JP2008122351A - Method and apparatus for centering shaft coupling - Google Patents

Method and apparatus for centering shaft coupling Download PDF

Info

Publication number
JP2008122351A
JP2008122351A JP2006309805A JP2006309805A JP2008122351A JP 2008122351 A JP2008122351 A JP 2008122351A JP 2006309805 A JP2006309805 A JP 2006309805A JP 2006309805 A JP2006309805 A JP 2006309805A JP 2008122351 A JP2008122351 A JP 2008122351A
Authority
JP
Japan
Prior art keywords
flange
shaft
motor
rotating shaft
measuring sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006309805A
Other languages
Japanese (ja)
Other versions
JP4781239B2 (en
Inventor
Yasuaki Tanaka
泰昭 田中
Genjiro Sugii
源次郎 杉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OZUKI SEIKOSHO KK
Chugoku Electric Power Co Inc
Original Assignee
OZUKI SEIKOSHO KK
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OZUKI SEIKOSHO KK, Chugoku Electric Power Co Inc filed Critical OZUKI SEIKOSHO KK
Priority to JP2006309805A priority Critical patent/JP4781239B2/en
Publication of JP2008122351A publication Critical patent/JP2008122351A/en
Application granted granted Critical
Publication of JP4781239B2 publication Critical patent/JP4781239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To center two axes of a shaft coupling for coupling the rotating shaft of a motor, with the rotary shaft of an operating machine, depending not merely in intuition. <P>SOLUTION: While the shaft coupling (26,) consisting of a main flange (22) provided at the tip of the rotary shaft (14) of the motor and a subordinate flange (24) provided at the tip of the rotary shaft (18) of the operating machine, is integrally rotated, while coupled by temporarily fixing, changes in the axial relative distance and the radial relative distance between a point on a facing surface of the main flange and a point on the opposite surface of the subordinate flange facing the former point are measured. Thus, misalignment in the centers of a shaft core (14a) of the rotary shaft of the motor, and a shaft core (18a) of the rotary shaft of the operating machine is calculated, and the horizontal and vertical orientations and positions of the operating machine and the motor are adjusted, based on this value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、モータ、エンジンなどの原動機の回転軸と、原動機の回転動力を利用して稼動するポンプや発電機などの動作機器の回転軸とを、それぞれの回転軸の先端に設けたフランジを対向させた状態で接続することで連結する軸継手において、2軸の芯出し(センタリング)を経験や感だけに頼らずに行うための軸継手のセンタリング方法および軸継手のセンタリング装置に関する。   The present invention provides a flange provided at the tip of each rotary shaft with a rotary shaft of a prime mover such as a motor or an engine, and a rotary shaft of an operating device such as a pump or a generator that operates using the rotational power of the prime mover. The present invention relates to a shaft coupling centering method and a shaft coupling centering device for performing biaxial centering (centering) without relying only on experience and feeling in shaft couplings that are coupled by being connected in an opposed state.

モータなどの原動機の回転軸とポンプなどの動作機器の回転軸を軸継手(カップリング)を用いて連結する場合、それぞれの回転軸の芯出し(センタリング)を行うことは非常に重要である。これはもし芯出しが完全に行われておらずその回転軸の軸芯にずれがあると、エネルギーロスが生じるだけでなく、振動の発生によって原動機や動作機器に不具合や破損を招きその耐用年数を極端に縮めることとなるためである。なお芯出しの僅かなずれを吸収するために、軸継手を構成するフランジ同士を固定するための複数のボルト穴にゴム管を配置したり、フランジ間にゴムを挟止することも多いが、その場合であっても芯出しを完全に行うことは重要である。これは芯出しにずれがあると、フランジ間に挟止等されたゴムに圧縮力や引張力がモータの回転中繰り返し作用し、ゴムの早期劣化を招くためである。   When connecting the rotating shaft of a motor such as a motor and the rotating shaft of an operating device such as a pump using a coupling, it is very important to center each rotating shaft. This is because if the centering of the rotating shaft is not performed completely and there is a deviation in the axis of the rotating shaft, not only energy loss will occur, but also the motor or operating equipment will be damaged or damaged due to the occurrence of vibration, and its service life It is because it will be shortened extremely. In order to absorb slight misalignment of centering, rubber pipes are often placed in a plurality of bolt holes for fixing the flanges constituting the shaft coupling, or rubber is pinched between the flanges. Even in that case, it is important to complete the centering. This is because if there is a deviation in the centering, a compression force or a tensile force acts repeatedly on the rubber clamped between the flanges during the rotation of the motor, leading to early deterioration of the rubber.

従来より軸継手の芯出しは、軸継手に例えば特許文献1に記載されているような治具とこれに取り付けたダイヤルゲージとを用いて軸芯のずれを数点において計測し、その計測値を基に、モータの脚をなす固定座を水平方向にずらすとともに固定座の下に適当な厚みのライナー(金属薄板)を挟み込むことで行われていた。
特開2002−122406号公報
Conventionally, the centering of a shaft joint is measured at several points using a jig as described in Patent Document 1, for example, and a dial gauge attached to the shaft joint. On the basis of this, the fixing seat forming the legs of the motor is shifted in the horizontal direction and a liner (metal thin plate) having an appropriate thickness is sandwiched under the fixing seat.
JP 2002-122406 A

ここで芯出し作業におけるモータの高さおよびポンプ回転軸軸芯からの垂直方向の傾斜角の調整は、適当な厚みのライナーを選択し、選択したライナーをモータの固定座の下に挟み込んだ後に、その結果を再びダイヤルゲージで計測するという作業を、軸芯のずれが許容値以内になるまで繰り返すことによりよって行われていた。そのためこのライナー調整は経験や感に頼るところが多く、また調整作業に時間を要するといった問題があった。   Here, to adjust the height of the motor and the tilt angle in the vertical direction from the shaft center of the pump rotation shaft in the centering operation, select a liner with an appropriate thickness, and insert the selected liner under the fixed seat of the motor. Then, the operation of measuring the result again with the dial gauge is performed by repeating until the deviation of the axis is within the allowable value. Therefore, this liner adjustment often depends on experience and feeling, and there is a problem that adjustment work takes time.

本発明はかかる問題点を解決するために創案されたものである。すなわち本発明の目的は、 原動機の回転軸と動作機器の回転軸とを軸継手を用いて連結する際に、2軸の芯出し(センタリング)を経験や感だけに頼らずに行うための軸継手のセンタリング方法および軸継手のセンタリング装置を提供することにある。   The present invention has been made to solve such problems. That is, an object of the present invention is to provide a shaft for performing centering of two axes without relying only on experience and feeling when connecting the rotating shaft of the prime mover and the rotating shaft of the operating device using a shaft coupling. A joint centering method and a shaft joint centering device are provided.

上記目的を達成するため請求項1に記載の発明は、モータ、エンジンなどの原動機(12)の回転軸(14)と該原動機の回転動力を利用して稼動する動作機器(16)の回転軸(18)とを、原動機の回転軸先端に設けられた主フランジ(22)と動作機器の回転軸先端に設けられた従フランジ(24)とを対向させて固定する構造の軸継手(26)を用いて連結する際の軸継手のセンタリング方法であって、前記主フランジおよび前記従フランジを仮止めにより連結した状態で一体的に回転させた際に、主フランジの対向面(23)の一点とこの点に対向する従フランジの対向面の一点との軸方向の相対距離および径方向の相対距離の変化を計測することで、原動機の回転軸の軸芯(14a)と動作機器の回転軸の軸芯(18a)との芯ずれを算出し、その値を基に動作機器または原動機の水平方向および垂直方向の向きおよび位置を調節する、ことを特徴とする。   In order to achieve the above object, a first aspect of the present invention provides a rotating shaft (14) of a motor (12) such as a motor or an engine, and a rotating shaft of an operating device (16) that operates using the rotating power of the motor. (18) is fixed to the main flange (22) provided at the front end of the rotary shaft of the prime mover and the slave flange (24) provided at the front end of the rotary shaft of the operating device. A centering method of a shaft coupling when connecting using a joint, when the main flange and the secondary flange are connected together by temporary fixing and are rotated together, one point of the opposing surface (23) of the main flange And the change of the relative distance in the axial direction and the relative distance in the radial direction between the opposite surface of the slave flange facing this point and the change in the relative distance in the radial direction, the axis (14a) of the rotating shaft of the prime mover and the rotating shaft of the operating device Core with shaft core (18a) Le is calculated and adjusting the orientation and position of the horizontal and vertical operation device or the prime mover on the basis of the value, characterized in that.

また請求項2および3に記載の発明は、モータ、エンジンなどの原動機(12)の回転軸(14)と該原動機の回転動力を利用して稼動する動作機器(16)の回転軸(18)とを、原動機の回転軸先端に設けられた主フランジ(22)と動作機器の回転軸先端に設けられた従フランジ(24)とを対向させて固定する構造の軸継手(26)を用いて連結する際の芯出しに使用するための軸継手のセンタリング装置であって、前記主フランジ(又は従フランジ)の外周縁との径方向距離を計測する垂直測距センサ(32)と、前記主フランジ(又は従フランジ)の外周縁との軸方向距離を計測する水平測距センサ(34)と、前記従フランジ(又は主フランジ)の外周縁に固定され、前記垂直測距センサおよび前記水平測距センサを保持するセンサ取付治具(36)と、前記垂直測距センサおよび前記水平測距センサによって計測した径方向距離および軸方向距離を表示する表示装置(38)と、を備える、ことを特徴とする。   According to the second and third aspects of the present invention, there is provided a rotating shaft (14) of a motor (12) such as a motor or an engine, and a rotating shaft (18) of an operating device (16) operated using the rotating power of the motor. Using a shaft coupling (26) having a structure in which a main flange (22) provided at the tip of the rotary shaft of the prime mover and a slave flange (24) provided at the tip of the rotary shaft of the operating device are opposed to each other. A shaft coupling centering device for use in centering when connecting, a vertical distance sensor (32) for measuring a radial distance from an outer peripheral edge of the main flange (or secondary flange); A horizontal distance measuring sensor (34) for measuring an axial distance from the outer peripheral edge of the flange (or secondary flange), and a vertical distance measuring sensor and the horizontal distance measuring sensor fixed to the outer peripheral edge of the secondary flange (or main flange). Hold the distance sensor And capacitors attaching jig 36 comprises a display device (38) for displaying a radial distance and the axial distance measured by the vertical distance measuring sensor and the horizontal distance measuring sensor, characterized in that.

ここで請求項4に記載したように、前記主フランジ(22)および前記従フランジ(24)の外周縁の端部は対向面(23)と反対側に直角に屈曲してリング状の鍔部(27)を形成しており、前記センサ取付治具(36)は、前記鍔部を径方向に把持するクランプ部(42)と、該クランプ部から伸長し前記垂直測距センサ(32)および前記水平測距センサ(34)を主フランジと非接触に近接して保持するL字型のセンサ取付部(44)と、からなる、ものが用いられる。   Here, as described in claim 4, the ends of the outer peripheral edges of the main flange (22) and the sub-flange (24) are bent at right angles to the opposite side to the opposing surface (23) to form ring-shaped flanges. (27), and the sensor mounting jig (36) includes a clamp part (42) for gripping the flange part in the radial direction, and the vertical distance measuring sensor (32) extending from the clamp part, An L-shaped sensor mounting portion (44) that holds the horizontal distance measuring sensor (34) in close proximity to the main flange in a non-contact manner is used.

本発明の軸継手のセンタリング方法および軸継手のセンタリング装置では、原動機の回転軸先端の主フランジと動作機器の回転軸先端の従フランジとを仮止めして回転させた場合の所定位置におけるフランジ間の軸方向および径方向の距離の変化を計測することで、動作機器の軸芯に対して原動機の軸芯が垂直面内(および水平面内)でどのようにずれ、また垂直面内(および水平面内)でどのように傾いているのかを知ることができる。特にライナーを原動機の固定座の下に挟み込んで調節を行う必要があり、その調整作業に多くの時間を要していた原動機の軸芯の垂直面内での位置ずれおよび傾きの調整を、どのような厚みのライナーを選択し固定座のどの位置に入れればよいのかを容易に知ることができるため、経験や感に頼らずに迅速に芯出し作業を完了することができる。   According to the shaft coupling centering method and the shaft coupling centering device of the present invention, when the main flange at the tip of the rotating shaft of the prime mover and the slave flange at the tip of the rotating shaft of the operating device are temporarily fixed and rotated, By measuring the change in the axial and radial distance of the motor, the axis of the prime mover is displaced in the vertical plane (and in the horizontal plane) with respect to the axis of the operating device, and in the vertical plane (and in the horizontal plane) You can see how it is tilted. In particular, it is necessary to make adjustments by inserting the liner under the fixed seat of the prime mover, and it is necessary to adjust the displacement and inclination of the prime mover shaft core in the vertical plane, which took a lot of time for the adjustment work. Since it is possible to easily know which position of the fixing seat should be selected by selecting a liner having such a thickness, the centering operation can be completed quickly without depending on experience and feeling.

なお一般に主フランジおよび従フランジは同一の形状を有し、また円盤状のフランジの外周縁の端部はその対向面と反対側に垂直に屈曲することでリング状の鍔部が形成され、すなわちフランジの対向面の裏側(フランジの回転軸側)は凹状に窪んでいるため、この鍔部を利用して垂直測距センサおよび水平測距センサを支持するためのセンサ取付治具をクランプによって取り付けることで、その着脱を容易にしつつ所定位置におけるフランジ間の軸方向および径方向の距離の変化を計測することができる。   In general, the main flange and the secondary flange have the same shape, and the end of the outer peripheral edge of the disc-shaped flange is bent perpendicularly to the opposite side to the opposite surface, thereby forming a ring-shaped flange, that is, Since the back side of the opposite surface of the flange (the rotation axis side of the flange) is recessed in a concave shape, a sensor mounting jig for supporting the vertical distance measuring sensor and the horizontal distance measuring sensor is attached by clamping using this flange. Thus, it is possible to measure changes in the axial and radial distances between the flanges at predetermined positions while facilitating the attachment and detachment.

本発明は、モータ、エンジンなどの原動機の回転軸とポンプや発電機などの動作機器の回転軸とを、それぞれの回転軸の先端に設けたフランジを対向させて接続することで連結する軸継手において、2軸の芯出し(センタリング)を感だけに頼らずに行うための軸継手のセンタリング方法および軸継手のセンタリング装置である。以下軸継手(カップリング)の構造を簡単に説明した後に、本発明の実施の形態について説明する。   The present invention relates to a shaft coupling that connects a rotating shaft of a motor such as a motor or an engine and a rotating shaft of an operating device such as a pump or a generator by connecting flanges provided at the tips of the respective rotating shafts to face each other. The centering method of the shaft coupling and the centering device for the shaft coupling for performing centering (centering) of the two axes without relying only on feeling. Hereinafter, after briefly explaining the structure of the shaft coupling (coupling), an embodiment of the present invention will be described.

図1および図2は本発明のセンタリング装置が適用される軸継手の一例を示した図であり、図1は軸継手の斜視図、図2はその縦断面図(図2(a))および平面図(図2(b))である。
なおここに説明する軸継手は後述する硬質ゴムにより振動や軸芯の僅かなずれを吸収するいわゆるフランジ形たわみ軸継手であるが、硬質ゴムを用いることなく両フランジを堅固に固定するいわゆるフランジ形固定軸継手にも本発明を適用することができる。
1 and 2 are views showing an example of a shaft coupling to which the centering device of the present invention is applied. FIG. 1 is a perspective view of the shaft coupling, and FIG. 2 is a longitudinal sectional view (FIG. 2A) and It is a top view (FIG.2 (b)).
The shaft coupling described here is a so-called flange-type flexible shaft coupling that absorbs vibrations and slight displacement of the shaft center by hard rubber, which will be described later. The present invention can also be applied to a fixed shaft joint.

これらの図に示したように、この軸継手26は同一形状をした2つのフランジ22,24を対向させた状態で複数(計6本)のボルト・ナット51で固定する構造を有している。
両フランジ22,24は、例えばその外径が210mmで厚みが36mmで6つのボルト穴53が等間隔に形成された円盤部の中心部に、外径が100mmで高さが35mmの突起部55が形成されており、円盤部の一面側はその外周縁と突起部55との間が一部を除き窪んだ凹部となっている。すなわちこの円盤部には、平滑な面である対向面23とその裏面で突起部55が形成された回転軸面25とがあり、その円盤部の外周縁の端部は対向面23と反対側に垂直に屈曲することでリング状の鍔部27を形成している。なお対向面23の法線方向は突起部55の軸線方向と一致していることは当然である。
この円盤部に形成された6つのボルト穴53のうち3つのボルト穴はその内径が40mm程度であり、このボルト穴には中心に金属円管が挿入固定された円柱形状の硬質ゴム59が挿入される。なおボルトは実質的にはこの金属円管内に通され、また、この硬質ゴム59が挿入される各ボルト穴53の外周側部分の円盤部は数ミリ程度の肉厚で環状に立設している。この他の3つのボルト穴53はその内径が15mm程度であり、回転軸面25に形成された凹部の底部にボルトの頭が来るようになっている。すなわち対向させた両フランジを固定する6本のボルト・ナット51は、凹部の底部にボルトの頭が、硬質ゴム59上にナットがくるように、その挿入方向が互い違いで取り付けられる。
ここでボルトの頭部分には挿入したボルトの空転を防ぐために非円環形の回り止めワッシャ61が止着されている。
また突起部55には、硬質ゴム59を挿入するためのボルト穴53に沿う形で弧状の切り欠きが形成されている。この突起部55が破線で示した原動機の回転軸14および破線で示した動作機器の回転軸18の先端に形成された凹穴(図示せず)に嵌入されることで、軸継手26を構成する各22,24フランジが回転軸14,18の先端に取り付けられる。なお原動機の回転軸14の軸芯とその先端に取り付けられたフランジの回転軸の軸芯とは完全に一致し、また、動作機器の回転軸18の軸芯とその先端に取り付けられたフランジの回転軸の軸芯とは完全に一致するようになっている。
As shown in these drawings, the shaft coupling 26 has a structure in which two (22 in total) flanges 22 and 24 having the same shape are opposed to each other with a plurality of bolts and nuts 51 (total of six). .
The flanges 22 and 24 have, for example, a protrusion 55 having an outer diameter of 210 mm, a thickness of 36 mm, and a disc portion in which six bolt holes 53 are formed at equal intervals. Is formed, and one surface side of the disk portion is a recessed portion that is recessed except for a part between the outer peripheral edge and the protruding portion 55. That is, the disk portion includes a facing surface 23 that is a smooth surface and a rotating shaft surface 25 having a protrusion 55 formed on the back surface thereof, and an end portion of the outer peripheral edge of the disk portion is opposite to the facing surface 23. The ring-shaped flange portion 27 is formed by being bent perpendicularly to each other. Of course, the normal direction of the facing surface 23 coincides with the axial direction of the protrusion 55.
Of the six bolt holes 53 formed in the disk portion, three bolt holes have an inner diameter of about 40 mm, and a cylindrical hard rubber 59 having a metal circular tube inserted and fixed at the center is inserted into the bolt hole. Is done. The bolt is substantially passed through the metal circular tube, and the disk portion on the outer peripheral side of each bolt hole 53 into which the hard rubber 59 is inserted is erected in an annular shape with a thickness of about several millimeters. Yes. The other three bolt holes 53 have an inner diameter of about 15 mm, and the heads of the bolts come to the bottoms of the recesses formed in the rotary shaft surface 25. That is, the six bolts / nuts 51 that fix the two flanges opposed to each other are attached in a staggered manner so that the bolt heads come to the bottom of the recess and the nuts come to the hard rubber 59.
Here, a non-ring-shaped non-rotating washer 61 is fixed to the head portion of the bolt in order to prevent the inserted bolt from slipping.
The protrusion 55 is formed with an arc-shaped cutout along the bolt hole 53 for inserting the hard rubber 59. The projecting portion 55 is inserted into a concave hole (not shown) formed at the tip of the rotating shaft 14 of the prime mover indicated by the broken line and the rotating shaft 18 of the operating device indicated by the broken line, whereby the shaft coupling 26 is configured. The 22 and 24 flanges are attached to the tips of the rotary shafts 14 and 18, respectively. It should be noted that the axis of the rotating shaft 14 of the prime mover and the axis of the rotating shaft of the flange attached to the tip thereof completely coincide with each other, and the axis of the rotating shaft 18 of the operating device and the flange attached to the tip of the shaft. The axis of the rotary shaft is completely coincident with the axis.

以下、上述した軸継手26を用いて2軸を連結する場合に、2軸の芯出し(センタリング)を経験や感だけに頼らずに行うために使用する本発明の軸継手のセンタリング装置の好ましい実施の形態を図面を参照して説明する。以降、原動機の回転軸14先端に取り付けられたフランジを主フランジ22と、動作機器の回転軸18先端に取り付けられたフランジを従フランジ24というものとする。   Hereinafter, in the case of connecting two shafts using the shaft joint 26 described above, the centering device for the shaft joint of the present invention used for centering (centering) the two shafts without relying only on experience and feeling is preferable. Embodiments will be described with reference to the drawings. Hereinafter, the flange attached to the tip of the rotary shaft 14 of the prime mover is referred to as a main flange 22, and the flange attached to the tip of the rotary shaft 18 of the operating device is referred to as a secondary flange 24.

図3は本実施例の軸継手のセンタリング装置10の全体構成を示した概念図である。この装置は概して、主フランジ22の外周縁との径方向距離を計測するための垂直測距センサ32と、主フランジ22の外周縁との軸方向距離を計測するための水平測距センサ34と、垂直測距センサ32および水平測距センサ34によって計測した径方向距離および軸方向距離を表示する表示装置38(変換器)と、計測した径方向距離および軸方向距離の値の変化から、原動機12に固定されて脚をなす固定座63の高さや傾き、水平方向の向きをどのように調整すれば軸継手26のセンタリングが達成されるかを算出してこれを表示する演算表示装置65と、従フランジ24の外周縁の鍔部27に固定され垂直測距センサ32および水平測距センサ34を保持するセンサ取付治具36とから構成されている。   FIG. 3 is a conceptual diagram showing the overall configuration of the shaft coupling centering device 10 of this embodiment. The apparatus generally includes a vertical ranging sensor 32 for measuring the radial distance from the outer periphery of the main flange 22 and a horizontal ranging sensor 34 for measuring the axial distance from the outer periphery of the main flange 22. From the display device 38 (converter) that displays the radial distance and the axial distance measured by the vertical distance measuring sensor 32 and the horizontal distance measuring sensor 34, and from the change in the measured radial distance and axial distance, the prime mover A calculation display device 65 for calculating and displaying how the centering of the shaft coupling 26 can be achieved by adjusting the height, inclination and horizontal direction of the fixed seat 63 fixed to 12 and forming a leg; The sensor mounting jig 36 is fixed to the flange portion 27 on the outer peripheral edge of the slave flange 24 and holds the vertical distance measuring sensor 32 and the horizontal distance measuring sensor 34.

垂直測距センサ32と水平測距センサ34は一般に市販されている精密測距のための高周波磁界を利用した渦電流式センサであり、その外形は直径1cm程度の円柱形状をしており、センサに対向する面との距離を非接触に計測する。このセンサは数ミリ〜数センチ程度の距離を計測するためのもので、その計測誤差はミクロン単位である。   The vertical distance measuring sensor 32 and the horizontal distance measuring sensor 34 are commercially available eddy current type sensors using a high-frequency magnetic field for precision distance measurement, and the outer shape thereof is a cylindrical shape having a diameter of about 1 cm. Measure the distance to the surface facing the non-contact. This sensor is for measuring a distance of several millimeters to several centimeters, and its measurement error is in units of microns.

表示装置38は各センサ32,34で計測した距離をセンサ信号として受信し、これを処理してその表示画面に数値として表示する変換器である。   The display device 38 is a converter that receives the distances measured by the sensors 32 and 34 as sensor signals, processes them, and displays them as numerical values on the display screen.

演算表示装置65は表示装置38に接続されたノートパソコンや専用の処理装置であり、表示装置38から伝達されたデジタル信号を解析し計算を実行することで、原動機12に固定された固定座63の高さや傾き、水平方向の向きの調整量を求め、これを表示画面に表示する。なお表示装置38と演算表示装置65とを一体化してやることも勿論可能である。   The calculation display device 65 is a notebook personal computer connected to the display device 38 or a dedicated processing device. The calculation display device 65 analyzes the digital signal transmitted from the display device 38 and executes the calculation, thereby fixing the fixed seat 63 fixed to the prime mover 12. The amount of adjustment of the height, inclination and horizontal direction of the image is obtained and displayed on the display screen. Of course, the display device 38 and the calculation display device 65 can be integrated.

センサ取付治具36は、センサ取付治具のみを示した斜視図である図4および軸継手26に取り付けた状態を示した斜視図である図5からも分かるように、コの字型のクランプ部42とクランプ部の一端から伸長するL字型のセンサ取付部44等から構成されている。
クランプ部42には、対向する面の一方に治具取付ボルト67を螺合するためのネジ溝が彫られたネジ穴が形成されている。
クランプ部42のネジ穴が形成された側の一端面から軸方向に伸長し回転軸側に屈曲するL字型のセンサ取付部44には、直交する各面に円柱形状のセンサ(垂直測距センサ32および水平測距センサ34)を嵌入固定するための貫通孔69が形成されている。
センサ取付治具36の固定は、従フランジ24の鍔部27にクランプ部42を挿し込み、治具取付ボルト67によって鍔部27を挟止することで行われる。従フランジ24にセンサ取付治具36を固定すると、センサ取付部44は主フランジ22の外周縁と非接触にかつこれを囲うように配置されることとなる。
As can be seen from FIG. 4 which is a perspective view showing only the sensor attachment jig and FIG. 5 which is a perspective view showing a state where the sensor attachment jig 36 is attached to the shaft coupling 26, the U-shaped clamp is provided. It comprises a portion 42 and an L-shaped sensor mounting portion 44 extending from one end of the clamp portion.
The clamp portion 42 is formed with a screw hole in which a screw groove for screwing the jig mounting bolt 67 is engraved on one of the opposing surfaces.
The L-shaped sensor mounting portion 44 that extends in the axial direction from one end surface of the clamp portion 42 on which the screw hole is formed and bends toward the rotating shaft side has a cylindrical sensor (vertical distance measuring device) on each orthogonal surface. A through hole 69 for inserting and fixing the sensor 32 and the horizontal distance measuring sensor 34) is formed.
The sensor attachment jig 36 is fixed by inserting the clamp portion 42 into the flange portion 27 of the secondary flange 24 and clamping the flange portion 27 with the jig attachment bolt 67. When the sensor mounting jig 36 is fixed to the slave flange 24, the sensor mounting portion 44 is disposed so as to be in non-contact with and surround the outer peripheral edge of the main flange 22.

次に以上に説明した軸継手のセンタリング装置10を用いた軸継手のセンタリング方法について説明する。なお原動機12はそのケーシングに金属脚である固定座63が一体型鋳造や溶接構造で設けられており、この固定座を脚として重厚な台座71上に載置されている。一方動作機器16は、予め重厚な台座71上に載置・固定されている。   Next, a shaft coupling centering method using the shaft coupling centering device 10 described above will be described. The motor 12 is provided with a fixed seat 63 as a metal leg on the casing thereof by an integral casting or welding structure, and is mounted on a heavy base 71 using the fixed seat as a leg. On the other hand, the operating device 16 is placed and fixed on a heavy pedestal 71 in advance.

ます準備段階として、段階はセンサ取付治具36を従フランジ24に取り付ける前に、従フランジ24の対向面23と主フランジ22の対向面23を対向させ、おおよその目安で回転軸14,18の軸芯14a,18aのセンタリングを行う。
原動機12の回転軸14の先端部に取り付けられた主フランジ22の対向面23が、動作機器16の回転軸18の先端部に取り付けられた従フランジ24の対向面23とおおよそ平行に対向するように原動機12の高さや傾き、水平方向の向きを調整した後、6つのボルト穴53のうちの1つにボルトを通して緩くナットを締め、仮止めによって両フランジ22,24を連結する。
As a preparatory step, before attaching the sensor mounting jig 36 to the slave flange 24, the opposing surface 23 of the slave flange 24 and the opposing surface 23 of the main flange 22 are opposed to each other, and the rotation shafts 14 and 18 are roughly approximated. Centering of the shaft cores 14a and 18a is performed.
The facing surface 23 of the main flange 22 attached to the distal end portion of the rotating shaft 14 of the prime mover 12 faces the facing surface 23 of the slave flange 24 attached to the distal end portion of the rotating shaft 18 of the operating device 16 approximately in parallel. After adjusting the height and inclination of the prime mover 12 and the horizontal direction, the nut is loosely tightened through one of the six bolt holes 53 and the flanges 22 and 24 are connected by temporary fixing.

次に、従フランジ24の鍔部27にセンサ取付治具36のクランプ部42を挿し込み、治具取付ボルト67を締め付けることによって鍔部27を挟止し、従フランジ24にセンサ取付治具36を固定する。なお従フランジ24へのセンサ取付治具36の固定は、その伸長方向が従フランジ24の軸芯18a方向と完全に一致している必要はなく、多少の誤差があってもよい。これは従フランジ24と主フランジ22とは次に説明するように一体的に軸回転するためである。   Next, the clamp portion 42 of the sensor mounting jig 36 is inserted into the flange portion 27 of the slave flange 24, and the flange portion 27 is clamped by tightening the jig mounting bolt 67. To fix. It should be noted that the sensor mounting jig 36 is fixed to the slave flange 24 in such a manner that the extension direction does not have to coincide completely with the direction of the axis 18a of the slave flange 24, and there may be some errors. This is because the secondary flange 24 and the main flange 22 rotate integrally as described below.

続いて、主フランジ22と従フランジ24とを一体的に軸回転させ、回転によっても対向させた両フランジ22,24に左右のずれがなくなるように台座71上の固定座63の水平面内での位置および方向を微調整する。この微調整は例えば固定座63の側面を木槌によって軽く叩くことで行われる。   Subsequently, the main flange 22 and the sub-flange 24 are integrally pivoted so that the left and right flanges 22 and 24 that are opposed to each other by the rotation are not displaced in the horizontal plane of the fixed seat 63 on the base 71. Fine-tune the position and direction. This fine adjustment is performed, for example, by tapping the side surface of the fixed seat 63 with a mallet.

主フランジ22と従フランジ24とを一体的に軸回転させても両フランジ22,24の左右のずれがなくなるように、台座71上の固定座63の位置および方向を微調整した後には、センサ取付治具36のセンサ取付部44の貫通孔69に、垂直測距センサ32および水平測距センサ34を嵌入固定する。そして主フランジ22と従フランジ24とを一体的に軸回転させ、垂直測距センサ32で垂直面内でのフランジ外周縁(正確には主フランジ22の鍔部27の外周面)との距離を、水平測距センサ34で水平面内でのフランジ外周縁(正確には主フランジ22の鍔部27の回転軸側の面)との距離を計測する。この計測値は表示装置38の表示画面に数値で表示される。また各センサ32,34で計測した距離の変化は演算表示装置65の表示画面にサインカーブ(正弦曲線)やその複合曲線で表示され、演算表示装置65はそのデータを解析処理することで、原動機12に固定された固定座63の高さや傾き、水平方向の向きの調整量を求め、これを表示画面に表示する。   After finely adjusting the position and direction of the fixed seat 63 on the pedestal 71 so that the left and right displacements of the flanges 22 and 24 are eliminated even if the main flange 22 and the slave flange 24 are integrally rotated, the sensor The vertical distance measuring sensor 32 and the horizontal distance measuring sensor 34 are fitted and fixed in the through holes 69 of the sensor mounting portion 44 of the mounting jig 36. Then, the main flange 22 and the secondary flange 24 are integrally pivoted, and the vertical distance measuring sensor 32 determines the distance from the outer peripheral edge of the flange in the vertical plane (more precisely, the outer peripheral surface of the flange portion 27 of the main flange 22). The horizontal distance measuring sensor 34 measures the distance from the outer peripheral edge of the flange in the horizontal plane (more precisely, the surface on the rotating shaft side of the flange portion 27 of the main flange 22). This measured value is displayed numerically on the display screen of the display device 38. Further, the change in distance measured by each sensor 32, 34 is displayed on the display screen of the calculation display device 65 as a sine curve (sine curve) or a composite curve thereof, and the calculation display device 65 analyzes the data, thereby driving the motor. The height and inclination of the fixed seat 63 fixed to 12 and the adjustment amount of the horizontal direction are obtained and displayed on the display screen.

例えば、図3に示した斜視図でa点、b点、c点、d点の全てが低い、換言すれば図6に拡大して示したように原動機12の回転軸14の軸芯14aが動作機器16の回転軸18の軸芯18aと同一垂直面内の低い位置にあるとき、両フランジ22,24を一体的に軸回転させた際の垂直測距センサ32の計測値は、センサ取付治具36が上死点にあるときが最も大きく下死点にあるときが最も小さくなるように変化する一方、水平測距センサ34の計測値にはほとんど変化がないこととなる。センサで計測した各距離の変化にこのような関係がある場合には、図6に記載した関係式から求めた厚みのライナーを固定座63のa〜d点の各点下に挟み入れることで軸芯14a,18aのセンタリングを行う。   For example, in the perspective view shown in FIG. 3, the points a, b, c, and d are all low, in other words, the axis 14a of the rotating shaft 14 of the prime mover 12 is enlarged as shown in FIG. When the flanges 22 and 24 are axially rotated together when the rotary shaft 18 of the operating device 16 is at a low position in the same vertical plane as the axis 18a of the rotating shaft 18, the measured value of the vertical ranging sensor 32 is the sensor mounting While the jig 36 changes to be the largest when it is at the top dead center and the smallest when it is at the bottom dead center, the measurement value of the horizontal distance measuring sensor 34 is hardly changed. When there is such a relationship in the change of each distance measured by the sensor, a liner having a thickness obtained from the relational expression described in FIG. 6 is inserted under each of the points a to d of the fixed seat 63. Centering of the shaft cores 14a and 18a is performed.

また例えば、図3に示した斜視図でa点およびb点が低い、換言すれば図7に拡大して示したように原動機12の回転軸14の軸芯14aが動作機器16の回転軸18の軸芯18aに対して同一垂直面内で(−θだけ)傾いているとき、両フランジ22,24を一体的に軸回転させた際の垂直測距センサ32の計測値にはほとんど変化がない一方、水平測距センサ34の計測値は、センサ取付治具36が上死点にあるときが最も大きく下死点にあるときが最も小さくなるように変化することとなる。両センサ32,34で計測した各距離の変化にこのような関係がある場合には、図7に記載した関係式から求めた厚みのライナーを固定座63のa点およびb点の下に挟み入れることで軸芯14a,18aのセンタリングを行う。   Further, for example, in the perspective view shown in FIG. 3, the points a and b are low, in other words, the shaft core 14a of the rotating shaft 14 of the prime mover 12 is the rotating shaft 18 of the operating device 16 as shown in FIG. When tilted within the same vertical plane (by -θ) with respect to the shaft core 18a, the measurement value of the vertical distance measuring sensor 32 when the two flanges 22 and 24 are integrally rotated is almost changed. On the other hand, the measurement value of the horizontal distance measuring sensor 34 changes so as to be the largest when the sensor mounting jig 36 is at the top dead center and the smallest when it is at the bottom dead center. When there is such a relationship between the changes in the distances measured by the sensors 32 and 34, a liner having a thickness obtained from the relational expression shown in FIG. 7 is sandwiched between points a and b of the fixed seat 63. By inserting, the shaft cores 14a and 18a are centered.

さらに例えば、図3に示した斜視図でc点およびd点が低い、換言すれば図8に拡大して示したように原動機12の回転軸14の軸芯14aが動作機器16の回転軸18の軸芯18aに対して同一垂直面内で(+θだけ)傾いているとき、両フランジ22,24を一体的に軸回転させた際の垂直測距センサ32の計測値にはほとんど変化がない一方、水平測距センサ34の計測値は、センサ取付治具36が上死点にあるときが最も小さく下死点にあるときが最も大きくなるように変化することとなる。両センサ32,34で計測した各距離の変化にこのような関係がある場合には、図8に記載した関係式から求めた厚みのライナーを固定座63のc点およびd点の下に挟み入れることで軸芯14a,18aのセンタリングを行う。この場合、正確に言えば原動機12の回転軸18先端の主フランジ22の中心点は、動作機器16の回転軸18の軸芯18aからずれすることとなるが、そのずれは極僅かであるため図のように近似して考えることができる。   Further, for example, in the perspective view shown in FIG. 3, the points c and d are low, in other words, as shown in an enlarged view in FIG. 8, the axis 14 a of the rotating shaft 14 of the prime mover 12 is the rotating shaft 18 of the operating device 16. When tilted in the same vertical plane (by + θ) with respect to the shaft core 18a, the measured value of the vertical distance measuring sensor 32 when the flanges 22 and 24 are integrally rotated is almost unchanged. On the other hand, the measurement value of the horizontal distance measuring sensor 34 changes so that it is the smallest when the sensor mounting jig 36 is at the top dead center and the largest when it is at the bottom dead center. When there is such a relationship between the changes in the distances measured by the sensors 32 and 34, a liner having a thickness obtained from the relational expression shown in FIG. 8 is sandwiched between points c and d of the fixed seat 63. By inserting, the shaft cores 14a and 18a are centered. In this case, to be exact, the center point of the main flange 22 at the tip of the rotary shaft 18 of the prime mover 12 is shifted from the axis 18a of the rotary shaft 18 of the operating device 16, but the shift is very small. It can be approximated as shown in the figure.

なお実際のセンタリング作業においては、原動機12の回転軸14の軸芯14aが動作機器16の回転軸18の軸芯18aに対して同一垂直面内で低い位置にあり、かつ、傾いていることが考えられるが、上述した調節手法を応用しその組み合わせによって、固定座63の各点の下に挟み入れるべき厚みのライナーを選択することができる。   In the actual centering operation, the axis 14a of the rotating shaft 14 of the prime mover 12 is at a low position in the same vertical plane with respect to the axis 18a of the rotating shaft 18 of the operating device 16, and is inclined. Though conceivable, a liner having a thickness to be sandwiched under each point of the fixed seat 63 can be selected by applying and adjusting the above-described adjustment method.

また上記の方法では対向させた両フランジ22,24の左右のずれ、すなわち水平面内での両フランジのずれの微調整は各センサ32,34を用いることなく行っているが、同様の要領で各センサによって計測した計測値を基にその微調整を行うようにしてもよい。   Further, in the above method, the left and right displacements of the opposed flanges 22 and 24, that is, fine adjustment of the displacement of both flanges in the horizontal plane is performed without using the sensors 32 and 34. You may make it perform the fine adjustment based on the measured value measured by the sensor.

以上に説明したように本発明の軸継手のセンタリング方法および軸継手のセンタリング装置によれば、軸継手の2軸の芯出し(センタリング)を経験や感だけに頼ることなく行うことが可能となる。本発明では2軸のずれや傾きの量を簡易に求めることができるので、特に作業が難しくまた多くの労力を要していた垂直面内での2軸のずれや傾きの調整、すなわち固定座のどの部分にどれくらいの厚みのライナーを挟み入れる必要があるのかの判断を容易に行うことが可能となる。   As described above, according to the shaft coupling centering method and the shaft coupling centering device of the present invention, it is possible to perform centering (centering) of the two shafts of the shaft coupling without relying only on experience and feeling. . In the present invention, the amount of deviation and inclination of the two axes can be easily obtained. Therefore, the adjustment of the deviation and inclination of the two axes in the vertical plane, which is particularly difficult and requires a lot of labor, that is, a fixed seat. It is possible to easily determine which thickness of the liner needs to be inserted in which portion of the throat.

なお、本発明の構成は上述したものに限られるものではなく、発明の趣旨を逸脱しない範囲で適宜変更することができるのは勿論である。例えばセンサ取付治具をフランジの鍔部に固定するのではなく、フランジ自体や回転軸に固定するようにしてやることできる。またセンサ取付治具の固定を主フランジの鍔部に行い、両センサにより従フランジの外周縁との径方向距離および軸方向距離を計測するようにしてやることも勿論可能である。   It should be noted that the configuration of the present invention is not limited to that described above, and can be appropriately changed without departing from the spirit of the invention. For example, the sensor mounting jig can be fixed to the flange itself or the rotating shaft instead of being fixed to the flange portion of the flange. Of course, the sensor mounting jig can be fixed to the flange portion of the main flange, and the radial distance and the axial distance from the outer peripheral edge of the slave flange can be measured by both sensors.

本発明のセンタリング装置が適用される軸継手をの一例を示した斜視図である。It is the perspective view which showed an example of the shaft coupling with which the centering apparatus of this invention is applied. 図1の軸継手のX−X断面図および平面図である。It is XX sectional drawing and a top view of the shaft coupling of FIG. 本実施例の軸継手のセンタリング装置の全体構成を示した概念図である。It is the conceptual diagram which showed the whole structure of the centering apparatus of the shaft coupling of a present Example. 本実施例のセンサ取付治具の斜視図である。It is a perspective view of the sensor mounting jig of a present Example. 本実施例のセンサ取付治具を軸継手に取り付けた状態を示した側面図である。It is the side view which showed the state which attached the sensor attachment jig of the present Example to the shaft coupling. センサ取付治具を取り付けた軸継手を拡大して示した側面図である。It is the side view which expanded and showed the shaft coupling which attached the sensor attachment jig. センサ取付治具を取り付けた軸継手を拡大して示した側面図である。It is the side view which expanded and showed the shaft coupling which attached the sensor attachment jig. センサ取付治具を取り付けた軸継手を拡大して示した側面図である。It is the side view which expanded and showed the shaft coupling which attached the sensor attachment jig.

符号の説明Explanation of symbols

12 原動機
14,18 回転軸
14a,18a 軸芯
16 動作機器
22 主フランジ
23 対向面
24 従フランジ
25 回転軸面
26 軸継手
27 鍔部
32 垂直測距センサ
34 水平測距センサ
36 センサ取付治具
38 表示装置
42 クランプ部
44 センサ取付部
51 ボルト・ナット
53 ボルト穴
55 突起部
59 硬質ゴム
61 回り止めワッシャ
63 固定座
65 演算表示装置
67 治具取付ボルト
69 貫通孔
71 台座
12 Motors 14, 18 Rotating shafts 14a, 18a Shaft core 16 Operating equipment 22 Main flange 23 Opposing surface 24 Sub flange 25 Rotating shaft surface 26 Shaft coupling 27 Hook 32 Vertical distance sensor 34 Horizontal distance sensor 36 Sensor mounting jig 38 Display device 42 Clamping portion 44 Sensor mounting portion 51 Bolt / nut 53 Bolt hole 55 Projection portion 59 Hard rubber 61 Non-turn washer 63 Fixed seat 65 Arithmetic display device 67 Jig mounting bolt 69 Through hole 71 Base

Claims (4)

モータ、エンジンなどの原動機(12)の回転軸(14)と該原動機の回転動力を利用して稼動する動作機器(16)の回転軸(18)とを、原動機の回転軸先端に設けられた主フランジ(22)と動作機器の回転軸先端に設けられた従フランジ(24)とを対向させて固定する構造の軸継手(26)を用いて連結する際の軸継手のセンタリング方法であって、
前記主フランジおよび前記従フランジを仮止めにより連結した状態で一体的に回転させた際に、主フランジの対向面(23)の一点とこの点に対向する従フランジの対向面の一点との軸方向の相対距離および径方向の相対距離の変化を計測することで、原動機の回転軸の軸芯(14a)と動作機器の回転軸の軸芯(18a)との芯ずれを算出し、その値を基に動作機器または原動機の水平方向および垂直方向の向きおよび位置を調節する、ことを特徴とする軸継手のセンタリング方法。
A rotating shaft (14) of a motor (12) such as a motor and an engine and a rotating shaft (18) of an operating device (16) that operates using the rotational power of the motor are provided at the tip of the rotating shaft of the motor. A method of centering a shaft coupling when connecting a main flange (22) and a sub-flange (24) provided at the tip of a rotating shaft of an operating device by using a shaft coupling (26) structured to oppose each other. ,
When the main flange and the slave flange are integrally rotated in a state where the main flange and the slave flange are connected by temporary fixing, an axis between one point of the opposing surface (23) of the main flange and one point of the opposing surface of the slave flange facing this point By measuring the change in the relative distance in the direction and the relative distance in the radial direction, the misalignment between the axis (14a) of the rotating shaft of the prime mover and the axis (18a) of the rotating shaft of the operating device is calculated, and the value A method for centering a shaft coupling, characterized in that the orientation and position in the horizontal and vertical directions of the operating device or prime mover are adjusted based on the shaft.
モータ、エンジンなどの原動機(12)の回転軸(14)と該原動機の回転動力を利用して稼動する動作機器(16)の回転軸(18)とを、原動機の回転軸先端に設けられた主フランジ(22)と動作機器の回転軸先端に設けられた従フランジ(24)とを対向させて固定する構造の軸継手(26)を用いて連結する際の芯出しに使用するための軸継手のセンタリング装置であって、
前記主フランジの外周縁との径方向距離を計測する垂直測距センサ(32)と、
前記主フランジの外周縁との軸方向距離を計測する水平測距センサ(34)と、
前記従フランジの外周縁に固定され、前記垂直測距センサおよび前記水平測距センサを保持するセンサ取付治具(36)と、
前記垂直測距センサおよび前記水平測距センサによって計測した径方向距離および軸方向距離を表示する表示装置(38)と、を備える、ことを特徴とする軸継手のセンタリング装置。
A rotating shaft (14) of a motor (12) such as a motor and an engine and a rotating shaft (18) of an operating device (16) that operates using the rotational power of the motor are provided at the tip of the rotating shaft of the motor. A shaft used for centering when the main flange (22) and the slave flange (24) provided at the tip of the rotary shaft of the operating device are connected to each other by using a shaft joint (26) structured to be fixed. A joint centering device,
A vertical distance measuring sensor (32) for measuring a radial distance from an outer peripheral edge of the main flange;
A horizontal distance measuring sensor (34) for measuring an axial distance from an outer peripheral edge of the main flange;
A sensor mounting jig (36) fixed to the outer peripheral edge of the slave flange and holding the vertical distance measuring sensor and the horizontal distance measuring sensor;
And a display device (38) for displaying the radial distance and the axial distance measured by the vertical distance measuring sensor and the horizontal distance measuring sensor.
モータ、エンジンなどの原動機(12)の回転軸(14)と該原動機の回転動力を利用して稼動する動作機器(16)の回転軸(18)とを、原動機の回転軸先端に設けられた主フランジ(22)と動作機器の回転軸先端に設けられた従フランジ(24)とを対向させて固定する構造の軸継手(26)を用いて連結する際の芯出しに使用するための軸継手のセンタリング装置であって、
前記従フランジの外周縁との径方向距離を計測する垂直測距センサ(32)と、
前記従フランジの外周縁との軸方向距離を計測する水平測距センサ(34)と、
前記主フランジの外周縁に固定され、前記垂直測距センサおよび前記水平測距センサを保持するセンサ取付治具(36)と、
前記垂直測距センサおよび前記水平測距センサによって計測した径方向距離および軸方向距離を表示する表示装置(38)と、を備える、ことを特徴とする軸継手のセンタリング装置。
A rotating shaft (14) of a motor (12) such as a motor and an engine and a rotating shaft (18) of an operating device (16) that operates using the rotational power of the motor are provided at the tip of the rotating shaft of the motor. A shaft used for centering when the main flange (22) and the slave flange (24) provided at the tip of the rotary shaft of the operating device are connected to each other by using a shaft joint (26) structured to be fixed. A joint centering device,
A vertical distance measuring sensor (32) for measuring a radial distance from the outer peripheral edge of the slave flange;
A horizontal distance measuring sensor (34) for measuring an axial distance from the outer peripheral edge of the slave flange;
A sensor mounting jig (36) fixed to the outer peripheral edge of the main flange and holding the vertical distance measuring sensor and the horizontal distance measuring sensor;
And a display device (38) for displaying the radial distance and the axial distance measured by the vertical distance measuring sensor and the horizontal distance measuring sensor.
前記主フランジ(22)および前記従フランジ(24)の外周縁の端部は対向面(23)と反対側に直角に屈曲してリング状の鍔部(27)を形成しており、
前記センサ取付治具(36)は、前記鍔部を径方向に把持するクランプ部(42)と、該クランプ部から伸長し前記垂直測距センサ(32)および前記水平測距センサ(34)を主フランジと非接触に近接して保持するL字型のセンサ取付部(44)と、からなる、ことを特徴とする請求項2又は3に記載の軸継手のセンタリング装置。
The ends of the outer peripheral edges of the main flange (22) and the secondary flange (24) are bent at right angles to the opposite side of the opposing surface (23) to form a ring-shaped flange (27),
The sensor mounting jig (36) includes a clamp part (42) for gripping the collar part in the radial direction, and extends from the clamp part to connect the vertical distance measuring sensor (32) and the horizontal distance measuring sensor (34). The shaft coupling centering device according to claim 2 or 3, comprising an L-shaped sensor mounting portion (44) that is held in close proximity to the main flange in a non-contact manner.
JP2006309805A 2006-11-16 2006-11-16 Shaft coupling centering method and shaft coupling centering device Expired - Fee Related JP4781239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309805A JP4781239B2 (en) 2006-11-16 2006-11-16 Shaft coupling centering method and shaft coupling centering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309805A JP4781239B2 (en) 2006-11-16 2006-11-16 Shaft coupling centering method and shaft coupling centering device

Publications (2)

Publication Number Publication Date
JP2008122351A true JP2008122351A (en) 2008-05-29
JP4781239B2 JP4781239B2 (en) 2011-09-28

Family

ID=39507245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309805A Expired - Fee Related JP4781239B2 (en) 2006-11-16 2006-11-16 Shaft coupling centering method and shaft coupling centering device

Country Status (1)

Country Link
JP (1) JP4781239B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052919A (en) * 2007-08-23 2009-03-12 Japan Atom Power Co Ltd:The Center alignment adjusting/assisting apparatus
JP2010096610A (en) * 2008-10-16 2010-04-30 Meidensha Corp Power tester and method for assembling power tester
JP2010156397A (en) * 2008-12-26 2010-07-15 Toshiba Corp Coupling surface tilt reinforcement method and spacing plate
CN103527614A (en) * 2013-10-25 2014-01-22 中电电机股份有限公司 Connecting structure of three-section shaft used for large synchronous motor
CN107991099A (en) * 2017-12-29 2018-05-04 天津大学 Engine and dynamometer machine centering device
CN112710207A (en) * 2020-12-22 2021-04-27 哈尔滨广瀚燃气轮机有限公司 Gas turbine shaft coupling major-minor centering frock combination

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553335A (en) * 1984-07-16 1985-11-19 Reliance Electric Company Shaft alignment device
EP0174288A1 (en) * 1984-09-06 1986-03-12 Yngve Eriksen Apparatus for use in the alignment of rotating equipment
JPS6453107A (en) * 1987-08-24 1989-03-01 Tokyo Gas Co Ltd Centering correction value measuring instrument
JPH0288029U (en) * 1988-12-27 1990-07-12
JPH0335507A (en) * 1989-06-30 1991-02-15 Tokin Corp Single crystal ferrite and magnetic head thereof
JPH04190107A (en) * 1990-11-26 1992-07-08 Toshiba Corp Centering measuring apparatus for rotor
US5263261A (en) * 1992-06-03 1993-11-23 Computational Systems, Incorporated Shaft alignment data acquisition
US6223102B1 (en) * 1996-03-27 2001-04-24 Pruftechnik Dieter Busch Ag Method and device for aligning the shaft of a rotating machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553335A (en) * 1984-07-16 1985-11-19 Reliance Electric Company Shaft alignment device
EP0174288A1 (en) * 1984-09-06 1986-03-12 Yngve Eriksen Apparatus for use in the alignment of rotating equipment
JPS6453107A (en) * 1987-08-24 1989-03-01 Tokyo Gas Co Ltd Centering correction value measuring instrument
JPH0288029U (en) * 1988-12-27 1990-07-12
JPH0335507A (en) * 1989-06-30 1991-02-15 Tokin Corp Single crystal ferrite and magnetic head thereof
JPH04190107A (en) * 1990-11-26 1992-07-08 Toshiba Corp Centering measuring apparatus for rotor
US5263261A (en) * 1992-06-03 1993-11-23 Computational Systems, Incorporated Shaft alignment data acquisition
US6223102B1 (en) * 1996-03-27 2001-04-24 Pruftechnik Dieter Busch Ag Method and device for aligning the shaft of a rotating machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052919A (en) * 2007-08-23 2009-03-12 Japan Atom Power Co Ltd:The Center alignment adjusting/assisting apparatus
JP2010096610A (en) * 2008-10-16 2010-04-30 Meidensha Corp Power tester and method for assembling power tester
JP2010156397A (en) * 2008-12-26 2010-07-15 Toshiba Corp Coupling surface tilt reinforcement method and spacing plate
CN103527614A (en) * 2013-10-25 2014-01-22 中电电机股份有限公司 Connecting structure of three-section shaft used for large synchronous motor
CN107991099A (en) * 2017-12-29 2018-05-04 天津大学 Engine and dynamometer machine centering device
CN112710207A (en) * 2020-12-22 2021-04-27 哈尔滨广瀚燃气轮机有限公司 Gas turbine shaft coupling major-minor centering frock combination

Also Published As

Publication number Publication date
JP4781239B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4781239B2 (en) Shaft coupling centering method and shaft coupling centering device
US8313016B2 (en) Method and device for positioning a first pipe with respect to a second pipe
TW200840680A (en) Method of positioning movable body
JP2010071705A (en) Coupling centering tool
JP6822994B2 (en) Bearing adjustment support device and bearing adjustment support method
CN103162602B (en) Portable magnetic coupling centering tool gauge frame
JP2007325336A (en) Instrument for measuring eccentricity of air gap, and method of measuring eccentricity of air gap in motor
JP5964284B2 (en) Center ring jig
TWI463113B (en) Servo motor calibration device and calibration method thereof applicable to a servo motor having an encoder
JP2007147501A (en) Device and method for measuring balance of engine assembly
US10281271B2 (en) Surveying instrument
CN105423931A (en) Cable diameter detection device and detection method
JP5373930B2 (en) How to install a waterjet propulsion device on the hull
JP2009244004A (en) Tool for non-contact displacement sensor
JP2006275637A (en) Device and method for measuring engine balance
JP3335550B2 (en) Centering structure between machine shaft and motor shaft
JP2013040647A (en) Gasket interference measuring method of flange
CN113311330B (en) New forms of energy electric drive power assembly stalling test system
CN112833787B (en) Repeated positioning precision measuring device and repeated positioning precision measuring method
CN109736939A (en) A kind of band long axis system diesel generating set assembly centering testing and measuring technology
JP2005337385A (en) Device for supporting adjustment of rotary shaft connecting joint, and method of adjusting rotary shaft connecting joint
JP2011195317A (en) Rotation detector of elevator hoisting machine
JP5374451B2 (en) Injection machine for injection molding machine
JP2017026510A (en) Bolt axial tension measurement device
JP3204906U (en) Angle measurement tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4781239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees