cooperation with hardware resources such as an arithmetic device, a storage device, an input / output device, etc. The sub device 13 exhibits the above-described functions.

本発明の低圧系統の自立運転は、上位系統(高圧系統4)異常時に低圧系統3全体を上位系統から切り離し、低圧系統3に接続されたマスター分散型電源1Aが低圧系統3全体の電圧を維持し、スレーブ分散型電源1Bは低圧系統管理装置8からの自立指令を受けた需要家管理装置6の操作によって協調運転を行うことによって、低圧系統3への余剰電力の供給を継続する。ここで需要家2Cは分散型電源非所有需要家、需要家2Aは低圧系統3全体の電圧を維持し、需給調整を行うマスター分散型電源1Aを有する需要家(マスター需要家2A)、需要家2Bはスレーブ分散型電源1Bを有する需要家(スレーブ需要家2B)である。   In the self-sustained operation of the low voltage system of the present invention, when the upper system (high voltage system 4) is abnormal, the entire low voltage system 3 is disconnected from the upper system, and the master distributed power source 1A connected to the low voltage system 3 maintains the voltage of the entire low voltage system 3 The slave distributed power supply 1B continues to supply surplus power to the low-voltage system 3 by performing cooperative operation by the operation of the customer management apparatus 6 that has received an independent command from the low-voltage system management device 8. Here, the customer 2C is a non-distributed power source customer, the customer 2A is a customer (master customer 2A) having a master distributed power source 1A that maintains the voltage of the entire low voltage system 3 and adjusts the supply and demand. 2B is a consumer (slave consumer 2B) having a slave distributed power source 1B.

マスター需要家2Aは低圧系統3の電圧維持可能な分散型電源1Aを所有している需要家であり、分散型電源1Aの出力調整および蓄電装置10の充放電により低圧系統内負荷バランスの調整を行う。即ち、需要家管理装置6は低圧系統3内の周波数と電圧を一定範囲に維持するように、分散型電源1Aの発電量と蓄電装置10の充放電量を決定し、操作を行なう。   The master customer 2A is a customer who owns the distributed power source 1A capable of maintaining the voltage of the low-voltage system 3, and adjusts the load balance in the low-voltage system by adjusting the output of the distributed power source 1A and charging / discharging the power storage device 10. Do. That is, the customer management device 6 determines and operates the power generation amount of the distributed power source 1A and the charge / discharge amount of the power storage device 10 so as to maintain the frequency and voltage in the low voltage system 3 within a certain range.

スレーブ需要家2Bは低圧系統管理装置8からの自立指令により、分散型電源1B出力(発電量)が負荷12より大きい場合すなわち逆潮流可能な場合には、連系運転を行い、近隣の需要家2Cに電力の融通を行う。負荷12の方が分散型電源1B出力より大きい場合には、需要家構内自立運転に移行する。   The slave customer 2B performs an interconnection operation when the output of the distributed power source 1B (power generation amount) is larger than the load 12, that is, a reverse power flow is possible, according to the self-sustained command from the low-voltage system management device 8. Accommodate power to 2C. When the load 12 is larger than the output of the distributed power source 1B, the operation shifts to the customer premises independent operation.

分散型電源を有しない需要家2Cに対しては、他の需要家2A,2Bが所有する分散型電源1A,1Bの発電余力に応じて負荷12への電力供給が可能である。低圧系統管理装置8が融通可能量を計算し、それぞれの需要家2Cに供給可能な電力量を通知する。融通可能量がゼロの場合には必要最小限の重要な負荷12以外の負荷12を遮断する。   The customer 2C that does not have a distributed power source can be supplied with power to the load 12 according to the power generation surplus of the distributed power sources 1A and 1B owned by the other customers 2A and 2B. The low-voltage system management device 8 calculates the available amount, and notifies each customer 2C of the amount of power that can be supplied. When the interchangeable amount is zero, the load 12 other than the necessary minimum important load 12 is cut off.

以上のような制御を行うことにより、分散型電源1A,1B出力の有効活用が図れるとともに、分散型電源非所有需要家2Cにも電力供給を継続することが可能である。   By performing the control as described above, it is possible to effectively use the outputs of the distributed power sources 1A and 1B, and it is possible to continue supplying power to the consumers 2C who do not own the distributed power source.

低圧系統3の自立運転へは、例えば低圧系統管理装置8の高圧系統異常の検出、もしくは低圧系統管理装置8を介した運用管理サブ装置13からの自立運転指令の受信のいずれかで移行する。自立運転からの系統再連系は、例えば低圧系統管理装置8を介した運用管理サブ装置13からの指令で行う。系統再連系の際には再連系される負荷12の使用電力を蓄電装置10で補償するので、連系点潮流がゼロの状態で系統再連系することができ、高圧系統4に与えるショックが小さい。   For example, the low-voltage system 3 is shifted to a self-sustained operation by either detecting a high-voltage system abnormality in the low-voltage system management device 8 or receiving a self-sustained operation command from the operation management sub-device 13 via the low-voltage system management device 8. System reconnection from the independent operation is performed by a command from the operation management sub-device 13 via the low-voltage system management device 8, for example. When the grid is reconnected, the power storage device 10 compensates for the power used by the load 12 to be reconnected, so that the grid can be reconnected in a state where the connection point power is zero and is supplied to the high voltage system 4. The shock is small.

図2〜図5に基づいて、より具体的に説明する。図2は低圧系統管理装置8についてのフローチャート、図3はマスター需要家2Aの需要家管理装置6についてのフローチャート、図4はスレーブ需要家2Bの需要家管理装置6についてのフローチャート、図5は分散型電源を有しない需要家2Cの需要家管理装置6についてのフローチャートである。なお、図2〜図5では蓄電装置10の利用可能な電力量を分散型電源1A,1Bの発電量に含めている。即ち、図2〜図5の説明において「分散型電源の発電量」は「蓄電装置10の放電量・利用可能電力」を含めた「供給可能電力量」である。   More specific description will be given based on FIGS. 2 is a flowchart for the low-voltage system management device 8, FIG. 3 is a flowchart for the customer management device 6 of the master customer 2A, FIG. 4 is a flowchart for the customer management device 6 of the slave customer 2B, and FIG. It is a flowchart about the consumer management apparatus 6 of the consumer 2C which does not have a type | mold power supply. 2 to 5, the amount of power that can be used by the power storage device 10 is included in the amount of power generated by the distributed power sources 1A and 1B. That is, in the description of FIGS. 2 to 5, “power generation amount of the distributed power source” is “suppliable power amount” including “discharge amount / usable power of power storage device 10”.

運用管理サブ装置13が高圧系統4に発生した停電、電圧低下等の異常を検出すると、異常の発生を低圧系統管理装置8に知らせる。運用管理サブ装置13から異常検出信号を受けた低圧系統管理装置8は、低圧開閉器5を開くと共に、各需要家2A,2B,2B,2Cの需要家管理装置6に自立指令を送信する(図2のステップS31,S32)。   When the operation management sub-device 13 detects an abnormality such as a power failure or a voltage drop occurring in the high-voltage system 4, the low-voltage system management device 8 is notified of the occurrence of the abnormality. Receiving the abnormality detection signal from the operation management sub-device 13, the low-voltage system management device 8 opens the low-voltage switch 5 and transmits a self-sustained command to the customer management device 6 of each customer 2A, 2B, 2B, 2C ( Steps S31 and S32 in FIG.

マスター需要家2Aでは、需要家管理装置6が低圧系統管理装置8からの自立指令を受信すると(図3のステップS41)、需要家管理装置6がパワーコンディショナ9Aのインバータ機能の運転制御モードを電流制御から電圧制御に切り換える(ステップS42)。これにより、高圧系統4から切り離された低圧系統3の電圧維持が行なわれる。また、需要家管理装置6は「分散型電源の発電量」と「負荷使用量」を算出すると共に、「連系可能量」(=「分散型電源の発電量」−「負荷使用量」)を算出(電力の過不足の算出)し、算出した「連系可能量」を低圧系統管理装置8に送信する(ステップS43)。需要家管理装置6はステップS43を繰り返し実行する。   In the master customer 2A, when the customer management device 6 receives the independence command from the low voltage system management device 8 (step S41 in FIG. 3), the customer management device 6 sets the operation control mode of the inverter function of the power conditioner 9A. Switching from current control to voltage control (step S42). Thereby, the voltage of the low voltage system 3 separated from the high voltage system 4 is maintained. Further, the customer management device 6 calculates “power generation amount of distributed power source” and “load usage amount” and “amount of possible interconnection” (= “power generation amount of distributed power source” − “load usage amount”). Is calculated (calculation of excess or deficiency of power), and the calculated “interconnectable amount” is transmitted to the low-voltage system management device 8 (step S43). The customer management device 6 repeatedly executes step S43.

スレーブ需要家2Bでは、需要家管理装置6が低圧系統管理装置8からの自立指令を受信すると(図4のステップS51)、需要家管理装置6が開閉器11を開き、当該需要家2Bを低圧系統3から切り離す(ステップS52)。これにより、当該需要家2Bが構内自立運転に移行される。また、需要家管理装置6は「分散型電源の発電量」と「負荷使用量」を算出してこれらの大小関係を比較する(ステップS53)。そして、「分散型電源の発電量」>「負荷使用量」の場合にはステップS54に進んで遮断中の負荷12があるか否かを判断する。いま、自立運転に移行した直後であり遮断中の負荷12は無いので、ステップS55に進んで開閉器11を閉じて当該需要家2Bを低圧系統3に再連系する。これにより、「連系可能量」に相当する余剰電力が低圧系統3に逆潮流される。その後、需要家管理装置6は「連系可能量」を算出(電力の過不足の算出)すると共に、算出した「連系可能量」を低圧系統管理装置8に送信する(ステップS56)。ステップS56を実行した後、需要家管理装置6はステップS53に戻る。   In the slave customer 2B, when the customer management device 6 receives the independence command from the low-voltage system management device 8 (step S51 in FIG. 4), the customer management device 6 opens the switch 11 and makes the customer 2B low-pressure. Disconnect from system 3 (step S52). Thereby, the customer 2B is shifted to the self-supporting operation on the premises. Further, the customer management device 6 calculates “the amount of power generated by the distributed power source” and “the amount of load used”, and compares these magnitude relationships (step S53). If “distributed power generation amount”> “load usage amount”, the process proceeds to step S54 to determine whether or not there is a load 12 being cut off. Now, since there is no load 12 that is cut off immediately after shifting to the independent operation, the process proceeds to step S55, the switch 11 is closed, and the customer 2B is reconnected to the low-voltage system 3. As a result, surplus power corresponding to the “interconnectable amount” is reversely flowed to the low-voltage system 3. Thereafter, the customer management device 6 calculates “amount of possible interconnection” (calculation of excess or deficiency of power) and transmits the calculated “amount of possible interconnection” to the low-voltage system management device 8 (step S56). After executing Step S56, the customer management device 6 returns to Step S53.

一方、ステップS53において「分散型電源の発電量」≦「負荷使用量」の場合には、需要家管理装置6は開閉器11の操作を行なわずに構内自立運転を継続する(ステップS57)。即ち、他の需要家2Cに供給できるだけの電力が無い場合には構内自立運転を行なう。この後、ステップS58に進み、負荷選択遮断を行なう。即ち、現在稼働している負荷12のうち最も優先順位の低いもの遮断する。本実施形態では、最も優先順位の低い負荷12を一つずつ遮断する。ただし、一度に遮断する負荷12の数は一つに限るものではなく、複数の負荷を一度に遮断しても良い。   On the other hand, if “the amount of power generated by the distributed power source” ≦ “the amount of load used” in step S53, the customer management device 6 continues the on-site independent operation without operating the switch 11 (step S57). That is, when there is not enough electric power to supply to the other customer 2C, the on-site independent operation is performed. Then, it progresses to step S58 and performs load selection interruption | blocking. That is, the load with the lowest priority among the currently operating loads 12 is blocked. In this embodiment, the loads 12 having the lowest priority are blocked one by one. However, the number of loads 12 to be blocked at a time is not limited to one, and a plurality of loads may be blocked at a time.

負荷選択遮断では、分散型電源1Bの発電量を超えない範囲で電力を供給する負荷12を選択し、選択した負荷12以外の負荷12を遮断させる。電力を供給する負荷12の優先順位は予め決められている。   In the load selection cutoff, the load 12 that supplies power is selected within a range that does not exceed the power generation amount of the distributed power source 1B, and the loads 12 other than the selected load 12 are cut off. The priority of the load 12 that supplies power is determined in advance.

負荷12が通信機能を有しており遠隔操作可能な機器の場合には、需要家管理装置6はその負荷12を例えば無線LANなどを使って直接オンオフ操作したり、運転状態を変化させたりする。また、負荷12が遠隔操作不可能な機器の場合には、例えば負荷12のすぐ上流に遠隔操作可能なスイッチを設けておき、需要家管理装置6はそのスイッチを開閉操作することで負荷12をオンオフ操作する。   In the case where the load 12 has a communication function and can be remotely operated, the customer management device 6 directly turns on / off the load 12 using, for example, a wireless LAN or changes the operating state. . When the load 12 is a device that cannot be remotely operated, for example, a switch that can be remotely operated is provided immediately upstream of the load 12, and the customer management device 6 opens and closes the load 12 by opening and closing the switch. Operate on and off.

ステップS58を実行した後、需要家管理装置6はステップS53に戻る。そして、ステップS58の実行によって1つの負荷12を遮断してもなお「分散型電源の発電量」≦「負荷使用量」の場合には、再度ステップS53→S57→S58へと進み、現在稼働している負荷12のうち最も優先順位の低いもの遮断する。そして、ステップS53において「分散型電源の発電量」>「負荷使用量」となるまでステップS53→S57→S58→S53を繰り返し実行し、負荷選択遮断を行ないながら構内自立運転を継続する。   After executing Step S58, the customer management device 6 returns to Step S53. Even if one load 12 is cut off by executing step S58, if “power generation amount of distributed power source” ≦ “load usage amount” still proceeds, the process proceeds again from step S53 → S57 → S58, and is currently operating. The load 12 having the lowest priority is blocked. In step S53, steps S53 → S57 → S58 → S53 are repeatedly executed until “distributed power generation amount”> “load usage amount” is satisfied, and the on-site independent operation is continued while the load selection is cut off.

なお、ステップS57では、既に開閉器11が開いている場合、即ち低圧系統3から切り離されている場合にはその状態を維持し、開閉器11が閉じている場合、即ち低圧系統3に連系されている場合には開閉器11を開く操作が行なわれる。   In step S57, when the switch 11 is already open, that is, when it is disconnected from the low-voltage system 3, that state is maintained, and when the switch 11 is closed, that is, connected to the low-voltage system 3. If it is, the operation to open the switch 11 is performed.

このように、分散型電源1Bを有する需要家2Bについて、電力不足の場合には当該需要家2Bを低圧系統3から切り離し、電力不足が解消されるまで負荷12を優先順位の低いものから順番に遮断する。   As described above, for the customer 2B having the distributed power source 1B, in the case of power shortage, the customer 2B is disconnected from the low-voltage system 3, and the load 12 is changed in order from the lowest priority until the power shortage is resolved. Cut off.

負荷選択遮断によって「分散型電源の発電量」>「負荷使用量」になると、需要家管理装置6はステップS53からS54に進み、遮断中の負荷12があるか否かを判断する。ステップS58の実行により遮断中の負荷12があることから、ステップS59に進み、遮断中の負荷12の回復が可能か否かを判断する。   When “power generation amount of distributed power source”> “load usage amount” is satisfied by the load selection interruption, the customer management apparatus 6 proceeds from step S53 to S54, and determines whether or not there is a load 12 being interrupted. Since there is a load 12 being interrupted by the execution of step S58, the process proceeds to step S59 to determine whether or not the load 12 being interrupted can be recovered.

ステップS59では、遮断中の負荷12の回復が可能か否かは次のようにして判断する。例えば、遮断中の負荷12のうち次ぎに回復させるものの使用電力(以下、「遮断負荷使用量」という)と上述の「負荷使用量」との合計を算出し、上述の「分散型電源の発電量」と比較する。そして、「分散型電源の発電量」≧「負荷使用量」+「遮断負荷使用量」の場合には、遮断中の負荷12の回復が可能と判断し、「分散型電源の発電量」<「負荷使用量」+「遮断負荷使用量」の場合には、遮断中の負荷12の回復が不可能と判断する。   In step S59, whether or not the load 12 being interrupted can be recovered is determined as follows. For example, the sum of the power consumption (hereinafter referred to as “cutting load usage amount”) of the load 12 to be recovered next out of the interrupted load 12 and the above “load usage amount” is calculated, Compare with "Amount". If “distributed power generation amount” ≧ “load usage amount” + “interrupted load usage amount”, it is determined that the load 12 being disconnected can be recovered, and “distributed power generation amount” < In the case of “load use amount” + “breaking load use amount”, it is determined that the load 12 being cut off cannot be recovered.

ここで、遮断中の負荷12のうち次ぎに回復しようとするものは、負荷12を遮断する際に使用した優先順位に従って決定される。即ち、遮断中の負荷12のうち、最も優先順位の高いもの(1番目の負荷)について上述の「分散型電源の発電量」≧「負荷使用量」+「遮断負荷使用量」が成立する場合には、当該1番目の負荷12が次ぎに回復させる負荷となる。また、1番目の負荷12について「分散型電源の発電量」<「負荷使用量」+「遮断負荷使用量」となる場合には、遮断中の負荷12のうち次ぎに優先順位の高いもの(2番目の負荷)について「分散型電源の発電量」≧「負荷使用量」+「遮断負荷使用量」が成立するときには、当該2番目の負荷12が次ぎに回復させる負荷となる。さらに、2番目の負荷12についても「分散型電源の発電量」<「負荷使用量」+「遮断負荷使用量」となる場合には、遮断中の負荷12のうちその次ぎに優先順位の高いもの(3番目の負荷)について「分散型電源の発電量」≧「負荷使用量」+「遮断負荷使用量」が成立するときには、当該3番目の負荷12が次ぎに回復させる負荷となる。以降同様に、4番目の負荷、5番目の負荷、…となる。このように優先順位に従って回復可能な負荷12を決定する。そして、遮断中の全ての負荷12について「分散型電源の発電量」<「負荷使用量」+「遮断負荷使用量」となる場合には、負荷の回復は不可能と判断する。   Here, the load to be recovered next among the loads 12 being cut off is determined according to the priority order used when the load 12 is cut off. That is, the above-mentioned “distributed power generation amount” ≧ “load usage amount” + “interrupted load usage amount” is established for the load 12 with the highest priority (first load) among the interrupted loads 12 The first load 12 is the load to be recovered next. When the first load 12 is “distributed power generation amount” <“load use amount” + “interrupted load use amount”, the next highest priority among the interrupted loads 12 ( When “distributed power generation amount” ≧ “load use amount” + “breaking load use amount” is established for the second load), the second load 12 becomes the load to be recovered next. Further, when “the amount of power generated by the distributed power source” <“load usage” + “interrupted load usage” also for the second load 12, the next highest priority among the interrupted loads 12 is next. When “power generation amount of distributed power source” ≧ “load usage amount” + “interrupted load usage amount” is established for the thing (third load), the third load 12 becomes the load to be recovered next. Thereafter, similarly, the fourth load, the fifth load, and so on. In this way, the recoverable load 12 is determined according to the priority order. Then, when “distributed power generation amount” <“load use amount” + “cutoff load use amount” is satisfied for all the loads 12 being cut off, it is determined that the load cannot be recovered.

このように、回復させても「分散型電源の発電量」を上回らない遮断中の負荷12を優先順位の高いものから順番に回復させる。   In this way, the interrupted load 12 that does not exceed the “power generation amount of the distributed power source” even when recovered is recovered in order from the highest priority.

そして、負荷12の回復が可能な場合にはステップS60に進んで負荷12を回復させる。即ち、当該負荷12への通電を再開する。その後ステップS53に戻る。一方、ステップS59において、負荷12の回復が不可能の場合には、そのままステップS53に戻る。   If the load 12 can be recovered, the process proceeds to step S60 to recover the load 12. That is, energization to the load 12 is resumed. Thereafter, the process returns to step S53. On the other hand, if the load 12 cannot be recovered in step S59, the process directly returns to step S53.

一方、ステップS54において、遮断されていた負荷12が全て回復された場合には、ステップ54からステップS55に進み、開閉器11を閉じて当該需要家2Bを低圧系統3に再連系する。即ち、遮断されていた負荷12が全て回復され且つ「分散型電源の発電量」>「負荷使用量」となると、当該需要家は低圧系統3に再連系されて余剰電力が逆潮流されると共に、連系可能量が計算されて低圧系統管理装置8に送信される。   On the other hand, when all the interrupted loads 12 are recovered in step S54, the process proceeds from step 54 to step S55, the switch 11 is closed, and the customer 2B is reconnected to the low-voltage system 3. That is, when all the interrupted loads 12 are recovered and “power generation amount of the distributed power source”> “load usage amount”, the customer is reconnected to the low-voltage system 3 and the surplus power is reversed. At the same time, the possible interconnection amount is calculated and transmitted to the low-voltage system management device 8.

なお、ステップS55では、既に開閉器11が閉じている場合、即ち低圧系統3に連系されている場合にはその状態を維持し、開閉器11が開いている場合、即ち低圧系統3から切り離されている場合には開閉器11を閉じる操作が行なわれる。   In step S55, if the switch 11 is already closed, that is, if it is connected to the low-voltage system 3, that state is maintained, and if the switch 11 is open, that is, disconnected from the low-voltage system 3. If the switch 11 is closed, an operation to close the switch 11 is performed.

分散型電源を有しない需要家2Cでは、需要家管理装置6が低圧系統管理装置8からの自立指令を受信すると(図5のステップS61)、需要家管理装置6は所定の負荷12を遮断する(ステップS62)。例えば、重要な負荷12以外の負荷12を遮断し、重要な負荷12のみの稼働を継続する。この段階で一部の負荷12を遮断しておくことで、負荷使用量を減少させておくことができる。この段階で遮断する負荷12は予め決められており、需要家管理装置6はこれを記憶している。その後、負荷使用量を算出(電力の過不足の算出)し、その値を融通要求量として低圧系統管理装置8に送信する(ステップS63)。   In the customer 2C that does not have a distributed power source, when the customer management device 6 receives an independent command from the low-voltage system management device 8 (step S61 in FIG. 5), the customer management device 6 cuts off the predetermined load 12. (Step S62). For example, the load 12 other than the important load 12 is cut off, and the operation of only the important load 12 is continued. By cutting off some of the loads 12 at this stage, the load usage can be reduced. The load 12 to be cut off at this stage is determined in advance, and the customer management device 6 stores this. Thereafter, the load usage is calculated (calculation of excess or deficiency of power), and the value is transmitted to the low-voltage system management device 8 as an accommodation request amount (step S63).

低圧系統管理装置8は、マスター需要家2Aとスレーブ需要家2Bの需要家管理装置6から送信されてきた連系可能量を受信する(図2のステップS34)と共に、分散型電源を有しない需要家2Cの需要家管理装置6から送信されていた融通要求量を受信する(ステップ35)。その後、ステップS36に進んで融通可能量を計算する。その計算式を数式1に示す。なお、数式1は余剰電力の供給を受ける需要家2C、即ち分散型電源を有しない需要家2Cが複数の場合の式であり、本実施形態のように分散型電源を有しない需要家2Cが1軒の場合には、数式2となる。   The low-voltage system management device 8 receives the possible amount of interconnection transmitted from the customer management devices 6 of the master customer 2A and the slave customer 2B (step S34 in FIG. 2), and the demand that does not have a distributed power source The accommodation request amount transmitted from the customer management device 6 of the house 2C is received (step 35). Then, it progresses to step S36 and the interchangeable amount is calculated. The calculation formula is shown in Formula 1. In addition, Formula 1 is a formula in the case where there are a plurality of consumers 2C that receive supply of surplus power, that is, consumers 2C that do not have a distributed power source, and consumers 2C that do not have a distributed power source as in this embodiment. In the case of one house, Equation 2 is obtained.

[数1]
融通可能量(i)=融通要求量(i)×Σ(連系可能量)/Σ(融通要求量)
ここで、融通可能量(i)は、対象となる需要家2Cへの融通可能量である。また、融通要求量(i)は対象となる需要家2Cからの融通要求量である。また、Σ(連系可能量)はマスター需要家2Aとスレーブ需要家2Bの需要家管理装置6から送信されてきた連系可能量の合計である。また、Σ(融通要求量)は分散型電源を有しない需要家2C全ての需要家管理装置6から送信されてきた融通要求量の合計である。
[Equation 1]
Accommodable amount (i) = Accommodated request amount (i) x Σ (interconnectable amount) / Σ (accommodated request amount)
Here, the interchangeable amount (i) is the interchangeable amount to the target consumer 2C. Further, the accommodation request amount (i) is the accommodation request amount from the target consumer 2C. Further, Σ (linkable amount) is a total of linkable amounts transmitted from the customer management devices 6 of the master customer 2A and the slave customer 2B. Further, Σ (accommodation request amount) is the sum of the accommodation request amounts transmitted from the customer management devices 6 of all the consumers 2C that do not have a distributed power source.

[数2]
融通可能量=融通要求量×Σ(連系可能量)/融通要求量
=Σ(連系可能量)
ここで、融通可能量は、分散型電源を有しない1軒の需要家2Cへの融通可能量である。また、融通要求量は分散型電源を有しない1軒の需要家2Cからの融通要求量である。また、Σ(連系可能量)はマスター需要家2Aとスレーブ需要家2Bの需要家管理装置6から送信されてきた連系可能量の合計である。
[Equation 2]
Accommodable amount = Accommodated request amount x Σ (interconnectable amount) / Acceptable amount
= Σ (Amount that can be connected)
Here, the interchangeable amount is an amount that can be accommodated to one customer 2C that does not have a distributed power source. The accommodation request amount is an accommodation request amount from one customer 2C that does not have a distributed power source. Further, Σ (linkable amount) is a total of linkable amounts transmitted from the customer management devices 6 of the master customer 2A and the slave customer 2B.

数式1では、余剰電力を供給する側(マスター需要家2Aとスレーブ需要家2B)の連系可能量の合計を、余剰電力の供給を受ける側(分散型電源を有しない需要家2C)の融通要求量の割合に応じて各需要家2Cに分配する。   In Formula 1, the total amount of possible interconnections of the surplus power supply side (master consumer 2A and slave consumer 2B) is interchanged with the surplus power supply side (customer 2C having no distributed power source). The distribution is made to each consumer 2C according to the ratio of the requested amount.

このようにして求めた融通可能量を分散型電源を有しない需要家2Cの需要家管理装置6に送信する(ステップS37)。その後、ステップS33に戻ってステップS33〜ステップS37を繰り返し実行する。   The interchangeable amount obtained in this way is transmitted to the consumer management device 6 of the consumer 2C that does not have a distributed power supply (step S37). Then, it returns to step S33 and repeatedly performs step S33-step S37.

次に、図5のステップS64において、低圧系統管理装置8から融通可能量を受信した需要家2Cの需要家管理装置6は、融通可能量に応じて負荷選択遮断をすべきか否かを判断する(ステップS65)。分散型電源を有していない需要家2Cでは、融通可能量>融通要求量の場合は、他の需要家から供給される余剰電力によって稼働させたい全ての負荷12を稼働させることができるので、負荷選択遮断を行なう必要がない。したがって、需要家管理装置6はステップS65からステップS66に進んで遮断中の負荷12があるか否かを判断する。いま、自立運転に移行した直後であり遮断中の負荷12は無いので、そのままステップS63に戻る。   Next, in step S64 of FIG. 5, the customer management device 6 of the customer 2C that has received the available amount from the low-voltage system management device 8 determines whether or not load selection should be blocked according to the available amount. (Step S65). In the customer 2C that does not have a distributed power source, if the available amount> the required amount of accommodation, it is possible to operate all the loads 12 that are desired to be operated by surplus power supplied from other customers. There is no need to perform load selection interruption. Accordingly, the customer management device 6 proceeds from step S65 to step S66 and determines whether or not there is a load 12 being cut off. Now, since there is no load 12 that is immediately after the transition to the independent operation and is not interrupted, the process directly returns to step S63.

一方、ステップS65において「融通可能量」≦「融通要求量」の場合は、余剰電力の供給を受けてもなお電力が不足する場合であり、この場合には、ステップS67に進んで負荷選択遮断を行ない、電力不足が解消されるまで負荷12を優先順位の低いものから順番に遮断する。即ち、現在稼働している負荷12のうち最も優先順位の低いもの遮断する。本実施形態では、最も優先順位の低い負荷12を一つずつ遮断する。ただし、一度に遮断する負荷12の数は一つに限るものではなく、複数の負荷を一度に遮断しても良い。   On the other hand, if “accommodable amount” ≦ “accommodation required amount” in step S65, the power is still insufficient even if the supply of surplus power is received. In this case, the process proceeds to step S67 and the load selection is cut off. The load 12 is shut off in order from the lowest priority until the power shortage is resolved. That is, the load with the lowest priority among the currently operating loads 12 is blocked. In this embodiment, the loads 12 having the lowest priority are blocked one by one. However, the number of loads 12 to be blocked at a time is not limited to one, and a plurality of loads may be blocked at a time.

なお、分散型電源を有しない需要家2Cについての負荷12の遮断も、分散型電源1A,1Bを有する需要家2A,2Bの負荷12と同様に、負荷12が遠隔操作可能な機器の場合には、需要家管理装置6はその負荷12を例えば無線LANなどを使って直接オンオフ操作したり、運転状態を変化させたりする。また、負荷12が遠隔操作不可能な機器の場合には、例えば負荷12のすぐ上流に遠隔操作可能なスイッチを設けておき、需要家管理装置6はそのスイッチを開閉操作することで負荷12をオンオフ操作する。   It should be noted that the interruption of the load 12 for the consumer 2C that does not have the distributed power supply is also performed when the load 12 is a device that can be remotely operated, similar to the load 12 of the consumers 2A and 2B having the distributed power supplies 1A and 1B. The customer management device 6 directly turns on or off the load 12 using a wireless LAN, for example, or changes the operating state. When the load 12 is a device that cannot be remotely operated, for example, a switch that can be remotely operated is provided immediately upstream of the load 12, and the customer management device 6 opens and closes the load 12 by opening and closing the switch. Operate on and off.

ステップS67を実行した後、需要家管理装置6はステップS63に戻り、負荷使用量を算出し直し、その値を融通要求量として低圧系統管理装置8に送信する。その後、低圧系統管理装置8から新たな融通可能量を受信する(ステップS64)。そして、ステップS67の実行によって1つの負荷12を遮断してもなお「融通可能量」≦「融通要求量」の場合には、再度ステップS67へと進み、現在稼働している負荷12のうち最も優先順位の低いもの遮断する。そして、ステップS65において「融通可能量」>「融通要求量」となるまでステップS63→S64→S65→S67→S63を繰り返し実行し、負荷選択遮断を行ないながら停電となるのを防止する。   After executing Step S67, the customer management device 6 returns to Step S63, recalculates the load usage amount, and transmits the value to the low-voltage system management device 8 as the accommodation request amount. Thereafter, a new interchangeable amount is received from the low-voltage system management device 8 (step S64). Then, even if one load 12 is shut off by executing step S67, if “accommodable amount” ≦ “accommodation request amount”, the process proceeds to step S67 again, and the load 12 that is currently operating is the most. Block low priority items. In step S65, steps S63, S64, S65, S67, and S63 are repeatedly executed until “accommodable amount”> “accommodation request amount”, thereby preventing a power failure while performing load selection interruption.

このように、余剰電力の供給を受けてもなお電力が不足する場合には、電力不足が解消されるまで負荷12を優先順位の低いものから順番に遮断する。   As described above, when the power is still insufficient even when the supply of surplus power is received, the load 12 is shut off in order from the lowest priority until the power shortage is resolved.

負荷選択遮断によって「融通可能量」>「融通要求量」になると、需要家管理装置6はステップS65からS66に進み、遮断中の負荷12があるか否かを判断する。いまステップS67の実行により遮断中の負荷12があることから、ステップS68に進み、遮断中の負荷12の回復が可能か否かを判断する。   If “available amount”> “availability requested amount” is satisfied due to the load selection interruption, the customer management device 6 proceeds from step S65 to S66, and determines whether there is a load 12 being interrupted. Since there is a load 12 being interrupted by the execution of step S67, the process proceeds to step S68 to determine whether the load 12 being interrupted can be recovered.

ステップS68では、図4のステップS59と同様に、遮断中の負荷12の回復が可能か否かは次のようにして判断する。例えば、遮断中の負荷12のうち次ぎに回復しようとしているものの使用電力(以下、「遮断負荷使用量」という)と上述の「融通要求量(負荷使用量)」との合計を算出し、上述の「融通可能量」と比較する。そして、「融通可能量」≧「融通要求量」+「遮断負荷使用量」の場合には、遮断中の負荷12の回復が可能と判断し、「融通可能量」<「融通要求量」+「遮断負荷使用量」の場合には、遮断中の負荷12の回復が不可能と判断する。   In step S68, as in step S59 of FIG. 4, whether or not the load 12 being cut off can be recovered is determined as follows. For example, the sum of the electric power used (hereinafter referred to as “interrupted load usage”) of the load 12 that is about to be recovered next and the above-mentioned “accommodation request amount (load usage)” is calculated. Compared to the "Available amount" of Then, if “available amount” ≧ “availability requested amount” + “interrupted load usage amount”, it is determined that the load 12 being disconnected can be recovered, and “available amount” <“availability requested amount” + In the case of “blocking load usage”, it is determined that the load 12 being blocked cannot be recovered.

ここで、遮断中の負荷12のうち次ぎに回復しようとするものは、負荷12を遮断する際に使用した優先順位に従って決定される。即ち、遮断中の負荷12のうち、最も優先順位の高いもの(1番目の負荷)について上述の「融通可能量」≧「融通要求量」+「遮断負荷使用量」が成立する場合には、当該1番目の負荷12が次ぎに回復させる負荷となる。また、1番目の負荷12について「融通可能量」<「融通要求量」+「遮断負荷使用量」となる場合には、遮断中の負荷12のうち次ぎに優先順位の高いもの(2番目の負荷)について「融通可能量」≧「融通要求量」+「遮断負荷使用量」が成立するときには、当該2番目の負荷12が次ぎに回復させる負荷となる。さらに、2番目の負荷12についても「融通可能量」<「融通要求量」+「遮断負荷使用量」となる場合には、遮断中の負荷12のうちその次ぎに優先順位の高いもの(3番目の負荷)について「融通可能量」≧「融通要求量」+「遮断負荷使用量」が成立するときには、当該3番目の負荷12が次ぎに回復させる負荷となる。以降同様に、4番目の負荷、5番目の負荷、…となる。このように、優先順位に従って回復可能な負荷12を決定する。そして、遮断中の全ての負荷12について上述の「融通可能量」<「融通要求量」+「遮断負荷使用量」となる場合には、負荷の回復は不可能と判断する。   Here, the load to be recovered next among the loads 12 being cut off is determined according to the priority order used when the load 12 is cut off. That is, when the above-mentioned “accommodable amount” ≧ “accommodation request amount” + “interrupted load usage amount” is established for the load 12 with the highest priority (first load) among the interrupted loads 12, The first load 12 becomes a load to be recovered next. Further, when “available amount” <“availability requested amount” + “blocking load usage amount” for the first load 12, the next highest priority among the blocked loads 12 (the second load) For “load”, when “accommodable amount” ≧ “accommodation request amount” + “interrupted load usage amount” is satisfied, the second load 12 becomes a load to be recovered next. Further, when “containable amount” <“accommodation request amount” + “blocking load usage amount” also applies to the second load 12, the next highest load among the blocked loads 12 (3 When “containable amount” ≧ “accommodation request amount” + “blocking load use amount” is established, the third load 12 becomes a load to be recovered next. Thereafter, similarly, the fourth load, the fifth load, and so on. Thus, the recoverable load 12 is determined according to the priority order. When all the loads 12 being cut off satisfy the above-mentioned “accommodable amount” <“accommodation request amount” + “cut off load usage amount”, it is determined that the load cannot be recovered.

このように、回復させても「融通可能量」を上回らない遮断中の負荷12を優先順位の高いものから順番に回復させる。   In this way, the interrupted loads 12 that do not exceed the “accommodable amount” even if they are recovered are recovered in order from the highest priority.

そして、負荷12の回復が可能な場合にはステップS69に進んで負荷を回復させる。即ち、当該負荷12への通電を再開する。その後ステップS63に戻る。一方、ステップS68において、負荷の回復が可能な場合には、そのままステップS63に戻る。   If the load 12 can be recovered, the process proceeds to step S69 to recover the load. That is, energization to the load 12 is resumed. Thereafter, the process returns to step S63. On the other hand, if the load can be recovered in step S68, the process directly returns to step S63.

一方、ステップS66において遮断されていた負荷12が全て回復された場合には、ステップS63に戻り、以降、ステップS63からステップS69までが繰り返し実行される。   On the other hand, when all the loads 12 that have been interrupted in step S66 are recovered, the process returns to step S63, and thereafter, steps S63 to S69 are repeatedly executed.

低圧系統管理装置8と各需要家管理装置6との信号の送受信は同期して行なわれる。低圧系統管理装置8と各需要家管理装置6は上述のステップを繰り返し行なって分散型電源1A,1Bを有する需要家2A,2Bの余剰電力を分散型電源を有しない需要家2Cに供給し、高圧系統4から切り離された低圧系統3の自立運転を行なう。   Signal transmission / reception between the low-voltage system management device 8 and each customer management device 6 is performed in synchronization. The low-voltage system management device 8 and each customer management device 6 repeat the above steps to supply the surplus power of the customers 2A and 2B having the distributed power sources 1A and 1B to the customer 2C having no distributed power source, The self-sustained operation of the low-voltage system 3 separated from the high-voltage system 4 is performed.

このように、需要家2Bの有する分散型電源1Bの発電量が当該需要家2B構内の負荷使用量よりも大きい場合、分散型電源1Bの出力を落として発電量を負荷使用量に合わせるのではなく、負荷使用量を超える分を余剰電力として他の需要家2Cに供給するので、分散型電源1Bの能力を有効に活用することができる。また、分散型電源を有しない需要家2Cは余剰電力の供給を受けることができるので、停電を免れることができる。さらに、分散型電源1A,1Bを有する需要家2A,2Bが高圧系統4の停電時に負荷10を使用するために手動で回路の接続変更を行なう必要がなくなり使い勝手が良い。   As described above, when the power generation amount of the distributed power source 1B of the customer 2B is larger than the load usage amount in the customer 2B premises, the output of the distributed power source 1B is reduced to match the power generation amount with the load usage amount. However, since the amount exceeding the load usage is supplied as surplus power to the other consumers 2C, the capacity of the distributed power source 1B can be effectively utilized. Moreover, since the consumer 2C which does not have a distributed power supply can receive supply of surplus electric power, it can avoid a power failure. Further, since the customers 2A and 2B having the distributed power sources 1A and 1B use the load 10 at the time of a power failure in the high-voltage system 4, it is not necessary to manually change the circuit connection, which is convenient.

また、低圧系統管理装置8と各需要家管理装置6は上述のステップを繰り返し行なうので、分散型電源1A,1Bの発電量と負荷使用量の変動に良好に素早く対応することができる。   Moreover, since the low voltage | pressure system management apparatus 8 and each customer management apparatus 6 repeat the above-mentioned step, it can respond to the fluctuation | variation of the electric power generation amount and load usage-amount of distributed power supply 1A, 1B satisfactorily quickly.

高圧系統4の異常が解消すると、これを検出した運用管理サブ装置13が低圧系統管理装置8に再連系指令を送信する。この指令を受けた低圧系統管理装置8は開閉器5を閉じて低圧系統3を高圧系統4に系統連系させると共に、各需要家2A,2B,2Cの需要家管理装置6に終了指令を送信して自立運転を終了する。   When the abnormality of the high-voltage system 4 is resolved, the operation management sub-device 13 that has detected the abnormality transmits a reconnection command to the low-voltage system management device 8. In response to this command, the low-voltage system management device 8 closes the switch 5 to link the low-voltage system 3 to the high-voltage system 4 and sends an end command to the customer management devices 6 of the respective consumers 2A, 2B, 2C. To end the autonomous operation.

終了指令を受信したマスター需要家2Aの需要家管理装置6は、開閉器5の一次側(高圧系統4側)の電圧の実効値と位相を計測装置15により監視すると共に、二次側(低圧系統3側)の電圧の実効値と位相を計測装置14により監視し、一次側の電圧値の実効値と位相に二次側の電圧の実効値と位相が一致又は近くなるように分散型電源1Aを制御する。一次側と二次側の位相差と電位差がある範囲内に収まった時点で需要家管理装置6は低圧系統管理装置8に信号を供給し、この信号を受けた低圧系統管理装置8は開閉器5を投入する。また、需要家管理装置6は低圧系統管理装置8に信号を供給すると同時にこれまでの電流値を維持した状態でパワーコンディショナ9Aの運転制御モードを電圧制御モードから電流制御モードに変更する。その後、選択遮断していた負荷12がある場合にはこれを順次復帰させる。   The customer management device 6 of the master customer 2A that has received the termination command monitors the effective value and phase of the voltage on the primary side (the high voltage system 4 side) of the switch 5 with the measuring device 15, and the secondary side (low voltage) The effective value and phase of the voltage on the system 3 side) are monitored by the measuring device 14, and the distributed power source is set so that the effective value and phase of the primary side voltage value coincide with or close to the effective value and phase of the secondary side voltage. 1A is controlled. When the phase difference and potential difference between the primary side and the secondary side fall within a certain range, the customer management device 6 supplies a signal to the low-voltage system management device 8, and the low-voltage system management device 8 that receives this signal is a switch. 5 is thrown. Further, the customer management device 6 supplies a signal to the low-voltage system management device 8 and at the same time changes the operation control mode of the power conditioner 9A from the voltage control mode to the current control mode while maintaining the current value. Thereafter, if there is a load 12 that has been selectively cut off, it is returned in sequence.

また、終了指令を受信したスレーブ需要家2Bの需要家管理装置6は、開閉器5の投入とパワーコンディショナ9Aの運転モードが切り替わったことを確認した低圧系統管理装置8からの自立運転解除指令により、需要家2B側の電圧の位相・実効値を低圧系統3側の位相・実効値に近づくように制御し、この位相差と電位差がある範囲内に収まった時点で開閉器11を投入する。その後、選択遮断していた負荷12を順次復帰させる。   In addition, the customer management device 6 of the slave customer 2B that has received the termination command receives the independent operation cancellation command from the low-voltage system management device 8 that has confirmed that the switch 5 is turned on and the operation mode of the power conditioner 9A has been switched. Thus, the phase / effective value of the voltage on the customer 2B side is controlled to approach the phase / effective value on the low voltage system 3 side, and the switch 11 is turned on when the phase difference and the potential difference are within a certain range. . Thereafter, the load 12 that has been selectively cut off is sequentially returned.

また、終了指令を受信した需要家2Cは、遮断していた負荷12を順次復帰させる。各需要家2A、2Bの蓄電装置10の蓄電池残量が少ない場合には、契約容量の範囲で充電を行う。   In addition, the customer 2 </ b> C that has received the termination instruction sequentially returns the blocked load 12. When the storage battery remaining amount of the power storage device 10 of each consumer 2A, 2B is small, charging is performed within the contracted capacity range.

従来のシステムでは、停電復旧後には負荷12は停電前の状態を維持しており、これに対し分散型電源は機器保護等の観点から一定の時間(例えば1分)を経過した後、発電を開始する。このため、停電前の状態で分散型電源が発電を行っていた場合、停電復旧直後の再連系時には負荷12が過剰な状態となり、高圧系統4に与えるショックが大きくなる。これに対し、この自立運転システムでは、需要家管理装置6は負荷変動補償機能を有しており、これは負荷12の変動を時定数例えば1分で補償するものある。すなわち、現在の時刻から例えば1分前までの負荷12の平均を負荷電力指令値とし、その変動分を蓄電装置10で補償する。このため、急激に負荷12が変動してもその変化は例えば1分間の間に平滑化される。再連系前の負荷12はゼロなので、再連系時には例えば1分間の間にゼロから停電前の負荷12の使用量まで負荷12が増加する。この間に分散型電源が起動することにより、負荷過剰の状態を回避することができ、高圧系統4へのショックを小さくすることができる。   In the conventional system, after the power failure is restored, the load 12 maintains the state before the power failure. On the other hand, the distributed power source generates power after a certain time (for example, 1 minute) from the viewpoint of equipment protection. Start. For this reason, when the distributed power source is generating power in a state before the power failure, the load 12 becomes excessive at the time of reconnection immediately after the power failure is restored, and the shock given to the high-voltage system 4 is increased. On the other hand, in this self-sustained operation system, the customer management device 6 has a load fluctuation compensation function, which compensates the fluctuation of the load 12 with a time constant, for example, 1 minute. That is, the average of the load 12 from the current time to, for example, one minute before, is used as the load power command value, and the variation is compensated by the power storage device 10. For this reason, even if the load 12 fluctuates suddenly, the change is smoothed, for example, for 1 minute. Since the load 12 before the reconnection is zero, the load 12 increases from zero to the usage amount of the load 12 before the power failure, for example, during one minute during the reconnection. By starting the distributed power supply during this time, an excessive load state can be avoided and the shock to the high voltage system 4 can be reduced.

また、すべての分散型電源1A,1Bの出力および蓄電装置10の残量が0となったときに、低圧系統管理装置8は自立運転を強制終了させる。   Further, when the outputs of all the distributed power sources 1A and 1B and the remaining amount of the power storage device 10 become 0, the low-voltage system management device 8 forcibly ends the autonomous operation.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

例えば、上述の説明では、マスター需要家2Aに加えてスレーブ需要家2Bも蓄電装置10を備えていたが、スレーブ需要家2Bは蓄電装置10を備えていなくても良い。   For example, in the above description, the slave customer 2B includes the power storage device 10 in addition to the master customer 2A, but the slave customer 2B may not include the power storage device 10.

また、上述の説明では、分散型電源1A,1Bとして直流を発生させるものを使用していたが、交流を発生させる分散型電源1A,1Bの使用も可能である。交流を発生させる分散型電源1A,1Bとしては、例えば、風力発電装置、小水力発電装置、ディーゼルエンジン発電装置、ガスエンジン発電装置、ガスタービン発電装置、マイクロガスタービン(MGT)発電装置、廃棄物発電装置等の使用が可能である。交流を発生させる分散型電源1A,1Bの使用する場合にはインバータは不要であり、これらの発電装置の交流発電機を低圧系統3に系統連系する。   In the above description, the distributed power sources 1A and 1B that generate direct current are used. However, the distributed power sources 1A and 1B that generate alternating current can also be used. Examples of distributed power sources 1A and 1B that generate alternating current include wind power generators, small hydroelectric generators, diesel engine power generators, gas engine power generators, gas turbine power generators, micro gas turbine (MGT) power generators, and waste A power generator or the like can be used. In the case of using the distributed power sources 1A and 1B that generate alternating current, an inverter is unnecessary, and the alternating current generator of these power generators is connected to the low voltage system 3.

なお、交流を発生する分散型電源のうち電圧維持能力のある同期発電機がある場合には、その分散型電源をマスター分散型電源1Aにすることができる。即ち、同期発電機が燃料投入型で出力の制御が可能な場合、低圧系統管理装置8は低圧系統3の負荷量(低圧系統3に接続されている需要家2A,2B,2C全ての使用電力量の合計)を常にモニターしているので、負荷量に合わせて同期発電機の発電量を低圧系統管理装置8が指令する。制御遅れ等による発電量と負荷量の短時間アンバランスは蓄電装置10で吸収する。交流を発生させる分散型電源で電圧維持能力のあるものが複数台、低圧系統3に系統連系されている場合には、より容量の大きいものや出力制御が容易なものをマスター分散型電源1Aとすることが望ましい。   When there is a synchronous generator having a voltage maintaining capability among the distributed power sources that generate alternating current, the distributed power source can be the master distributed power source 1A. That is, when the synchronous generator is a fuel input type and the output can be controlled, the low-voltage system management device 8 uses the load amount of the low-voltage system 3 (the power used by all the consumers 2A, 2B, 2C connected to the low-voltage system 3). Since the total amount) is constantly monitored, the low-voltage system management device 8 commands the power generation amount of the synchronous generator in accordance with the load amount. Short-time imbalance between the power generation amount and the load amount due to control delay or the like is absorbed by the power storage device 10. When a plurality of distributed power sources that generate voltage are capable of maintaining voltage and are connected to the low-voltage system 3, a master distributed power source 1A having a larger capacity or that can be easily controlled is used. Is desirable.

また、交流を発生する分散型電源が電圧維持能力のない誘導発電機である場合には、当該分散型電源は基本的にスレーブ需要家2Bの分散型電源1Bとなる。ただし、他にマスター分散型電源1Aとなりうる分散型電源が無い場合、当該分散型電源の交流出力をインバータで直流に変換した後交流連系することで、当該分散型電源をマスター分散型電源1Aにすることが可能である。   In addition, when the distributed power source that generates alternating current is an induction generator having no voltage maintaining capability, the distributed power source is basically the distributed power source 1B of the slave consumer 2B. However, when there is no other distributed power source that can be the master distributed power source 1A, the AC output of the distributed power source is converted into direct current by an inverter and then connected to the AC power source to connect the distributed power source to the master distributed power source 1A. It is possible to

また、上述の説明では、余剰電力の供給を受ける需要家が分散型電源を有しない需要家2Cのみであったが、分散型電源1Bを有する需要家2Bが電力不足となる場合には当該需要家2Bにも余剰電力を供給するようにしても良い。つまり、上述の説明では、分散型電源1Bを有する需要家2Bが電力不足となった場合、即ち「分散型電源の発電量」よりも「負荷使用量」が大きい場合には開閉器11を開いて構内自立運転を行なっていたが、この場合に開閉器11を閉じて余剰電力の供給を受けるようにしても良い。この場合にも、余剰電力を有効に活用することができる。   Further, in the above description, the consumer who receives the supply of surplus power is only the consumer 2C that does not have the distributed power source. However, if the consumer 2B having the distributed power source 1B has a power shortage, the demand is You may make it supply surplus electric power also to the house 2B. In other words, in the above description, when the customer 2B having the distributed power source 1B runs out of power, that is, when the “load usage” is larger than the “power generation amount of the distributed power source”, the switch 11 is opened. However, in this case, the switch 11 may be closed to receive surplus power. In this case as well, surplus power can be used effectively.

(1) 本発明の低圧系統の自立運転方法・自立運転システムの有効性を検証するため、実証試験を実施した。なお、この自立運転方法・自立運転システムは、分散型電源が需要家サイドに多数連系されることを想定した需要地系統の中で適用されるものであり、需要地系統についての研究に関する事項についても説明し、あわせて低圧系統の自立運転の実証試験について説明する。 (1) In order to verify the effectiveness of the self-sustaining operation method and the self-sustaining operation system of the low-voltage system of the present invention, a verification test was conducted. This self-sustained operation method and self-sustained operation system is applied in the demand area system assuming that many distributed power sources are connected to the customer side. In addition, the demonstration test of the autonomous operation of the low-voltage system is also explained.

(2) 需給インターフェイス(需要家管理装置6)の概要
(2.1) 需給インターフェイスの概要について説明する。
需給インターフェイス(需給IF)は、需要地系統において需要家のアンシラリーサービスやエネルギーマネージメントを行うシステムである。需給インターフェイスの概念を図6に示す。
(2) Overview of Supply / Demand Interface (Customer Management Device 6) (2.1) An overview of the supply / demand interface will be described.
The supply-demand interface (supply-demand IF) is a system that performs ancillary service and energy management for consumers in a demand area system. The concept of the supply and demand interface is shown in FIG.

図6にあるように需給インターフェイスは、需要地系統から料金系統情報を受け取り、所有する分散型電源や家電機器を制御し、分散型電源の運転状況や負荷の使用電力量を系統側にフィードバックする。需給インターフェイスは、需要家構内のさまざまな要素を電力計オブジェクト、分電盤オブジェクト、家電機器オブジェクト、分散型電源オブジェクト、センサーオブジェクト、情報端末オブジェクトなどオブジェクトの形で表現しており、それぞれ検針、漏電や過電流検出など需要家保護、家電機器の自動運転や負荷制御、分散型電源の協調運転や連系保護、電力品質監視等々を行っている。   As shown in FIG. 6, the supply and demand interface receives the charge system information from the demand point system, controls the distributed power source and home appliances that it owns, and feeds back the operating status of the distributed power source and the power consumption of the load to the system side. . The supply-demand interface expresses various elements in the customer premises in the form of objects such as power meter objects, distribution board objects, home appliance objects, distributed power supply objects, sensor objects, and information terminal objects. Protects consumers such as overcurrent detection, automatic operation and load control of home appliances, coordinated operation and interconnection protection of distributed power sources, and power quality monitoring.

(2.2) 次に、需給インターフェイスシステムパイロットシステムについて説明する。
前節の需給インターフェイスの機能検証のため、需給インターフェイスパイロットシステムを設置した。パイロットシステムの概要を図7に示す。
(2.2) Next, the supply and demand interface system pilot system will be described.
A supply / demand interface pilot system was installed to verify the function of the supply / demand interface in the previous section. An outline of the pilot system is shown in FIG.

パイロットシステムは、低圧系統を管理する低圧系統管理システム(低圧系統管理装置8)、事故時に低圧系統を高圧系統から遮断する低圧開閉器、低圧幹線および分岐線のインピーダンスを模擬する低圧模擬配電線、および4軒の模擬需要家で構成される。各模擬需要家は、無瞬断で系統離脱・再連系を行う半導体開閉器、インバータを高機能化した需要家パワーコンディショナ、分散型電源(太陽光発電:定格4.5kW)、分散型電源出力平滑化や負荷変動吸収用の蓄電池(容量1kWh)、需要家を模擬する電子負荷装置(定格6kVA)、およびこれらを制御する需給インターフェイスで構成される。需給インターフェイスと需要家パワーコンディショナ間の通信はRS232で、需給インターフェイスと電子負荷間はEthernet(登録商標)経由のRS232で、需給インターフェイスと低圧系統管理システム間はEthernet(登録商標)で行っている。   The pilot system includes a low-voltage system management system (low-voltage system management device 8) that manages the low-voltage system, a low-voltage switch that shuts off the low-voltage system from the high-voltage system in the event of an accident, a low-voltage simulated distribution line that simulates the impedance of the low-voltage trunk line and branch line, And 4 simulated customers. Each simulated customer is a semiconductor switch that disconnects and reconnects without interruption, a consumer power conditioner with advanced inverter functions, a distributed power source (solar power generation: rated 4.5 kW), a distributed type A storage battery (capacity 1 kWh) for smoothing power output and absorbing load fluctuations, an electronic load device (rated 6 kVA) for simulating a consumer, and a supply / demand interface for controlling them. Communication between the supply and demand interface and the customer power conditioner is RS232, between the supply and demand interface and the electronic load is RS232 via Ethernet (registered trademark), and between the supply and demand interface and the low-voltage system management system is Ethernet (registered trademark). .

低圧系統管理システムは、運用管理サブシステム(運用管理サブ装置13)および低圧需給インターフェイスからの情報に基づき、柱上トランス下の低圧系統の運用管理を行う。低圧系統事故時には低圧開閉器を開放することにより、上位系統である高圧系統(以下、上位系統)への事故波及を防止するとともに、各需要家の需給インターフェイスに指令を行い、需要家構内での自立運転を実施する。また、上位系である高圧系統で異常が発生した場合には、低圧系統管理システム自身が計測している情報あるいは運用管理サブシステムからの情報に基づき、低圧系統開閉器を開放し、低圧系統の自立運転を行う。低圧系統の自立運転については後述の(5)章で詳しく述べる。   The low-voltage system management system performs operation management of the low-voltage system under the pole transformer based on information from the operation management subsystem (operation management sub-device 13) and the low-voltage supply and demand interface. In the event of a low-voltage system accident, the low-voltage switch is opened to prevent the accident from spreading to the high-voltage system, which is the host system (hereinafter referred to as the host system), and to give instructions to each customer's supply and demand interface. Implement autonomous operation. In addition, if an abnormality occurs in the high-voltage system, which is the upper system, the low-voltage system switch is opened based on information measured by the low-voltage system management system itself or information from the operation management subsystem. Perform autonomous operation. The self-sustained operation of the low-voltage system will be described in detail in section (5) below.

また、低圧系統管理システムは、需給インターフェイスからの情報に基づき、低圧系統の電圧・電流を常時監視し、系統異常時には需給IFに対し、分散型電源の有効電力・力率指令や負荷制御を実施する。また、運用管理サブシステムからの要求に応じて、低圧系統の負荷状態や分散型電源運転状況を取りまとめて運用管理サブシステムに通知する。   In addition, the low-voltage system management system constantly monitors the voltage and current of the low-voltage system based on information from the supply-demand interface, and implements the active power / power factor command and load control of the distributed power supply to the supply-demand IF when the system is abnormal To do. Further, according to a request from the operation management subsystem, the load state of the low-voltage system and the distributed power supply operation status are collected and notified to the operation management subsystem.

機能の一例として、低圧系統管理システムの表示画面の一例を図8〜図9に示す。図8の上部は、低圧系統開閉器の状態(丸数字の1)および低圧系統の状態(丸数字の2)を表している。上位系統異常時には、異常発生時刻とその際の系統情報を表示すると共に低圧開閉器をトリップさせ、下位の需給インターフェイスに系統異常を通知する。また、手動による低圧系統自立、連系復帰も可能である。   As an example of the functions, examples of display screens of the low-voltage system management system are shown in FIGS. The upper part of FIG. 8 shows the state of the low-voltage system switch (circle numeral 1) and the state of the low-voltage system (circle numeral 2). When the upper system is abnormal, the abnormality occurrence time and system information at that time are displayed and the low-voltage switch is tripped to notify the lower-level supply and demand interface of the system abnormality. In addition, manual low-voltage system independence and interconnection return are possible.

図8の下部は各需要家パワーコンディショナの状態を示している。需給インターフェイスおよび需要家パワーコンディショナと常時通信することにより、需要家パワーコンディショナの設定値や運転状態、蓄電池電圧・電流、直流入力電圧・電流、交流入出力電流・電圧などが把握できる(丸数字の3)。また、需要家パワーコンディショナの負荷変動補償や無効電力・高調波補償機能のオンオフ、電圧上昇抑制時の力率指令や出力抑制指令が可能である(丸数字の4)。   The lower part of FIG. 8 shows the state of each consumer power conditioner. By constantly communicating with the supply and demand interface and the customer's power conditioner, it is possible to grasp the setting value and operating state of the consumer's power conditioner, storage battery voltage / current, DC input voltage / current, AC input / output current / voltage, etc. Number 3). In addition, load fluctuation compensation and reactive power / harmonic compensation function of a consumer power conditioner can be turned on / off, and a power factor command and an output suppression command can be issued when voltage rise is suppressed (circled number 4).

図9は、低圧系統の状態を示している。低圧系統の各相の電圧・電流・有効・無効電力および零相電流(丸数字の1)、各需要家の連系点電圧・電流・有効電力・無効電力、負荷有効電力・無効電力及び分散型電源有効電力・無効電力(計算値)(丸数字の2)を常時表示している。また分散型電源の逆潮流時の電圧上昇抑制防止機能(丸数字の3)の起動もこの画面から実施可能となっている   FIG. 9 shows the state of the low-voltage system. Voltage / current / active / reactive power and zero-phase current (circle number 1) of each phase of low-voltage system, connection point voltage / current / active power / reactive power of each customer, load active power / reactive power and dispersion Type power supply active power / reactive power (calculated value) (circled number 2) is always displayed. In addition, the voltage rise suppression prevention function (circled number 3) at the time of reverse power flow of the distributed power supply can be activated from this screen.

(3) 需要家シミュレータの開発
(3.1) 需要家シミュレータの概要について説明する。
需要家シミュレータは、家庭内の電気機器利用状況をコンピュータ上で仮想的に再現し、各機器のON−OFF状態に応じて家庭内の負荷電力量を計算し、計算結果を電子負荷に指令することにより、家庭内の負荷電力量をリアルタイムで再現するものである。
(3) Development of customer simulator (3.1) The outline of the customer simulator will be described.
The consumer simulator virtually reproduces the usage status of electrical devices in the home on a computer, calculates the load power in the home according to the ON / OFF state of each device, and instructs the electronic load on the calculation result. Thus, the load electric energy in the home is reproduced in real time.

(3.2) 機器の表現方法について説明する。
シミュレータにおける各家電機器は、家電機器オブジェクトの形で表現され、機器名、状態、定格電力、消費電力、力率のほか、接続回路、接続相、設置場所、機器分類、待機時消費電力、消費電力変動度、制御優先度の要素を持つ。これらの他に予備の要素を2つ用意している。
(3.2) A method for expressing a device will be described.
Each home appliance in the simulator is expressed in the form of a home appliance object, and in addition to the device name, state, rated power, power consumption, power factor, connection circuit, connection phase, installation location, device classification, standby power consumption, consumption It has elements of power fluctuation and control priority. In addition to these, two spare elements are prepared.

各要素のうち、機器名、定格電力、待機時消費電力、機器分類は固定とし、掃除機やアイロンなどの移動機器を除いては接続相、設置場所も固定される。移動機器については、部屋のコンセントに接続された時点で接続相、接続回路、設置場所が自動認識される。消費電力、力率、運転状態は機器の状態によって変化する。消費電力変動度は、各機器の出力がどの程度変動するかを示す指標であり、機器運転時の消費電力量の分散を平均で除して算出される。例えば冷蔵庫のようにオン−オフを繰り返すような機器では大きな値となり、逆に照明などの機器は小さくなる。   Among the elements, the device name, rated power, standby power consumption, and device classification are fixed, and the connection phase and installation location are fixed except for mobile devices such as vacuum cleaners and irons. For mobile devices, the connection phase, connection circuit, and installation location are automatically recognized when connected to a room outlet. The power consumption, power factor, and operating state vary depending on the state of the device. The power consumption fluctuation degree is an index indicating how much the output of each device fluctuates, and is calculated by dividing the variance of the power consumption amount during device operation by an average. For example, a device such as a refrigerator that repeatedly turns on and off has a large value, and conversely, a device such as a lighting device becomes small.

今回の一連の実証実験では、仮の値を入力した。制御優先度は、負荷選択遮断の際の優先度を表す指標で需要家が入力する。   In this series of demonstration experiments, provisional values were entered. The control priority is input by the customer as an index indicating the priority when the load selection is cut off.

(3.3) シミュレータの機能について説明する。
シミュレータが有している機能は、各機器の状態表示、分電盤の状態表示(電圧、電流、契約容量、分岐回路電流、制御状態)、分岐回路単位での選択負荷制御、契約容量超過時の選択負荷制御、緊急負荷制御による負荷選択遮断、および自立運転時の選択負荷制御である。
(3.3) Explain the function of the simulator.
The simulator has the following functions: status display of each device, distribution panel status display (voltage, current, contract capacity, branch circuit current, control status), selective load control in branch circuit units, when contract capacity is exceeded Selection load control, load selection cutoff by emergency load control, and selection load control during autonomous operation.

今回の一連の実証試験では、3LDKの需要家を想定し、各需要家を機器オブジェクトの詳細は表1のように仮定した。表1は需要家シミュレータで想定した機器リストである。各機器の状態表示画面、分電盤の画面、および制御中の画面の例をそれぞれ図10〜図12に示す。   In this series of demonstration tests, 3LDK customers were assumed, and the details of the equipment objects of each customer were assumed as shown in Table 1. Table 1 is a list of devices assumed by the consumer simulator. Examples of the status display screen of each device, the screen of the distribution board, and the screen under control are shown in FIGS.

・ 機器状態表示
図10は機器状態表示画面である。図中で各機器をダブルクリックすることにより運転/停止状態を切り替えることができる。図中左下の表示説明にあるとおり、運転中の機器は水色で、停止中の機器は白色で表示される。また負荷選択遮断制御対象の機器はピンクで表示される。専用回路で供給されるエアコンや電気温水器などの容量の大きな機器以外の各部屋の機器は、当該の部屋に供給している分岐回路に接続されるものとし、掃除機やアイロンなど各部屋で使われる可能性のある移動機器は利用される部屋にドラッグドロップすることにより、当該の部屋の分岐回路に接続される。
Device status display FIG. 10 is a device status display screen. The operation / stop state can be switched by double-clicking each device in the figure. As shown in the lower left display explanation, the operating device is displayed in light blue, and the stopped device is displayed in white. Also, the load selection cutoff control target device is displayed in pink. Equipment in each room other than large-capacity equipment such as air conditioners and electric water heaters supplied by a dedicated circuit shall be connected to the branch circuit supplying the room, and in each room such as a vacuum cleaner or iron A mobile device that may be used is connected to a branch circuit of the room by drag-and-drop on the room to be used.

・分電盤表示
分電盤表示(図11)は、各分岐回路の通過電流および主幹の通過電流、契約容量等を表示しており、機器表示と同様、通電中は青色、切断時は白色、制御中はピンク色で表示される。制御時には、制御対象機器とその機器が接続されている分岐回路がホップアップ画面で表示される。
・ Distribution panel display The distribution panel display (Fig. 11) displays the passing current of each branch circuit, the passing current of the main trunk, the contract capacity, etc., as in the device display, blue when energized, white when disconnected During control, it is displayed in pink. During control, the control target device and the branch circuit to which the device is connected are displayed on the hop-up screen.

・ 制御時画面
制御時の画面の一例を図12に示す。この例では、エアコン専用の分岐回路6に接続された居間のエアコンが制御対象となっている。制御解除時の画面も制御時の画面と同様に制御対象機器とその機器が接続されている分岐回路がホップアップ画面で表示される。
・ Screen during control An example of the screen during control is shown in FIG. In this example, the living room air conditioner connected to the branch circuit 6 dedicated to the air conditioner is the control target. Similarly to the screen at the time of control, the control release device and the branch circuit to which the device is connected are displayed on the hop-up screen.

《接続回路》:
1:居間、2:台所、3:和室、寝室、4:廊下、浴室、洗面所、トイレ、5:予備A、6〜8:エアコン専用、9:温水器専用、10:予備、99:不定(移動機器)
《設置場所》:
1:居間、2:台所、3:和室、4:寝室、5:玄関・廊下、6:浴室、7:洗面所、8:トイレ、99:不定(移動機器)
《接続相》:
1:U−N(100V)、2:V−N(100V)、3:U−V(200V)、99:不定(移動機器)
《分類》:
1:情報、2:照明、3:衛生、4:厨房、5:給湯、6:娯楽、7:空調・換気、99:その他
<Connection circuit>:
1: living room, 2: kitchen, 3: Japanese-style room, bedroom, 4: corridor, bathroom, washroom, toilet, 5: spare A, 6-8: dedicated to air conditioner, 9: dedicated to water heater, 10: spare, 99: undefined (Mobile equipment)
"Installation location":
1: Living room, 2: Kitchen, 3: Japanese-style room, 4: Bedroom, 5: Entrance / hallway, 6: Bathroom, 7: Toilet, 8: Toilet, 99: Indefinite (mobile equipment)
<< Connection Phase >>
1: U-N (100 V), 2: V-N (100 V), 3: U-V (200 V), 99: Indefinite (mobile equipment)
<Classification>:
1: Information, 2: Lighting, 3: Sanitation, 4: Kitchen, 5: Hot water supply, 6: Entertainment, 7: Air conditioning / ventilation, 99: Other

(4) 負荷選択遮断機能(負荷選択遮断運転)
負荷選択遮断機能は、事前に定めたルールに基づいて需要家機器を漸次遮断し、分岐回路の遮断や屋内全停などを防ぐ機能である。本機能は、常時、緊急時、自立時の選択遮断に分けられる。
(4) Load selection cutoff function (load selection cutoff operation)
The load selection cut-off function is a function that gradually cuts off the customer equipment based on a predetermined rule to prevent a branch circuit from being cut off or an indoor stop. This function can be divided into selective interruption at all times, emergency, and independence.

(4.1) 常時負荷選択遮断について説明する。
常時の負荷選択遮断は、需給インターフェイスが主幹および分岐回路の通過電流を監視し、容量超過時に、予め定めた優先順位に基づき負荷を選択的に遮断してゆく。これに加え、各分岐回路単位での電流監視及び容量超過時の制御を行っている。
(4.1) The constant load selection cutoff will be described.
In the normal load selection cutoff, the supply / demand interface monitors the current passing through the main and branch circuits, and when the capacity is exceeded, the load is selectively cut off based on a predetermined priority order. In addition to this, current monitoring is performed for each branch circuit unit and control is performed when the capacity is exceeded.

容量超過判定は、ブレーカの時限特性に基づき、定格電流の1.1倍の電流が30秒継続した際に容量超過と判定している。負荷遮断後も容量超過が解消されない場合には、次の制御対象機器を遮断する。冷蔵庫やエアコン等間欠的に電流値が変動する機器による容量超過解消を監視するために、一定時間経過後に制御対象機器を復旧させるが、制御のハンチング防止のため3回連続で制御対象となった機器は以後復旧動作を行わず、制御状態のままロックされる。   The capacity excess determination is based on the time characteristics of the breaker, and is determined to exceed the capacity when a current 1.1 times the rated current continues for 30 seconds. If the excess capacity is not resolved after the load is cut off, the next device to be controlled is cut off. In order to monitor overcapacity elimination by devices with intermittently changing current values, such as refrigerators and air conditioners, the controlled device is restored after a certain period of time, but it has been controlled three times in succession to prevent control hunting. The device is locked in the control state without performing recovery operation thereafter.

制御の優先順位は図13のとおりとした。   The priority of control is as shown in FIG.

なお、実証試験においては、需給インターフェイスとインバータおよび電子負荷間の通信時間遅れによる制御遅れを考慮し、30秒間は次の制御動作に移ることを禁止した。   In the demonstration test, it was prohibited to move to the next control operation for 30 seconds in consideration of the control delay due to the communication time delay between the supply and demand interface and the inverter and the electronic load.

(4.2) 緊急時負荷選択遮断について説明する。
緊急時負荷選択遮断は、系統逼迫等の際に運用管理システムからの負荷制御要請に基づき、契約電流を一時的に低減することにより、需要家が自律的に負荷制御を行うものである。運用管理システムから負荷制御要求量が送信され、需給インターフェイスが現在の負荷状態と負荷削減可能量を考慮して、現在の契約電力を緊急時の契約電力に変更し、変更された契約容量に基づいて負荷の選択遮断を行う。制御ロジックは常時のものと共通のため、新たに負荷制御ロジックを必要としないのが特徴である。
(4.2) Explain emergency load selection interruption.
In the emergency load selection interruption, the customer autonomously controls the load by temporarily reducing the contract current based on the load control request from the operation management system when the system is tight. A load control request amount is sent from the operation management system, and the supply and demand interface changes the current contract power to the contract power for emergency in consideration of the current load state and load reduction possible amount, and based on the changed contract capacity To selectively shut off the load. Since the control logic is the same as that at all times, it does not require a new load control logic.

負荷制御の解除は、運用管理システムからの解除指令によって行い、通常モードに復帰する。   The load control is released by a release command from the operation management system, and the normal mode is restored.

(4.3) 自立時負荷選択遮断(図4のステップS58等、図5のステップS67等)について説明する。
自立時の負荷選択遮断機能は、上位系統異常時の需要家構内自立運転時に、蓄電池使用電力可能電力および分散型電源出力可能電力に応じて重要負荷以外の負荷を選択的に遮断し、重要負荷への供給を持続させるものである。
(4.3) Independent load selection cutoff (step S58 in FIG. 4, etc., step S67 in FIG. 5, etc.) will be described.
The load selection cutoff function at the time of self-supporting selectively cuts off loads other than the critical load according to the power available to the storage battery and the power that can be output from the distributed power source during the independent operation of the customer premises when the host system is abnormal. To sustain the supply of

この場合、電池使用電力可能電力を正確に把握することが必要となる。需要家パワーコンディショナの蓄電池には表2に示すような充放電制御を与えている。表2は、蓄電池の充放電制限の方法を示した表である。   In this case, it is necessary to accurately grasp the battery usable power. Charge / discharge control as shown in Table 2 is given to the storage battery of the consumer power conditioner. Table 2 is a table showing a method for limiting charging and discharging of the storage battery.

自立運転時には、過放電による蓄電池劣化が問題となるため、充放電制限を行わない蓄電池電圧の上限値の際に電力可能電力が100%、放電停止電圧の際の電池使用電力可能電力が0%と仮定し、その間の使用可能電力を蓄電池電圧の一次関数で与え直線的に減少させるものとした。   During self-sustained operation, storage battery degradation due to overdischarge becomes a problem. Therefore, the power that can be used is 100% when the upper limit value of the storage battery voltage is not limited, and the battery that can be used is 0% when the discharge is stopped. It was assumed that the available power during that time was given as a linear function of the battery voltage and decreased linearly.

すなわち、Batrem:電池使用電力可能電力、Vbat:蓄電池電圧とすると、数式1〜数式3となる。また、蓄電池電圧と電池使用電力可能電力の関係を図14に示す。
・ Vbat≧247.2[V]のとき
[数1]
Batrem = 3000[W] (3000W:自立時インバータ定格)
・ Vbat<198[V]のとき
[数2]
Batrem = 0[W]
・ 198.0≦Vbat<247.2[V]のとき
That is, Equation 1 to Equation 3 are given where Batrem is the power available for battery use and Vbat is the storage battery voltage. Further, FIG. 14 shows the relationship between the storage battery voltage and the available battery power.
・ When Vbat ≧ 247.2 [V] [Equation 1]
Batrem = 3000 [W] (3000W: Inverter rating for self-supporting)
・ When Vbat <198 [V] [Equation 2]
Batrem = 0 [W]
・ When 198.0 ≦ Vbat <247.2 [V]

次に需給インターフェイスパイロットシステムにおける自立運転時の負荷供給、分散型電源出力、および蓄電池充放電との関係について述べる。   Next, the relationship between load supply, distributed power output, and storage battery charge / discharge during self-sustained operation in the supply and demand interface pilot system will be described.

連系運転時の各需要家iの負荷Pload(i)、蓄電池充放電PBat(i)、太陽光発電発電出力PPV(i)とすると、連系点出力Pgc(i)は数式4で表される。   When the load Pload (i), storage battery charge / discharge PBat (i), and photovoltaic power generation output PPV (i) of each customer i at the time of the interconnection operation, the interconnection point output Pgc (i) is expressed by Equation 4. The

[数4]
Pgc(i)=Pload(i)+PBat(i)−PPV(i)
(但し、PBat<0で放電、PBat>0で充電)
(逆潮流時(Pgc(i)<0)はPBat(i)=0)
[Equation 4]
Pgc (i) = Pload (i) + PBat (i) −PPV (i)
(However, discharging with PBat <0, charging with PBat> 0)
(During reverse power flow (Pgc (i) <0), PBat (i) = 0)

自立時にはPgc(i)=0となるが、需要家パワーコンディショナは交流出力電圧を200Vとし、負荷電流にあわせて直流側電力を変化させる。負荷電力が、分散型電源(太陽光)発電電力よりも大きい場合すなわち、PPV(i) >Pload(i)の場合には、数式5となり、分散型電源発電の不足分を蓄電池から放電する。   Pgc (i) = 0 at the time of independence, but the consumer power conditioner sets the AC output voltage to 200 V and changes the DC side power according to the load current. When the load power is larger than the distributed power (solar power) generated power, that is, when PPV (i)> Pload (i), Equation 5 is obtained, and the shortage of the distributed power generation is discharged from the storage battery.

[数5]
Pload(i)=PPV(i) −PBat(i)
[Equation 5]
Pload (i) = PPV (i) -PBat (i)

これに対し、太陽電池出力が負荷出力よりも大きい場合、すなわちPPV(i) >Pload(i)の場合には、余剰分の蓄電池への充電は行われず、PPV(i) =Pload(i)となるように太陽光発電出力を抑制してしまう。したがって自立運転時に負荷制御を実施すると、分散型電源の出力が回復しても制御された負荷に対しての発電量しか得られないため、発電量が抑制されたままとなってしまう。   On the other hand, when the solar cell output is larger than the load output, that is, when PPV (i)> Pload (i), the surplus storage battery is not charged and PPV (i) = Pload (i) The solar power output is suppressed so that Therefore, if load control is performed during the self-sustained operation, only the power generation amount for the controlled load can be obtained even if the output of the distributed power source is recovered, and thus the power generation amount remains suppressed.

以上のことから、自立時に分散型電源の出力を有効に活用するためには、出力可能電力(PPVpot)を推定する必要がある。ガスエンジン等出力が制御できる分散型電源は定格電力がそのまま出力可能電力となるが、太陽光発電は日射強度により出力が変化することから、出力可能電力(PPVpot)は日射強度(PVIns)を用いて推定した。   From the above, it is necessary to estimate the output power (PPVpot) in order to effectively use the output of the distributed power source during self-sustainment. A distributed power source that can control the output of a gas engine, etc. can output the rated power as it is, but the output of solar power generation changes with the intensity of solar radiation, so the output power (PPVpot) uses the intensity of solar radiation (PVIns) Estimated.

推定に際しては、過去の出力実測値と日射強度の実測値(図15参照)から一次回帰を用いて数式6のように推定した。
[数6]
PPVpot =3684×PVIns −184
但し、PVIns <0.05kW/m2の際はPPVpot=0である。
In the estimation, it was estimated as Equation 6 using the linear regression from the past measured output value and the measured solar radiation intensity (see FIG. 15).
[Equation 6]
PPVpot = 3684 x PVIns -184
However, PPVpot = 0 when PVIns <0.05 kW / m2.

使用可能電力(Wavail)はこれらの和で計算される(数式7)。
[数7]
Wavail=PPVpot + Batrem
但し、PPVpot + Batrem>3000Wの際はWavail =3000である。
The available power (Wavail) is calculated by the sum of these (Formula 7).
[Equation 7]
Wavail = PPVpot + Batrem
However, when PPVpot + Batrem> 3000W, Wavail = 3000.

自立時負荷選択遮断機能の流れを図16に示す。
今回は、前もって定めた制御順位に従って需給インターフェイスが制御機器を決定した。
FIG. 16 shows the flow of the self-supporting load selection cutoff function.
This time, the supply and demand interface decided the control equipment according to the predetermined control order.

(4.4) 実証試験について説明する。
提案した上記機能の有効性を検証するため、負荷選択遮断の実証試験を行った。各需要家の負荷の初期設定は、各インバータの自立時負荷の定格が(3kVA)であることから、それぞれ3000W以下となるように表1の機器設定表から選択した。選択した機器を表3に示す。表3は、需要家構内自立運転時の負荷選択遮断試験で想定した機器リストである。
(4.4) Explain the verification test.
In order to verify the effectiveness of the proposed function, a demonstration test of load selection interruption was conducted. The initial setting of the load of each consumer was selected from the device setting table of Table 1 so that the load rating of each inverter was (3 kVA) and was 3000 W or less. Table 3 shows the selected devices. Table 3 is a list of devices assumed in the load selection interruption test at the time of independent operation on the customer premises.

試験に際しては、低圧開閉器で上位系統から低圧系統を遮断し、各需要家を自立運転に移行させた。各需給インターフェイスは、数式5で示される使用可能電力に応じて図13に示す優先順位に基づき、選択負荷制御を行う。実証試験では蓄電池保護のため、蓄電池電圧が190V以下となった時点で電子負荷を停止した。負荷選択遮断を行わない場合として、運転開始時の電子負荷出力を継続させ、蓄電池電圧が同様に190V以下となった時点で電子負荷を停止した場合と比較した。蓄電池残量による変化を極力抑えるため、蓄電池は均等充電(SOC50%)状態で開始した。   During the test, the low-voltage system was shut off from the host system with a low-voltage switch, and each customer was shifted to independent operation. Each supply-and-demand interface performs selective load control based on the priority shown in FIG. 13 according to the available power expressed by Equation 5. In the demonstration test, the electronic load was stopped when the storage battery voltage became 190 V or less in order to protect the storage battery. As a case where load selection interruption is not performed, the electronic load output at the start of operation is continued, and compared with a case where the electronic load is stopped when the storage battery voltage is similarly 190 V or less. In order to suppress changes due to the remaining amount of the storage battery as much as possible, the storage battery was started in an evenly charged state (SOC 50%).

蓄電池電圧は、それぞれのパワーコンディショナから需給IFに通知される値を用いた。また、日射強度については需要家#2の太陽光パネルにのみ傾斜面日射量計が設置されているが、実証試験設備の太陽光発電設備はすべて定格出力が等しく、設置場所も非常に近接していることから、需要家#2の日射量計データを用いてその他の需要家の太陽光出力を推定した。一例として、分散型電源なしの場合の実験結果を図17および図18に示す。   As the storage battery voltage, a value notified from each power conditioner to the supply and demand IF was used. In terms of solar radiation intensity, the inclined surface solar radiation meter is installed only on the solar panel of customer # 2, but all of the photovoltaic power generation facilities of the demonstration test equipment have the same rated output and the installation locations are very close. Therefore, the solar output of other customers was estimated using the solar radiation meter data of customer # 2. As an example, FIG. 17 and FIG. 18 show experimental results when there is no distributed power source.

図18より蓄電池電圧の低下に伴い、負荷が選択的に遮断されていることがわかる。また、容量の大きい機器が遮断された際には蓄電池電圧が回復し、制御中の負荷が制御解除されることもわかる。制御なしの場合には蓄電池のみで供給可能な時間が14分であったが、この負荷選択遮断により約4倍の54分に伸ばすことが可能となった。   FIG. 18 shows that the load is selectively cut off as the storage battery voltage decreases. It can also be seen that when a device with a large capacity is shut off, the storage battery voltage recovers and the controlled load is released. In the case of no control, the time that can be supplied by only the storage battery was 14 minutes, but this load selection cutoff enabled the extension to about 4 times 54 minutes.

次に、需要家の負荷の選択遮断状況を図19に示す。図19より容量の小さい照明機器が蓄電池電圧の回復に伴いハンチングを起こす例が見られた。これを防止する手段としては、容量の小さな機器をグループ化して制御する、制御解除判定時に不感帯を設定するなどの工夫が必要である。また、工事停電などであらかじめ停電時間がわかっている場合には、蓄電池残量から負荷に応じた供給可能時間の推定などのサービスも考えられる。   Next, FIG. 19 shows a selective interruption state of a customer's load. As shown in FIG. 19, an example in which a lighting device with a small capacity causes hunting as the storage battery voltage recovers. As means for preventing this, it is necessary to devise devices such as grouping devices with small capacities and setting a dead zone at the time of control release determination. In addition, when the power outage time is known in advance due to a construction power outage or the like, a service such as estimation of the supplyable time according to the load from the remaining amount of the storage battery can be considered.

分散型電源ありのケースでは、日中の太陽電池出力が大きい場合には負荷制御は実施されず、負荷への供給は太陽光発電から行われた。その後、日射量が減少した時点で負荷選択遮断に移行したため、供給継続時間は322分から347分となった。   In the case with a distributed power source, load control was not performed when the solar cell output during the day was large, and the load was supplied from photovoltaic power generation. Thereafter, when the amount of solar radiation decreased, the load selection cut-off was performed, so that the supply duration time was changed from 322 minutes to 347 minutes.

(5) 低圧系統自立運転
(5.1) 低圧系統自立運転の目的について説明する。
現状では、高圧系統が停電した際には、分散型電源所有需要家は、単独運転防止のために一旦分散型電源を解列し、必要に応じて自立回路に負荷を接続することにより必要負荷への供給を実施する。この際、分散型電源は負荷に応じて運転されるため、負荷が発電電力を下回る場合には、発電電力が無駄になってしまう。また、蓄電池を持たない需要家は発電電力以上に負荷を使用することは不可能である。さらに、分散型電源非所有需要家は上位系統が復帰するまで供給停止の状態が続く。
(5) Low voltage system autonomous operation (5.1) The purpose of the low voltage system autonomous operation will be explained.
Currently, when a high-voltage system fails, a customer who owns a distributed power source temporarily disconnects the distributed power source to prevent isolated operation and connects the load to a self-supporting circuit as necessary. Supply to At this time, since the distributed power source is operated according to the load, the generated power is wasted if the load is lower than the generated power. In addition, a consumer who does not have a storage battery cannot use a load more than the generated power. In addition, the non-distributed power supply non-owned customers continue to be suspended until the upper system is restored.

これらの問題を解決するため、需要地系統においては、低圧系統の自立運転機能を考案した。   In order to solve these problems, a self-sustaining operation function of the low voltage system was devised in the demand area system.

(5.2) 低圧系統自立運転の概要について説明する。
低圧系統自立運転は、上位系統異常時に低圧バンク全体を上位系統から切り離し、低圧系統に接続された分散型電源の一台が低圧系統全体の電圧を維持し、他の分散型電源は低圧系統管理システムからの指令によって協調運転を行うことによって、低圧系統への供給を継続する。概念を図20に示す。ここで需要家#4は分散型電源非所有需要家、需要家#1は低圧系統全体の電圧を維持し、需給調整を行う分散型電源を持つ需要家、需要家#2、#3はそれ以外の分散型電源を持つ需要家である。
(5.2) An outline of the low-voltage system independent operation will be described.
In the low voltage system independent operation, when the upper system is abnormal, the entire low voltage bank is disconnected from the upper system, one of the distributed power supplies connected to the low voltage system maintains the voltage of the entire low voltage system, and the other distributed power supply manages the low voltage system Supply to the low-voltage system is continued by performing coordinated operation in response to a command from the system. The concept is shown in FIG. Here, customer # 4 is a non-distributed power source customer, customer # 1 is a customer with a distributed power source that maintains the voltage of the entire low-voltage system and adjusts supply and demand, and customer # 2 and # 3 Other customers with distributed power sources.

(a) 需要家#1
需要家#1は低圧系統の電圧維持可能な分散型電源を所有している需要家であり、分散型電源の出力調整および蓄電池の充放電により低圧系統内負荷バランスの調整を行う。需要家#1の分散型電源は、ガスエンジンやマイクロガスタービン等、比較的大容量かつ出力制御可能な電源が望ましい。分散型電源の出力変化速度で応答しきれない負荷変動は蓄電池の充放電で賄う。
(A) Customer # 1
Customer # 1 is a consumer who owns a distributed power source capable of maintaining the voltage of the low-voltage system, and adjusts the load balance in the low-voltage system by adjusting the output of the distributed power source and charging / discharging the storage battery. The distributed power source of customer # 1 is preferably a power source with a relatively large capacity and output control, such as a gas engine or a micro gas turbine. Load fluctuations that cannot be fully responded at the output change rate of the distributed power supply are covered by charging and discharging of the storage battery.

(b)需要家#2、#3
需要家#2、#3は低圧系統管理システムからの指令により、分散型電源出力が負荷より大きい場合すなわち逆潮流可能な場合(需要家#3)には、連系運転を行い、近隣の需要家に負荷融通を行う。負荷のほうが分散型電源出力より小さい場合(需要家#2)、需要家構内自立運転に移行する。
(B) Customer # 2, # 3
Customers # 2 and # 3 perform a grid operation when the distributed power output is larger than the load, that is, when reverse power flow is possible (customer # 3), according to a command from the low-voltage system management system. Do load accommodation at home. When the load is smaller than the distributed power output (customer # 2), the operation shifts to the customer premises independent operation.

(c)需要家#4(分散型電源なし)
需要家#4は分散型電源非所有需要家で、現状では停電時には供給停止となるが、需要地系統では他の需要家所有の分散型電源発電余力に応じて負荷供給が可能である。低圧系統管理システムが分散型電源供給余力を計算し、それぞれの需要家に供給可能な電力量を通知する。分散型電源発電余力がゼロの場合には必要最小限の重要負荷以外を遮断する。
(C) Customer # 4 (no distributed power supply)
Customer # 4 is a non-distributed power supply customer who is currently out of supply at the time of a power outage. However, in the demand system, load can be supplied according to the distributed power generation surplus capacity owned by other customers. The low-voltage system management system calculates the decentralized power supply capacity and notifies each customer of the amount of power that can be supplied. When the distributed power generation surplus capacity is zero, all but the necessary minimum critical load is shut off.

以上のような制御を行うことにより、分散型電源出力の有効活用が図れるとともに、分散型電源非所有需要家にも供給を継続することが可能である。   By performing the control as described above, it is possible to effectively use the distributed power output, and to continue supplying to customers who do not own the distributed power supply.

低圧系統自立運転へは、低圧系統管理システムの上位系統異常検出、もしくは運用管理サブシステムからの自立運転指令のいずれかで移行する。自立運転からの系統再連系は、運用管理サブシステムからの指令で行う。系統再連系の際には、負荷変動補償および分散型電源変動補償モードがONの場合、連系点潮流がゼロの状態で系統再連系し、出力が徐々に変化するため、系統へのショックが小さい。   The low-voltage system autonomous operation is shifted to either the upper system abnormality detection of the low-voltage system management system or the independent operation command from the operation management subsystem. System reconnection from autonomous operation is performed by a command from the operation management subsystem. During grid reconnection, when load fluctuation compensation and distributed power fluctuation compensation mode are ON, grid reconnection occurs when the grid connection point power is zero, and the output gradually changes. The shock is small.

(5.3)低圧系統自立運転の実証試験について説明する。
開発した低圧系統自立運転の有効性を検証するため、実証試験を実施した。今回の実証試験においては、出力調整が可能で低圧系統への電圧供給可能な分散型電源が需要地系統ハイブリッド実証試験設備には装備されていないため、4台ある需要家パワーコンディショナのうち一台(PCS#1)を親機とし、その負荷側に電子負荷#1およびPCS#2〜#4を接続、PCS#2から#4の負荷側に電子負荷#2から4を接続した。また#4のPCSの直流入力側を遮断し、分散型電源非所有需要家とした。分散型電源は太陽光パネルの実機を用いた。試験回路を図21に示す。
(5.3) Demonstrate the verification test of the low voltage system independent operation.
In order to verify the effectiveness of the developed low-voltage system autonomous operation, a verification test was conducted. In this demonstration test, a distributed power source that can adjust the output and supply voltage to the low-voltage system is not equipped in the demand-source system hybrid demonstration test facility, so it is one of four customer power conditioners. The base (PCS # 1) was used as a base unit, electronic loads # 1 and PCS # 2 to # 4 were connected to the load side, and electronic loads # 2 to 4 were connected to the load sides of PCS # 2 to # 4. In addition, the DC input side of # 4 PCS was cut off to make it a non-distributed power supply consumer. As the distributed power source, an actual solar panel was used. A test circuit is shown in FIG.

各需要家の負荷の初期設定は、パワーコンディショナ#1の自立時負荷の定格(3kVA)および各パワーコンディショナの自己消費電力を鑑み、それぞれ600W程度となるように表1の機器設定表から選択した。選択した負荷を表4に示す。表4は、低圧系統自立運転時の負荷選択遮断試験で想定した機器リストである。   The initial setting of the load of each consumer is based on the equipment setting table of Table 1 so that it is about 600 W in consideration of the independent load rating (3 kVA) of power conditioner # 1 and the power consumption of each power conditioner. Selected. The selected loads are shown in Table 4. Table 4 is a list of devices assumed in the load selection interruption test at the time of low voltage system independent operation.

上記回路で低圧開閉器の上位側で電圧を遮断し、低圧系統を自立運転モードに移行させた。自立運転移行時の挙動を図22から図27に示す。   In the above circuit, the voltage was cut off at the upper side of the low-voltage switch, and the low-voltage system was shifted to the self-sustaining operation mode. The behavior at the time of transition to independent operation is shown in FIGS.

図22は自立移行前の状況である。図中の矢印は潮流の方向を示している。自立移行直前は分散型電源出力過剰の状態で、需要家#2と#3は逆潮流を行っており、需要家#4に余剰分を供給すると共に、需要家#1の余剰電力分と合わせ低圧系統側に逆潮流を行っている。   FIG. 22 shows the situation before the transition to independence. The arrows in the figure indicate the direction of the tidal current. Immediately before the transition to independence, the distributed power output is excessive, and customers # 2 and # 3 are in reverse flow, supplying surplus to customer # 4 and combining with surplus power from customer # 1. Reverse power flow is performed on the low-voltage system side.

この状態から、低圧系統への供給を遮断する。需要家#1のパワーコンディショナが系統電圧低下を検出し、無瞬断(2サイクル以内)で自立運転モードに移行する(図23中の丸数字の1)。低圧系統管理システムは、約0.5秒後に系統異常を検出し、低圧開閉器を開放する(丸数字の2)とともに系統異常信号を需要家#1〜4の需給インターフェイスに通知し、これを受けて約1秒後に各パワーコンディショナは構内自立に移行する(丸数字の3)。   From this state, supply to the low-voltage system is shut off. The power conditioner of customer # 1 detects a system voltage drop and shifts to the self-sustaining operation mode without interruption (within 2 cycles) (circle numeral 1 in FIG. 23). The low-voltage system management system detects a system abnormality after about 0.5 seconds, opens the low-voltage switch (circled number 2), and notifies the system abnormality signal to the demand / supply interface of the customers # 1 to # 4. About 1 second after receiving the inverter, each inverter will shift to in-house self-supporting (circle number 3).

その後、需要家#2と#3は数式8に示す予想連系点電力Pgcpot(i)を計算し(図24の丸数字の4)、Pgcpot(i)>0の場合、系統への再連系を行う(丸数字の5)。需要家#4は負荷遮断後(丸数字の6,7)に、系統への再連系を行う(丸数字の8)。   After that, the customers # 2 and # 3 calculate the predicted interconnection point power Pgcpot (i) shown in Equation 8 (circled number 4 in FIG. 24), and if Pgcpot (i)> 0, Perform system (circle number 5). Customer # 4 performs re-connection to the grid (circle numeral 8) after the load is cut off (circle numerals 6, 7).

[数8]
Pgcpot(i) = Pload(i)−PPVpot(i)
[Equation 8]
Pgcpot (i) = Pload (i) −PPVpot (i)

低圧系統管理システムは、数式9で示される分散型電源余力(LVpot)を計算し、余力が十分にある場合(図25の丸数字の9)には、需要家#4の負荷遮断を解除する(丸数字の10)。逆に日射量の減少により余力が小さくなった場合には(図26の丸数字の11)、負荷遮断を行う(丸数字の12)。   The low-voltage system management system calculates the distributed power remaining capacity (LVpot) expressed by Equation 9, and when there is sufficient capacity (circled number 9 in FIG. 25), cancels the load cut of the customer # 4. (Circle number 10). On the contrary, when the remaining power becomes small due to the decrease in the amount of solar radiation (circle numeral 11 in FIG. 26), the load is cut off (circle numeral 12).

[数9]
LVpot= ΣPgcpot(i)
(但し、Pgcpot(i)<0の需要家はPgcpot(i)=0とする)
[Equation 9]
LVpot = ΣPgcpot (i)
(However, Pgcpot (i) <0 for consumers with Pgcpot (i) = 0)

日射量が更に減少し、Pgc(i)<0となった場合には(図27の丸数字の13)、需要家#2、#3は構内自立運転に移行する(丸数字の14)。自立運転移行後は(4)章で述べた負荷選択遮断を実施する。   When the amount of solar radiation further decreases and Pgc (i) <0 (circled number 13 in FIG. 27), the customers # 2 and # 3 shift to the on-site independent operation (circled number 14). After shifting to independent operation, the load selection interruption described in Chapter (4) is performed.

実証試験の結果の一例として、自立移行後の各需要家端の連系点有効電力、分散型電源出力、蓄電池充放電電力、負荷電力および数式10で計算される低圧系統電力を図28から図32に示す。   As an example of the results of the demonstration test, the connection point effective power, the distributed power output, the storage battery charging / discharging power, the load power, and the low-voltage system power calculated by Equation 10 after the independent transition are shown in FIG. 32.

図28において3分前後に分散型電源余力が減少したため、需要家#4は重要負荷以外の負荷を遮断している(図26に相当)。その後15分前後に日射量が回復し、分散型電源余力が減少したため負荷制御を解除している(図25に相当)。   In FIG. 28, since the distributed power remaining capacity has decreased around 3 minutes, customer # 4 is blocking loads other than the important load (corresponding to FIG. 26). Thereafter, the solar radiation amount recovered around 15 minutes, and the distributed power supply remaining capacity decreased, so that the load control is canceled (corresponding to FIG. 25).

24分前後に需要家#2および#3の逆潮流量が増加したため、低圧系統の見かけ上の負荷量が減少し(図32参照)、需要家#1の分散型電源出力が抑制されている。27分前後には日射量が再び減少したため、需要家#4は再度負荷制御を実施した。この際、制御遅れにより需要家#1の蓄電池の放電量が増加している(図30)。その後、さらに日射量が減少し、需要家#2および#3の連系点電力が逆潮流から順潮流に変わったため、需要家#2と#3が構内自立運転に移行している(図27に相当)。   Around 24 minutes, the reverse power flow of the customers # 2 and # 3 increased, so the apparent load of the low-voltage system decreased (see FIG. 32), and the distributed power output of the customer # 1 is suppressed. . Since solar radiation decreased again around 27 minutes, customer # 4 performed load control again. At this time, the discharge amount of the storage battery of the customer # 1 is increasing due to the control delay (FIG. 30). After that, the amount of solar radiation decreased further, and the connecting point power of the consumers # 2 and # 3 changed from the reverse power flow to the forward power flow, so that the customers # 2 and # 3 have shifted to the on-site independent operation (FIG. 27). Equivalent).

これ以降は(4)章で述べた負荷選択遮断により、蓄電池容量がなくなるまで供給を継続した。   Thereafter, the supply was continued until the storage battery capacity was exhausted by the load selection interruption described in Chapter (4).

以上のように、低圧系統自立運転を行うことにより、分散型電源の発電量に余裕がある場合には、再連系して低圧系統に余剰分を融通し分散型電源出力の有効活用が図れるとともに、分散型電源非所有者も供給を継続できる等のメリットを生ずることが確認できた。   As described above, by operating the low-voltage system autonomously, if there is a margin in the amount of power generated by the distributed power supply, it is possible to reconnect to allow the surplus to be supplied to the low-voltage system and effectively use the distributed power output At the same time, it has been confirmed that non-distributed power supply owners can continue to supply.

本発明の低圧系統の自立運転システムの実施形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment of the self-sustained operation system of the low voltage | pressure system of this invention. 低圧系統管理装置の作動手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of a low voltage | pressure system management apparatus. マスター需要家の需給IFの作動手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the supply-demand IF of a master consumer. スレーブ需要家の需給IFの作動手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the demand / supply IF of a slave customer. 分散型電源を有しない需要家の需給IFの作動手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the demand-and-supply IF of the consumer who does not have a distributed power supply. 需給インターフェイスの機能と構成を示す図である。It is a figure which shows the function and structure of a supply-and-demand interface. 需給インターフェイスパイロットシステムを示す概略構成図である。It is a schematic block diagram which shows a supply-and-demand interface pilot system. 低圧系統管理システムのメイン画面を示す図である。It is a figure which shows the main screen of a low voltage | pressure system management system. 低圧系統管理システムの低圧系統情報表示画面を示す図である。It is a figure which shows the low voltage | pressure system information display screen of a low voltage | pressure system management system. 機器状態表示画面を示す図である。It is a figure which shows an apparatus status display screen. 分電盤画面を示す図である。It is a figure which shows a distribution board screen. 制御中画面の一例を示す図である。It is a figure which shows an example of the screen during control. 制御の優先順位を示す図である。It is a figure which shows the priority of control. 蓄電池電圧と電池使用電力可能電力との関係を示す図である。It is a figure which shows the relationship between a storage battery voltage and battery use electric power possible electric power. 太陽光発電の出力推定を示す図である。It is a figure which shows the output estimation of solar power generation. 自立時負荷選択遮断機能の流れを示す図である。It is a figure which shows the flow of the load selection interruption | blocking function at the time of self-supporting. 負荷選択遮断結果(分散型電源なし)を示す図である。It is a figure which shows a load selection interruption | blocking result (no distributed power supply). 負荷選択遮断時蓄電池電圧の推移を示す図である。It is a figure which shows transition of the storage battery voltage at the time of load selection interruption | blocking. 選択遮断状況を示す図である。It is a figure which shows the selection interruption | blocking condition. 低圧系統自立運転の概念図である。It is a conceptual diagram of a low voltage | pressure system independent operation. 低圧系統自立運転試験回路を示す図である。It is a figure which shows a low voltage | pressure system independent operation test circuit. 自立運転移行前の状態を示す図である。It is a figure which shows the state before independent operation transfer. 自立運転移行後の状態を示す図である。It is a figure which shows the state after independent operation transfer. 自立運転移行後の状態を示し、図23に続く状態の図である。It is the figure of the state which shows the state after independent operation transfer, and follows FIG. 自立運転移行後の状態を示し、図24に続く状態の図である。It is a figure of the state which shows the state after independent operation transfer and continues from FIG. 自立運転移行後の状態を示し、図25に続く状態の図である。It is a figure of the state which shows the state after independent operation transfer and follows FIG. 自立運転移行後の状態を示し、図26に続く状態の図である。FIG. 27 is a diagram illustrating a state after transition to a self-sustained operation and a state following FIG. 26. 連系点有効電力を示す図である。It is a figure which shows connection point active power. 分散型電源出力を示す図である。It is a figure which shows a distributed power output. 蓄電池充放電電力を示す図である。It is a figure which shows storage battery charging / discharging electric power. 負荷電力を示す図である。It is a figure which shows load electric power. 低圧系統電力を示す図である。It is a figure which shows a low voltage | pressure system electric power.

符号の説明Explanation of symbols

1A マスター分散型電源
1B マスター分散型電源以外の分散型電源
2A,2B 分散型電源を有する需要家
2C 分散型電源を有しない需要家
3 低圧系統
4 高圧系統
5 開閉器
6 需給IF
1A Master distributed power source 1B Distributed power sources 2A and 2B other than the master distributed power source 2C Consumer 2C having distributed power source 3 Low power system 4 High voltage system 5 Switch 6 Supply / demand IF

Claims (5)

分散型電源を有する需要家を少なくとも1軒含む複数の需要家に電力を供給すると共に前記分散型電源が系統連系されている低圧系統を、その上位系統である高圧系統の異常時に当該高圧系統から分離し、前記低圧系統に系統連系されている分散型電源の1台によって前記低圧系統の電圧を維持し、各需要家毎に電力の過不足を算出し、電力が余剰する需要家の余剰電力を電力が不足する需要家に供給することを特徴とする低圧系統の自立運転方法。   A power supply is supplied to a plurality of consumers including at least one customer having a distributed power source, and the low-voltage system in which the distributed power source is connected to the grid is connected to the high-voltage system in the event of an abnormality in a high-voltage system that is a higher system. The voltage of the low-voltage system is maintained by one of the distributed power sources that are grid-connected to the low-voltage system, the excess or deficiency of power is calculated for each consumer, A self-sustaining operation method for a low-voltage system, characterized in that surplus power is supplied to a consumer with insufficient power. 前記低圧系統の電圧を維持する分散型電源の出力変化速度で応答しきれない前記低圧系統の負荷変動を蓄電装置の充放電で賄うことを特徴とする請求項1記載の低圧系統の自立運転方法。   2. The self-sustained operation method for a low-voltage system according to claim 1, wherein a load fluctuation of the low-voltage system that cannot fully respond at an output change rate of a distributed power source that maintains the voltage of the low-voltage system is covered by charging and discharging of a power storage device. . 分散型電源を有していない需要家について、余剰電力の供給を受けてもなお電力が不足する場合には、電力不足が解消されるまで負荷を優先順位の低いものから順番に遮断することを特徴とする請求項1又は2記載の低圧系統の自立運転方法。   For customers who do not have a distributed power source, if the power is still insufficient even after receiving surplus power, the load should be shut down in order of decreasing priority until the power shortage is resolved. 3. The self-sustaining operation method for a low-pressure system according to claim 1 or 2. 分散型電源を有する需要家について、電力不足の場合には当該需要家を前記低圧系統から切り離し、電力不足が解消されるまで負荷を優先順位の低いものから順番に遮断することを特徴とする請求項1から3のいずれか1つに記載の低圧系統の自立運転方法。   Regarding a customer having a distributed power source, in the case of power shortage, the customer is disconnected from the low-voltage system, and loads are cut off in order of decreasing priority until the power shortage is resolved. Item 4. The self-sustaining operation method for a low-pressure system according to any one of Items 1 to 3. 分散型電源を有する需要家と分散型電源を有しない需要家が連系系統されている低圧系統の自立運転システムにおいて、前記低圧系統をその上位系統である高圧系統の異常時に当該高圧系統から分離する開閉器と、前記低圧系統が前記高圧系統から分離された場合に前記低圧系統の電圧を維持する1台のマスター分散型電源と、前記需要家毎に設けられて当該需要家内の電力の過不足を算出する需要家管理装置とを備え、前記マスター分散型電源以外の分散型電源を有する需要家の前記需要家管理装置は余剰電力が生じる場合に当該需要家の分散型電源を前記低圧系統に系統連系すると共に、余剰電力が生じない場合には当該需要家を前記低圧系統から切り離すことを特徴とする低圧系統の自立運転システム。   In a self-sustained operation system of a low-voltage system in which a customer having a distributed power source and a customer not having a distributed power source are connected to each other, the low-voltage system is separated from the high-voltage system when an abnormality occurs in the high-voltage system that is a higher-level system. And a master distributed power source that maintains the voltage of the low-voltage system when the low-voltage system is separated from the high-voltage system, and an excess of power in the consumer provided for each consumer. A consumer management device that calculates a shortage, and the consumer management device of a consumer having a distributed power source other than the master distributed power source supplies the customer's distributed power source to the low-voltage system when surplus power is generated In addition, the low-voltage system self-sustained operation system is characterized in that when the surplus power is not generated, the consumer is disconnected from the low-voltage system.
JP2006308308A 2006-11-14 2006-11-14 Self-sustaining operation method of low-voltage system and self-sustaining operation system of low-pressure system Expired - Fee Related JP4944578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308308A JP4944578B2 (en) 2006-11-14 2006-11-14 Self-sustaining operation method of low-voltage system and self-sustaining operation system of low-pressure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308308A JP4944578B2 (en) 2006-11-14 2006-11-14 Self-sustaining operation method of low-voltage system and self-sustaining operation system of low-pressure system

Publications (2)

Publication Number Publication Date
JP2008125290A true JP2008125290A (en) 2008-05-29
JP4944578B2 JP4944578B2 (en) 2012-06-06

Family

ID=39509474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308308A Expired - Fee Related JP4944578B2 (en) 2006-11-14 2006-11-14 Self-sustaining operation method of low-voltage system and self-sustaining operation system of low-pressure system

Country Status (1)

Country Link
JP (1) JP4944578B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271777A (en) * 2007-03-23 2008-11-06 Hitachi Ltd Power supply method utilizing distributed power supply device
JP2010226851A (en) * 2009-03-23 2010-10-07 Osaka Gas Co Ltd Cogeneration system and controller thereof
JP2011101458A (en) * 2009-11-04 2011-05-19 Fujitsu Ltd Electronic apparatus and power controller
JP2011130623A (en) * 2009-12-21 2011-06-30 Tottori Institute Of Industrial Technology Micro hydraulic power generation system and control method thereof
JP2012044745A (en) * 2010-08-17 2012-03-01 Panasonic Corp Energy management system
JP2012075299A (en) * 2010-09-30 2012-04-12 Hitachi Engineering & Services Co Ltd Natural energy power station equipped with power storage device
JP2012115109A (en) * 2010-11-26 2012-06-14 Kyocera Corp Controller and control method
WO2012105105A1 (en) 2011-01-31 2012-08-09 日本電気株式会社 Electrical power management system and electrical power management method
WO2012114642A1 (en) * 2011-02-21 2012-08-30 パナソニック電工株式会社 Power control system
JP2012235644A (en) * 2011-05-06 2012-11-29 Ntt Data Corp Power simulation device, power simulation method, and power simulation program
JP2013038143A (en) * 2011-08-04 2013-02-21 Tabuchi Electric Co Ltd Power conditioner inspection device
KR20130026993A (en) * 2011-09-06 2013-03-14 제너럴 일렉트릭 캄파니 Controller and method of controlling a power system
JP2013063000A (en) * 2011-09-15 2013-04-04 Sumitomo Electric Ind Ltd System interconnection protection system, system interconnection protection device, and power conditioner
JP2013090455A (en) * 2011-10-18 2013-05-13 Panasonic Corp Power distribution system and wiring accessory used therefor
JP2013115885A (en) * 2011-11-28 2013-06-10 Hochiki Corp Power demand control system and method, and power supply outlet device
JP2013207853A (en) * 2012-03-27 2013-10-07 Hitachi Ltd Distributed power supply controller and distributed power supply control method
JP2013221759A (en) * 2012-04-13 2013-10-28 Mitsubishi Electric Corp Voltmeter
JP2014034448A (en) * 2012-08-08 2014-02-24 Toshiba Elevator Co Ltd Elevator system
JP2014042418A (en) * 2012-08-23 2014-03-06 Nittetsu Elex Co Ltd Emergency power supply method
JP2014212659A (en) * 2013-04-19 2014-11-13 清水建設株式会社 Power supply system and method
JP2014241678A (en) * 2013-06-11 2014-12-25 富士電機株式会社 Electric power regulating device, electric power regulating system, and program
JP2015042127A (en) * 2013-08-23 2015-03-02 株式会社日立製作所 Supervisory control device for power supply
KR20150030378A (en) * 2013-09-12 2015-03-20 한국전력공사 Apparatus and method for preventing loads using the switch in power system
KR101545060B1 (en) * 2013-11-26 2015-08-17 정유철 Integrate Electric Energy Control System Based On ESS Distributed Control
KR101553451B1 (en) 2013-12-30 2015-09-16 주식회사 효성 Method and apparatus for distributing electric power on energy storage system
EP2858200A4 (en) * 2012-05-24 2016-03-02 Osaka Gas Co Ltd Power supply system
JP2016077028A (en) * 2014-10-02 2016-05-12 株式会社デンソー Ampere breaker and power management system
JP2017163631A (en) * 2016-03-07 2017-09-14 シャープ株式会社 Power monitor, display control method, and display control program
JP2017163656A (en) * 2016-03-08 2017-09-14 三菱電機株式会社 Power Conditioner
JPWO2016208205A1 (en) * 2015-06-26 2018-02-08 京セラ株式会社 FUEL CELL SYSTEM, EXTERNAL MANAGEMENT DEVICE, FUEL CELL DEVICE, AND FUEL CELL DEVICE CONTROL METHOD
KR20180064974A (en) * 2016-12-06 2018-06-15 에이비비 에스.피.에이 A method for controlling an electric power distribution micro-grid
KR101918238B1 (en) * 2017-04-28 2018-11-13 엘에스산전 주식회사 Hierarchical type power control system
JP6431580B1 (en) * 2017-08-04 2018-11-28 日本電信電話株式会社 Power control system, supplier power system, control device, and power control method
WO2019107806A1 (en) * 2017-11-28 2019-06-06 엘에스산전 주식회사 Hierarchical power control system
JP2020036533A (en) * 2016-03-25 2020-03-05 日本電気株式会社 Control arrangement, power conditioner, control method and program
JP2020074682A (en) * 2020-02-20 2020-05-14 大和ハウス工業株式会社 Electric power supply system
JP2020074681A (en) * 2020-02-20 2020-05-14 大和ハウス工業株式会社 Electric power supply system
US10700521B2 (en) 2017-04-28 2020-06-30 Lsis Co., Ltd. Hierarchical type power control system
JP2022500998A (en) * 2018-11-13 2022-01-04 三菱電機株式会社 Systems, methods, and computer program products that make up the microgrid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189096A (en) * 1997-09-02 1999-03-30 Nissin Electric Co Ltd Operation control method of distributed power supply equipment
JP2002034162A (en) * 2000-07-14 2002-01-31 Nippon Telegr & Teleph Corp <Ntt> Distributed power supply system and its control method
WO2004023625A1 (en) * 2002-09-04 2004-03-18 Hitachi, Ltd. Power supply system and power supply method upon interruption of electric service
JP2006223042A (en) * 2005-02-09 2006-08-24 Toshiba Fuel Cell Power Systems Corp Apparatus and method for parallel operation of inverter system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189096A (en) * 1997-09-02 1999-03-30 Nissin Electric Co Ltd Operation control method of distributed power supply equipment
JP2002034162A (en) * 2000-07-14 2002-01-31 Nippon Telegr & Teleph Corp <Ntt> Distributed power supply system and its control method
WO2004023625A1 (en) * 2002-09-04 2004-03-18 Hitachi, Ltd. Power supply system and power supply method upon interruption of electric service
JP2006223042A (en) * 2005-02-09 2006-08-24 Toshiba Fuel Cell Power Systems Corp Apparatus and method for parallel operation of inverter system

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271777A (en) * 2007-03-23 2008-11-06 Hitachi Ltd Power supply method utilizing distributed power supply device
JP2010226851A (en) * 2009-03-23 2010-10-07 Osaka Gas Co Ltd Cogeneration system and controller thereof
JP2011101458A (en) * 2009-11-04 2011-05-19 Fujitsu Ltd Electronic apparatus and power controller
JP2011130623A (en) * 2009-12-21 2011-06-30 Tottori Institute Of Industrial Technology Micro hydraulic power generation system and control method thereof
JP2012044745A (en) * 2010-08-17 2012-03-01 Panasonic Corp Energy management system
JP2012075299A (en) * 2010-09-30 2012-04-12 Hitachi Engineering & Services Co Ltd Natural energy power station equipped with power storage device
JP2012115109A (en) * 2010-11-26 2012-06-14 Kyocera Corp Controller and control method
JPWO2012105105A1 (en) * 2011-01-31 2014-07-03 日本電気株式会社 Power management system and power management method
WO2012105105A1 (en) 2011-01-31 2012-08-09 日本電気株式会社 Electrical power management system and electrical power management method
JP5928346B2 (en) * 2011-01-31 2016-06-01 日本電気株式会社 Power management system and power management method
US10270257B2 (en) 2011-01-31 2019-04-23 Nec Corporation Electric power management system and electric power management method
US9423849B2 (en) 2011-01-31 2016-08-23 Nec Corporation Electric power management system and electric power management method
WO2012114642A1 (en) * 2011-02-21 2012-08-30 パナソニック電工株式会社 Power control system
JP2012175795A (en) * 2011-02-21 2012-09-10 Panasonic Corp Power control system
JP2012235644A (en) * 2011-05-06 2012-11-29 Ntt Data Corp Power simulation device, power simulation method, and power simulation program
JP2013038143A (en) * 2011-08-04 2013-02-21 Tabuchi Electric Co Ltd Power conditioner inspection device
KR20130026993A (en) * 2011-09-06 2013-03-14 제너럴 일렉트릭 캄파니 Controller and method of controlling a power system
JP2013059250A (en) * 2011-09-06 2013-03-28 General Electric Co <Ge> Controller and method of controlling power system
KR101998411B1 (en) * 2011-09-06 2019-07-09 제너럴 일렉트릭 캄파니 Controller and method of controlling a power system
JP2013063000A (en) * 2011-09-15 2013-04-04 Sumitomo Electric Ind Ltd System interconnection protection system, system interconnection protection device, and power conditioner
JP2013090455A (en) * 2011-10-18 2013-05-13 Panasonic Corp Power distribution system and wiring accessory used therefor
JP2013115885A (en) * 2011-11-28 2013-06-10 Hochiki Corp Power demand control system and method, and power supply outlet device
JP2013207853A (en) * 2012-03-27 2013-10-07 Hitachi Ltd Distributed power supply controller and distributed power supply control method
US9001480B2 (en) 2012-03-27 2015-04-07 Hitachi, Ltd. Distributed energy resources control apparatus and distributed energy resources control method
JP2013221759A (en) * 2012-04-13 2013-10-28 Mitsubishi Electric Corp Voltmeter
EP2858200A4 (en) * 2012-05-24 2016-03-02 Osaka Gas Co Ltd Power supply system
JP2014034448A (en) * 2012-08-08 2014-02-24 Toshiba Elevator Co Ltd Elevator system
JP2014042418A (en) * 2012-08-23 2014-03-06 Nittetsu Elex Co Ltd Emergency power supply method
JP2014212659A (en) * 2013-04-19 2014-11-13 清水建設株式会社 Power supply system and method
JP2014241678A (en) * 2013-06-11 2014-12-25 富士電機株式会社 Electric power regulating device, electric power regulating system, and program
JP2015042127A (en) * 2013-08-23 2015-03-02 株式会社日立製作所 Supervisory control device for power supply
KR20150030378A (en) * 2013-09-12 2015-03-20 한국전력공사 Apparatus and method for preventing loads using the switch in power system
KR102101040B1 (en) * 2013-09-12 2020-04-16 한국전력공사 Apparatus and method for preventing loads using the switch in power system
KR101545060B1 (en) * 2013-11-26 2015-08-17 정유철 Integrate Electric Energy Control System Based On ESS Distributed Control
KR101553451B1 (en) 2013-12-30 2015-09-16 주식회사 효성 Method and apparatus for distributing electric power on energy storage system
JP2016077028A (en) * 2014-10-02 2016-05-12 株式会社デンソー Ampere breaker and power management system
JPWO2016208205A1 (en) * 2015-06-26 2018-02-08 京セラ株式会社 FUEL CELL SYSTEM, EXTERNAL MANAGEMENT DEVICE, FUEL CELL DEVICE, AND FUEL CELL DEVICE CONTROL METHOD
JP2017163631A (en) * 2016-03-07 2017-09-14 シャープ株式会社 Power monitor, display control method, and display control program
JP2017163656A (en) * 2016-03-08 2017-09-14 三菱電機株式会社 Power Conditioner
JP2020036533A (en) * 2016-03-25 2020-03-05 日本電気株式会社 Control arrangement, power conditioner, control method and program
KR20180064974A (en) * 2016-12-06 2018-06-15 에이비비 에스.피.에이 A method for controlling an electric power distribution micro-grid
JP2018137974A (en) * 2016-12-06 2018-08-30 エービービー・エス.ピー.エー.ABB S.p.A. Method for controlling power distribution micro grid
KR102558715B1 (en) 2016-12-06 2023-07-21 에이비비 에스.피.에이 A method for controlling an electric power distribution micro-grid
JP7085336B2 (en) 2016-12-06 2022-06-16 エービービー・エス.ピー.エー. How to control the power distribution microgrid
KR101918238B1 (en) * 2017-04-28 2018-11-13 엘에스산전 주식회사 Hierarchical type power control system
US10700521B2 (en) 2017-04-28 2020-06-30 Lsis Co., Ltd. Hierarchical type power control system
JP2019033566A (en) * 2017-08-04 2019-02-28 日本電信電話株式会社 Power control system, supply source power system, control device, and power control method
JP6431580B1 (en) * 2017-08-04 2018-11-28 日本電信電話株式会社 Power control system, supplier power system, control device, and power control method
WO2019107806A1 (en) * 2017-11-28 2019-06-06 엘에스산전 주식회사 Hierarchical power control system
US11404877B2 (en) 2017-11-28 2022-08-02 Ls Electric Co., Ltd. Hierarchical power control system
JP2022500998A (en) * 2018-11-13 2022-01-04 三菱電機株式会社 Systems, methods, and computer program products that make up the microgrid
JP7118282B2 (en) 2018-11-13 2022-08-15 三菱電機株式会社 Systems, methods, and computer program products for configuring microgrids
JP2020074681A (en) * 2020-02-20 2020-05-14 大和ハウス工業株式会社 Electric power supply system
JP2020074682A (en) * 2020-02-20 2020-05-14 大和ハウス工業株式会社 Electric power supply system

Also Published As

Publication number Publication date
JP4944578B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4944578B2 (en) Self-sustaining operation method of low-voltage system and self-sustaining operation system of low-pressure system
JP2008125295A (en) Method and device for selecting/interrupting load in consumer
WO2011129054A1 (en) Electric-power management system, electric-power management method, and section controller
US20130015703A1 (en) Microgrid
CA2631153A1 (en) Method of start up at least a part of a wind power plant, wind power plant and use of the wind power plant
JP2007060742A (en) Control system for electric power network
US9660451B1 (en) Islanded operation of distributed power sources
WO2011077219A2 (en) Electric power supply system
JP5801936B2 (en) Control apparatus and control method
JP2015162911A (en) Autonomous operation system
WO2011042781A1 (en) Power supply system
Cho et al. Demonstration of a DC microgrid with central operation strategies on an island
JP2010041782A (en) Power distribution system
CN102969791A (en) Flexible load management system and method of power system based on bidirectional intelligent electric meter
EP3042429A1 (en) Redundant point of common coupling (pcc) to reduce risk of microgrid&#39;s islanding
JP6574651B2 (en) Power control device
KR101918238B1 (en) Hierarchical type power control system
CN106253345B (en) A kind of electric power networks and its control method, device and system
Karimi et al. Smart integrated adaptive centralized controller for islanded microgrids under minimized load shedding
Mumbere et al. Distributed control of islanded microgrids based on battery SOC in disaster situations
KR20170074631A (en) Energy distribuition system in smart grid envirmnent
Eissa et al. Emergency frequency control by using heavy thermal conditioning loads in commercial buildings at smart grids
JP6095550B2 (en) Switchgear and power control system
JP2014121151A (en) Power storage system and power supply system
Zubieta Demonstration of a microgrid based on a DC bus backbone at an industrial building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Ref document number: 4944578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees