JP2008112589A - Plasma treatment device, plasma treatment method and memory medium - Google Patents

Plasma treatment device, plasma treatment method and memory medium Download PDF

Info

Publication number
JP2008112589A
JP2008112589A JP2006293167A JP2006293167A JP2008112589A JP 2008112589 A JP2008112589 A JP 2008112589A JP 2006293167 A JP2006293167 A JP 2006293167A JP 2006293167 A JP2006293167 A JP 2006293167A JP 2008112589 A JP2008112589 A JP 2008112589A
Authority
JP
Japan
Prior art keywords
electrode
contact
moving
contact member
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006293167A
Other languages
Japanese (ja)
Other versions
JP4961948B2 (en
Inventor
Hitoshi Saito
均 齊藤
Akira Sato
亮 佐藤
Yoshihiko Sasaki
芳彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006293167A priority Critical patent/JP4961948B2/en
Priority to CNB2007101626440A priority patent/CN100536069C/en
Priority to KR1020070107831A priority patent/KR100908506B1/en
Priority to TW096140445A priority patent/TWI420979B/en
Publication of JP2008112589A publication Critical patent/JP2008112589A/en
Application granted granted Critical
Publication of JP4961948B2 publication Critical patent/JP4961948B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment device in which an electric resistance of a return route of high-frequency current is made small when plasma is generated between parallel flat sheet electrodes by a high-frequency power. <P>SOLUTION: On an upper electrode 3 as an anode electrode movable up and down, there are provided conductive moving-side contacting members 5a, 5b with rise-and-fall rods 51a, 51b in between outside a treatment container 2. When the above upper electrode 3 is positioned where a plasma treatment is carried out, there are provided conductive fixed-side contacting members 71 to 73 so that a return route of a high-frequency current can be formed after contacting with the moving-side contacting members 5a, 5b with conductive supporting members 61 to 63 in between outside the treatment container 2. Since a high-frequency current flows in a route of a lower electrode 4 → plasma → upper electrode 3→ rise-and-fall rods 51a, 51b→ moving-side contacting member 5a, 5b → fixed-side contacting member 71 to 73→ supporting members 61 to 63→ treatment container 2→ through the ground side of high-frequency power source 44, an electric resistance of the return route can be made small. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プラズマにより基板に対して処理を行う平行平板型のプラズマ処理装置及び、前記プラズマ処理装置を用いて行われるプラズマ処理方法、並びに記憶媒体に関する。   The present invention relates to a parallel plate type plasma processing apparatus for processing a substrate with plasma, a plasma processing method performed using the plasma processing apparatus, and a storage medium.

半導体デバイスや、液晶表示装置などのFPD(Flat Panel Display)基板の製造工程においては、半導体ウエハやガラス基板といった基板にエッチング処理や、成膜処理等の所定の処理を施す工程があり、例えばこれらの処理は、プラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置にて行われている。 このプラズマ処理装置の一例について、平行平板型のプラズマ処理装置を例にして、図14に基づいて簡単に説明する。   In the manufacturing process of an FPD (Flat Panel Display) substrate such as a semiconductor device or a liquid crystal display device, there is a step of performing a predetermined process such as an etching process or a film forming process on a substrate such as a semiconductor wafer or a glass substrate. This process is performed by a plasma processing apparatus such as a plasma etching apparatus or a plasma CVD apparatus. An example of this plasma processing apparatus will be briefly described with reference to FIG. 14, taking a parallel plate type plasma processing apparatus as an example.

この装置においては、例えばアルミニウムなどからなる処理容器11内に、ガス供給部をなすガスシャワーヘッドを兼用した上部電極12が設けられると共に、この上部電極12に対向するように、基板10の載置台を兼用する下部電極13が設けられており、この下部電極13は、整合回路(マッチング回路)を備えたマッチングボックス14を介して高周波電源15に接続されている。16は絶縁材である。そして上部電極12から処理容器11内に処理ガスを供給し、排気路17を介して処理容器11内を真空引きする一方、高周波電源15から下部電極13に高周波電力を印加することにより、上部電極12と下部電極13との間の空間に処理ガスのプラズマを形成し、これにより下部電極13に載置された基板10に対するプラズマ処理が行われるようになっている。   In this apparatus, an upper electrode 12 that also serves as a gas shower head serving as a gas supply unit is provided in a processing container 11 made of, for example, aluminum, and the mounting table of the substrate 10 is opposed to the upper electrode 12. The lower electrode 13 is also connected to a high frequency power source 15 via a matching box 14 having a matching circuit (matching circuit). Reference numeral 16 denotes an insulating material. Then, the processing gas is supplied from the upper electrode 12 into the processing container 11, and the processing container 11 is evacuated through the exhaust path 17, while the high frequency power is applied to the lower electrode 13 from the high frequency power supply 15, thereby A plasma of a processing gas is formed in a space between the lower electrode 13 and the lower electrode 13, so that the plasma processing is performed on the substrate 10 placed on the lower electrode 13.

ところで、前記プラズマ処理装置では、処理ガスの種類や処理対象の膜に応じて、前記上部電極12と下部電極13との間の間隔(距離)の最適値が異なっており、例えば前記間隔が基板10を搬入できない程狭い場合がある。また同じプラズマ処理装置で異なる処理プロセスを連続して行う場合には、処理毎に前記間隔を切り換えることが好ましい。   By the way, in the plasma processing apparatus, the optimum value of the distance (distance) between the upper electrode 12 and the lower electrode 13 differs depending on the type of processing gas and the film to be processed. It may be so narrow that 10 cannot be carried in. Further, when different processing processes are continuously performed in the same plasma processing apparatus, it is preferable to switch the interval for each processing.

このようなことから、上述のプラズマ処理装置は、例えば上部電極12の天井部に昇降軸18aを取り付け、上部電極12を昇降自在に構成して、前記上部電極12と下部電極13との間の距離を可変にできるように構成されている。図中18bは支持板、18cは昇降機構であり、19は昇降軸18aを囲むように設けられたベローズ体である。この際、前記昇降軸18aと支持板18bとベローズ体19とは導電性部材により形成され、こうして上部電極12は昇降軸18aと支持板18bとベローズ体19とよりなる導電路を介して処理容器11に電気的に接続される。また処理容器11は高周波電源15のアース側に電気的に接続されている。   For this reason, the above-described plasma processing apparatus has, for example, an elevating shaft 18a attached to the ceiling portion of the upper electrode 12, and the upper electrode 12 is configured to be movable up and down, and between the upper electrode 12 and the lower electrode 13. The distance is variable. In the figure, 18b is a support plate, 18c is an elevating mechanism, and 19 is a bellows body provided so as to surround the elevating shaft 18a. At this time, the elevating shaft 18a, the support plate 18b, and the bellows body 19 are formed of a conductive member. Thus, the upper electrode 12 is disposed in the processing container through a conductive path including the elevating shaft 18a, the support plate 18b, and the bellows body 19. 11 is electrically connected. The processing container 11 is electrically connected to the ground side of the high frequency power supply 15.

このような装置では、プラズマが発生しているときには、高周波電源15からの高周波電流は、図15に示すように、下部電極13→プラズマ→上部電極12→導電路→処理容器11の壁部を介して高周波電源15のアース側に流れていく。従って前記ベローズ体19は高周波電流のリターン経路に含まれ、抵抗成分として作用する。   In such an apparatus, when plasma is generated, the high-frequency current from the high-frequency power source 15 is transmitted through the wall of the lower electrode 13 → plasma → upper electrode 12 → conducting path → processing vessel 11 as shown in FIG. And flows to the ground side of the high-frequency power supply 15. Therefore, the bellows body 19 is included in the return path of the high frequency current and acts as a resistance component.

ところで処理対象である基板10の中で液晶ディスプレイなどのフラットパネル用のガラス基板は益々大型化する傾向にあり、これに伴い処理容器11が大型化してくると、上部電極12を支持するための昇降軸18aを太くしたり、昇降軸18aが長くなる傾向がある。昇降軸18aが太くなると、この回りを囲むベローズ体19が大型化してしまうし、昇降軸18aが長くなると、それに伴いベローズ19体も長くなることになるが、ベローズ体19は導電性部材が蛇腹状に折り畳まれた形状であるため、構造上インダクタンス成分が大きく、ベローズ体19が大型化したり、長くなったりすると、高周波電流のリターン経路の電気抵抗が増大することになってしまう。   By the way, the glass substrate for flat panels, such as a liquid crystal display, among the board | substrates 10 which are process objects tends to enlarge increasingly, and when the process container 11 becomes large in connection with this, it is for supporting the upper electrode 12. There is a tendency that the lifting shaft 18a is thickened or the lifting shaft 18a becomes longer. When the elevating shaft 18a becomes thicker, the bellows body 19 surrounding the periphery becomes larger, and when the elevating shaft 18a becomes longer, the bellows 19 body becomes longer accordingly. Therefore, when the bellows body 19 is enlarged or lengthened, the electrical resistance of the high-frequency current return path increases.

ここで基板面積が2.0m程度の大きさまでは、このベローズ体19の電気抵抗はさほど問題にはならないが、基板面積が2.7m程度の大きさになってくると、前記電気抵抗が大きくなり、問題となってくる。つまりリターン経路の電気抵抗が増大すると、均一なプラズマの発生が困難となって、基板10に対して面内均一性の高い処理を行うことができなくなり、装置の性能低下を招く要因となってしまうからである。 Here, when the substrate area is as large as about 2.0 m 2 , the electrical resistance of the bellows body 19 is not a problem, but when the substrate area becomes as large as about 2.7 m 2 , Becomes bigger and becomes a problem. That is, when the electrical resistance of the return path increases, it becomes difficult to generate uniform plasma, and it becomes impossible to perform processing with high in-plane uniformity on the substrate 10, which causes a reduction in the performance of the apparatus. Because it ends up.

一方、高周波電流のリターン経路にベローズ体19を含めず、上部電極12と下部電極13との間の間隔を可変にできる技術については、特許文献1に記載されている。この技術は、チャンバ1の上蓋1aと、昇降自在に構成されたウエハ載置台2を構成している絶縁された下部電極13との間でプラズマを生成するチャンバ1において、チャンバ1の側壁部と、ウエハ載置台2に連結された導体筒22の上端部との間を導通させることにより、高周波電流のリターン経路に金属ベローズ24を含めない構成とするものである。   On the other hand, Japanese Patent Application Laid-Open No. 2004-228561 describes a technique that can change the interval between the upper electrode 12 and the lower electrode 13 without including the bellows body 19 in the return path of the high-frequency current. In this technique, in the chamber 1 that generates plasma between the upper lid 1a of the chamber 1 and the insulated lower electrode 13 that constitutes the wafer mounting table 2 configured to be movable up and down, the side wall portion of the chamber 1 The metal bellows 24 is not included in the return path of the high-frequency current by conducting between the upper end portion of the conductor tube 22 connected to the wafer mounting table 2.

しかしながら、特許文献1の構成では、導体筒22の上端部とチャンバ1の側壁部とを接続させており、導通部の接点がチャンバ1内に存在するので、プラズマ処理を行う際に、前記接点がプラズマに晒されることになる。このためプラズマとの接触や、プラズマにより活性化された処理ガスとの接触により、前記接点が腐食しやすく、この結果、前記接点における電気的接触の悪化を招く。このように電気的接触の程度が悪くなると、チャンバ1内におけるプラズマの分布が不均一になり、安定したプラズマ処理を行うことができなくなるおそれがある。   However, in the configuration of Patent Document 1, since the upper end portion of the conductor tube 22 and the side wall portion of the chamber 1 are connected and the contact point of the conduction portion exists in the chamber 1, the contact point is used when performing plasma processing. Will be exposed to plasma. For this reason, the contact is easily corroded by the contact with plasma or the processing gas activated by the plasma, and as a result, the electrical contact at the contact is deteriorated. As described above, when the degree of electrical contact is deteriorated, the plasma distribution in the chamber 1 becomes non-uniform, and there is a possibility that stable plasma treatment cannot be performed.

さらに、前記導体筒22の上端部とチャンバ1の側壁部とは、接触体26がウエハ載置台2を介して昇降されることにより、互いに接離自在に構成されているが、このように導通部の接点が可動自在に構成されていると、当該接点部分が、使用頻度の増化に従い、パーティクルの発生原因となりやすい。しかも導通部の接点はチャンバ1内に存在するので、チャンバ1内にパーティクルが発生することになり、基板のパーティクル汚染を招くおそれもある。このようにこの特許文献1の構成によっても、本発明の課題の解決を図ることはできない。   Further, the upper end portion of the conductor tube 22 and the side wall portion of the chamber 1 are configured to be brought into contact with and separated from each other when the contact body 26 is moved up and down via the wafer mounting table 2. If the contact of the part is configured to be movable, the contact part tends to cause generation of particles as the frequency of use increases. In addition, since the contact point of the conduction portion exists in the chamber 1, particles are generated in the chamber 1, and there is a possibility of causing particle contamination of the substrate. Thus, even with the configuration of Patent Document 1, the problem of the present invention cannot be solved.

特開2001−203189JP 2001-203189 A

本発明はこのような事情のもとになされたものであり、本発明の目的は、平行平板電極の間で高周波電力によりプラズマを発生させるにあたり、前記平行平板電極の間の間隔を変更でき、高周波電流のリターン経路の電気抵抗を小さくすることにより均一なプラズマを発生させ、装置を安定可動させる技術を提供することにある。   The present invention has been made under such circumstances, and the object of the present invention is to change the interval between the parallel plate electrodes when generating plasma with high frequency power between the parallel plate electrodes, An object of the present invention is to provide a technique for generating uniform plasma by reducing the electric resistance of the return path of the high-frequency current so that the apparatus can move stably.

このため本発明のプラズマ処理装置は、処理容器の内部に少なくとも一対の平行平板電極と、前記一対の電極間隔を変化させるように駆動することができる少なくとも一つの駆動電極と、を有し、高周波電源から高周波電流を処理容器を介して前記高周波電源のアース側にリターンさせると共に、プラズマにより基板に対して処理を行うプラズマ処理装置において、
一端が前記駆動電極と電気的に接続された駆動部材、あるいは絶縁された駆動部材と、
該駆動部材を駆動させる駆動手段と、
少なくとも1つの処理容器外接触機構と、を備え、
前記処理容器外接触機構は、
処理容器の外に突出した該駆動部材の他端と電気的に導通する導電性の移動側接触部材と、
該移動側接触部材が移動したときに当該移動側接触部材と接触するように設けられ、処理容器外壁と連結された導電性の固定側接触部材とからなり、
前記移動側接触部材と固定側接触部材とが接触したときに高周波電流のリターン経路を形成することを特徴とする。
For this reason, the plasma processing apparatus of the present invention has at least a pair of parallel plate electrodes and at least one drive electrode that can be driven so as to change the distance between the pair of electrodes inside the processing container. In the plasma processing apparatus for returning the high frequency current from the power source to the ground side of the high frequency power source through the processing vessel, and processing the substrate with plasma,
A drive member having one end electrically connected to the drive electrode, or an insulated drive member;
Drive means for driving the drive member;
At least one processing container external contact mechanism,
The processing container external contact mechanism is
A conductive moving contact member electrically connected to the other end of the drive member protruding outside the processing container;
It is provided so as to come into contact with the moving side contact member when the moving side contact member moves, and comprises a conductive fixed side contact member connected to the outer wall of the processing container,
A high-frequency current return path is formed when the moving-side contact member and the fixed-side contact member come into contact with each other.

ここで前記処理容器外接触機構の移動側接触部材と固定側接触部材の接点は、少なくとも1つ以上の電極間隔に対応する位置を有するものとすることができる。また前記処理容器外接触機構の移動側接触部材と固定側接触部材の接点は、任意の電極間隔に対応する位置に変更可能に構成してもよい。前記駆動電極は基板を載置する載置台と対向する電極であってもよいし、また前記駆動電極は基板を載置する載置台であってもよい。   Here, the contact point between the moving side contact member and the stationary side contact member of the processing container outside contact mechanism may have a position corresponding to at least one electrode interval. Further, the contact point between the moving contact member and the stationary contact member of the processing container outside contact mechanism may be configured to be changeable to a position corresponding to an arbitrary electrode interval. The driving electrode may be an electrode facing a mounting table on which a substrate is mounted, and the driving electrode may be a mounting table on which a substrate is mounted.

さらに前記駆動電極はアノード電極であり、該アノード電極と前記駆動部材は電気的に接続されるものであってもよいし、前記駆動電極はアノード電極であり、前記アノード電極と前記駆動部材は電気的に絶縁され、前記アノード電極からインピーダンス調整部を経由して接続された接点を有する前記処理容器外接触機構を少なくとも一つ含むものであってもよい。   Further, the drive electrode may be an anode electrode, and the anode electrode and the drive member may be electrically connected. The drive electrode is an anode electrode, and the anode electrode and the drive member are electrically connected. It may include at least one contact mechanism outside the processing vessel that is electrically insulated and has a contact point connected from the anode electrode via an impedance adjusting unit.

前記駆動電極はカソード電極であり、前記カソード電極と前記駆動部材は電気的に絶縁されているものであってもよいし、前記カソード電極と高周波電源との間に整合回路を配置し、この整合回路の筐体に前記処理容器外接触機構の固定側接触部材と移動側接触部材との接点及び前記移動側接触部材を経由した高周波のリターン電流が帰還するものであってもよい。   The drive electrode is a cathode electrode, and the cathode electrode and the drive member may be electrically insulated, or a matching circuit is disposed between the cathode electrode and the high frequency power source. A high-frequency return current via the contact between the stationary contact member and the moving contact member of the processing container outside contact mechanism and the moving contact member may be returned to the circuit housing.

また本発明のプラズマ処理方法は、処理容器の内部に少なくとも一対の平行平板電極と、前記一対の電極間隔を変化させるように駆動することができる少なくとも一つの駆動電極と、を有し、高周波電源から高周波電流を処理容器を介して高周波電源のアース側にリターンさせると共に、プラズマにより基板に対して処理を行うプラズマ処理方法において、
一端が前記駆動電極と電気的に接続された駆動部材、あるいは絶縁された駆動部材と、該駆動部材を駆動させる駆動手段とにより前記駆動電極を駆動させ、前記電極間隔を広げた後、基板を前記処理容器の内部に搬入する工程と、
前記駆動部材の他端と電気的に導通した移動側接触部材が処理容器外壁と連結された固定側接触部材と接触する位置まで前記駆動電極を駆動させ、前記基板にプラズマ処理を施す工程と、
再度前記駆動電極を駆動させて前記電極間隔を広げた後、基板を処理容器の外部へ搬出する工程と、を含むことを特徴とする。
The plasma processing method of the present invention further includes at least a pair of parallel plate electrodes and at least one drive electrode that can be driven so as to change a distance between the pair of electrodes inside the processing container, and a high-frequency power source In the plasma processing method in which the high-frequency current is returned to the ground side of the high-frequency power source through the processing container, and the substrate is processed by plasma,
The drive electrode is driven by a drive member whose one end is electrically connected to the drive electrode, or an insulated drive member, and drive means for driving the drive member, and after widening the gap between the electrodes, Carrying into the processing vessel;
Driving the drive electrode to a position where the moving contact member electrically connected to the other end of the drive member contacts the fixed contact member connected to the outer wall of the processing container, and subjecting the substrate to plasma processing;
And driving the drive electrode again to widen the gap between the electrodes, and then carrying out the substrate to the outside of the processing container.

さらに本発明の記憶媒体は、プラズマにより基板に対して処理を行うプラズマ処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
前記コンピュータプログラムは、前記プラズマ処理方法を実施するようにステップが組まれていることを特徴とする。
Furthermore, the storage medium of the present invention is a storage medium that stores a computer program that is used in a plasma processing apparatus that performs processing on a substrate with plasma and that operates on a computer.
The computer program is characterized in that steps are implemented so as to implement the plasma processing method.

本発明によれば、処理容器内にて平行平板電極の間で高周波電力によりプラズマを発生させ、前記平行平板電極の間の間隔を変更できるプラズマ処理装置において、高周波電流を電気抵抗の小さい部材及び処理容器を介して高周波電源のアース側へ流すようにしたことにより、電気抵抗の大きな部材を含まずに高周波電流を流すことができる。従って電力効率が良くなり、安定したプラズマを発生させることができる。   According to the present invention, in a plasma processing apparatus capable of generating plasma with high-frequency power between parallel plate electrodes in a processing vessel and changing the interval between the parallel plate electrodes, By making it flow to the ground side of the high frequency power supply through the processing container, it is possible to flow a high frequency current without including a member having a large electric resistance. Therefore, power efficiency is improved and stable plasma can be generated.

以下、本発明のプラズマ処理装置の一実施の形態について、フラットパネル用のガラス基板をエッチングする装置に適用した場合を例にして説明する。図1において2は、例えば表面が陽極酸化処理されたアルミニウムからなる角筒形状の処理容器である。前記フラットパネル用のガラス基板10は、例えば基板面積が2.7m程度の大きさの角型基板である。この処理容器2の上部には、ガス供給部であるガスシャワーヘッドを兼用する上部電極3が設けられている。 Hereinafter, an embodiment of the plasma processing apparatus of the present invention will be described by taking as an example a case where it is applied to an apparatus for etching a glass substrate for a flat panel. In FIG. 1, reference numeral 2 denotes a rectangular tube-shaped processing container made of aluminum having an anodized surface. The flat panel glass substrate 10 is a square substrate having a substrate area of about 2.7 m 2 , for example. An upper electrode 3 that also serves as a gas shower head, which is a gas supply unit, is provided on the upper portion of the processing container 2.

この上部電極3はこの例ではアノード電極に相当するものであり、ガス供給路32を介して処理ガス供給部31に接続されると共に、ガス供給路32から供給されたガスを多数のガス孔33から処理容器2内に供給するように構成されている。前記上部電極3は、後述するように昇降自在に設けられているので、前記ガス供給路32も上部電極3の昇降に合わせて、図示しない昇降機構により、前記処理容器2とガス供給路32との間をベローズ体32aにより気密にシールされた状態で昇降できるように構成されている。   In this example, the upper electrode 3 corresponds to an anode electrode, and is connected to the processing gas supply unit 31 via the gas supply path 32, and the gas supplied from the gas supply path 32 is made into a number of gas holes 33. To the inside of the processing container 2. Since the upper electrode 3 is provided so as to be movable up and down as will be described later, the gas supply path 32 is also connected to the processing container 2 and the gas supply path 32 by an elevator mechanism (not shown) in accordance with the elevation of the upper electrode 3. It can be moved up and down while being hermetically sealed by the bellows body 32a.

一方、処理容器2の底部には、前記上部電極3と対向するように、基板10を載置する載置台を兼用した下部電極4が設けられている。この下部電極4は、例えばその周囲を、絶縁材料により構成される支持部41にて支持され、こうして処理容器2から絶縁された状態になっている。またこの下部電極4は、給電棒42及びマッチングボックス43を介して高周波電源部44に接続され、カソード電極として作用する。前記マッチングボックス43は、導電性の筐体の内部に整合回路が包有されるものであり、前記筐体は処理容器2の底部に形成された、前記給電棒42を貫通させるための開口部46を囲むように設けられている。またマッチングボックス43と高周波電源部44とは同軸ケーブル45により接続されている。より詳しくは、同軸ケーブル45の内部導体がマッチングボックス43の整合回路と高周波電源部44の給電部に接続され、同軸ケーブル45の外部導体がマッチングボックス43の筐体と高周波電源部44の導電性の筐体とに接続されている。このように同軸ケーブル45の外部導体は高周波電源部44の筐体を介して接地され、こうして高周波電源部44から高周波電流をカソード電極(下部電極4)、プラズマ空間、アノード電極(上部電極3)及び処理容器2を介して高周波電源44のアース側にリターンさせるように構成されている。   On the other hand, a lower electrode 4 serving also as a mounting table on which the substrate 10 is mounted is provided at the bottom of the processing container 2 so as to face the upper electrode 3. The lower electrode 4 is supported, for example, by a support portion 41 made of an insulating material, and thus is insulated from the processing container 2. The lower electrode 4 is connected to the high-frequency power supply unit 44 via the power supply rod 42 and the matching box 43, and functions as a cathode electrode. The matching box 43 includes a matching circuit inside a conductive casing, and the casing is formed at the bottom of the processing container 2 and has an opening for penetrating the power supply rod 42. 46 is provided so as to surround 46. The matching box 43 and the high frequency power supply unit 44 are connected by a coaxial cable 45. More specifically, the inner conductor of the coaxial cable 45 is connected to the matching circuit of the matching box 43 and the power feeding unit of the high frequency power supply unit 44, and the outer conductor of the coaxial cable 45 is the conductivity of the casing of the matching box 43 and the high frequency power supply unit 44. Connected to the chassis. In this way, the outer conductor of the coaxial cable 45 is grounded via the casing of the high frequency power supply unit 44, and thus the high frequency current is supplied from the high frequency power supply unit 44 to the cathode electrode (lower electrode 4), plasma space, and anode electrode (upper electrode 3). And it is configured to return to the ground side of the high frequency power supply 44 through the processing container 2.

さらに下部電極4の内部には、図示しない搬送手段と当該下部電極4との間で基板10の受け渡しを行なう際に用いられる複数本の昇降ピン47が設けられており、この昇降ピン47は、図示しない昇降機構により、昇降ピン47と処理容器2との間をベローズ体47aにより気密にシールされた状態で昇降できるように構成されている。また処理容器2の側壁には、排気路21を介して真空排気手段22が接続されると共に、基板10の搬送口23を開閉するためのゲートバルブ24が設けられている。   Further, a plurality of lifting pins 47 used when transferring the substrate 10 between the conveying means (not shown) and the lower electrode 4 are provided inside the lower electrode 4. A lifting mechanism (not shown) is configured so that the lifting pin 47 and the processing container 2 can be lifted and lowered in a state of being hermetically sealed by the bellows body 47a. Further, a vacuum exhaust means 22 is connected to the side wall of the processing container 2 through an exhaust path 21, and a gate valve 24 for opening and closing the transfer port 23 of the substrate 10 is provided.

前記上部電極3は、前記処理容器2の天井部に形成された貫通孔25を介して処理容器2の天井部を貫通するように設けられた複数本の駆動部材をなす導電性の昇降棒51a,51bより、処理容器2の天井部から吊り下げられる状態で支持されており、上部電極3と昇降棒51a,51bとは互いに電気的に接続されている。前記昇降棒51a,51bの他端側には、処理容器2の天井部の外部において夫々導電性の移動側接触部材5a,5bが接続されている。前記移動側接触部材5a,5b及び昇降棒51a,51bは、例えばアルミニウムやステンレス等によって形成され、前記移動側接触部材5a,5bは、図2及び図3に示すように、中央近傍に設けられた平面形状が四角形状の第1の移動側接触部材5aと、この第1の移動側接触部材5aの回りに、当該移動側接触部材5aを空間を介して囲むように設けられた環状の板状部材よりなる第2の移動側接触部材5bとにより構成されている。   The upper electrode 3 is a conductive lifting rod 51a that forms a plurality of drive members provided so as to penetrate the ceiling portion of the processing container 2 through a through hole 25 formed in the ceiling portion of the processing container 2. 51b is supported in a state of being suspended from the ceiling portion of the processing container 2, and the upper electrode 3 and the lifting rods 51a, 51b are electrically connected to each other. Conductive moving-side contact members 5a and 5b are connected to the other ends of the elevating bars 51a and 51b, respectively, outside the ceiling of the processing container 2. The moving side contact members 5a and 5b and the lifting rods 51a and 51b are formed of, for example, aluminum or stainless steel, and the moving side contact members 5a and 5b are provided near the center as shown in FIGS. The first movable contact member 5a having a square planar shape and an annular plate provided around the first movable contact member 5a so as to surround the movable contact member 5a with a space in between. It is comprised with the 2nd movement side contact member 5b which consists of a shape member.

これら第1及び第2の移動側接触部材5a,5bは、上部電極3の上面に、夫々昇降棒51a,51bにより上部電極3に対する高さ位置が同じになるように接続されている。この例では、2本の昇降棒51bに共通の第2の移動側接触部材5bが接続されていることになり、各昇降棒51bに設けられた移動側接触部材5bが互いに電気的に接続されていることになる。さらに第1及び第2の移動側接触部材5a,5bの上面には、夫々連結部材52a,52bを介して共通の昇降板53が接続され、この昇降板53を昇降手段54により昇降させることにより、上部電極3が移動側接触部材5a,5bと昇降棒51a,51bとを介して、下部電極4に対して昇降自在に設けられるようになっている。前記昇降棒51a,51bは図示の便宜上3本しか描いていないが、その設置数は処理容器2の大きさに合わせて適宜選択される。この例では、昇降手段54と昇降板53と連結部材52a,52bとにより駆動手段が構成され、前記上部電極3が駆動電極に相当する。   The first and second moving contact members 5a and 5b are connected to the upper surface of the upper electrode 3 so that the height positions with respect to the upper electrode 3 are the same by elevating bars 51a and 51b. In this example, the common second moving contact member 5b is connected to the two lifting rods 51b, and the moving contact members 5b provided on each lifting rod 51b are electrically connected to each other. Will be. Further, a common elevating plate 53 is connected to the upper surfaces of the first and second moving contact members 5a, 5b via connecting members 52a, 52b, respectively, and the elevating plate 53 is moved up and down by the elevating means 54. The upper electrode 3 is provided to be movable up and down with respect to the lower electrode 4 via the moving contact members 5a and 5b and the lifting rods 51a and 51b. Although only three lift bars 51a and 51b are illustrated for convenience of illustration, the number of the lift bars 51a and 51b is appropriately selected according to the size of the processing container 2. In this example, the elevating means 54, the elevating plate 53, and the connecting members 52a and 52b constitute driving means, and the upper electrode 3 corresponds to the driving electrode.

一方、前記処理容器2の天井部の外部には導電性の固定側接触部材が設けられている。この例では固定側接触部材は、処理容器2に接続された導電性の支持部材61〜63と、この支持部材61〜63に接続された導電性の固定側接触部71〜73とより構成されている。前記支持部材61〜63及び固定側接触部71〜73は例えばアルミニウムやステンレス等の導電性部材により形成されている。前記支持部材61〜63は、この例では、前記移動側接触部材5a,5bの周囲を囲むように処理容器2の上面に立設されている。つまり図1及び図2に示すように、第1の移動側接触部材5aの周縁領域を周方向に囲むように第1の支持部材61が立設され、第2の移動側接触部材5bの内側領域を周方向に囲むように第2の支持部材62が立設され、第2の移動側接触部材5bの周縁領域を周方向に囲むように第3の支持部材63が立設されている。   On the other hand, a conductive fixed-side contact member is provided outside the ceiling of the processing container 2. In this example, the fixed-side contact member includes conductive support members 61 to 63 connected to the processing container 2 and conductive fixed-side contact portions 71 to 73 connected to the support members 61 to 63. ing. The support members 61 to 63 and the fixed-side contact portions 71 to 73 are formed of a conductive member such as aluminum or stainless steel. In this example, the support members 61 to 63 are erected on the upper surface of the processing container 2 so as to surround the periphery of the moving contact members 5a and 5b. That is, as shown in FIGS. 1 and 2, the first support member 61 is erected so as to surround the peripheral region of the first moving contact member 5a in the circumferential direction, and the inner side of the second moving contact member 5b. A second support member 62 is erected so as to surround the region in the circumferential direction, and a third support member 63 is erected so as to surround the peripheral region of the second moving side contact member 5b in the circumferential direction.

このように設けられた第1〜第3の支持部材61〜63は、その上端の処理容器2の上面からの高さ位置が互いに揃うように設けられ、例えば図1〜図3に示すように、前記第1の支持部材61には、第1の移動側接触部材5aの周縁領域を周方向に囲む環状の第1の固定側接触部71(71A,71B)が、前記第2の支持部材62には、前記第1の固定側接触部71を間隔をおいて囲むように、第2の移動側接触部材5bの内側領域を周方向に囲む環状の第2の固定側接触部72(72A,72B)が、前記第3の支持部材63には、前記第2の固定側接触部72を間隔をおいて囲むように、第2の移動側接触部材5bの周縁領域を周方向に囲む環状の第3の固定側接触部73(73A,73B)が、夫々接続されている。   The first to third support members 61 to 63 provided in this way are provided so that the height positions of the upper ends from the upper surface of the processing container 2 are aligned with each other, for example, as shown in FIGS. The first support member 61 includes an annular first fixed-side contact portion 71 (71A, 71B) that surrounds the peripheral area of the first moving-side contact member 5a in the circumferential direction, and the second support member. 62, an annular second fixed-side contact portion 72 (72A) that surrounds the inner region of the second moving-side contact member 5b in the circumferential direction so as to surround the first fixed-side contact portion 71 at an interval. 72B), the third support member 63 surrounds the peripheral area of the second moving-side contact member 5b in the circumferential direction so as to surround the second fixed-side contact portion 72 at an interval. The third fixed side contact portions 73 (73A, 73B) are connected to each other.

さらに前記第1〜第3の固定側接触部71〜73は、夫々第1高さ固定側接触部7A(71A〜73A)と、第2高さ固定側接触部7B(71B〜73B)と、を備えている。これらは互いに平面形状が同じに構成され、前記第1〜第3の支持部材61〜63に互いに上下に接続されている。つまり前記第1〜第3の支持部材61〜63の上段の位置例えばその上面には、第1〜第3の第1高さ固定側接触部71A〜73Aが夫々取り付けられ、また前記第1〜第3の支持部材61〜63の上段の位置よりも低い下段の位置には、第1〜第3の第2高さ固定側接触部71B〜73Bが夫々取り付けられている。このような第1高さ固定側接触部71A〜73A及び第2高さ固定側接触部71B〜73Bは、例えば支持部材61〜63に例えばネジ止めされることにより取り付け自在に設けられている。なおこの例では、図1〜図3に示すように、第1の固定側接触部71Aと第2の固定側接触部72Aとは一体に構成されている。   Further, the first to third fixed side contact portions 71 to 73 are respectively a first height fixed side contact portion 7A (71A to 73A), a second height fixed side contact portion 7B (71B to 73B), It has. These have the same planar shape, and are connected to the first to third support members 61 to 63 in the vertical direction. That is, the first to third first height fixing side contact portions 71A to 73A are respectively attached to the upper positions of the first to third support members 61 to 63, for example, the upper surfaces thereof, and the first to third support members 61A to 73A are attached to the first to third support members 61 to 63, respectively. First to third second fixed height side contact portions 71B to 73B are attached to lower positions lower than the upper positions of the third support members 61 to 63, respectively. The first height fixing side contact portions 71A to 73A and the second height fixing side contact portions 71B to 73B are provided so as to be freely attachable, for example, by being screwed to the support members 61 to 63, for example. In this example, as shown in FIGS. 1 to 3, the first fixed-side contact portion 71A and the second fixed-side contact portion 72A are integrally formed.

前記固定側接触部71〜73の内、内側の第1の固定側接触部71は、第1高さ固定側接触部71Aと第2高さ固定側接触部71Bとの間の高さ位置に前記第1の移動側接触部材5aが位置し、当該移動側接触部材5aが上昇したときに、第1高さ固定側接触部71Aの下面の内側領域が、前記移動側接触部材5aの上面の周縁領域と周方向全体に亘って接触し、前記移動側接触部材5aが下降したときに、第2高さ固定側接触部71Bの上面の内側領域が、前記移動側接触部材5aの下面の周縁領域と周方向全体に亘って接触するように設けられている。   Among the fixed-side contact portions 71 to 73, the inner first fixed-side contact portion 71 is at a height position between the first height-fixed-side contact portion 71A and the second height-fixed-side contact portion 71B. When the first moving contact member 5a is positioned and the moving contact member 5a is raised, the inner region of the lower surface of the first fixed height contact portion 71A is on the upper surface of the moving contact member 5a. When the moving side contact member 5a comes into contact with the peripheral region over the entire circumferential direction, the inner region of the upper surface of the second height fixing side contact portion 71B is the peripheral edge of the lower surface of the moving side contact member 5a. It is provided in contact with the entire region in the circumferential direction.

また、真ん中の第2の固定側接触部72は、第2の第1高さ固定側接触部72Aと第2の第2高さ固定側接触部72Bとの間の高さ位置に前記第2の移動側接触部材5bが位置し、当該移動側接触部材5bが上昇したときに、第1高さ固定側接触部72Aの下面の周縁領域が、前記移動側接触部材5bの上面の内側領域と周方向全体に亘って接触し、前記移動側接触部材5bが下降したときに、第2高さ固定側接触部72Bの上面の周縁領域が、前記移動側接触部材5bの下面の内側領域と周方向全体に亘って接触するように設けられている。   The second fixed side contact portion 72 in the middle is located at a height position between the second first fixed height side contact portion 72A and the second fixed second height side contact portion 72B. When the movable contact member 5b is positioned and the movable contact member 5b is raised, the peripheral area of the lower surface of the first height fixing side contact portion 72A is the inner region of the upper surface of the movable contact member 5b. When the moving contact member 5b is brought into contact in the entire circumferential direction and the moving side contact member 5b is lowered, the peripheral area of the upper surface of the second fixed height side contact portion 72B is circumferential with the inner area of the lower surface of the moving side contact member 5b. It is provided so that it may contact over the whole direction.

さらに、外側の第3の固定側接触部73は、第3の第1高さ固定側接触部73Aと第3の第2高さ固定側接触部73Bとの間の高さ位置に前記第2の移動側接触部材5bが位置し、当該移動側接触部材5bが上昇したときに、第1高さ固定側接触部73Aの下面の内側領域が、前記移動側接触部材5bの上面の周縁領域と周方向全体に亘って接触し、前記移動側接触部材5bが下降したときに、第2高さ固定側接触部73Bの上面の内側領域が、前記移動側接触部材5bの下面の周縁領域と周方向全体に亘って接触するように設けられている。こうして移動側接触部材5a,5bと固定側接触部材とにより、後述するように、これらが互いに接触したときに高周波電流のリターン経路を形成する処理容器外接触機構が構成されている。   Further, the outer third fixed side contact portion 73 is located at a height position between the third first height fixed side contact portion 73A and the third second height fixed side contact portion 73B. When the moving contact member 5b is located and the moving contact member 5b is raised, the inner region of the lower surface of the first height fixing side contact portion 73A is the peripheral region of the upper surface of the moving contact member 5b. When the moving side contact member 5b comes down in contact with the entire circumferential direction, the inner region of the upper surface of the second height fixing side contact portion 73B is circumferential with the peripheral region of the lower surface of the moving side contact member 5b. It is provided so that it may contact over the whole direction. In this way, the movement side contact members 5a and 5b and the fixed side contact member constitute a processing container outside contact mechanism that forms a high-frequency current return path when they come into contact with each other, as will be described later.

また前記移動側接触部材5a,5bと、固定側接触部71〜73の互いの接触面には、例えば下方側の部材、つまり移動側接触部材5a,5bと第1高さ固定側接触部71A〜73Aとの間であれば移動側接触部材5a,5b側であり、移動側接触部材5a,5bと第2高さ固定側接触部71B〜73Bとの間であれば第2高さ固定側接触部71B〜73B側に、前記移動側接触部材5a,5bと固定側接触部71A〜73A、71B〜73Bとを電気的に導通させるためのシールドスパイラル55が設けられている。このシールドスパイラル55は、金属製の帯状体をコイル状に形成した弾性体からなる導通部材である。   Further, on the contact surfaces of the moving side contact members 5a, 5b and the fixed side contact portions 71 to 73, for example, lower members, that is, the moving side contact members 5a, 5b and the first height fixed side contact portion 71A. Is between the moving contact members 5a and 5b, and between the moving contact members 5a and 5b and the second fixed height contact portions 71B to 73B is the second fixed height side. A shield spiral 55 for electrically connecting the moving side contact members 5a and 5b and the fixed side contact portions 71A to 73A and 71B to 73B is provided on the contact portions 71B to 73B side. The shield spiral 55 is a conductive member made of an elastic body in which a metal strip is formed in a coil shape.

前記処理容器2の天井部の昇降棒51a,51bの貫通孔25には、その一端側が処理容器2の上面に接続されると共に、その他端側が移動側接触部材5a,5bの下面に接続されるベローズ体26が、昇降棒51a,51bの周囲を囲むように、第1の支持部材61にて囲まれる領域の内側、第2の支持部材62と第3の支持部材63にて囲まれる領域の内側に夫々設けられた貫通孔25に対応して設けられている。このベローズ体26は、昇降棒51a,51bが昇降できる状態で処理容器2と昇降棒51a,51bとの間を気密にシールするシール手段に相当するものである。なお図2においては、図示の便宜上ベローズ体26を省略して描いている。   One end side of the through-holes 25 of the lifting rods 51a and 51b in the ceiling portion of the processing container 2 is connected to the upper surface of the processing container 2, and the other end side is connected to the lower surfaces of the moving contact members 5a and 5b. The bellows body 26 surrounds the periphery of the lifting rods 51a and 51b, inside the region surrounded by the first support member 61, in the region surrounded by the second support member 62 and the third support member 63. It is provided corresponding to the through-hole 25 provided on the inside. The bellows body 26 corresponds to a sealing unit that hermetically seals between the processing container 2 and the lifting rods 51a and 51b in a state where the lifting rods 51a and 51b can be lifted and lowered. In FIG. 2, the bellows body 26 is omitted for convenience of illustration.

ここで既述のように上部電極3は昇降自在に構成され、前記移動側接触部材5a,5bは上部電極3と共に昇降されるが、上部電極3が上昇し、移動側接触部材5a,5bが前記第1高さ固定側接触部71A〜73Aと接触するときの上部電極3の高さ位置が第1の高さ位置であり、この例では基板10の受け渡しを行なう高さ位置であると共に、第1の処理条件で基板10に対してプラズマ処理を行う高さ位置である。また上部電極3が第1の高さ位置から下降し、移動側接触部材5a,5bが前記第2高さ固定側接触部71B〜73Bと接触するときの上部電極3の高さ位置が第2の高さ位置であり、この例では第1の処理条件とは上部電極3の位置が異なる第2の処理条件で基板10に対してプラズマ処理を行う高さ位置である。   Here, as described above, the upper electrode 3 is configured to be movable up and down, and the moving side contact members 5a and 5b are moved up and down together with the upper electrode 3, but the upper electrode 3 is raised and the moving side contact members 5a and 5b are The height position of the upper electrode 3 when making contact with the first height-fixed-side contact portions 71A to 73A is a first height position, and in this example is a height position for transferring the substrate 10, This is the height position at which plasma processing is performed on the substrate 10 under the first processing condition. The height position of the upper electrode 3 when the upper electrode 3 is lowered from the first height position and the movable contact members 5a and 5b are in contact with the second fixed height contact portions 71B to 73B is the second height position. In this example, the first processing condition is a height position at which the plasma processing is performed on the substrate 10 under the second processing condition in which the position of the upper electrode 3 is different.

こうして上部電極3が第1の高さ位置まで上昇したときには、昇降棒51aと移動側接触部材5aと第1高さ固定側接触部71Aと支持部材61とにより、高周波電流のリターン経路が形成されると共に、昇降棒51bと移動側接触部材5bと第1高さ固定側接触部72A,73Aと支持部材62,63とにより処理容器2に対する高周波電流のリターン経路が形成される。一方上部電極3が第2の高さ位置まで下降したときには、昇降棒51aと移動側接触部材5aと第2高さ固定側接触部71Bと支持部材61とにより、高周波電流のリターン経路が形成されると共に、昇降棒51bと移動側接触部材5bと第2高さ固定側接触部72B,73Bと支持部材62,63とにより、高周波電流のリターン経路が形成される。   Thus, when the upper electrode 3 rises to the first height position, the lifting rod 51a, the moving contact member 5a, the first height fixing contact portion 71A, and the support member 61 form a high-frequency current return path. The lift bar 51b, the moving contact member 5b, the first fixed height contact portions 72A and 73A, and the support members 62 and 63 form a high-frequency current return path for the processing vessel 2. On the other hand, when the upper electrode 3 is lowered to the second height position, the lift bar 51a, the moving contact member 5a, the second fixed height contact portion 71B, and the support member 61 form a high-frequency current return path. In addition, the lift bar 51b, the moving contact member 5b, the second fixed height contact portions 72B and 73B, and the support members 62 and 63 form a high-frequency current return path.

前記プラズマ処理装置は図示しない制御手段を備えている。この制御手段は、例えばコンピュータからなるプログラム格納部を備えており、プログラム格納部には、後述するようなプラズマ処理装置の作用、つまりウエハWの処理、ウエハWの受け渡しの制御などが実施されるように命令が組まれた例えばソフトウェアからなるプログラムが格納される。そして当該プログラムが制御手段に読み出されることにより、当該制御手段は例えば昇降手段54や、処理ガス供給部31、真空排気手段22、高周波電源部44等に指令を出力し、後述するプラズマ処理装置の作用を制御する。なおこのプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶媒体に収納された状態でプログラム格納される。   The plasma processing apparatus includes control means (not shown). This control means is provided with a program storage unit composed of, for example, a computer, and the program storage unit performs operations of a plasma processing apparatus as described later, that is, processing of the wafer W, control of delivery of the wafer W, and the like. In this way, for example, a program composed of software is stored. When the program is read by the control means, the control means outputs a command to, for example, the elevating means 54, the processing gas supply unit 31, the vacuum evacuation means 22, the high frequency power supply unit 44, etc. Control the action. The program is stored in a state where it is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card.

このような実施の形態の作用効果について述べる。先ず図4(a)に示すように、上部電極3を第1の高さ位置(基板の受け渡し位置)まで上昇させる。そしてゲートバルブ24を開いて図示しないロードロック室から図示しない搬送アームにより、基板10を処理容器2内に搬入し、下部電極4内を貫通する昇降ピン47との協同動作により基板10を下部電極4の上に受け渡す。次いで図4(b)に示すように、ゲートバルブ24を閉じ、上部電極3を第2の高さ位置(基板の処理位置)まで下降させる。そして処理ガス供給部31から上部電極3を通じて処理容器2内に処理ガスを供給すると共に、真空排気手段22により真空排気することにより処理容器2内を所定の圧力に維持する。一方高周波電源44から高周波電力を下部電極4に印加することで処理ガスが励起されてプラズマが生成され、こうして処理ガスをプラズマ化し、これにより基板10に対して所定のエッチング処理が行われる。エッチング処理後の基板10は、上部電極3を第1の高さ位置まで上昇させ、ゲートバルブ24を開いて図示しない搬送アームにより、処理容器2の外部に搬出される。   The effect of such an embodiment will be described. First, as shown in FIG. 4A, the upper electrode 3 is raised to a first height position (substrate delivery position). Then, the gate valve 24 is opened, the substrate 10 is carried into the processing container 2 from a load lock chamber (not shown) by a transfer arm (not shown), and the substrate 10 is moved to the lower electrode by a cooperative operation with the lift pins 47 penetrating the lower electrode 4. Pass on top of 4. Next, as shown in FIG. 4B, the gate valve 24 is closed, and the upper electrode 3 is lowered to the second height position (substrate processing position). Then, the processing gas is supplied from the processing gas supply unit 31 into the processing container 2 through the upper electrode 3, and the inside of the processing container 2 is maintained at a predetermined pressure by being evacuated by the vacuum exhaust means 22. On the other hand, by applying high frequency power from the high frequency power supply 44 to the lower electrode 4, the processing gas is excited to generate plasma, and thus the processing gas is turned into plasma, whereby a predetermined etching process is performed on the substrate 10. After the etching process, the upper electrode 3 is raised to the first height position, the gate valve 24 is opened, and the substrate 10 is carried out of the processing container 2 by a transfer arm (not shown).

このようなプラズマ処理装置では、上部電極3を昇降自在に構成し、基板10を搬入するときには、上部電極3を第1の高さ位置に位置させて上部電極3と下部電極4との間の間隔を広げ、基板10に対してプラズマ処理を行なう時には、上部電極3を第1の高さ位置から第2の高さ位置まで下降させて、所定の処理を行っている。従って前記エッチング処理時の前記上部電極3と下部電極4との間の間隔(距離)の最適値が、基板10を搬入できない程狭い場合であっても、基板10を搬入するときには、上部電極3と下部電極4との間を広げ、この後上部電極3を前記処理位置まで下降させて前記間隔を狭めることによって、適切な間隔で処理を行うことができる。   In such a plasma processing apparatus, the upper electrode 3 is configured to be movable up and down, and when the substrate 10 is carried in, the upper electrode 3 is positioned at the first height position, and between the upper electrode 3 and the lower electrode 4. When the plasma processing is performed on the substrate 10 by increasing the interval, the upper electrode 3 is lowered from the first height position to the second height position to perform a predetermined processing. Accordingly, even when the optimum value of the distance (distance) between the upper electrode 3 and the lower electrode 4 at the time of the etching process is so narrow that the substrate 10 cannot be loaded, when the substrate 10 is loaded, the upper electrode 3 is loaded. By expanding the space between the upper electrode 3 and the lower electrode 4 and then lowering the upper electrode 3 to the processing position to narrow the interval, processing can be performed at an appropriate interval.

この際、上部電極3が前記第2の高さ位置にあるときには、処理容器2の天井部の外部では、移動側接触部材5a,5bは第2高さ固定側接触部71B〜73Bに接触する。このため処理容器2内にてプラズマが発生しているときには、図5(a)にて矢印にて示すように、高周波電流の大部分は、下部電極(カソード電極)4→プラズマ→上部電極(アノード電極)3→昇降棒51a,51b→移動側接触部材5a,5b→第2高さ固定側接触部71B〜73B→支持部材61〜63→処理容器2の壁部→マッチングボックス43→同軸ケーブル44の外部導体→高周波電源部44の筐体→アースの経路で流れる。この際、移動側接触部材5a,5bはベローズ体26を介しても処理容器2の上部と接続されているが、ベローズ体26は蛇腹構造であるので、平板構造である第2高さ固定側接触部71B〜73Bに対して構造上インダクタンス成分が大きい。このためベローズ体26と第2高さ固定側接触部71B〜73Bを比べると、高周波電流はインダクタンス成分の小さい部材である第2高さ固定側接触部71B〜73Bの方へ流れて行きやすい。このため高周波電流の大部分は、移動側接触部材5a,5bから第2高さ固定側接触部71B〜73B、支持部材61〜63を介して処理容器2へ流れることになる。   At this time, when the upper electrode 3 is at the second height position, the movable contact members 5a and 5b are in contact with the second fixed height contact portions 71B to 73B outside the ceiling portion of the processing container 2. . For this reason, when plasma is generated in the processing vessel 2, as indicated by arrows in FIG. 5A, most of the high-frequency current is reduced from the lower electrode (cathode electrode) 4 → plasma → upper electrode ( Anode) 3 → lifting rods 51a, 51b → moving side contact members 5a, 5b → second height fixed side contact portions 71B to 73B → support members 61 to 63 → wall portion of processing vessel 2 → matching box 43 → coaxial cable It flows through the route of the outer conductor 44 → the housing of the high-frequency power source 44 → the ground. At this time, the moving contact members 5a and 5b are connected to the upper part of the processing container 2 through the bellows body 26. However, since the bellows body 26 has a bellows structure, the second height fixing side having a flat plate structure is used. The inductance component is structurally larger than that of the contact portions 71B to 73B. For this reason, when the bellows body 26 and the second fixed height side contact portions 71B to 73B are compared, the high frequency current tends to flow toward the second fixed height side contact portions 71B to 73B, which are members having a small inductance component. For this reason, most of the high-frequency current flows from the moving side contact members 5a and 5b to the processing container 2 through the second fixed height side contact portions 71B to 73B and the support members 61 to 63.

このように、上述のプラズマ処理装置では、高周波電流のリターン経路ではベローズ体26よりもインダクタンス成分が小さい部材を介して高周波電流が流れていくので、前記リターン経路にベローズ体を含む場合に比べて、前記リターン経路の電気抵抗をかなり小さくすることができる。このため、既述のように基板面積が、2.7mと大きなフラットパネル用のガラス基板等を処理する場合であって、ベローズ体26が大型化したり、その長さが長い場合であっても、ベローズ体26に流れる高周波電流は極めて少ないため、リターン経路の電気抵抗の増大を抑えることができる。この結果、電力効率が向上するので、リターン経路の電気抵抗の増大が原因となる不均一なプラズマの発生が抑えられて、均一で安定したプラズマを発生させることができ、基板10に対して面内均一性の高いエッチング処理を行うことができる。また処理容器2内における不均一なプラズマの発生が抑えられることから、処理容器2の内壁や内部部品の偏った損傷や消耗が抑制され、装置の性能の低下を防止することが期待できる。 As described above, in the above-described plasma processing apparatus, since the high-frequency current flows through the member having an inductance component smaller than that of the bellows body 26 in the return path of the high-frequency current, compared with the case where the return path includes the bellows body. The electrical resistance of the return path can be considerably reduced. For this reason, as described above, when processing a glass substrate for a flat panel having a large substrate area of 2.7 m 2 , the bellows body 26 is enlarged or its length is long. However, since the high-frequency current flowing through the bellows body 26 is extremely small, an increase in the electrical resistance of the return path can be suppressed. As a result, since the power efficiency is improved, the generation of non-uniform plasma caused by an increase in the electrical resistance of the return path can be suppressed, and uniform and stable plasma can be generated. An etching process with high internal uniformity can be performed. Further, since the generation of non-uniform plasma in the processing container 2 is suppressed, uneven damage and wear of the inner wall and internal parts of the processing container 2 are suppressed, and it can be expected that the performance of the apparatus is prevented from deteriorating.

また上述の装置では、第1高さ固定側接触部71A〜73Aと、第2高さ固定側接触部71B〜73Bと、を互いに上下に支持部材61〜63に取り付けているので、同じプラズマ処理装置で異なる処理プロセスを連続して行う場合であって、上部電極3と下部電極4との間の間隔の最適値が異なる場合であっても、上部電極3が上方側の第1の高さ位置に上昇し、上部電極3と下部電極4との間が広い第1の間隔で行う第1の処理と、上部電極3が下方側の第2の高さ位置に下降し、下部電極4との間が狭い第2の間隔で行う第2の処理との間で、上部電極3を昇降させるという簡易な動作で前記間隔を処理毎に切り換えることできる。このため夫々の処理において、上部電極3と下部電極4との間を適切な間隔にスムーズに切り換えて処理を行うことができるので、スループットの低下を抑えながら、夫々の処理に対して面内均一性の高いエッチング処理を行うことができる。   Moreover, in the above-mentioned apparatus, since the 1st fixed height side contact parts 71A-73A and the 2nd fixed height side contact parts 71B-73B are attached to the supporting members 61-63 up and down mutually, the same plasma processing Even when different processing processes are continuously performed in the apparatus, even when the optimum value of the distance between the upper electrode 3 and the lower electrode 4 is different, the upper electrode 3 has a first height on the upper side. The first processing performed at a wide first interval between the upper electrode 3 and the lower electrode 4, and the upper electrode 3 is lowered to the second height position on the lower side, The interval can be switched for each process by a simple operation of raising and lowering the upper electrode 3 between the second process performed at a narrow second interval. For this reason, in each process, the process can be performed by smoothly switching between the upper electrode 3 and the lower electrode 4 at an appropriate interval, so that in-plane uniformity is achieved for each process while suppressing a decrease in throughput. Etching treatment with high performance can be performed.

この際、上部電極3が上方側の第1の高さ位置に位置する場合においても、処理容器2の天井部の外部では、移動側接触部材5a,5bは、第1高さ固定側接触部71A〜73Aに接触する。このため処理容器2内にてプラズマが発生しているときには、図5(b)に示すように、高周波電流の大部分は、下部電極(カソード電極)4→プラズマ→上部電極(アノード電極)3→昇降棒51a,51b→移動側接触部材5a,5b→第1高さ固定側接触部71A〜73A→支持部材61〜63→処理容器2の壁部→マッチングボックス43→同軸ケーブル45の外部導体→高周波電源部44の筐体→アースの経路で流れるので、この場合においても高周波電流のリターン経路の電気抵抗が小さくなる。   At this time, even when the upper electrode 3 is located at the first height position on the upper side, outside the ceiling portion of the processing container 2, the moving side contact members 5 a and 5 b are the first height fixed side contact portions. 71A-73A is contacted. For this reason, when plasma is generated in the processing container 2, as shown in FIG. 5B, most of the high-frequency current is generated from the lower electrode (cathode electrode) 4 → the plasma → the upper electrode (anode electrode) 3. → lifting rods 51a and 51b → moving side contact members 5a and 5b → first height fixed side contact portions 71A to 73A → support members 61 to 63 → wall portion of processing container 2 → matching box 43 → outer conductor of coaxial cable 45 Since the electric current flows through the housing of the high frequency power supply unit 44 and the ground, the electric resistance of the return route of the high frequency current is reduced even in this case.

さらに固定側接触部71〜73は支持部材61〜63に取り付け自在に設けられているので、第1高さ固定側接触部71A〜73Aと、第2高さ固定側接触部71B〜73Bの高さ位置を、部材を付け替えるという簡易な作業で調整することができる。このため、エッチング処理の処理条件に応じて、上部電極3と下部電極4との間の間隔が異なったとしても、上部電極3の高さ位置に対応して固定側接触部71〜73を付け替えればよく、調整作業が容易となる。この際、支持部材61〜63を処理容器2に対してネジ止め等により接続することによって取り付け自在に設け、支持部材61〜63に第1高さ固定側接触部71A〜73Aと、第2高さ固定側接触部71B〜73Bの高さ位置が異なるように取り付けた部材を数種用意しておき、処理に応じてこの部材を交換するようにしてもよい。   Furthermore, since the fixed side contact parts 71 to 73 are provided so as to be freely attached to the support members 61 to 63, the heights of the first height fixed side contact parts 71A to 73A and the second height fixed side contact parts 71B to 73B. The position can be adjusted by a simple operation of changing the member. For this reason, even if the space | interval between the upper electrode 3 and the lower electrode 4 changes according to the process conditions of an etching process, the fixed side contact parts 71-73 can be changed corresponding to the height position of the upper electrode 3. FIG. The adjustment work is easy. At this time, the support members 61 to 63 are attached to the processing container 2 by screwing or the like so that they can be freely attached. The support members 61 to 63 are provided with the first height fixing side contact portions 71A to 73A and the second height. Several members attached so that the height positions of the fixed contact portions 71B to 73B are different may be prepared, and these members may be replaced according to processing.

また本発明では、処理容器2の外部において、移動側接触部材5a,5bと固定側接触部71〜73とを接続させており、導通部の接点が処理容器2の外部に設けられている。従って可動自在に構成された導通部の接点において、使用頻度が高くなって、仮にパーティクルが発生したとしても、処理容器2の内部にパーティクルが混入するおそれはない。さらに導通部の接点が処理容器2の外部に設けられているので、プラズマ処理を行う際に、前記接点がプラズマに晒されることがない。このため前記接点がプラズマに晒される場合のように、当該接点がプラズマや腐食性処理ガスとの接触により腐食し、前記接点における電気的接触が悪化するといった事態を招くおそれがないので、安定したプラズマ処理を継続して行うことができる。   Moreover, in this invention, the movement side contact members 5a and 5b and the fixed side contact parts 71-73 are connected in the exterior of the process container 2, and the contact of a conduction | electrical_connection part is provided in the exterior of the process container 2. FIG. Therefore, even if the frequency of use increases at the contact point of the conductive portion configured to be movable and particles are generated, there is no possibility that the particles are mixed into the processing container 2. Furthermore, since the contact of the conduction part is provided outside the processing container 2, the contact is not exposed to the plasma when performing the plasma treatment. For this reason, since the contact is corroded by contact with plasma or a corrosive processing gas as in the case where the contact is exposed to plasma, there is no possibility that the electrical contact at the contact is deteriorated. Plasma treatment can be continued.

続いて本発明のプラズマ処理装置の第2の実施の形態について図6により説明する。この例が上述の第1の実施の形態の形態と異なる点は、固定側接触部材の構造とシール手段である。具体的に説明すると、アノード電極をなす上部電極3は、前記処理容器2の天井部に形成された貫通孔25を貫通するように設けられた複数本例えば3本の導電性の駆動部材をなす昇降棒81により、処理容器2の上部側から吊り下げられる状態で支持されており、上部電極3と昇降棒81とは互いに電気的に接続されている。この昇降棒81の外端には、処理容器2の天井部外部の上方側において、例えば平面形状が円形の導電性の板状の移動側接触部材82が接続されている。前記複数の移動側接触部材82の上面には、連結部材83を介して共通の昇降板84が接続され、この昇降板84を昇降手段85により昇降させることによって、移動側接触部材82、昇降棒81を介して上部電極3が昇降されるように構成されている。この例においても、昇降手段85と昇降板84と連結部材83とにより駆動手段が構成され、上部電極3が駆動電極に相当する。   Next, a second embodiment of the plasma processing apparatus of the present invention will be described with reference to FIG. The difference between this example and the first embodiment is the structure of the stationary contact member and the sealing means. More specifically, the upper electrode 3 serving as the anode electrode forms a plurality of, for example, three conductive driving members provided so as to penetrate through the through holes 25 formed in the ceiling portion of the processing vessel 2. The lift bar 81 is supported in a state of being suspended from the upper side of the processing container 2, and the upper electrode 3 and the lift bar 81 are electrically connected to each other. An electrically conductive plate-like moving contact member 82 having a circular planar shape is connected to the outer end of the lifting / lowering bar 81 on the upper side outside the ceiling of the processing container 2. A common elevating plate 84 is connected to the upper surfaces of the plurality of moving side contact members 82 via a connecting member 83, and the elevating plate 84 is moved up and down by an elevating means 85, thereby moving the moving side contact member 82 and the elevating rod. The upper electrode 3 is moved up and down via 81. Also in this example, the raising / lowering means 85, the raising / lowering plate 84, and the connection member 83 constitute a driving means, and the upper electrode 3 corresponds to the driving electrode.

一方処理容器2の天井部には、前記処理容器2から突出して設けられた昇降棒81の周囲を囲むように例えば円筒状の導電性の固定側接触部材86が立設され、上部電極3が基板10に対してプラズマ処理を行う高さ位置(基板10の処理位置)に位置するときに、前記移動側接触部材82の下面が固定側接触部材86の上端全面に接触して高周波電流のリターン経路を形成し、固定側接触部材86の内側に形成された開口部86aを覆うように構成されている。こうして移動側接触部材82と固定側接触部材86とにより処理容器外接触機構が構成されている。   On the other hand, for example, a cylindrical conductive fixed-side contact member 86 is erected on the ceiling portion of the processing container 2 so as to surround the lifting rod 81 provided so as to protrude from the processing container 2. When the plasma processing is performed on the substrate 10 at a height position (processing position of the substrate 10), the lower surface of the moving contact member 82 comes into contact with the entire upper end of the fixed contact member 86 to return a high frequency current. It forms so that a path | route may be formed and the opening part 86a formed inside the stationary-side contact member 86 may be covered. Thus, the moving-side contact member 82 and the fixed-side contact member 86 constitute a processing container outside contact mechanism.

また前記固定側接触部材86と移動側接触部材82との接触面には、例えば前記固定側接触部材86側に、移動側接触部材82と固定側接触部材86との間を電気的に導通させるためのシールドスパイラル87が設けられている。さらに前記処理容器2の天井部の貫通孔25には、昇降棒81の周囲に、昇降棒81が昇降できる状態で、処理容器2と昇降棒81との間を気密にシールするためのシール手段をなす、磁性流体を用いた磁気シール部材88が設けられている。その他の構成は上述の第1の実施の形態と同様であり、同様の部位には同じ符号を付してある。この例においても、下部電極4がカソード電極、上部電極3がアノード電極に夫々相当する。   The contact surface between the stationary contact member 86 and the movable contact member 82 is electrically connected between the movable contact member 82 and the stationary contact member 86, for example, on the stationary contact member 86 side. A shield spiral 87 is provided. Further, in the through hole 25 in the ceiling portion of the processing container 2, a sealing means for hermetically sealing the space between the processing container 2 and the lifting / lowering bar 81 in a state where the lifting / lowering bar 81 can be moved up and down around the lifting / lowering bar 81. A magnetic seal member 88 using a magnetic fluid is provided. Other configurations are the same as those of the first embodiment described above, and the same parts are denoted by the same reference numerals. Also in this example, the lower electrode 4 corresponds to a cathode electrode, and the upper electrode 3 corresponds to an anode electrode.

このような実施の形態では、先ず図7(a)に示すように、上部電極3を、移動側接触部材82が固定側接触部材86の上方側に位置する基板の受け渡し位置に位置させる。そして既述のように、基板10を処理容器2内に搬入し、下部電極4の上に受け渡す。次いで図7(b)に示すように、上部電極3を前記処理位置まで下降させて、移動側接触部材82の下面を固定側接触部材86の上端に接触させ、この位置にて所定のエッチング処理を行う。エッチング処理後の基板10は、上部電極3を前記受け渡し位置まで上昇させ、ゲートバルブ24を開いて図示しない搬送アームにより、処理容器2の外部に搬出される。   In such an embodiment, first, as shown in FIG. 7A, the upper electrode 3 is positioned at a substrate delivery position where the moving contact member 82 is positioned above the fixed contact member 86. Then, as described above, the substrate 10 is carried into the processing container 2 and transferred onto the lower electrode 4. Next, as shown in FIG. 7B, the upper electrode 3 is lowered to the processing position, the lower surface of the moving contact member 82 is brought into contact with the upper end of the fixed contact member 86, and a predetermined etching process is performed at this position. I do. After the etching process, the upper electrode 3 is raised to the delivery position, the gate valve 24 is opened, and the substrate 10 is carried out of the processing container 2 by a transfer arm (not shown).

このようなプラズマ処理装置においても、上部電極3を昇降自在に構成し、基板10を処理容器2に対して受け渡すときには、上部電極3を上方側に位置させて上部電極3と下部電極4との間の間隔を広げ、基板10に対してエッチング処理を行なう時には、上部電極3を前記処理位置まで下降させて所定の処理を行っているので、前記上部電極3と下部電極4との間の間隔(距離)を最適な間隔にした状態で、基板10に対してエッチング処理を行うことができる。   Also in such a plasma processing apparatus, when the upper electrode 3 is configured to be movable up and down and the substrate 10 is transferred to the processing container 2, the upper electrode 3 is positioned on the upper side, and the upper electrode 3 and the lower electrode 4 When the etching process is performed on the substrate 10 with the gap between the upper electrode 3 and the lower electrode 4 being lowered, the upper electrode 3 is lowered to the processing position to perform a predetermined process. The etching process can be performed on the substrate 10 with the interval (distance) set to an optimum interval.

この際、上部電極3が前記処理位置にあるときには、処理容器2の天井部の外部において移動側接触部材82は固定側接触部材86に接触する。このため処理容器2内にてプラズマが発生しているときには、高周波電流は、下部電極(カソード電極)4→プラズマ→上部電極(アノード電極)3→昇降棒81→移動側接触部材82→固定側接触部材86→処理容器2の壁部→マッチングボックス43の筐体→同軸ケーブル45の外部導体→高周波電源部44の筐体→アースのリターン経路を介して流れる。またベローズ体の代わりに磁気シール部材88を用いて処理容器2の真空度を維持しているので、高周波電流のリターン経路に、電気抵抗が大きいベローズ体を含むことがなく、前記リターン経路の電気抵抗をより小さくすることができる。このため基板サイズが大きいフラットパネル用のガラス基板10を処理する場合であっても、均一なプラズマを発生することができ、基板10に対して面内均一性の高いエッチング処理を行うことができると共に、処理容器2の内壁や内部部品の偏った損傷や消耗が抑えられ、装置の性能の低下を防止することができる。またこの例においても、導通部の接点が処理容器2の外部に設けられているので、既述のように、仮に導通部の接点においてパーティクルが発生したとしても、処理容器2の内部にパーティクルが混入するおそれはないし、前記接点がプラズマに晒される場合のように、前記接点における電気的接触の悪化を招くおそれがない。   At this time, when the upper electrode 3 is at the processing position, the movable contact member 82 contacts the fixed contact member 86 outside the ceiling of the processing container 2. For this reason, when plasma is generated in the processing chamber 2, the high-frequency current is generated from the lower electrode (cathode electrode) 4 → plasma → upper electrode (anode electrode) 3 → lifting rod 81 → moving side contact member 82 → fixed side. It flows through the contact member 86 → the wall of the processing container 2 → the casing of the matching box 43 → the outer conductor of the coaxial cable 45 → the casing of the high-frequency power source 44 → the ground return path. Further, since the degree of vacuum of the processing container 2 is maintained using the magnetic seal member 88 instead of the bellows body, the return path of the high-frequency current does not include the bellows body having a large electric resistance, and the return path electrical The resistance can be further reduced. For this reason, even when processing the glass substrate 10 for flat panels with a large substrate size, uniform plasma can be generated and etching processing with high in-plane uniformity can be performed on the substrate 10. At the same time, uneven damage and wear of the inner wall and internal parts of the processing container 2 can be suppressed, and deterioration of the performance of the apparatus can be prevented. Also in this example, since the contact of the conduction part is provided outside the processing container 2, as described above, even if particles are generated at the contact of the conduction part, the particles are not inside the processing container 2. There is no fear of mixing, and there is no possibility of deteriorating electrical contact at the contact as in the case where the contact is exposed to plasma.

さらに続いて本発明のプラズマ処理装置の第3の実施の形態について図8を用いて説明する。この例が上述の第1の実施の形態の形態と異なる点は、上部電極3に高周波電力を印加してカソード電極とし、アノード電極をなす下部電極4側を昇降できるように構成したことであり、この例では下部電極4が駆動電極に相当する。具体的には、上部電極3は、例えばその周囲を絶縁材料により構成される支持部30にて支持され、こうして処理容器2から電気的に絶縁された状態となっている。また上部電極3は、給電棒34、整合回路を備えたマッチングボックス35、同軸ケーブル36を介して高周波電源部37に接続されており、前記マッチングボックス35は、処理容器2の天井部に形成された給電棒34を貫通させるための開口部27を塞ぐように、処理容器2の天井部の外部に設けられている。   Next, a third embodiment of the plasma processing apparatus of the present invention will be described with reference to FIG. This example is different from the above-described first embodiment in that it is configured such that high frequency power is applied to the upper electrode 3 to form a cathode electrode, and the lower electrode 4 side that forms the anode electrode can be moved up and down. In this example, the lower electrode 4 corresponds to a drive electrode. Specifically, the upper electrode 3 is supported by, for example, a support portion 30 made of an insulating material, and is thus electrically insulated from the processing container 2. The upper electrode 3 is connected to a high-frequency power source 37 through a power supply rod 34, a matching box 35 having a matching circuit, and a coaxial cable 36. The matching box 35 is formed on the ceiling of the processing vessel 2. The power supply rod 34 is provided outside the ceiling portion of the processing container 2 so as to close the opening 27 for penetrating the power supply rod 34.

前記同軸ケーブル36の内部導体は、マッチングボックス35の整合回路と高周波電源部37の給電部とに夫々接続され、同軸ケーブル36の外部導体はマッチングボックス35の導電性の筐体と高周波電源部37の導電性の筐体とに夫々接続されている。このように同軸ケーブル36の外部導体は高周波電源部37の筐体を介して接地され、こうして高周波電源部37から高周波電流をカソード電極(上部電極3)、プラズマ空間、アノード電極(下部電極4)及び処理容器2を介して高周波電源37のアース側にリターンさせるように構成されている。   The inner conductor of the coaxial cable 36 is connected to the matching circuit of the matching box 35 and the power feeding unit of the high frequency power supply unit 37, and the outer conductor of the coaxial cable 36 is the conductive casing of the matching box 35 and the high frequency power supply unit 37. Are respectively connected to the conductive casings. In this way, the outer conductor of the coaxial cable 36 is grounded via the casing of the high frequency power supply unit 37, and thus the high frequency current is supplied from the high frequency power supply unit 37 to the cathode electrode (upper electrode 3), plasma space, and anode electrode (lower electrode 4). And it is configured to return to the ground side of the high-frequency power source 37 through the processing container 2.

一方、下部電極4は処理容器2の底部を貫通するように設けられた導電性の昇降棒51a,51bにより、処理容器2底部から浮上した状態で支持されている。この昇降棒51の外端には処理容器2の外部において、導電性の移動側接触部材5a,5bが接続されており、また前記処理容器2の底部の外部には固定側接触部材が設けられている。この例の固定側接触部材は、第1の実施の形態と同様に、導電性の支持部材61〜63と、これに接続される導電性の固定側接触部71〜73とにより構成され、下部電極4がプラズマ処理を行う高さ位置(基板10の処理位置)に設定されたときに、前記処理容器2の底部の外部において、前記固定側接触部71〜73と移動側接触部材5a,5bとが接触し、高周波電流のリターン経路を形成するように構成されている。   On the other hand, the lower electrode 4 is supported in a state of floating from the bottom of the processing container 2 by conductive lifting bars 51 a and 51 b provided so as to penetrate the bottom of the processing container 2. Conductive moving contact members 5a and 5b are connected to the outer end of the lifting / lowering rod 51 outside the processing container 2, and a fixed contact member is provided outside the bottom of the processing container 2. ing. As in the first embodiment, the fixed-side contact member of this example includes conductive support members 61 to 63 and conductive fixed-side contact portions 71 to 73 connected thereto, When the electrode 4 is set at a height position for plasma processing (processing position of the substrate 10), outside the bottom of the processing container 2, the fixed-side contact portions 71 to 73 and the moving-side contact members 5a and 5b. Are in contact with each other to form a high-frequency current return path.

この例の昇降棒51a,51b、移動側接触部材5a,5b、支持部材61〜63、固定側接触部71〜73は、上述の第1の実施の形態の構成を、処理容器2の天井部が下側に位置するように反転させた構成と同様に構成されている。つまり図8中5a,5bは夫々第1及び第2の移動側接触部材、51a,51bは夫々第1及び第2の昇降棒、52a,52bは夫々連結部材、53は昇降板、54は昇降手段、61〜63は夫々第1〜第3の支持部材、71A〜73Aは夫々第1〜第3の第1高さ固定側接触部、71B〜73Bは夫々第1〜第3の第2高さ固定側接触部、26はベローズ体、55はシールドスパイラルであり、これらは上述の第1の実施の形態と同様に構成されている。その他の構成も上述の第1の実施の形態と同様である。   In this example, the lifting rods 51a and 51b, the moving contact members 5a and 5b, the support members 61 to 63, and the fixed contact members 71 to 73 are the same as the configuration of the first embodiment described above. Is configured in the same manner as that inverted so that is positioned on the lower side. That is, in FIG. 8, 5a and 5b are first and second moving contact members, 51a and 51b are first and second lifting rods, 52a and 52b are connecting members, 53 is a lifting plate, and 54 is lifting and lowering. Means 61 to 63 are first to third support members, 71A to 73A are first to third first height fixed side contact portions, and 71B to 73B are first to third second heights, respectively. The fixed side contact portion, 26 is a bellows body, and 55 is a shield spiral, which are configured in the same manner as in the first embodiment. Other configurations are the same as those in the first embodiment.

そしてこの例では、下部電極4は昇降手段54により移動側接触部材5a,5b、昇降棒51a,51bを介して昇降自在に構成され、下部電極4が下降し、移動側接触部材5a,5bが前記第1高さ固定側接触部71A〜73Aと接触するときの下部電極4の高さ位置が第1の高さ位置であり、この例では、基板10の受け渡しを行なう高さ位置であると共に、第1の処理条件で基板10に対してプラズマ処理を行う高さ位置である。また下部電極4が第1の高さ位置から上昇し、移動側接触部材5a,5bが第2高さ固定側接触部71B〜73Bと接触するときの上部電極3の高さ位置が第2の高さ位置であり、この例では第1の処理条件とは上部電極3の位置が異なる第2の処理条件で基板10に対してプラズマ処理を行う高さ位置である。   In this example, the lower electrode 4 is configured to be movable up and down by the lifting / lowering means 54 via the moving contact members 5a and 5b and the lifting rods 51a and 51b, the lower electrode 4 is lowered, and the moving contact members 5a and 5b are The height position of the lower electrode 4 when contacting the first height-fixed-side contact portions 71A to 73A is the first height position, and in this example, is the height position where the substrate 10 is transferred. The height position at which the plasma processing is performed on the substrate 10 under the first processing condition. The height position of the upper electrode 3 when the lower electrode 4 rises from the first height position and the moving side contact members 5a and 5b come into contact with the second height fixed side contact portions 71B to 73B is the second height position. This is a height position, and in this example, is a height position at which plasma processing is performed on the substrate 10 under a second processing condition in which the position of the upper electrode 3 is different from the first processing condition.

こうして下部電極4が第1の高さ位置に位置するときには、支持部材61と第1高さ固定側接触部71Aと移動側接触部材5aとにより、また支持部材62,63と第1高さ固定側接触部72A,73Aと移動側接触部材5bとにより高周波電流のリターン経路が形成される。また上部電極3が第2の高さ位置に位置するときには、支持部材61と第2高さ固定側接触部71Bと移動側接触部材5aとにより、また支持部材62,63と第2高さ固定側接触部72B,73Bと移動側接触部材5bとにより高周波電流のリターン経路が形成される。   Thus, when the lower electrode 4 is positioned at the first height position, the supporting member 61, the first height fixing side contact portion 71A, and the moving side contact member 5a, and the supporting members 62, 63 and the first height fixing A high-frequency current return path is formed by the side contact portions 72A, 73A and the moving side contact member 5b. When the upper electrode 3 is positioned at the second height position, the support member 61, the second height fixing side contact portion 71B, and the moving side contact member 5a, and the support members 62, 63 and the second height fixing are provided. A high-frequency current return path is formed by the side contact portions 72B and 73B and the moving side contact member 5b.

このような実施の形態では、先ず下部電極4を第1の高さ位置まで下降させて基板10を処理容器2内に搬入して、下部電極4の上に受け渡し、次いで下部電極4を第2の高さ位置まで上昇させて所定のエッチング処理を行う。プラズマ処理後の基板10は、下部電極4を前記第1の高さ位置まで下降させ、図示しない搬送アームにより、処理容器2の外部に搬出する。   In such an embodiment, the lower electrode 4 is first lowered to the first height position, the substrate 10 is carried into the processing container 2 and transferred onto the lower electrode 4, and then the lower electrode 4 is moved to the second height. A predetermined etching process is performed by raising the position to the height position. After the plasma processing, the substrate 10 is lowered to the first height position and is carried out of the processing chamber 2 by a transfer arm (not shown).

このようなプラズマ処理装置においても、下部電極4を昇降自在に構成し、基板10を搬出入するときには、下部電極4を下方側に位置させて上部電極3と下部電極との間の間隔を広げ、基板10に対してエッチング処理を行なう時には、下部電極4を前記処理位置まで上昇させて所定の処理を行っているので、前記上部電極3と下部電極4との間の間隔(距離)を最適な間隔にした状態でエッチング処理を行うことができる。   Also in such a plasma processing apparatus, the lower electrode 4 is configured to be movable up and down, and when the substrate 10 is carried in and out, the lower electrode 4 is positioned on the lower side to widen the gap between the upper electrode 3 and the lower electrode. When the etching process is performed on the substrate 10, the lower electrode 4 is raised to the processing position and a predetermined process is performed, so that the interval (distance) between the upper electrode 3 and the lower electrode 4 is optimal. The etching process can be performed in a state with a small interval.

この際、下部電極4が前記第2の高さ位置にあるときには、処理容器2の底部の外部では、移動側接触部材51a,51bは第2高さ固定側接触部71B〜73Bに接触して高周波電流のリターン経路を形成する。このため処理容器2内にてプラズマが発生しているときには、高周波電流は、上部電極(カソード電極)3→プラズマ→下部電極(アノード電極)4→昇降棒51a,51b→移動側接触部材5a,5b→第2高さ固定側接触部71B〜73B→支持部材61〜63→処理容器2の壁部→マッチングボックス35の筐体→同軸ケーブル36の外部導体→高周波電源部37の筐体→アースのリターン経路で流れる。従って上述の実施の形態1と同様の効果、つまり高周波電流のリターン経路の電気抵抗を小さくすることができて、均一なプラズマを発生することができるという効果や、また第1高さ固定側接触部71A〜73Aと第2高さ固定側接触部71B〜73Bとを夫々上下に2段に支持部材61〜63に取り付けているので、同じプラズマ処理装置で異なる処理プロセスを連続して行う場合であっても、夫々の処理において、上部電極3と下部電極4との間を適切な間隔にスムーズに切り換えて夫々の処理を行うことができるという効果、さらに固定側接触部71〜73は支持部材61〜63に取り付け自在に設けられているので、第1高さ固定側接触部71A〜73Aと、第2高さ固定側接触部71B〜73Bの高さ位置を容易に調整できるという効果、導通部の接点が処理容器2の外部に設けられているので、処理容器2内部へのパーティクルが混入や、前記接点における電気的接触の悪化を抑えられるという効果が得られる。   At this time, when the lower electrode 4 is at the second height position, the moving side contact members 51a and 51b are in contact with the second fixed height side contact portions 71B to 73B outside the bottom of the processing container 2. A return path for high-frequency current is formed. For this reason, when plasma is generated in the processing vessel 2, the high-frequency current is generated from the upper electrode (cathode electrode) 3 → plasma → lower electrode (anode electrode) 4 → lifting rods 51a, 51b → moving side contact member 5a, 5b → second height fixed side contact portions 71B to 73B → support members 61 to 63 → wall portion of processing container 2 → casing of matching box 35 → outer conductor of coaxial cable 36 → housing of high frequency power supply portion 37 → ground Flows in the return path. Therefore, the same effect as that of the first embodiment described above, that is, the effect that the electric resistance of the return path of the high-frequency current can be reduced and uniform plasma can be generated, and the first fixed height side contact Since the parts 71A to 73A and the second height-fixed-side contact parts 71B to 73B are respectively attached to the support members 61 to 63 in two stages in the vertical direction, different processing processes are continuously performed in the same plasma processing apparatus. Even if it exists, in each process, the effect that each process can be performed by smoothly switching between the upper electrode 3 and the lower electrode 4 at an appropriate interval, and the fixed-side contact parts 71 to 73 are support members. Since it is provided to be freely attachable to 61 to 63, the height positions of the first fixed height side contact portions 71A to 73A and the second fixed height side contact portions 71B to 73B can be easily adjusted. Cormorants effect, since the contact of the conductive portion is provided outside the processing container 2, particle contamination and to the processing chamber 2 inside, the effect is obtained that suppress the deterioration of the electrical contact at the contact.

続いて本発明のプラズマ処理装置の第4の実施の形態について図9を用いて説明する。この例が上述の第1の実施の形態の形態と異なる点は、カソード電極側を昇降自在に設け、カソード電極側に移動側接触部材を設けると共に、処理容器の外に、カソード電極をプラズマ処理を行う高さ位置に設定したときに、前記移動側接触部材と接触して高周波電流のリターン経路を形成するように固定側接触部材を設けたことである。   Next, a fourth embodiment of the plasma processing apparatus of the present invention will be described with reference to FIG. This example is different from the above-described first embodiment in that the cathode electrode side is provided so as to be movable up and down, a moving contact member is provided on the cathode electrode side, and the cathode electrode is plasma-treated outside the processing vessel. The fixed-side contact member is provided so as to form a high-frequency current return path in contact with the moving-side contact member when the height position is set.

具体的にはカソード電極をなす上部電極3の上部には、絶縁部材30aを介してベース部材30が設けられている。このベース部材30はグランドをなすものであり、前記絶縁部材30aは例えば上部電極3表面の周縁部に全周に亘って設けられて、その上部に、ベース部材30を前記上部電極3の上面と対向するように設けることにより、ベース部材30が上部電極3との間に所定の空間を介して設けられるようになっている。   Specifically, a base member 30 is provided above the upper electrode 3 serving as a cathode electrode via an insulating member 30a. The base member 30 forms a ground, and the insulating member 30a is provided, for example, on the peripheral edge of the surface of the upper electrode 3 over the entire circumference, and the base member 30 is connected to the upper surface of the upper electrode 3 on the upper part. By providing so as to face each other, the base member 30 is provided between the upper electrode 3 and a predetermined space.

前記上部電極3は、前記ベース部材30を介して、外端が処理容器2の外に突出する複数本の駆動部材をなす昇降棒38、51bにより処理容器2から吊り下げられた状態で、処理容器2とは電気的に絶縁された状態で支持されている。ここで前記昇降棒38は例えば内部が空洞になるように構成され、当該内部に給電棒34が設けられており、この給電棒34の一端側は前記上部電極3の上面に接続され、他端側はマッチングボックス35、同軸ケーブル36を介して高周波電源部37に接続されている。また昇降棒38は給電棒34とは電気的に絶縁されており、昇降棒38と残りの昇降棒51bの一端側はベース部材30の上面に接続されている。こうして上部電極3は昇降棒38,51bとは電気的に絶縁されて設けられることになる。   The upper electrode 3 is suspended from the processing container 2 by the lifting rods 38 and 51b that form a plurality of driving members whose outer ends protrude outside the processing container 2 through the base member 30. The container 2 is supported in an electrically insulated state. Here, the elevating rod 38 is configured to have a hollow inside, for example, and a power feeding rod 34 is provided therein, and one end side of the power feeding rod 34 is connected to the upper surface of the upper electrode 3 and the other end. The side is connected to a high-frequency power source 37 through a matching box 35 and a coaxial cable 36. The elevating bar 38 is electrically insulated from the power supply bar 34, and one end sides of the elevating bar 38 and the remaining elevating bar 51 b are connected to the upper surface of the base member 30. Thus, the upper electrode 3 is provided so as to be electrically insulated from the lift bars 38 and 51b.

前記昇降棒38における処理容器2の外に突出している部位には、前記上部電極3とは電気的に絶縁されて設けられると共に、前記高周波電源部37のアース側に電気的に接続された導電性の第1の移動側接触部材5aが設けられている。この例では、前記移動側接触部材5aは、マッチングボックス35の筐体と同軸ケーブル36の外部導体と高周波電源部37の筐体とを介して前記高周波電源部37のアース側に電気的に接続されていることになる。また前記昇降棒51bにおける処理容器2の外に突出している部位にも、上述の第1の実施の形態と同様に、導電性の第2の移動側接触部材5bが夫々設けられている。   A portion of the lifting / lowering rod 38 that protrudes outside the processing container 2 is provided to be electrically insulated from the upper electrode 3 and electrically connected to the ground side of the high-frequency power source 37. 1st moving side contact member 5a of nature is provided. In this example, the moving contact member 5a is electrically connected to the ground side of the high frequency power supply unit 37 via the housing of the matching box 35, the outer conductor of the coaxial cable 36, and the housing of the high frequency power supply unit 37. Will be. Similarly to the first embodiment described above, conductive second moving contact members 5b are also provided at portions of the lifting / lowering rod 51b that protrude outside the processing container 2, respectively.

また処理容器2の天井部の外部には、前記上部電極3をプラズマ処理を行う高さ位置に設定したときに、前記移動側接触部材5a,5bと接触して高周波電流のリターン経路を形成するように、導電性の固定側接触部材が設けられており、この例では、固定側接触部材は、第1の実施の形態と同様に、支持部材60,63と固定側接触部71A〜73A,71B〜73Bとにより構成されている。ここで、第1の固定側接触部71A,71Bと第2の固定側接触部72A,72Bとは一体に形成されており、これら固定側接触部71A,71B、72A,72Bが共通の1つの支持部材60に取り付けられるようになっている。こうしてこの例では、前記移動側接触部材5a,5bと固定側接触部71B〜73B(71A〜73A)とが接触したときに、第1の移動側接触部材5aと第2の移動側接触部材5bとが互いに電気的に接続されるようになっている。   In addition, when the upper electrode 3 is set to a height position for performing plasma processing, a return path for high-frequency current is formed outside the ceiling of the processing container 2 in contact with the moving contact members 5a and 5b. Thus, the conductive fixed side contact member is provided, and in this example, the fixed side contact member is the support members 60 and 63 and the fixed side contact portions 71A to 73A, as in the first embodiment. 71B to 73B. Here, the first fixed-side contact portions 71A, 71B and the second fixed-side contact portions 72A, 72B are integrally formed, and the fixed-side contact portions 71A, 71B, 72A, 72B are a common one. It is attached to the support member 60. Thus, in this example, when the moving contact members 5a and 5b and the fixed contact portions 71B to 73B (71A to 73A) come into contact, the first moving contact member 5a and the second moving contact member 5b. Are electrically connected to each other.

さらにまた第1の移動側接触部材5aの下面と上部電極3の天井部との間には、給電棒34の回りを囲むようにベローズ体26が設けられており、昇降棒38と上部電極3との接触面及び昇降棒38と第1の移動側接触部材5aとの接触面には、夫々シール部材をなすOリング39a,39bが設けられている。一方下部電極4の下面と処理容器2の底部との間には導電棒40が設けられており、こうして下部電極4は処理容器2と電気的に接続されている。   Furthermore, a bellows body 26 is provided between the lower surface of the first moving contact member 5a and the ceiling of the upper electrode 3 so as to surround the power supply rod 34. O-rings 39a and 39b, which form seal members, are provided on the contact surface between the first and second contact members 5a and the contact surface between the lift bar 38 and the first moving-side contact member 5a. On the other hand, a conductive rod 40 is provided between the lower surface of the lower electrode 4 and the bottom of the processing container 2, and thus the lower electrode 4 is electrically connected to the processing container 2.

以上において、昇降棒38が設けられていること、絶縁体30aとベース体30とが設けられていること、第1の移動側接触部材5aの上部側にマッチングボックス35が設けられていること、共通の支持部材60を用いること、導電棒40が設けられていること以外の構成は、上述の第1の実施の形態と同様に構成されている。またこの例では、上部電極3が駆動電極に相当し、連結部材52a,52b、昇降板53、昇降手段54により駆動手段が構成され、移動側接触部材5a,5bと固定側接触部材とにより処理容器外接触機構が構成されている。   In the above, the elevating rod 38 is provided, the insulator 30a and the base body 30 are provided, the matching box 35 is provided on the upper side of the first moving side contact member 5a, The configuration other than the use of the common support member 60 and the provision of the conductive rod 40 is the same as in the first embodiment described above. Further, in this example, the upper electrode 3 corresponds to a drive electrode, and the drive means is constituted by the connecting members 52a and 52b, the elevating plate 53, and the elevating means 54, and processing is performed by the moving side contact members 5a and 5b and the fixed side contact member. An out-container contact mechanism is configured.

このような構成では、上部電極3は、移動側接触部材5a,5bが第1高さ固定側接触部71A〜73Aと接触する第1の高さ位置と、移動側接触部材5a,5bが第2高さ固定側接触部71B〜73Bと接触する第2の高さ位置との間で昇降自在に設けられ、また上部電極3がこれらのいずれの高さ位置に位置するときであっても、前記移動側接触部材5a,5bと固定側接触部71B〜73B(71A〜73A)とが接触したときに、第1の移動側接触部材5aと第2の移動側接触部材5bとが互いに電気的に接続されるようになっている。   In such a configuration, the upper electrode 3 has the first height position where the moving side contact members 5a and 5b are in contact with the first height fixed side contact portions 71A to 73A, and the moving side contact members 5a and 5b are the first. Even when the upper electrode 3 is located at any one of these height positions, the height fixing side contact portions 71B to 73B are provided so as to be movable up and down freely. When the moving contact members 5a, 5b and the fixed contact portions 71B to 73B (71A to 73A) come into contact, the first moving contact member 5a and the second moving contact member 5b are electrically connected to each other. To be connected to.

このため処理容器2内において、上部電極3が第1の高さ位置あるいは第2の高さ位置にて、プラズマが発生しているときの高周波電流は、図10に示すように、上部電極(カソード電極)3→プラズマ→下部電極(アノード電極)4→処理容器2の壁部に至り、支持部材63→固定側接触部73A(73B)→移動側接触部材5b→固定側接触部72A(72B)→固定側接触部71A(71B)→移動側接触部材5aの経由、又は処理容器2の壁部から支持部材60→固定側接触部71A(71B)→移動側接触部材5aの経由で、移動側接触部材5aに至り、次いでマッチングボックス35の筐体→同軸ケーブル36の外部導体→高周波電源部37の筐体→アースの経路で流れる。このため高周波電流のリターン経路において電気抵抗が大きい部材が含まれないので、前記リターン経路の電気抵抗が小さくなり、上述の第1の実施の形態と同様の効果が得られる。   Therefore, the high-frequency current when plasma is generated in the processing container 2 when the upper electrode 3 is at the first height position or the second height position is shown in FIG. Cathode electrode) 3 → Plasma → Lower electrode (Anode electrode) 4 → Upon the wall of the processing vessel 2, the support member 63 → the fixed contact portion 73A (73B) → the moving contact member 5b → the fixed contact portion 72A (72B) ) → fixed side contact portion 71A (71B) → moving via the moving side contact member 5a or from the wall of the processing container 2 via the support member 60 → fixed side contact portion 71A (71B) → moving side contact member 5a The flow then reaches the side contact member 5a, and then flows in the path of the housing of the matching box 35 → the outer conductor of the coaxial cable 36 → the housing of the high-frequency power source 37 → the ground. For this reason, since a member having a large electric resistance is not included in the return path of the high-frequency current, the electric resistance of the return path is reduced, and the same effect as in the first embodiment described above can be obtained.

ここでこの例では、高周波電流はマッチングボックス35の筐体を介してアース側へ流れていくので、マッチングボックス35を備えた移動側接触部材5aと、これに対応する固定側接触部71と支持部材60とを接触させれば、高周波電流のリターン経路は形成できる。しかしながら、基板10の大型化に伴い、装置が大型化しているので、例えば処理容器2の天井部の中央部と周縁部とでは電位が異なる現象が発生している。このため処理容器2の天井部の中央部と周縁部との間の電位差をより小さくするためには、複数の昇降棒38、51bの夫々に移動側接触部材5a,5bを設け、これらを電気的に接続して、リターン経路のインピーダンスを小さくする必要がある。   Here, in this example, since the high-frequency current flows to the ground side through the housing of the matching box 35, the moving-side contact member 5a provided with the matching box 35, the corresponding fixed-side contact portion 71, and the support If the member 60 is brought into contact, a high-frequency current return path can be formed. However, as the size of the substrate 10 is increased, the size of the apparatus is increased. For example, a phenomenon in which the electric potential is different between the central portion and the peripheral portion of the ceiling portion of the processing container 2 occurs. For this reason, in order to further reduce the potential difference between the central portion and the peripheral portion of the ceiling portion of the processing container 2, the moving-side contact members 5 a and 5 b are provided on the plurality of elevating bars 38 and 51 b, respectively. Need to be connected to reduce the impedance of the return path.

この際、上述の例では、第1の固定側接触部71A(71B)と第2の固定側接触部72A(72B)とを一部において互いに接続されるように設けることにより、前記移動側接触部材5a,5bと固定側接触部71B〜73B(71A〜73A)とが接触したときに、移動側接触部材5a,5b同士が互いに電気的に接続されるように構成してもよい。   At this time, in the above-described example, the first fixed-side contact portion 71A (71B) and the second fixed-side contact portion 72A (72B) are provided so as to be partially connected to each other, thereby moving the moving-side contact. You may comprise so that the movement side contact members 5a and 5b may mutually be electrically connected when the members 5a and 5b and the fixed side contact parts 71B-73B (71A-73A) contact.

以上において本発明では、上部電極3又は下部電極4が第1の高さ位置にあるときに処理容器2に対して基板10の受け渡しを行うようにしたが、基板10の受け渡しは、上部電極3又は下部電極4が第1の高さ位置と第2の高さ位置との間にあるときに行ってもよい。   In the present invention, the substrate 10 is transferred to the processing container 2 when the upper electrode 3 or the lower electrode 4 is at the first height position. However, the transfer of the substrate 10 is performed by the upper electrode 3. Alternatively, it may be performed when the lower electrode 4 is between the first height position and the second height position.

さらに上述の第2の実施の形態においても、上部電極3をカソード電極とし、下部電極4をアノード電極として下部電極4側を駆動電極として昇降させ、処理容器2の底部の外部において、移動側接触部材82と固定側接触部材86とを接触させるように構成してもよいし、上述の第4の実施の形態においても、下部電極4をカソード電極とし上部電極3をアノード電極として、下部電極4側を駆動電極として昇降させ、処理容器2の底部の外部において、移動側接触部材5a,5bと固定側接触部71〜73とを接触させるように構成してもよい。   Further, also in the second embodiment described above, the upper electrode 3 is used as a cathode electrode, the lower electrode 4 is used as an anode electrode, the lower electrode 4 side is used as a drive electrode, and the moving side contact is made outside the bottom of the processing vessel 2. The member 82 and the fixed-side contact member 86 may be configured to contact each other. In the fourth embodiment, the lower electrode 4 is used as the cathode electrode, the upper electrode 3 is used as the anode electrode, and the lower electrode 4 is used. The movable side contact members 5a and 5b and the fixed side contact portions 71 to 73 may be brought into contact with each other on the outside of the bottom of the processing container 2 as the drive electrode.

また上述の第1の実施の形態、第3の実施の形態、第4の実施の形態において、固定側接触部材を第2の実施の形態の形態の固定側接触部材に変更してもよいし、いずれの実施の形態においても、シール手段として磁気シール部材、ベローズ体のいずれを用いることができる。   In the first embodiment, the third embodiment, and the fourth embodiment described above, the stationary contact member may be changed to the stationary contact member of the second embodiment. In either embodiment, either a magnetic seal member or a bellows body can be used as the sealing means.

また本発明では、図11に図1の構成の昇降棒51aを代表して示すように、前記移動側接触部材として、例えば板状の導電性の第1高さ移動側接触部材91と第2高さ移動側接触部材92とを、前記導電性の昇降棒51aに夫々高さ位置が異なるように上下に取り付けて設け、導電性の固定側接触部材93を、これらの高さ位置の異なる第1高さ移動側接触部材91と第2高さ移動側接触部材92との間に、前記昇降棒51aが昇降したときに前記第1高さ移動側接触部材91と第2高さ移動側接触部材92に夫々接触するように設けるようにしてもよい。
前記固定側接触部材93は、例えば処理容器2から上方側に鉛直に伸び、処理容器2の中心側に屈曲する部材により構成される。
Further, in the present invention, as shown in FIG. 11 representatively of the lifting rod 51a having the configuration of FIG. 1, as the moving side contact member, for example, a plate-like conductive first height moving side contact member 91 and a second one. Height moving side contact members 92 are provided on the conductive lifting / lowering rods 51a so as to be different in height from each other, and the conductive fixed side contact members 93 are provided in different positions. The first height moving side contact member 91 and the second height moving side contact when the elevating bar 51a moves up and down between the first height moving side contact member 91 and the second height moving side contact member 92. You may make it provide so that it may contact to the member 92, respectively.
The fixed-side contact member 93 is configured by, for example, a member that extends vertically upward from the processing container 2 and bends toward the center of the processing container 2.

この例においては、例えば図11(a)に示すように、第1高さ移動側接触部材91の上面が固定側接触部材93の下面に接触するときの上部電極3の位置が前記第1の高さ位置であり、例えば基板10の受け渡しが行われる位置であって、例えば図10(b)に示すように、第2高さ移動側接触部92の下面が固定側接触部材93の上面に接触するときの上部電極3の位置が前記第2の高さ位置であり、例えば基板10の処理位置である。   In this example, for example, as shown in FIG. 11A, the position of the upper electrode 3 when the upper surface of the first height moving contact member 91 is in contact with the lower surface of the fixed contact member 93 is the first position. For example, as shown in FIG. 10B, the lower surface of the second height moving side contact portion 92 is placed on the upper surface of the fixed side contact member 93. The position of the upper electrode 3 at the time of contact is the second height position, for example, the processing position of the substrate 10.

さらに本発明では、カソード電極とアノード電極とを両方共昇降させて駆動電極とし、処理容器2の天井部及び底部の外部の両方において、移動側接触部材と固定側接触部材とを接触させて、高周波電流のリターン経路を形成するように構成してもよい。この場合、移動側接触部材と固定側接触部材との接続手法は、第1〜第4の実施の形態のいずれかの手法で行うようにすればよく、処理容器2の天井部及び底部の外部の夫々において、移動側接触部材と固定側接触部材との接続手法が異なっていてもよい。   Furthermore, in the present invention, both the cathode electrode and the anode electrode are moved up and down to form a drive electrode, and the moving side contact member and the fixed side contact member are brought into contact with each other both outside the ceiling and bottom of the processing container 2; You may comprise so that the return path | route of a high frequency current may be formed. In this case, the connection method between the moving contact member and the fixed contact member may be performed by any one of the first to fourth embodiments, and the outside of the ceiling and bottom of the processing container 2 In each of the above, the connection method of the moving side contact member and the fixed side contact member may be different.

さらにまた移動側接触部材と固定側接触部材の形状は、前記基板に対してプラズマ処理を行う高さ位置にアノード電極又はカソード電極が位置するときに、前記処理容器2の外において、前記移動側接触部材と固定側接触部材とが互いに接触する構成であれば、上述の例に限らず、例えば第1の移動側接触部材5aとこれに接触する固定側接触部材のみを備える構成であってもよいし、環状の例えば第2の移動側接触部材5bとこれに接触する固定側接触部材のみを備える構成であってもよい。また環状の移動側接触部材の設置数は処理容器2の大きさに応じて適宜選択できる。   Furthermore, the shape of the moving side contact member and the fixed side contact member is such that when the anode electrode or the cathode electrode is positioned at a height position where the plasma processing is performed on the substrate, the moving side contact member and the fixed side contact member are outside the processing container 2. As long as the contact member and the fixed contact member are in contact with each other, the configuration is not limited to the above example, and for example, the first moving contact member 5a and the fixed contact member that contacts the first moving contact member 5a may be included. Alternatively, it may be configured to include only an annular second contact member 5b on the moving side and a fixed contact member that contacts the second mover contact member 5b. Further, the number of annular moving side contact members can be appropriately selected according to the size of the processing container 2.

このように本発明では、高周波電流のリターン経路を形成するためには、1つの移動側接触部材と、これに対応する固定側接触部材とを接触させる構成であればよく、必ずしも上述の実施の形態のように固定側接触部71〜73を移動側接触部材5a,5bの回りを囲むように形成し、移動側接触部材5a,5bの周縁全体に固定側接触部71〜73を接触させる必要はないが、上述の第1の実施の形態及び第3の実施の形態のように、複数の昇降棒51a,51bに夫々移動側接触部材5a,5bを設け、アノード電極をプラズマ処理を行う高さ位置に設定したときに、夫々移動側接触部材5a,5bを固定側接触部71〜73にて囲むように両者を接触させる構成を採用することにより、一辺の大きさが2.0m以上の大きな処理容器2においても、高周波電流のリターン経路のインピーダンスを小さくすることができることから、処理容器2の天井部の中央部と周縁部との間の電位差をより小さくすることができる。   As described above, in the present invention, in order to form the return path for the high-frequency current, it is sufficient that one moving-side contact member and the corresponding fixed-side contact member are brought into contact with each other. It is necessary to form the fixed side contact portions 71 to 73 so as to surround the moving side contact members 5a and 5b as in the form, and to bring the fixed side contact portions 71 to 73 into contact with the entire periphery of the moving side contact members 5a and 5b. However, as in the first embodiment and the third embodiment described above, the moving-side contact members 5a and 5b are provided on the plurality of lifting rods 51a and 51b, respectively, and the anode electrode is subjected to plasma processing. By adopting a configuration in which the movable side contact members 5a and 5b are surrounded by the fixed side contact portions 71 to 73, respectively, the size of one side is 2.0 m or more when set to the vertical position. Large processing container 2 Oite also, since it is possible to reduce the impedance of the return path of the high frequency current, it is possible to further reduce the potential difference between the central portion and the peripheral portion of the ceiling portion of the processing chamber 2.

さらに本発明では、図12に第1の移動側接触部材5aを例にして示すように、当該移動側接触部材5aを導電性の処理容器2の天井部外面に接触する位置と、導電性の固定側接触部材93に接触する位置との間で昇降自在に設けると共に、ベローズ体28を上部電極3と処理容器2の天井部内面との間に、前記開口部25を塞ぐように設けるようにしてもよい。前記固定側接触部材93は、例えば処理容器2の天井部外面から上方側に向けて鉛直に伸び、処理容器2の中心側に屈曲するように構成される。この場合には、移動側接触部材5aが固定側接触部材93に接触する位置を第1の高さ位置とし、処理容器2の天井部外面に接触する位置が第2の高さ位置として処理が行われる。図中55はシールドスパイラルであり、その他の構成は上述の図1の構成と同じである。   Furthermore, in the present invention, as shown in FIG. 12 by taking the first moving side contact member 5a as an example, a position where the moving side contact member 5a contacts the outer surface of the ceiling portion of the conductive processing container 2, The bellows body 28 is provided between the upper electrode 3 and the inner surface of the ceiling of the processing container 2 so as to close the opening 25 and is provided so as to be movable up and down between the position contacting the stationary contact member 93. May be. For example, the fixed-side contact member 93 is configured to extend vertically from the outer surface of the ceiling of the processing container 2 toward the upper side and bend toward the center of the processing container 2. In this case, the position where the moving contact member 5a contacts the fixed contact member 93 is the first height position, and the position where the moving contact member 5a contacts the outer surface of the ceiling of the processing container 2 is the second height position. Done. In the figure, reference numeral 55 denotes a shield spiral, and the other configuration is the same as the configuration of FIG.

このような構成においても、処理容器2内にてプラズマが発生しているときの高周波電流は、上部電極3が第1の高さ位置にあるときには、下部電極4(カソード電極)→プラズマ→上部電極3(アノード電極)→昇降棒51a→移動側接触部材5a→固定側接触部材93→処理容器2の壁部→マッチングボックス43の筐体→同軸ケーブル45の外部導体→高周波電源部44の筐体→アースのリターン経路で流れ、また上部電極3が第2の高さ位置にあるときには、下部電極4(カソード電極)→プラズマ→上部電極3(アノード電極)→昇降棒51a→移動側接触部材5a→処理容器2の壁部→マッチングボックス43の筐体→同軸ケーブル45の外部導体→高周波電源部44の筐体→アースのリターン経路で流れる。   Even in such a configuration, the high-frequency current when plasma is generated in the processing container 2 is lower electrode 4 (cathode electrode) → plasma → upper when the upper electrode 3 is at the first height position. Electrode 3 (anode electrode) → lifting rod 51a → moving side contact member 5a → fixed side contact member 93 → wall of processing vessel 2 → housing of matching box 43 → outer conductor of coaxial cable 45 → housing of high frequency power supply unit 44 When the upper electrode 3 is in the second height position, the lower electrode 4 (cathode electrode) → plasma → the upper electrode 3 (anode electrode) → the lifting bar 51a → the moving contact member 5a → the wall of the processing container 2 → the housing of the matching box 43 → the outer conductor of the coaxial cable 45 → the housing of the high-frequency power source 44 → the return path of the ground.

さらにまた本発明では、図13に示すように、アノード電極が駆動電極である場合に、当該アノード電極にインピーダンス調整部を接続するようにしてもよい。図13に示す例では、上部電極3がアノード電極であり、この上部電極3には図9に示す例と同様に、その上部に絶縁体30aを介してベース部材30が設けられている。そして前記上部電極3は、前記ベース部材30を介して、外端が処理容器2の外に突出する複数本の駆動部材をなす昇降棒38、51bにより処理容器2から吊り下げられた状態で、処理容器2とは電気的に絶縁されて支持されている。ここで前記昇降棒38は例えば内部が空洞になるように構成され、当該内部に導電棒34が設けられており、この導電棒34の一端側は前記上部電極3の上面に接続され、他端側はインピーダンス調整部94に接続されている。また昇降棒38は導電棒34とは電気的に絶縁されており、昇降棒38と残りの昇降棒51bの一端側はベース部材30の上面に接続されている。   Furthermore, in the present invention, as shown in FIG. 13, when the anode electrode is a drive electrode, an impedance adjustment unit may be connected to the anode electrode. In the example shown in FIG. 13, the upper electrode 3 is an anode electrode, and the base member 30 is provided on the upper electrode 3 via an insulator 30 a as in the example shown in FIG. 9. The upper electrode 3 is suspended from the processing container 2 by the lifting rods 38 and 51b that form a plurality of driving members whose outer ends protrude outside the processing container 2 through the base member 30. The processing vessel 2 is electrically insulated and supported. Here, the elevating rod 38 is configured to have a hollow inside, for example, and a conductive rod 34 is provided therein, and one end side of the conductive rod 34 is connected to the upper surface of the upper electrode 3, and the other end. The side is connected to the impedance adjustment unit 94. The elevating bar 38 is electrically insulated from the conductive bar 34, and one end sides of the elevating bar 38 and the remaining elevating bar 51 b are connected to the upper surface of the base member 30.

前記昇降棒38における処理容器2の外に突出している部位には、前記上部電極3とは絶縁されて設けられるように導電性の第1の移動側接触部材5aが設けられている。また前記昇降棒51bにおける処理容器2の外に突出している部位にも、上述の第1の実施の形態と同様に、導電性の第2の移動側接触部材5bが夫々設けられている。図中39a,39bはOリングであり、55はシールドスパイラルである。   A conductive first moving contact member 5a is provided at a portion of the lifting / lowering bar 38 protruding outside the processing container 2 so as to be insulated from the upper electrode 3. Similarly to the first embodiment described above, conductive second moving contact members 5b are also provided at portions of the lifting / lowering rod 51b that protrude outside the processing container 2, respectively. In the figure, 39a and 39b are O-rings, and 55 is a shield spiral.

この例では、固定側接触部材は、第4の実施の形態と同様に、支持部材60,63と固定側接触部71A〜73A,71B〜73Bとにより構成されている。ここで、第1の固定側接触部71A,71Bと第2の固定側接触部72A,72Bとは一体に形成されており、これら固定側接触部71A,71B、72A,72Bが共通の1つの支持部材60に取り付けられるようになっている。こうして前記移動側接触部材5a,5bと固定側接触部71B〜73B(71A〜73A)とが接触したときに、第1の移動側接触部材5aと第2の移動側接触部材5bとが互いに電気的に接続されるようになっている。   In this example, the fixed-side contact member includes support members 60 and 63 and fixed-side contact portions 71A to 73A and 71B to 73B as in the fourth embodiment. Here, the first fixed-side contact portions 71A, 71B and the second fixed-side contact portions 72A, 72B are integrally formed, and the fixed-side contact portions 71A, 71B, 72A, 72B are a common one. It is attached to the support member 60. Thus, when the moving contact members 5a, 5b and the fixed contact portions 71B to 73B (71A to 73A) are in contact, the first moving contact member 5a and the second moving contact member 5b are electrically connected to each other. Connected.

以上において、昇降棒38が設けられていること、絶縁体30aとベース体30とが設けられていること、第1の移動側接触部材5aの上部側にインピーダンス調整機構94が設けられていること、共通の支持部材60を用いること以外の構成は、上述の第1の実施の形態と同様に構成されている。またこの例では、上部電極3が駆動電極に相当し、連結部材52a,52b、昇降板53、昇降手段54により駆動手段が構成され、移動側接触部材5a,5bと固定側接触部材とにより処理容器外接触機構が構成されている。   In the above, the elevating bar 38 is provided, the insulator 30a and the base body 30 are provided, and the impedance adjusting mechanism 94 is provided on the upper side of the first moving side contact member 5a. The configuration other than using the common support member 60 is the same as that of the first embodiment described above. Further, in this example, the upper electrode 3 corresponds to a drive electrode, and the drive means is constituted by the connecting members 52a and 52b, the elevating plate 53, and the elevating means 54, and processing is performed by the moving side contact members 5a and 5b and the fixed side contact member. An out-container contact mechanism is configured.

このような構成では、いわば正常な経路で高周波電流が流れる場合には、下部電極4→プラズマ→上部電極3→インピーダンス調整部94→移動側接触部材5a→固定側接触部71A,71B→支持部材60→処理容器2の壁部→マッチングボックス43の筐体→同軸ケーブル45の外部導体→高周波電源部44の筐体→アースのリターン経路で流れることになるが、下部電極4→プラズマ→処理容器2→マッチングボックス43を介してアースに至るいわば異常な経路にて高周波電流が流れるおそれがあるため、上部電極3から処理容器2の下部に至るまでの経路(リターン経路)のインピーダンスをインピーダンス調整部94により調整するようにしている。   In such a configuration, when a high-frequency current flows through a normal path, the lower electrode 4 → the plasma → the upper electrode 3 → the impedance adjusting portion 94 → the moving contact member 5a → the fixed contact portions 71A and 71B → the support member. 60 → wall of processing vessel 2 → casing of matching box 43 → outer conductor of coaxial cable 45 → housing of high frequency power supply unit 44 → lower electrode 4 → plasma → processing vessel 2 → High frequency current may flow in an abnormal path that reaches the ground via the matching box 43, so the impedance of the path (return path) from the upper electrode 3 to the lower part of the processing vessel 2 is set as an impedance adjustment unit. 94 for adjustment.

つまりプラズマのキャパシタンス(C1)及び上部電極3から処理容器2の下部に至るまでの経路のインダクタンス(L)をインピーダンス調整部94の容量成分(C)により相殺させることで、前記経路のインピーダンスをj(−1/ωC1+ωL−1/ωC)として、前記異常な経路のインピーダンスよりも小さくしている。このためインピーダンス調整部94は容量成分を含むものであり、その形態としては例えば容量可変コンデンサを用いる構成、固定容量のコンデンサと容量可変コンデンサとを組み合わせる構成、固定容量コンデンサを用いる構成、容量可変コンデンサとインダクタとを組み合わせる構成、インダクタンスを可変できるインダクタと固定容量コンデンサを用いる構成等種々の構成を採用することができる。固定容量コンデンサのみを用いた場合でも容量の異なるコンデンサと交換することによりインピーダンス値を調整できる。   That is, the capacitance (C1) of the plasma and the inductance (L) of the path from the upper electrode 3 to the lower part of the processing container 2 are canceled by the capacitance component (C) of the impedance adjusting unit 94, thereby making the impedance of the path j (−1 / ωC1 + ωL−1 / ωC) is set to be smaller than the impedance of the abnormal path. For this reason, the impedance adjustment unit 94 includes a capacitance component. As its form, for example, a configuration using a variable capacitance capacitor, a combination of a fixed capacitance capacitor and a variable capacitance capacitor, a configuration using a fixed capacitance capacitor, a variable capacitance capacitor Various configurations can be employed, such as a configuration combining an inductor and an inductor, a configuration using an inductor capable of varying inductance, and a fixed capacitor. Even when only a fixed capacitor is used, the impedance value can be adjusted by replacing the capacitor with a different capacitor.

このように構成することにより、プラズマの発生により高周波電流は既述のような正常な経路を流れるが、このとき当該経路のインピーダンス値がほぼ最小値となるように設定されていて、前記異常な経路のインピーダンス値よりも小さくなっているため、下部電極4と処理容器2の壁部との間でプラズマが立ちにくくなっている。この結果下部電極4と上部電極3との間にプラズマが集中し、基板10上のプラズマは面内均一性の高いものとなる。   With this configuration, the high-frequency current flows through the normal path as described above due to the generation of plasma. At this time, the impedance value of the path is set to be almost the minimum value, and the abnormal Since it is smaller than the impedance value of the path, it is difficult for plasma to stand between the lower electrode 4 and the wall of the processing vessel 2. As a result, plasma concentrates between the lower electrode 4 and the upper electrode 3, and the plasma on the substrate 10 has high in-plane uniformity.

また前記移動側接触部材5a,5bと固定側接触部71B〜73B(71A〜73A)とが接触したときに、第1の移動側接触部材5aと第2の移動側接触部材5bとが互いに電気的に接続されるようになっているので、プラズマ発生時の高周波電流は、インピーダンス調整が行なわれた状態で、移動側接触部材5a→固定側接触部72B(72A)→移動側接触部材5b→固定側接触部73B(73A)→支持部材63を介して処理容器2へ流れていく。このため処理容器2の天井部の中央部と周縁部との間の電位差を小さくすることができる。なお前記インピーダンス調整部94を、第2の移動側接触部材5bに設けるようにしてもよい。   When the moving contact members 5a and 5b and the fixed contact portions 71B to 73B (71A to 73A) come into contact with each other, the first moving contact member 5a and the second moving contact member 5b are electrically connected to each other. Therefore, the high-frequency current at the time of plasma generation is such that the moving contact member 5a → the fixed contact portion 72B (72A) → the moving contact member 5b → It flows to the processing container 2 through the fixed side contact portion 73B (73A) → the support member 63. For this reason, the electric potential difference between the center part and peripheral part of the ceiling part of the processing container 2 can be made small. In addition, you may make it provide the said impedance adjustment part 94 in the 2nd movement side contact member 5b.

以上において本発明のプラズマ処理装置は、エッチング処理のみならず、アッシングやCVD等、他のプラズマ処理を行う処理に適用することができる。また基板としてはFPD基板の他、半導体ウエハであってもよく、処理容器の形状は円筒形状であってもよい。   In the above, the plasma processing apparatus of the present invention can be applied not only to the etching process but also to other plasma processes such as ashing and CVD. In addition to the FPD substrate, the substrate may be a semiconductor wafer, and the shape of the processing container may be a cylindrical shape.

本発明の一実施の形態に係るエッチング処理装置を示す断面図である。It is sectional drawing which shows the etching processing apparatus which concerns on one embodiment of this invention. 前記エッチング処理装置の一部を示す斜視図である。It is a perspective view which shows a part of said etching processing apparatus. 前記エッチング処理装置を示す平面図である。It is a top view which shows the said etching processing apparatus. 前記エッチング処理装置の作用を説明するための断面図である。It is sectional drawing for demonstrating the effect | action of the said etching processing apparatus. 前記エッチング処理装置の作用を説明するための断面図である。It is sectional drawing for demonstrating the effect | action of the said etching processing apparatus. 前記エッチング処理装置の第2の実施の形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the said etching processing apparatus. 前記エッチング処理装置の作用を説明するための断面図である。It is sectional drawing for demonstrating the effect | action of the said etching processing apparatus. 前記エッチング処理装置の第3の実施の形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the said etching processing apparatus. 前記エッチング処理装置の第4の実施の形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the said etching processing apparatus. 前記エッチング処理装置の第4の実施の作用を示す断面図である。It is sectional drawing which shows the effect | action of 4th implementation of the said etching processing apparatus. 前記エッチング処理装置のさらに他の例を示す断面図である。It is sectional drawing which shows the other example of the said etching processing apparatus. 前記エッチング処理装置のさらに他の例を示す断面図である。It is sectional drawing which shows the further another example of the said etching processing apparatus. 前記エッチング処理装置のさらに他の例を示す断面図である。It is sectional drawing which shows the other example of the said etching processing apparatus. 従来のプラズマ処理装置を示す断面図である。It is sectional drawing which shows the conventional plasma processing apparatus. 従来のプラズマ処理装置を示す断面図である。It is sectional drawing which shows the conventional plasma processing apparatus.

符号の説明Explanation of symbols

10 基板
2 処理容器
26 ベローズ体
3 上部電極
31 処理ガス供給部
4 下部電極
34、42 給電棒
35、43 マッチングボックス
37、44 高周波電源部
36、45 同軸ケーブル
5、82 移動側接触部材
38、51、81 昇降棒
52 連結部材
53 昇降板
54 昇降手段
61〜63、86 支持部材
71A〜73A 第1高さ固定側接触部
71B〜73B 第2高さ固定側接触部
DESCRIPTION OF SYMBOLS 10 Substrate 2 Processing container 26 Bellows body 3 Upper electrode 31 Processing gas supply part 4 Lower electrode 34, 42 Feeding rods 35, 43 Matching box 37, 44 High frequency power supply part 36, 45 Coaxial cable 5, 82 Moving side contact member 38, 51 81 Lifting rod 52 Connecting member 53 Lifting plate 54 Lifting means 61-63, 86 Support members 71A-73A First height fixing side contact portions 71B-73B Second height fixing side contact portions

Claims (11)

処理容器の内部に少なくとも一対の平行平板電極と、前記一対の電極間隔を変化させるように駆動することができる少なくとも一つの駆動電極と、を有し、高周波電源から高周波電流を処理容器を介して前記高周波電源のアース側にリターンさせると共に、プラズマにより基板に対して処理を行うプラズマ処理装置において、
一端が前記駆動電極と電気的に接続された駆動部材、あるいは絶縁された駆動部材と、
該駆動部材を駆動させる駆動手段と、
少なくとも1つの処理容器外接触機構と、を備え、
前記処理容器外接触機構は、
処理容器の外に突出した該駆動部材の他端と電気的に導通する導電性の移動側接触部材と、
該移動側接触部材が移動したときに当該移動側接触部材と接触するように設けられ、処理容器外壁と連結された導電性の固定側接触部材とからなり、
前記移動側接触部材と固定側接触部材とが接触したときに高周波電流のリターン経路を形成することを特徴とするプラズマ処理装置。
The processing container has at least a pair of parallel plate electrodes and at least one drive electrode that can be driven so as to change a distance between the pair of electrodes, and a high-frequency current is supplied from a high-frequency power source through the processing container. In the plasma processing apparatus for returning to the ground side of the high-frequency power source and processing the substrate with plasma,
A drive member having one end electrically connected to the drive electrode, or an insulated drive member;
Drive means for driving the drive member;
At least one processing container external contact mechanism,
The processing container external contact mechanism is
A conductive moving contact member electrically connected to the other end of the drive member protruding outside the processing container;
It is provided so as to come into contact with the moving side contact member when the moving side contact member moves, and comprises a conductive fixed side contact member connected to the outer wall of the processing container,
A plasma processing apparatus, wherein a high-frequency current return path is formed when the moving contact member and the fixed contact member come into contact with each other.
前記処理容器外接触機構の移動側接触部材と固定側接触部材の接点は、少なくとも1つ以上の電極間隔に対応する位置を有することを特徴とする請求項1記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein a contact point between the moving side contact member and the fixed side contact member of the processing container outside contact mechanism has a position corresponding to at least one electrode interval. 前記処理容器外接触機構の移動側接触部材と固定側接触部材の接点は、任意の電極間隔に対応する位置に変更可能であることを特徴とする請求項1又は2記載のプラズマ処理装置。   3. The plasma processing apparatus according to claim 1, wherein the contact point between the moving side contact member and the fixed side contact member of the processing container outside contact mechanism can be changed to a position corresponding to an arbitrary electrode interval. 前記駆動電極は、基板を載置する載置台と対向する電極であることを特徴とする請求項1ないし3のいずれか一に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the drive electrode is an electrode facing a mounting table on which a substrate is mounted. 前記駆動電極は、基板を載置する載置台であることを特徴とする請求項1ないし3のいずれか一に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the drive electrode is a mounting table on which a substrate is mounted. 前記駆動電極はアノード電極であり、該アノード電極と前記駆動部材は電気的に接続されていることを特徴とする請求項1ないし5のいずれか一に記載のプラズマ処理装置。   6. The plasma processing apparatus according to claim 1, wherein the drive electrode is an anode electrode, and the anode electrode and the drive member are electrically connected. 前記駆動電極はアノード電極であり、前記アノード電極と前記駆動部材は電気的に絶縁され、前記アノード電極からインピーダンス調整部を経由して接続された接点を有する前記処理容器外接触機構を少なくとも一つ含むことを特徴とする請求項1ないし5のいずれか一に記載のプラズマ処理装置。   The drive electrode is an anode electrode, and the anode electrode and the drive member are electrically insulated, and have at least one contact mechanism outside the processing vessel having a contact point connected from the anode electrode via an impedance adjusting unit. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is included. 前記駆動電極はカソード電極であり、前記カソード電極と前記駆動部材は電気的に絶縁されていることを特徴とする請求項1ないし5のいずれか一に記載のプラズマ処理装置。   6. The plasma processing apparatus according to claim 1, wherein the drive electrode is a cathode electrode, and the cathode electrode and the drive member are electrically insulated. 前記カソード電極と高周波電源との間に整合回路を配置し、この整合回路の筐体に前記処理容器外接触機構の固定側接触部材と移動側接触部材との接点及び前記移動側接触部材を経由した高周波のリターン電流が帰還することを特徴とする請求項8記載のプラズマ処理装置。   A matching circuit is disposed between the cathode electrode and the high-frequency power source, and a contact between the stationary contact member and the moving contact member of the processing container outside contact mechanism and the moving contact member is disposed in the casing of the matching circuit. 9. The plasma processing apparatus according to claim 8, wherein the high frequency return current is fed back. 処理容器の内部に少なくとも一対の平行平板電極と、前記一対の電極間隔を変化させるように駆動することができる少なくとも一つの駆動電極と、を有し、高周波電源から高周波電流を処理容器を介して高周波電源のアース側にリターンさせると共に、プラズマにより基板に対して処理を行うプラズマ処理方法において、
一端が前記駆動電極と電気的に接続された駆動部材、あるいは絶縁された駆動部材と、該駆動部材を駆動させる駆動手段とにより前記駆動電極を駆動させ、前記電極間隔を広げた後、基板を前記処理容器の内部に搬入する工程と、
前記駆動部材の他端と電気的に導通した移動側接触部材が処理容器外壁と連結された固定側接触部材と接触する位置まで前記駆動電極を駆動させ、前記基板にプラズマ処理を施す工程と、
再度前記駆動電極を駆動させて前記電極間隔を広げた後、基板を処理容器の外部へ搬出する工程と、を含むことを特徴とするプラズマ処理方法。
The processing container has at least a pair of parallel plate electrodes and at least one drive electrode that can be driven so as to change a distance between the pair of electrodes, and a high-frequency current is supplied from a high-frequency power source through the processing container. In the plasma processing method of returning to the ground side of the high frequency power supply and processing the substrate with plasma,
The drive electrode is driven by a drive member whose one end is electrically connected to the drive electrode, or an insulated drive member, and drive means for driving the drive member, and after widening the gap between the electrodes, Carrying into the processing vessel;
Driving the drive electrode to a position where the moving contact member electrically connected to the other end of the drive member contacts the fixed contact member connected to the outer wall of the processing container, and subjecting the substrate to plasma processing;
And a step of driving the drive electrode again to widen the gap between the electrodes and then unloading the substrate to the outside of the processing container.
プラズマにより基板に対して処理を行うプラズマ処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
前記コンピュータプログラムは、請求項10記載のプラズマ処理方法を実施するようにステップが組まれていることを特徴とする記憶媒体。
A storage medium storing a computer program used on a plasma processing apparatus for processing a substrate with plasma and operating on a computer,
A storage medium characterized in that the computer program includes steps for carrying out the plasma processing method according to claim 10.
JP2006293167A 2006-10-27 2006-10-27 Plasma processing apparatus, plasma processing method, and storage medium Expired - Fee Related JP4961948B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006293167A JP4961948B2 (en) 2006-10-27 2006-10-27 Plasma processing apparatus, plasma processing method, and storage medium
CNB2007101626440A CN100536069C (en) 2006-10-27 2007-10-15 Plasma processing device, plasma processing method and storage medium
KR1020070107831A KR100908506B1 (en) 2006-10-27 2007-10-25 Plasma processing apparatus, plasma processing method and storage medium
TW096140445A TWI420979B (en) 2006-10-27 2007-10-26 A plasma processing apparatus and a plasma processing method, and a memory medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006293167A JP4961948B2 (en) 2006-10-27 2006-10-27 Plasma processing apparatus, plasma processing method, and storage medium

Publications (2)

Publication Number Publication Date
JP2008112589A true JP2008112589A (en) 2008-05-15
JP4961948B2 JP4961948B2 (en) 2012-06-27

Family

ID=39390619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006293167A Expired - Fee Related JP4961948B2 (en) 2006-10-27 2006-10-27 Plasma processing apparatus, plasma processing method, and storage medium

Country Status (4)

Country Link
JP (1) JP4961948B2 (en)
KR (1) KR100908506B1 (en)
CN (1) CN100536069C (en)
TW (1) TWI420979B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238961A (en) * 2009-03-31 2010-10-21 Tokyo Electron Ltd Gas flow path structure and substrate processing apparatus
JP2010244706A (en) * 2009-04-01 2010-10-28 Panasonic Corp Plasma treatment device
KR20130085387A (en) * 2012-01-19 2013-07-29 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus
JP2019175709A (en) * 2018-03-28 2019-10-10 Sppテクノロジーズ株式会社 Substrate processing apparatus
CN112309807A (en) * 2019-08-02 2021-02-02 中微半导体设备(上海)股份有限公司 Plasma etching equipment

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643528B2 (en) * 2009-03-30 2014-12-17 東京エレクトロン株式会社 Substrate processing equipment
JP5567392B2 (en) * 2010-05-25 2014-08-06 東京エレクトロン株式会社 Plasma processing equipment
KR101254902B1 (en) * 2010-07-02 2013-04-18 가부시끼가이샤 히다찌 하이테크 인스트루먼츠 Plasma treatment apparatus and plasma treatment method
KR101236406B1 (en) * 2010-12-10 2013-02-25 엘아이지에이디피 주식회사 Substrate treatment device and its operation method
KR101237388B1 (en) * 2010-12-10 2013-02-25 엘아이지에이디피 주식회사 Substrate treatment device with structure being off access to the upper electrode
CN102534568B (en) * 2010-12-30 2014-12-17 北京北方微电子基地设备工艺研究中心有限责任公司 Plasma-enhanced chemical vapor deposition equipment
JP2013151720A (en) * 2012-01-25 2013-08-08 Ulvac Japan Ltd Vacuum film forming apparatus
US9230779B2 (en) * 2012-03-19 2016-01-05 Lam Research Corporation Methods and apparatus for correcting for non-uniformity in a plasma processing system
JP6317138B2 (en) * 2014-02-27 2018-04-25 東京エレクトロン株式会社 High frequency plasma processing apparatus and high frequency plasma processing method
CN103915304B (en) * 2014-03-18 2016-08-17 京东方科技集团股份有限公司 A kind of plasma etching apparatus and dry etching equipment
TWI596692B (en) * 2016-06-08 2017-08-21 漢民科技股份有限公司 Assembling device?used for semiconductor equipment
CN108962713B (en) * 2017-05-25 2020-10-16 北京北方华创微电子装备有限公司 Process chamber and semiconductor processing equipment
KR102509641B1 (en) * 2018-08-28 2023-03-16 삼성전자주식회사 Device for sensing radio frequency in plasma chamber and plasma chamber comprising the device
KR102120494B1 (en) * 2019-07-15 2020-06-09 주식회사 테스 Substrate processing apparatus
CN111455350A (en) * 2020-04-07 2020-07-28 沈阳拓荆科技有限公司 Spray plate device with radio frequency guided from spray plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193471A (en) * 1998-01-05 1999-07-21 Kokusai Electric Co Ltd Plasma cvd device
JP2002270598A (en) * 2001-03-13 2002-09-20 Tokyo Electron Ltd Plasma treating apparatus
JP2002359232A (en) * 2001-05-31 2002-12-13 Tokyo Electron Ltd Plasma treatment apparatus
JP2004363552A (en) * 2003-02-03 2004-12-24 Okutekku:Kk Plasma treatment apparatus, electrode plate for plasma treatment apparatus and electrode plate manufacturing method
JP2005294800A (en) * 2003-12-02 2005-10-20 Bondotekku:Kk Joining method, device created thereby, surface activating device and joining device provided therewith

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476687B2 (en) 1998-09-21 2003-12-10 東京エレクトロン株式会社 Plasma processing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193471A (en) * 1998-01-05 1999-07-21 Kokusai Electric Co Ltd Plasma cvd device
JP2002270598A (en) * 2001-03-13 2002-09-20 Tokyo Electron Ltd Plasma treating apparatus
JP2002359232A (en) * 2001-05-31 2002-12-13 Tokyo Electron Ltd Plasma treatment apparatus
JP2004363552A (en) * 2003-02-03 2004-12-24 Okutekku:Kk Plasma treatment apparatus, electrode plate for plasma treatment apparatus and electrode plate manufacturing method
JP2005294800A (en) * 2003-12-02 2005-10-20 Bondotekku:Kk Joining method, device created thereby, surface activating device and joining device provided therewith

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238961A (en) * 2009-03-31 2010-10-21 Tokyo Electron Ltd Gas flow path structure and substrate processing apparatus
US8623172B2 (en) 2009-03-31 2014-01-07 Tokyo Electron Limited Gas flow path structure and substrate processing apparatus
KR101486781B1 (en) * 2009-03-31 2015-01-28 도쿄엘렉트론가부시키가이샤 Gas flow path structure and substrate processing apparatus
JP2010244706A (en) * 2009-04-01 2010-10-28 Panasonic Corp Plasma treatment device
KR20130085387A (en) * 2012-01-19 2013-07-29 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus
KR102009369B1 (en) * 2012-01-19 2019-08-09 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus
JP2019175709A (en) * 2018-03-28 2019-10-10 Sppテクノロジーズ株式会社 Substrate processing apparatus
CN112309807A (en) * 2019-08-02 2021-02-02 中微半导体设备(上海)股份有限公司 Plasma etching equipment
CN112309807B (en) * 2019-08-02 2022-12-30 中微半导体设备(上海)股份有限公司 Plasma etching equipment

Also Published As

Publication number Publication date
CN100536069C (en) 2009-09-02
KR100908506B1 (en) 2009-07-20
TWI420979B (en) 2013-12-21
CN101170053A (en) 2008-04-30
JP4961948B2 (en) 2012-06-27
TW200838369A (en) 2008-09-16
KR20080038037A (en) 2008-05-02

Similar Documents

Publication Publication Date Title
JP4961948B2 (en) Plasma processing apparatus, plasma processing method, and storage medium
KR101956478B1 (en) Antenna unit for inductively coupled plasma, inductively coupled plasma processing apparatus and method therefor
JP5479867B2 (en) Inductively coupled plasma processing equipment
JP6228400B2 (en) Inductively coupled plasma processing equipment
JP4887202B2 (en) Plasma processing apparatus and high-frequency current short circuit
KR101672856B1 (en) Plasma processing apparatus
KR20110014104A (en) Plasma processing apparatus and plasma processing method
KR20180064302A (en) Plasma processing apparatus
US7699957B2 (en) Plasma processing apparatus
KR20170086454A (en) Plasma processing apparatus and method for adjusting plasma distribution
JP2021064695A (en) Substrate processing apparatus and substrate processing method
JP6184832B2 (en) Gate valve apparatus and plasma processing apparatus
JP2007220926A (en) Apparatus and method for plasma treatment
JP2022024265A (en) Substrate detachment method and plasma processing device
JP2020115519A (en) Mounting table and substrate processing device
US11705346B2 (en) Substrate processing apparatus
JP5335875B2 (en) Plasma processing equipment
KR20220065683A (en) Plasma processing apparatus, manufacturing method thereof, and plasma processing method
JP2021136064A (en) Inductively coupled antenna and plasma processing device
JP2021136065A (en) Antenna segment and inductively coupled plasma processing device
JP2021022673A (en) Plasma processing apparatus
CN111192838A (en) Plasma processing apparatus
JP2016121801A (en) Tube and method of supplying heat medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees