JP2008121935A - Sherbet ice making machine - Google Patents

Sherbet ice making machine Download PDF

Info

Publication number
JP2008121935A
JP2008121935A JP2006304352A JP2006304352A JP2008121935A JP 2008121935 A JP2008121935 A JP 2008121935A JP 2006304352 A JP2006304352 A JP 2006304352A JP 2006304352 A JP2006304352 A JP 2006304352A JP 2008121935 A JP2008121935 A JP 2008121935A
Authority
JP
Japan
Prior art keywords
ice
scraper
ice making
making surface
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006304352A
Other languages
Japanese (ja)
Inventor
Masahiro Hosaka
保坂征宏
Mitsuko Hosaka
保坂美津子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REINETSU GIKEN KK
Original Assignee
REINETSU GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REINETSU GIKEN KK filed Critical REINETSU GIKEN KK
Priority to JP2006304352A priority Critical patent/JP2008121935A/en
Publication of JP2008121935A publication Critical patent/JP2008121935A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sherbet ice making machine increasing an ice making amount and improving energy efficiency by rotating the tip of a scraper which is a key component of an ice generator used in the sherbet ice making machine in proximity to an ice making surface. <P>SOLUTION: A creeping distance on the ice scraping side of the scraper is made longer than that on the opposite side to generate a force of pressing the scraper to the ice making surface side during operation and to rotate the tip blade face always in contact with the ice making surface. Thermal resistance by grown ice is thereby eliminated to freeze an always fresh ice making surface by immediately scraping. The ice making amount is thereby increased, and energy efficiency is improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は水産物や農産物の分野で鮮度保持に利用されるシャーベット氷製造装置のアイスゼネレーターに関するものである。 The present invention relates to an ice generator for a sherbet ice production apparatus used for maintaining freshness in the field of marine products and agricultural products.

図1により一般的な塩水シャーベット氷製造装置について説明する。1は塩水シャーベット氷を生成するアイスゼネレーター、2は蒸発器3の内筒製氷面(図3の31)に生成されたシャーベット氷をその周囲に配置したスクレーパー5により掻きとるローター、3は冷凍機7より供給された冷媒液を蒸発させて塩水を冷却する蒸発器、4はアイスゼネレーター内部の塩水流路、5はローター2に取り付けられ蒸発器3の内筒製氷面(図3の31)に生成されたシャーベット氷を掻きとるスクレーパー、6はローター2を駆動するギヤドモーター、7は冷凍機、8はシャーベット氷を収納するタンク、9は冷凍機7よりアイスゼネレーター1の蒸発器3に冷媒液を供給する冷媒液管、10は蒸発器3で蒸発した冷媒ガスを冷凍機7へ戻す冷媒ガス管、11はタンク8とアイスゼネレーター1の間に塩水を循環するポンプ、12は塩水のゼネレーター1への供給管、13は塩水のアイスゼネレーターよりタンクへの戻り管である。 A general saltwater sherbet ice manufacturing apparatus will be described with reference to FIG. 1 is an ice generator for generating salt water sherbet ice, 2 is a rotor for scraping the sherbet ice generated on the ice making surface (31 in FIG. 3) of the evaporator 3 by a scraper 5 disposed around it, and 3 is a freezer An evaporator for evaporating the refrigerant liquid supplied from the machine 7 to cool the salt water, 4 is a salt water flow path inside the ice generator, 5 is an inner cylinder ice surface of the evaporator 3 attached to the rotor 2 (31 in FIG. 3) Scraper scraping off the generated sherbet ice, 6 is a geared motor for driving the rotor 2, 7 is a refrigerator, 8 is a tank for storing the sherbet ice, 9 is an evaporator 3 of the ice generator 1 from the refrigerator 7 A refrigerant liquid pipe for supplying the refrigerant liquid, 10 is a refrigerant gas pipe for returning the refrigerant gas evaporated in the evaporator 3 to the refrigerator 7, and 11 circulates salt water between the tank 8 and the ice generator 1. Pump, 12 feed pipe to the generator over 1 saltwater, 13 is a return pipe to the tank from the ice generator over the brine.

次に動作について説明する。まずタンク8にシャーベット氷の原料となる塩水を充填し、ポンプ11を運転してアイスゼネレーター1へ塩水を供給し、タンク8との間を循環させる。この状態で冷凍機7を運転し冷媒液管9より蒸発器3へ冷媒を供給すると塩水は徐々に冷却され温度を下げてゆく。0℃以下に下がると塩分濃度に応じた温度で塩水中の水分が結氷をはじめる。たとえば塩水の初期塩分濃度(質量割合)2.5%の場合はマイナス1.43℃で氷生成が始まる。氷が生成されるにつれて塩水中の水分は減少し塩分濃度が増加すると同時に結氷温度も低下する。たとえば氷の濃度(初期塩水質量に対する氷の質量割合)が30%の場合は塩水の塩分濃度は3.5%、結氷温度はマイナス2.11℃である。水が塩分を含んでいると氷の結晶は粗大化せずシャーベット状を呈する。氷の割合が増えるにつれて氷を含む塩水すなはち塩水シャーベット氷の粘度が上昇し流路抵抗も増加してローター1を駆動するギヤドモーターの電流値も増大する。 Next, the operation will be described. First, salt water as a raw material for sherbet ice is filled in the tank 8, and the pump 11 is operated to supply salt water to the ice generator 1 and circulate between the tank 8. When the refrigerator 7 is operated in this state and the refrigerant is supplied from the refrigerant liquid pipe 9 to the evaporator 3, the salt water is gradually cooled and the temperature is lowered. When the temperature falls below 0 ° C., the water in the salt water begins to freeze at a temperature corresponding to the salinity concentration. For example, when salt water has an initial salinity (mass ratio) of 2.5%, ice formation begins at minus 1.43 ° C. As ice is formed, the water content in the salt water decreases, the salinity increases, and at the same time the ice temperature decreases. For example, if the ice concentration (mass ratio of ice to the initial salt water mass) is 30%, the salinity of the salt water is 3.5% and the freezing temperature is minus 2.11 ° C. When water contains salt, ice crystals do not become coarse and form a sherbet. As the proportion of ice increases, the viscosity of salt water containing ice, that is, salt water sherbet ice, increases the flow resistance, and the current value of the geared motor that drives the rotor 1 also increases.

図5、6、7により従来のシャーベット氷生成装置の詳細について説明する。図5において2はアイスゼネレーターのローター、5は氷を掻きとるスクレーパー、17はスクレーパー5を支持する支持棒18の支持金具、18はスクレーパー5の支持棒、19はローター2のシャフトでギヤドモーター6に接続される。図6において30はスクレーパー5の先端で氷を掻き取る刃面、31はアイスゼネレーター1の蒸発器3の内筒製氷面(スクレーパー5側)でこの表面に氷が生成される。32はスクレーパー5と製氷面の間を通る流体の流れ、33はスクレーパー5とローター2の間を通る流体の流れ、34はスクレーパー5の前面側の傾斜面、35はローター2の回転方向を示す、36は流れ32と流れ33の流速差により発生した揚力、37は流体が傾斜面34に衝突して発生する力のうちスクレーパー5を製氷面31の方向に押し付ける力を示す。製氷運転中スクレーパーは2つの力を受ける。その1は流体がスクレーパーに衝突して発生する力でローターを回転方向と逆の方向に押すように働き、そのうちの一部はスクレーパー前面側の傾斜面34によりスクレーパーを製氷面へ押し付けるように働く。その2はスクレーパーの上下を流れる流体の圧力差によって働く力である。スクレーパー5の上方を通る流れ32はその反対側を通る流れ33に対して流速が遅いために、この流速の差によりスクレーパー5を製氷面より引き離そうとする力(揚力)が発生する。これら2つの力のバランスの結果として製氷運転中製氷面31とスクレーパーの先端30の間には隙間が発生する。図7において36はスクレーパー5を支持棒18に取り付ける窪みである。
The details of the conventional sherbet ice generator will be described with reference to FIGS. In FIG. 5, 2 is a rotor of an ice generator, 5 is a scraper that scrapes off ice, 17 is a support bracket of a support bar 18 that supports the scraper 5, 18 is a support bar of the scraper 5, 19 is a shaft of the rotor 2, and a geared motor 6 Connected to. In FIG. 6, reference numeral 30 denotes a blade surface that scrapes off ice at the tip of the scraper 5, and reference numeral 31 denotes an inner cylinder ice surface (scraper 5 side) of the evaporator 3 of the ice generator 1, and ice is generated on this surface. 32 is a flow of fluid passing between the scraper 5 and the ice making surface, 33 is a flow of fluid passing between the scraper 5 and the rotor 2, 34 is an inclined surface on the front side of the scraper 5, and 35 is a rotation direction of the rotor 2. , 36 is the lift generated by the flow velocity difference between the flow 32 and the flow 33, and 37 is the force that presses the scraper 5 in the direction of the ice making surface 31 out of the force generated when the fluid collides with the inclined surface 34. During ice making operation, the scraper receives two forces. Part 1 is the force generated when the fluid collides with the scraper and works to push the rotor in the direction opposite to the rotation direction, and part of it works to push the scraper against the ice making surface by the inclined surface 34 on the front side of the scraper. . The second is the force that works due to the pressure difference of the fluid flowing above and below the scraper. Since the flow 32 passing over the scraper 5 has a slower flow velocity than the flow 33 passing through the opposite side, a force (lift) is generated to pull the scraper 5 away from the ice making surface due to the difference in flow velocity. As a result of the balance between these two forces, a gap is generated between the ice making surface 31 and the tip 30 of the scraper during the ice making operation. In FIG. 7, reference numeral 36 denotes a recess for attaching the scraper 5 to the support rod 18.

次に動作について説明する。塩水の温度が下がって結氷が始まってもスクレーパーの先端30と製氷面31との間には隙間があるので、氷が隙間を埋めるまで成長しないと掻きとりを開始しない。氷が成長してスクレーパーの先端に触れると先端が製氷面側に引き寄せられ掻き取りが始まる。冷凍機の低圧圧力を通してこの現象を観察すると、氷が成長を始めると圧力が低下し始め、スクレーパーによる氷の切削が始まると圧力が上昇する。氷がなくなった時点で最高の圧力に達する。製氷運転中圧力はこのようなサイクルを繰り返している。低圧圧力が下がるのは氷が熱抵抗となり冷媒と塩水の熱交換量が減少したために起こり、上がるのは熱交換量が増えるためである。スクレーパーの先端30と製氷面31との隙間が大きいほど発生する低圧の圧力差は大きく、製氷量は減少し、エネルギー効率も低下する。

Next, the operation will be described. Even if the temperature of the salt water decreases and ice formation starts, there is a gap between the tip 30 of the scraper and the ice making surface 31. Therefore, scraping does not start unless the ice grows until the gap is filled. When the ice grows and touches the tip of the scraper, the tip is drawn toward the ice making surface and scraping begins. When this phenomenon is observed through the low pressure of the refrigerator, the pressure starts to decrease when the ice begins to grow, and the pressure increases when the scraper starts cutting the ice. Maximum pressure is reached when the ice runs out. During the ice making operation, the pressure repeats such a cycle. The low pressure is lowered because ice becomes a heat resistance and the heat exchange amount between the refrigerant and the salt water is decreased, and the increase is because the heat exchange amount is increased. The greater the gap between the tip 30 of the scraper and the ice making surface 31, the greater the pressure difference between the low pressures generated, the more ice making and the lower the energy efficiency.

従来のシャーベット氷生成装置は以上のように構成されているので、運転中スクレーパーの先端30と製氷面31との間に隙間が発生し、製氷量の減少し、エネルギー効率の低下をきたしていた。
Since the conventional sherbet ice generator is configured as described above, a gap is generated between the tip 30 of the scraper and the ice making surface 31 during operation, resulting in a decrease in the ice making amount and energy efficiency. .

本発明は上記のような問題点を解消するためになされたものであり、スクレーパーの形状を工夫することによって運転中製氷面とスクレーパーの隙間を最小限にし、ほぼ氷ができると同時に掻きとり、熱抵抗の少ない新鮮な製氷面を常に確保して冷媒の蒸発現象を盛んにし、冷凍機の低圧圧力を高く保つことで製氷量の増加、エネルギー効率の改善を図ろうとするものである。
The present invention has been made to solve the above-described problems, by devising the shape of the scraper to minimize the gap between the ice making surface and the scraper during operation, scraping almost simultaneously with the formation of ice, It is intended to increase the amount of ice making and improve energy efficiency by always ensuring a fresh ice making surface with low thermal resistance to promote refrigerant evaporation and keeping the low pressure of the refrigerator high.

本発明では上記目的を達成するためにスクレーパーの形状を航空機翼の裏返し、つまり製氷面に沿った沿面長を長くし、スクレーパーの内側(中心側)の沿面長を短くすることで、運転中流体の流れを製氷面に沿った側を早くし、内側を遅くするようにしたので、内側より外側に向かう力つまりスクレーパーを内側より製氷面に押し付ける力(ダウンフォース)を発生させるようにした。これにより運転中流体の流れがスクレーパーに衝突して発生する力のうちスクレーパーを製氷面に押し付ける力とスクレーパーの内外面を流れる水によって発生する力の両方がスクレーパーを製氷面に押し付けるので、スクレーパーの先端が製氷面に常に接触した状態を実現することができる。


In the present invention, in order to achieve the above object, the scraper is turned upside down, that is, the creepage length along the ice making surface is increased, and the creepage length on the inner side (center side) of the scraper is shortened. The flow along the ice making surface was made faster and the inner side made slower, so that the force toward the outside from the inside, that is, the force to press the scraper against the ice making surface from the inside (down force) was generated. As a result, both the force generated when the fluid flow collides with the scraper during operation and the force generated by the water flowing inside and outside the scraper presses the scraper against the ice making surface. It is possible to realize a state in which the tip is always in contact with the ice making surface.


以上のように、本発明によれば運転中スクレーパーの先端が製氷面に接近して回転することが可能となり、氷ができる初期の段階でその掻き取りが出来るようになる。したがい、氷の成長により発生する伝熱面の熱抵抗を最小限に抑え、製氷量の増大とエネルギー効率の改善が可能になる。


As described above, according to the present invention, the tip of the scraper can rotate close to the ice making surface during operation, and scraping can be performed at an early stage when ice is formed. Accordingly, it is possible to minimize the heat resistance of the heat transfer surface generated by the ice growth, increase the ice making amount and improve the energy efficiency.


以下、この発明の実施例を図2、図3、図4に基づいて説明する。 Embodiments of the present invention will be described below with reference to FIGS. 2, 3, and 4. FIG.

図2において5は氷を掻きとるスクレーパー、16はアイスゼネレーターのローター、17はスクレーパー5を支持する支持棒18の支持金具、18はスクレーパー5の支持棒、19はローター2のシャフトでギヤドモーター6に接続される。 In FIG. 2, 5 is a scraper that scrapes off ice, 16 is a rotor of an ice generator, 17 is a support bracket of a support bar 18 that supports the scraper 5, 18 is a support bar of the scraper 5, 19 is a shaft of the rotor 2, and a geared motor 6 Connected to.

図3は本発明によるスクレーパー5が蒸発器3の内筒に装着された状態を上側より見た断面を示している。スクレーパー5は支持金具17及び支持棒18によりローター2に取り付けられる。スクレーパー5は支持棒18の周りに回転できるようになっているので、自身の中心軸からのずれや蒸発器内筒の製氷面の真円度狂いに回転しながら対応することが出来る。 FIG. 3 shows a cross section of the scraper 5 according to the present invention as viewed from above when the scraper 5 is mounted on the inner cylinder of the evaporator 3. The scraper 5 is attached to the rotor 2 by a support bracket 17 and a support rod 18. Since the scraper 5 can be rotated around the support rod 18, it can cope with the rotation from the center axis of the scraper 5 and the roundness of the ice making surface of the evaporator inner cylinder.

図4において38は流れ32と流れ33の流速の差により発生するスクレーパー5を製氷面31へ押し付ける力(ダウンフォース)である。その他は前述と同様であるので説明を省略する。 In FIG. 4, reference numeral 38 denotes a force (down force) that presses the scraper 5 against the ice making surface 31 generated by the difference in flow velocity between the flow 32 and the flow 33. Others are the same as described above, and thus the description thereof is omitted.

以下、上記構成の動作を説明する。
The operation of the above configuration will be described below.

ローター2が流体(塩水や海水など)の中で回転するとスクレーパー5の内側傾斜面34に流体の流れが衝突してスクレーパー5に力を与える。この力はスクレーパー5を回転方向35と逆の方向に押す力とスクレーパー5を製氷面31側に押す力37に分解される。また、スクレーパー5と製氷面31の間の隙間を流れる流体32はスクレーパーの沿面距離が長いためにその反対側を流れる流体33に比して流速が早くなり、その静圧が反対側より低くなる。結果としてスクレーパー5を製氷面31側に押しつける力38を発生させる。これら2つの力がともにスクレーパー5を製氷面31に押し付ける方向に働くので、スクレーパー5の先端30は常に製氷面31に接触して回転し、製氷面31に氷が生成されると直ちに掻き取って、熱抵抗のない新鮮な製氷面31を確保することができる。これにより蒸発器3の冷媒と流体間の熱交換量が増大して冷凍機の低圧圧力はより高いレベルで運転されるので、製氷量の増大、エネルギー効率の改善を図ることができる。

When the rotor 2 rotates in the fluid (salt water, seawater, etc.), the fluid flow collides with the inner inclined surface 34 of the scraper 5 and applies a force to the scraper 5. This force is broken down into a force that pushes the scraper 5 in the direction opposite to the rotation direction 35 and a force 37 that pushes the scraper 5 toward the ice making surface 31. In addition, the fluid 32 flowing through the gap between the scraper 5 and the ice making surface 31 has a higher creepage distance than the fluid 33 flowing on the opposite side because the creeping distance of the scraper is long, and the static pressure is lower than that on the opposite side. . As a result, a force 38 for pressing the scraper 5 against the ice making surface 31 is generated. Since both these two forces act in the direction of pressing the scraper 5 against the ice making surface 31, the tip 30 of the scraper 5 always rotates in contact with the ice making surface 31, and when ice is generated on the ice making surface 31, it is scraped immediately. A fresh ice-making surface 31 without heat resistance can be secured. As a result, the amount of heat exchange between the refrigerant and the fluid in the evaporator 3 is increased and the low-pressure pressure of the refrigerator is operated at a higher level, so that the amount of ice making can be increased and the energy efficiency can be improved.

一般的な塩水シャーベット氷生成装置General salt water sherbet ice generator 本発明の一実施例におけるアイスゼネレーターのローターIce generator rotor in one embodiment of the present invention 本発明の一実施例におけるアイスゼネレーターの横断面図1 is a cross-sectional view of an ice generator in an embodiment of the present invention. 本発明の一実施例におけるスクレーパーScraper in one embodiment of the present invention 従来の一実施例におけるアイスゼネレーターのローターIce generator rotor in one conventional example 従来の一実施例におけるスクレーパーScraper in one conventional example 従来の一実施例におけるスクレーパーScraper in one conventional example

符号の説明Explanation of symbols

1 アイスゼネレーター
2 ローター
3 蒸発器
4 蒸発器の水ふた
5 スクレーパー
6 ギヤドモーター
7 冷凍機
8 タンク
9 冷媒液管
10 冷媒ガス管
11 循環ポンプ
12 塩水供給管
13 塩水戻り管
14
15
16
17 支持金具
18 支持棒
19 ローター駆動シャフト
20
21
22
23
24
25
26
27
28
29
30 スクレーパーの先端刃面
31 蒸発器の内筒製氷面
32 スクレーパーの製氷面側を通る流れ
33 スクレーパーの中心側(製氷面の反対側)を通る流れ
34 スクレーパーの中心側の傾斜面
35 ローターの回転方向
36 従来のスクレーパー形状で発生する揚力
37 流体がスクレーパーの傾斜面に衝突して発生する力のうちスクレーパーを製氷面に押し付けるように働く分力
38 本発明のスクレーパー形状で発生するダウンフォース
DESCRIPTION OF SYMBOLS 1 Ice generator 2 Rotor 3 Evaporator 4 Evaporator water lid 5 Scraper 6 Geared motor 7 Refrigerator 8 Tank 9 Refrigerant liquid pipe 10 Refrigerant gas pipe 11 Circulation pump 12 Salt water supply pipe 13 Brine return pipe 14
15
16
17 Support bracket 18 Support rod 19 Rotor drive shaft 20
21
22
23
24
25
26
27
28
29
30 Scraper tip blade surface 31 Evaporator inner cylinder ice surface 32 Flow through scraper ice making side 33 Flow through scraper center side (opposite to ice making surface) 34 Scraper center inclined surface 35 Rotor rotation Direction 36 Lifting force 37 generated in the shape of the conventional scraper 37 Component force acting to press the scraper against the ice making surface out of the force generated when the fluid collides with the inclined surface of the scraper 38 Downforce generated in the scraper shape of the present invention

Claims (1)

図1、図2、図3、図4に示すように直径の異なる2つの金属製同心円筒により囲まれた空間を蒸発器3とし、内円筒の内径側表面を製氷面31とし、製氷面31に生成される氷を掻き取る樹脂製スクレーパー5を備えたローター2を内円筒の内径側に配置し、ローター2と蒸発器3の内円筒で挟まれた空間に塩水を流してシャーベット氷の製氷を行うアイスゼネレーターにおいて、樹脂製スクレーパー5の製氷面31側の沿面距離をその反対側(回転の中心側)よりも長くして流体の流速をより早くし、それにより発生するダウンフォース(揚力の逆の力)を利用して運転中スクレーパーを製氷面に押し付けて回転するようにしたことを特徴とするアイスゼネレーターを組み込んだシャーベットアイス製氷機。 As shown in FIGS. 1, 2, 3, and 4, the space surrounded by two metal concentric cylinders having different diameters is an evaporator 3, and the inner diameter side surface of the inner cylinder is an ice making surface 31. A rotor 2 equipped with a resin scraper 5 that scrapes off the ice generated on the inner cylinder is disposed on the inner diameter side of the inner cylinder, and salt water is poured into a space sandwiched between the inner cylinder of the rotor 2 and the evaporator 3 to produce sherbet ice. In the ice generator, the creeping distance on the ice making surface 31 side of the resin scraper 5 is made longer than the opposite side (rotation center side) to increase the flow velocity of the fluid, thereby generating the down force (lifting force) A sherbet ice making machine incorporating an ice generator, wherein the scraper is pressed against the ice making surface during operation using the reverse force of
JP2006304352A 2006-11-09 2006-11-09 Sherbet ice making machine Pending JP2008121935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304352A JP2008121935A (en) 2006-11-09 2006-11-09 Sherbet ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304352A JP2008121935A (en) 2006-11-09 2006-11-09 Sherbet ice making machine

Publications (1)

Publication Number Publication Date
JP2008121935A true JP2008121935A (en) 2008-05-29

Family

ID=39506884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304352A Pending JP2008121935A (en) 2006-11-09 2006-11-09 Sherbet ice making machine

Country Status (1)

Country Link
JP (1) JP2008121935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071484A (en) * 2008-09-16 2010-04-02 Nichimo Co Ltd Method of making sherbet ice, machine for making sherbet ice, and ice generator used for the same
CN104075515A (en) * 2013-11-28 2014-10-01 王飞波 Multi-sectional modularized scrapping blade combined type fluidized ice crystal machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071484A (en) * 2008-09-16 2010-04-02 Nichimo Co Ltd Method of making sherbet ice, machine for making sherbet ice, and ice generator used for the same
CN104075515A (en) * 2013-11-28 2014-10-01 王飞波 Multi-sectional modularized scrapping blade combined type fluidized ice crystal machine

Similar Documents

Publication Publication Date Title
US6658889B2 (en) Apparatus for producing potable water and slush from sea water or brine
CN101300995B (en) Method and apparatus for manufacturing brine mixed slush-like ice
JP4638393B2 (en) Sherbet ice making machine
RU2278717C2 (en) Method and device for continuous crystallization of liquid by freezing
KR101779368B1 (en) Seawater Ice Generator
KR100809928B1 (en) Drum unit for piece ice manufacture device
EP1993373A2 (en) Ice slurry machine
JP2018021745A (en) Quick freezing method and quick freezing equipment
CN104006594B (en) Ice machine for making tube ice that fresh water/sea water is dual-purpose and ice making technique thereof
CN102425895A (en) Preparation apparatus for high concentration fluid ice
JP2008121935A (en) Sherbet ice making machine
CN101846423B (en) Ice making device
JP2004053142A (en) Ice water producer
US20020112500A1 (en) Ice-making machine and ice-making method
KR100750089B1 (en) Refrigerants cycle device for ice making machine
JP2006023063A (en) Ice making device
WO2001007846A1 (en) Ice machine
CN210921883U (en) Device is got to LNG fishing boat fluidization ice preparation
KR100498735B1 (en) seaice manufacture apparatus
JP2007225144A (en) Ice generator
WO2020136997A1 (en) Operation control method for ice maker
JP6750873B2 (en) Slurry ice making machine
CN112728826A (en) Ice maker and refrigerator
CN203857723U (en) Fresh water/seawater dual-purpose tubular ice making machine
JP4545332B2 (en) Steam compression refrigerator using antifreeze