JP2008110318A - Liquid spraying nozzle - Google Patents

Liquid spraying nozzle Download PDF

Info

Publication number
JP2008110318A
JP2008110318A JP2006295974A JP2006295974A JP2008110318A JP 2008110318 A JP2008110318 A JP 2008110318A JP 2006295974 A JP2006295974 A JP 2006295974A JP 2006295974 A JP2006295974 A JP 2006295974A JP 2008110318 A JP2008110318 A JP 2008110318A
Authority
JP
Japan
Prior art keywords
liquid
passage
supply path
liquid supply
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006295974A
Other languages
Japanese (ja)
Inventor
Akihiro Ikeguchi
明宏 池口
Keiichi Azuma
恵一 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaho Industry Co Ltd
Original Assignee
Yamaho Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaho Industry Co Ltd filed Critical Yamaho Industry Co Ltd
Priority to JP2006295974A priority Critical patent/JP2008110318A/en
Publication of JP2008110318A publication Critical patent/JP2008110318A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid spraying nozzle capable of decreasing an amount of drift without lowering workability. <P>SOLUTION: The liquid spraying nozzle 1 in which a passage for forming a straight ejection component 53 and a passage for forming a swirling ejection component 39 are formed by branching a liquid feeding passage in the course of the liquid feeding passage S is constituted so that the flow rate of a liquid flowing through at least one of the passage for forming a straight ejection component 53 and the passage for forming a swirling ejection component 39 is controlled by a flow rate control valve 17 installed at the branched part 22 of the liquid feeding passage while the liquid flowing through at least one flow passage is ejected from a first ejection opening 41. The liquid flow passage on the lower stream side of the first ejection opening 41 is provided with a suction opening 29 for outside air, an outside air sucking structure 52 sucking outside air from the suction opening by the liquid from the first ejection opening 41, an air and liquid mixing structure 56 mixing the outside air from the outside air sucking structure 52 with the liquid from the first ejection opening 41, and a second ejecting opening 34 ejecting the air/liquid mixture. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液体を遠方に散布する直進噴射と、液体を広角に散布する広角噴射とに切り替えられる液体散布ノズルに関する。   The present invention relates to a liquid spray nozzle that can be switched between a straight-ahead spray for spraying a liquid far away and a wide-angle spray for spraying a liquid at a wide angle.

従来、この種の液体散布ノズルとしては下記の特許文献1に記載されたものが知られている。特許文献1記載の液体散布ノズルでは、加圧された液体を供給する液体供給路に、渦流形成中子の収容室、渦流発生室、第1噴射口、外気吸入孔、エゼクタ用通路、気液混合室、および第2噴射口が、液体供給方向に当該順で設けられており、渦流形成中子は収容室内および渦流発生室内で液体供給方向に進退自在となっている。この液体散布ノズルによれば、手持杆の末端に設けられたグリップを回して渦流形成中子を収容室に移動させることにより液体を第2噴射口から直進噴射させ、渦流形成中子を渦流発生室に移動させることにより液体を第2噴射口から広角噴射させるようになっている。   Conventionally, what was described in the following patent document 1 is known as this kind of liquid spraying nozzle. In the liquid spraying nozzle described in Patent Document 1, a vortex forming core containing chamber, a vortex generating chamber, a first injection port, an outside air suction hole, an ejector passage, a gas liquid and a liquid supply path for supplying pressurized liquid The mixing chamber and the second injection port are provided in this order in the liquid supply direction, and the vortex forming core can freely move back and forth in the liquid supply direction in the storage chamber and the vortex generating chamber. According to this liquid spraying nozzle, the grip provided at the end of the handheld handle is turned to move the eddy current forming core to the accommodation chamber, whereby the liquid is jetted straight from the second injection port, and the eddy current forming core is generated. By moving the liquid into the chamber, the liquid is ejected from the second ejection port at a wide angle.

ところが、この液体散布ノズルでは、液体供給路内で渦流形成中子を進退移動させなければならない。加えて、渦流発生室下流側の液体供給路に屈曲部があると、渦流発生室で生じた渦流は屈曲部で大きく減衰して広角噴射を阻害する。これらによって、この液体散布ノズルは全体を直線状に形成せざるを得なかったのである。このように直線状に形成された液体散布ノズルは真っ直ぐの方向にしか液体肥料や農薬を噴射しないため、特に下方からの散布に難があり野菜の葉裏などに確実に噴霧できないという不具合があった。また、渦流溝などを有する渦流形成中子、渦流形成中子との間に所定隙間を持たせる収容室、および、渦流形成中子が移動自在に摺動する渦流発生室を製作しなければならないことから、構成が複雑になり簡素かつ安価に提供できなかった。   However, in this liquid spray nozzle, the vortex forming core must be moved back and forth in the liquid supply path. In addition, if there is a bent portion in the liquid supply path on the downstream side of the vortex generating chamber, the vortex generated in the vortex generating chamber is greatly attenuated at the bent portion and inhibits wide-angle injection. As a result, the entire liquid spray nozzle has to be formed linearly. In this way, the liquid spray nozzle formed in a straight line sprays liquid fertilizer and pesticides only in the straight direction, so there is a problem that spraying from the bottom is difficult, and it is not possible to spray reliably on the back of vegetables. It was. In addition, it is necessary to manufacture a vortex forming core having a vortex groove, a storage chamber having a predetermined gap with the vortex forming core, and a vortex generating chamber in which the vortex forming core slides movably. For this reason, the configuration is complicated and cannot be provided simply and inexpensively.

そこで、図7に示すような液体散布ノズル61が下記の特許文献2に記載されている。液体散布ノズル61では、加圧された液体を供給する液体供給路S1の先端に、噴射口71を有するオリフィス板72が設けられ、液体供給路S1の途中に、液体供給方向に進退自在の流量制御弁73、通水孔74を有する弁座板75、および液流制限部材76が当該順で液体供給方向に設けられている。この液体散布ノズル61によれば、手持杆の末端に設けられたグリップ(図示省略)を回して流量制御弁73を進退させることにより弁座板75の通水孔74を開閉して、液体をオリフィス板72の噴射口71から直進噴射させたり広角噴射させるようになっている。この液体散布ノズル61では、液体供給路S1が流量制御弁73の下流側位置で屈曲しており噴射口71の向きが手持杆の軸心方向から傾いているので、手持杆の角度とノズル頭の向きを手で調節するだけで噴射口71の向きを自由に変えられるようになっている。従って、野菜の葉裏に下方から噴射したり側方から茎に噴射する場合に好適とされている。   Therefore, a liquid spray nozzle 61 as shown in FIG. 7 is described in Patent Document 2 below. In the liquid spray nozzle 61, an orifice plate 72 having an ejection port 71 is provided at the tip of a liquid supply path S1 that supplies pressurized liquid, and a flow rate that can freely advance and retreat in the liquid supply direction in the middle of the liquid supply path S1. A control valve 73, a valve seat plate 75 having a water passage hole 74, and a liquid flow restricting member 76 are provided in this order in the liquid supply direction. According to this liquid spraying nozzle 61, the grip (not shown) provided at the end of the handheld handle is turned to move the flow control valve 73 forward and backward, thereby opening and closing the water passage hole 74 of the valve seat plate 75, thereby allowing the liquid to flow. From the injection port 71 of the orifice plate 72, straight injection or wide-angle injection is performed. In this liquid spray nozzle 61, the liquid supply path S1 is bent at the downstream position of the flow control valve 73, and the direction of the injection port 71 is inclined from the axial direction of the handheld rod. It is possible to freely change the direction of the injection port 71 by simply adjusting the direction of. Therefore, it is suitable for the case where it is sprayed on the back of the vegetable leaf from below or on the stem from the side.

特開2006−35081号公報JP 2006-35081 A

実開平2−37763号公報Japanese Utility Model Publication No. 2-37763

ところが、特許文献2記載の液体散布ノズルでは、液体のみが噴射口から噴射されるので、噴射された霧滴の径は例えば100μm以下と極めて細かくなる。そのために、霧滴が空気中に浮遊しやすく、霧滴が風に乗って飛散する、いわゆるドリフト現象により遠方まで到達し、或る種の薬液散布が禁止されている隣の菜園に無為に噴霧されるおそれがあった。かかる不具合を防ぐためには、やむなく噴射量を少なくして薬液を散布しなければならず、作業性の低い薬液散布にならざるを得なかった。   However, in the liquid spray nozzle described in Patent Document 2, since only the liquid is ejected from the ejection port, the diameter of the sprayed mist droplet is extremely small, for example, 100 μm or less. For this reason, mist drops tend to float in the air, mist drops scatter on the wind, reach the distance by the so-called drift phenomenon, and spray unnecessarily on the adjacent vegetable garden where certain chemical spraying is prohibited There was a risk of being. In order to prevent such inconveniences, it was necessary to spray the chemical liquid with a reduced injection amount, and it was necessary to spray the chemical liquid with low workability.

本発明は、上記した従来の問題点に鑑みてなされたものであって、作業性を低下させることなくドリフト量を低減化することのできる液体散布ノズルの提供を目的とする。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a liquid spray nozzle that can reduce the drift amount without deteriorating workability.

上記目的を達成するために、本発明に係る液体散布ノズルは、加圧された状態の液体を供給する液体供給路を備え、該液体供給路の途中で液体供給路を分岐させて直進噴出成分形成用通路と旋回噴出成分形成用通路とを形成し、前記分岐部分の液体供給路に流量制御弁を設けて直進噴出成分形成用通路と旋回噴出成分形成用通路との少なくとも一方の通路を流れる液体の流量を制御し、前記少なくとも一方の通路を流れる液体を、直進噴出成分形成用通路と旋回噴出成分形成用通路との合流位置の下流側の液体供給路に設けた第1噴射口から噴射するように構成された液体散布ノズルにおいて、第1噴射口よりも下流側の液体供給路に、外気吸入用の吸気孔と、第1噴射口から噴射された液体によって外気を吸気孔から液体供給路内へ吸入させる外気吸入構造と、該外気吸入構造により吸入された外気と第1噴射口から噴射された液体とを混合する気液混合構造と、該気液混合構造で混合された混合気液を噴射する第2噴射口とを具備した構成にしてある。   In order to achieve the above object, a liquid spraying nozzle according to the present invention includes a liquid supply path that supplies a pressurized liquid, and the liquid supply path is branched in the middle of the liquid supply path so as to be a straight jet component. Forming a forming passage and a swirling jet component forming passage, and providing a flow rate control valve in the liquid supply passage of the branch portion to flow through at least one of the straight jet component forming passage and the swirling jet component forming passage The flow rate of the liquid is controlled, and the liquid flowing through the at least one passage is injected from a first injection port provided in a liquid supply passage on the downstream side of the joining position of the straight jet component forming passage and the swirl jet component forming passage. In the liquid spray nozzle configured to perform the above operation, outside air is supplied from the intake hole to the liquid supply path downstream of the first injection port by the intake hole for sucking outside air and the liquid jetted from the first injection port. Inhaled into the road An outside air suction structure, a gas-liquid mixing structure that mixes the outside air sucked by the outside air suction structure and the liquid jetted from the first injection port, and jets the gas mixture mixed in the gas-liquid mixing structure The second injection port is provided.

また、前記構成において、分岐部分と第1噴射口との間の液体供給路に中子収容室が設けられ、該中子収容室に流量制御弁からの液体を旋回させる旋回中子が保持され、該旋回中子は、中子収容室の内周面との間で旋回噴出成分形成用通路を形成する通路用外周面と、直進噴出成分形成用通路を成す貫通孔と、通路用外周面からの液体に旋回流を付与する旋回流付与構造とを備えているものである。   Further, in the above configuration, a core storage chamber is provided in the liquid supply path between the branch portion and the first injection port, and a rotating core for rotating the liquid from the flow control valve is held in the core storage chamber. The swirling core includes a passage outer peripheral surface that forms a swirl jet component forming passage with the inner peripheral surface of the core housing chamber, a through hole that forms a straight jet component forming passage, and a passage outer peripheral surface. And a swirl flow imparting structure that imparts a swirl flow to the liquid from the liquid.

そして、前記した各構成において、液体供給路が、分岐部分の下流側位置で屈曲して形成されているものである。   In each of the above-described configurations, the liquid supply path is formed by being bent at a downstream position of the branch portion.

本発明に係る液体散布ノズルによれば、第1噴射口から噴射された液体は吸入された外気と混合されたのちに第2噴射口から直進噴射または広角噴射されるので、外気と混合されることなく噴射される従来技術と比べて、数倍大きな径の霧滴を得ることができる。これにより、霧滴のドリフト量を低減化することができ、周囲に迷惑をかけることを防止できる。ひいては、ドリフト現象を考慮し噴射量を少なくして液体散布をする必要がなくなり、作業性を低下させることなく散布作業を行なうことができる。   According to the liquid spraying nozzle according to the present invention, the liquid ejected from the first ejection port is mixed with the outside air and then mixed with the outside air because it is mixed with the sucked outside air and then straightly jetted or wide-angle jetted from the second ejection port. Compared with the prior art which is ejected without any problem, it is possible to obtain a mist droplet having a diameter several times larger. Thereby, the drift amount of a mist can be reduced and it can prevent surroundings from being troubled. As a result, it is not necessary to spray the liquid by reducing the injection amount in consideration of the drift phenomenon, and the spraying operation can be performed without deteriorating workability.

また、分岐部分と第1噴射口との間の液体供給路に旋回中子を固定配備した場合は、進退移動部材である流量制御弁が必ず分岐部分より上流側にあるので、液体供給路を分岐部分の下流側位置で屈曲させることができる。   In addition, when the turning core is fixedly arranged in the liquid supply path between the branch portion and the first injection port, the flow control valve, which is an advancing / retreating member, is always upstream of the branch portion. It can be bent at the downstream position of the branch portion.

そして、液体供給路が分岐部分の下流側位置で屈曲して形成されている場合は、手で持たれる部分の液体供給路の角度と、屈曲したノズル下流側の向きを手で調節するだけで第2噴射口の向きを自由に変えることができる。従って、噴霧対象物に対して様々な角度から大径の霧滴を噴射することができる。   If the liquid supply path is bent at the downstream position of the branch part, the angle of the liquid supply path of the part held by hand and the direction of the bent nozzle downstream side can be adjusted by hand. The direction of the second injection port can be freely changed. Therefore, large-diameter mist droplets can be ejected from various angles with respect to the spray object.

本発明の最良の実施形態を図面に基づいて説明する。尚、以下に述べる実施形態は本発明を具体化した一例に過ぎず、本発明の技術的範囲を限定するものでない。ここに、図1は本発明の一実施形態に係る液体散布ノズルの外観図、図2は前記液体散布ノズルの要部分解斜視図、図3は前記液体散布ノズルの一部分省略した側断面図、図4は前記液体散布ノズルの一部の部品を示し、(a)は旋回中子の斜視図、(b)は旋回中子の側面図、(c)は旋回中子の正面図、(d)は第2噴射口を有するオリフィス板の正面図、図5は図3におけるA−A線矢視断面図である。
各図において、この実施形態に係る液体散布ノズル1は例えば田畑などへの施肥や農薬散布を行うものであって、外パイプ2内に収容された円筒状の内パイプ5の末端に取り付けた握り柄10を手で回転操作することにより、内パイプ5を外パイプ2に対し進退移動させる手持部Tと、手持部Tの先端部分に設けられて薬液を噴射するノズル部Nとから成っている。手持部Tの末端の接続口11は、この液体散布ノズル1から離れた場所に置かれた圧送ポンプの吐出口とホース(いずれも図示省略)を介して接続されている。外パイプ2をアルミニウムパイプで構成すると、一定の耐腐食性を保持しながら軽量化を図ることができ、散布作業性を高めることができる。
The best mode for carrying out the present invention will be described with reference to the drawings. The embodiment described below is merely an example embodying the present invention, and does not limit the technical scope of the present invention. FIG. 1 is an external view of a liquid spray nozzle according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of a main part of the liquid spray nozzle, and FIG. 3 is a side cross-sectional view in which a part of the liquid spray nozzle is omitted. 4A and 4B show some parts of the liquid spray nozzle, where FIG. 4A is a perspective view of the turning core, FIG. 4B is a side view of the turning core, and FIG. 4C is a front view of the turning core. ) Is a front view of an orifice plate having a second injection port, and FIG. 5 is a cross-sectional view taken along line AA in FIG.
In each figure, a liquid spray nozzle 1 according to this embodiment is for applying fertilizer or agricultural chemicals to a field, for example, and is a grip attached to the end of a cylindrical inner pipe 5 accommodated in an outer pipe 2. The handle 10 consists of a hand-held portion T that moves the inner pipe 5 forward and backward relative to the outer pipe 2 by rotating the handle 10 by hand, and a nozzle portion N that is provided at the tip of the hand-held portion T and injects a chemical. . The connection port 11 at the end of the hand-held portion T is connected to a discharge port of a pressure-feed pump placed at a location away from the liquid spray nozzle 1 via a hose (both not shown). If the outer pipe 2 is composed of an aluminum pipe, the weight can be reduced while maintaining a certain level of corrosion resistance, and the spraying workability can be improved.

手持部Tにおいて、外パイプ2の両端開口内に円筒状の管継手3,4が嵌挿されカシメなどで固定されている。管継手3,4の筒内には、液体供給路13を有する直管状の内パイプ5が筒心方向移動自在に装入されている。内パイプ5の末端外周には円筒状の管継手6が固設され、管継手6に握り柄10が固設されている。握り柄10の接続口11の内面にはホースとつなぐための雌ネジ部12が形成されている。外パイプ2の外周面には握り柄14が取り付けられている。管継手4の末端側の内周面には雌ネジ部8が形成されている。管継手6の先端側の外周面には、管継手4の雌ネジ部8と螺合する雄ネジ部9が形成されている。これらの雌ネジ部8と雄ネジ部9は外パイプ2と内パイプ5との相対回転により螺進して外パイプ2または内パイプ5を筒心方向に相対移動させるようになっている。管継手4の末端には、移動自在の管継手6を抜け止め係止する円筒キャップ7が螺着されている。   In the hand-held portion T, cylindrical pipe joints 3 and 4 are inserted into both end openings of the outer pipe 2 and fixed by caulking or the like. A straight tubular inner pipe 5 having a liquid supply path 13 is inserted into the tubes of the pipe joints 3 and 4 so as to be movable in the cylinder center direction. A cylindrical pipe joint 6 is fixed to the outer periphery of the end of the inner pipe 5, and a grip handle 10 is fixed to the pipe joint 6. A female screw portion 12 for connecting to the hose is formed on the inner surface of the connection port 11 of the handle 10. A grip handle 14 is attached to the outer peripheral surface of the outer pipe 2. A female screw portion 8 is formed on the inner peripheral surface on the end side of the pipe joint 4. On the outer peripheral surface on the distal end side of the pipe joint 6, a male thread part 9 that is screwed with the female thread part 8 of the pipe joint 4 is formed. The female screw portion 8 and the male screw portion 9 are screwed by relative rotation between the outer pipe 2 and the inner pipe 5 to move the outer pipe 2 or the inner pipe 5 relative to each other in the cylinder center direction. At the end of the pipe joint 4, a cylindrical cap 7 for screwing and locking the movable pipe joint 6 is screwed.

ノズル部Nは、側面から見て略への字状に屈曲して形成された筒状の基部ケーシング20を基にして構成されている。基部ケーシング20の末端側において屈曲部23の上流側直前位置まで、内パイプ5よりも大径の液体供給路19が形成されている。この液体供給路19には、手持部Tの内パイプ5を摺動自在に封止するO−リングなどを用いたシール部15が装入されている。基部ケーシング20の末端はユニオンキャップ16によって手持部Tの管継手3と連結されている。内パイプ5の先端には円錐筒状の流量制御弁17が取り付けられている。流量制御弁17の側面には、内パイプ5からの薬液を液体供給路19へ流す通水孔18が穿設されている。液体供給路19の先端奥部には、流量制御弁17により開閉される弁座板21が配備されている。弁座板21は、流量制御弁17により開閉されて旋回中子25の貫通孔25と液体供給路19とを連通する板中央の通水孔40と、旋回噴出成分形成用通路39,39と液体供給路19とを連通する板両側の通水孔36,36とを有している。すなわち、弁座板21は、液体供給路を直進噴出成分形成用通路53と旋回噴出成分形成用通路39,39とに分岐させる分岐部分22であり、基部ケーシング20の屈曲部23の上流側に配備されている。尚、弁座板21の通水孔40は、流量制御弁17が当接停止したときでも全閉とならず少量の薬液が通過できるよう流量制御弁17との間に隙間部(図示省略)が形成されている。 The nozzle portion N is configured on the basis of a cylindrical base casing 20 that is formed by bending in a substantially U shape when viewed from the side. A liquid supply path 19 having a diameter larger than that of the inner pipe 5 is formed on the terminal side of the base casing 20 up to a position immediately upstream of the bent portion 23. The liquid supply path 19 is loaded with a seal portion 15 using an O-ring or the like that slidably seals the inner pipe 5 of the handheld portion T. The end of the base casing 20 is connected to the pipe joint 3 of the hand-held part T by a union cap 16. A conical cylindrical flow control valve 17 is attached to the tip of the inner pipe 5. On the side surface of the flow control valve 17, a water passage hole 18 is formed to allow the chemical solution from the inner pipe 5 to flow to the liquid supply path 19. A valve seat plate 21 that is opened and closed by the flow rate control valve 17 is disposed in the back end of the liquid supply path 19. The valve seat plate 21 is opened and closed by the flow control valve 17 to communicate the through hole 25 of the turning core 25 and the liquid supply passage 19 with a water passage hole 40 at the center of the plate, and swirl jet component forming passages 39 and 39. Water passage holes 36, 36 on both sides of the plate communicating with the liquid supply path 19 are provided. That is, the valve seat plate 21 is a branch portion 22 that branches the liquid supply path into the straight jet component forming passage 53 and the swirl jet component forming passages 39, 39, and upstream of the bent portion 23 of the base casing 20. Has been deployed. The water passage hole 40 of the valve seat plate 21 is not fully closed even when the flow control valve 17 stops contacting, and a gap (not shown) is provided between the flow control valve 17 and a small amount of chemical liquid. Is formed.

そして、基部ケーシング20の先端側、すなわち屈曲部23の下流側に、中子収容室45が形成されている。この中子収容室45には弁座板21からの薬液を旋回させる旋回中子24が収容されて保持される。旋回中子24は、貫通孔25を筒心に有する円筒状の中子本体46と、中子本体46の先端に設けられた中子本体46よりも大径の鍔部47と、中子本体46の外周面に突設された係止突起48,48とを備えている。鍔部47の外周面には、旋回用溝49,49がそれぞれ略接線方向に沿って形成されている。これら1対の旋回用溝49,49は鍔部47の筒心回りに180度回転した位置に配置されている。但し、旋回用溝49は2つに限らず、鍔部47における配置も均等角でなくてよい。鍔部47の先端面には旋回用溝49,49と連通する円柱状の旋回発生空間50が形成されている。この旋回中子24は、基部ケーシング20の中子収容室45内に形成された係合溝51,51に係止突起48,48が嵌挿されることによって基部ケーシング20に回り止め固定される。すなわち、旋回中子24は、中子収容室45の内周面38との間で旋回噴出成分形成用通路39を形成する通路用外周面37と、直進噴出成分形成用通路53を成す貫通孔25と、旋回噴出成分形成用通路39とつながるように形成されて薬液に旋回流を付与する旋回流付与構造54,54を成す旋回用溝49,49とを備えている。   A core housing chamber 45 is formed on the distal end side of the base casing 20, that is, on the downstream side of the bent portion 23. In this core housing chamber 45, a turning core 24 for turning the chemical solution from the valve seat plate 21 is housed and held. The turning core 24 includes a cylindrical core body 46 having a through hole 25 in the center thereof, a flange 47 having a diameter larger than that of the core body 46 provided at the tip of the core body 46, and a core body. And 46 are provided on the outer peripheral surface of 46. On the outer peripheral surface of the flange portion 47, turning grooves 49, 49 are formed along substantially tangential directions, respectively. The pair of turning grooves 49, 49 are arranged at positions rotated 180 degrees around the cylindrical center of the flange portion 47. However, the number of turning grooves 49 is not limited to two, and the arrangement in the flange 47 may not be a uniform angle. A cylindrical swirl generating space 50 that communicates with the swivel grooves 49 and 49 is formed at the distal end surface of the flange portion 47. The turning core 24 is fixed and fixed to the base casing 20 by engaging locking protrusions 48 and 48 in engagement grooves 51 and 51 formed in the core housing chamber 45 of the base casing 20. That is, the swirling core 24 has a passage outer peripheral surface 37 that forms a swirl jet component forming passage 39 and a through hole that forms a straight jet component forming passage 53 between the inner peripheral surface 38 of the core containing chamber 45. 25 and swirl grooves 49 and 49 that are formed so as to be connected to the swirl jet component forming passage 39 and form swirl flow imparting structures 54 and 54 that impart a swirl flow to the chemical solution.

基部ケーシング20の先端はO−リング43を介在させた状態でユニオンキャップ30の螺合により先部ケーシング28の末端と接続されている。先部ケーシング28はその末端側に合流空間26が形成され、先端側に気液混合構造56を成す気液混合室32が形成され、合流空間26と気液混合室32との間は、合流空間26および気液混合室32よりも細径のエゼクタ用通路31で連通している。尚、前記した合流空間26の中でオリフィス板27の上流側が本発明にいう合流空間である。基部ケーシング20の前方位置で旋回中子24の先端面には、第1噴射口41が先端に形成された円錐筒状のオリフィス板27が配備されている。この第1噴射口41の開口形状は円形である。オリフィス板27はその周縁部が旋回中子24の鍔部47の前面と先部ケーシング28の合流空間26の内周面段部との間で挟持されて固定される。   The front end of the base casing 20 is connected to the end of the front casing 28 by screwing the union cap 30 with the O-ring 43 interposed. The leading casing 28 has a merge space 26 formed at the end thereof, a gas-liquid mixing chamber 32 forming a gas-liquid mixing structure 56 formed at the tip side, and a merge between the merge space 26 and the gas-liquid mixing chamber 32. The ejector passage 31 is smaller in diameter than the space 26 and the gas-liquid mixing chamber 32. Note that the upstream side of the orifice plate 27 in the above-described joining space 26 is the joining space referred to in the present invention. A conical cylindrical orifice plate 27 having a first injection port 41 formed at the tip is disposed on the tip surface of the turning core 24 at a position in front of the base casing 20. The opening shape of the first injection port 41 is circular. The orifice plate 27 is sandwiched and fixed between the front surface of the flange portion 47 of the turning core 24 and the inner peripheral surface step portion of the merge space 26 of the front casing 28 at the periphery thereof.

そして、合流空間26におけるオリフィス板27の下流側空間と外部とを連通する吸気孔29が、先部ケーシング28の合流空間26の周壁に穿設されている。第1噴射口41が臨むエゼクタ用通路31の開口縁部とオリフィス板27との間には、エゼクタ作用を生じさせる所定の隙間が設けられている。気液混合室32は円柱状空間として形成され、その内径はエゼクタ用通路31の内径よりも十分に大きくとられて気液混合を確実に行なえるようになっている。先部ケーシング28の気液混合室32の前面開口は、第2噴射口34を有するオリフィス板33で封止される。このオリフィス板33およびO−リング44は、先部ケーシング28の先端に螺止されるユニオンキャップ35によって固定される。この場合、オリフィス板33の第2噴射口34の開口形状は、正面より見て水平方向(図4(d)の1点鎖線Hに沿う方向)から口芯回りに所定角度θ(=30度)だけ左回転した方向に長い、長円形に形成されている。これは、後で詳述するように、広範囲の散布時に第2噴射口34から正面より見て右回りに旋回しながら噴射される霧滴のスプレーパターンを水平方向に扁平にさせるためである。先部ケーシング28の周囲はフード42で被われている。このようにして、握り柄10の接続口11、内パイプ5の液体供給路13、流量制御弁17の通水孔18、基部ケーシング20の液体供給路19、弁座板21の通水孔40,36,36、旋回中子24の貫通孔25、旋回噴出成分形成用通路39,39、旋回用溝49,49、先部ケーシング28の合流空間26、オリフィス板27の第1噴射口41、エゼクタ用通路31、および気液混合室32から、全体の液体供給路S(本発明の液体供給路に相当)が構成される。   An intake hole 29 that communicates the downstream space of the orifice plate 27 in the merge space 26 and the outside is formed in the peripheral wall of the merge space 26 of the front casing 28. A predetermined gap for causing the ejector action is provided between the opening edge of the ejector passage 31 facing the first injection port 41 and the orifice plate 27. The gas-liquid mixing chamber 32 is formed as a cylindrical space, and its inner diameter is sufficiently larger than the inner diameter of the ejector passage 31 so that gas-liquid mixing can be performed reliably. The front opening of the gas-liquid mixing chamber 32 of the front casing 28 is sealed with an orifice plate 33 having a second injection port 34. The orifice plate 33 and the O-ring 44 are fixed by a union cap 35 that is screwed to the tip of the front casing 28. In this case, the opening shape of the second injection port 34 of the orifice plate 33 is a predetermined angle θ (= 30 degrees) from the horizontal direction (the direction along the one-dot chain line H in FIG. 4D) when viewed from the front. ) Is formed in an oval shape that is long in the direction of left rotation. This is because, as will be described in detail later, the spray pattern of the mist droplets ejected while turning clockwise as viewed from the front from the second ejection port 34 when spraying over a wide range is made flat in the horizontal direction. The periphery of the front casing 28 is covered with a hood 42. In this way, the connection port 11 of the handle 10, the liquid supply path 13 of the inner pipe 5, the water flow hole 18 of the flow control valve 17, the liquid supply path 19 of the base casing 20, and the water flow hole 40 of the valve seat plate 21. 36, 36, the through hole 25 of the turning core 24, the turning ejection component forming passages 39, 39, the turning grooves 49, 49, the merge space 26 of the front casing 28, the first injection port 41 of the orifice plate 27, The ejector passage 31 and the gas-liquid mixing chamber 32 constitute the entire liquid supply path S (corresponding to the liquid supply path of the present invention).

上記のように構成された液体散布ノズル1の作用を次に説明する。まず、広い範囲にわたって噴霧作業を行なう際には、図5に示したように、握り柄10を手で回して流量制御弁17を前進させ弁座板21に着座させて通水孔40を閉止する。そこで、圧送ポンプで加圧されている薬液は液体供給路13、通水孔18,18、液体供給路19を経て、大部分が通水孔36,36から旋回噴出成分形成用通路39,39に供給される。旋回噴出成分形成用通路39,39に供給された薬液は、旋回中子24の旋回用溝49,49で接線方向の旋回力が付与されて旋回発生空間50に流入し、旋回発生空間50で旋回運動が安定化されたのち、合流空間26に流入する。合流空間26に流入した薬液は、弁座板21の通水孔40の隙間部を経て貫通孔25から流入した残りの薬液と合流したのちにオリフィス板27の第1噴射口41から噴射される。第1噴射口41から噴出した薬液は細径のエゼクタ用通路31を通過する際にエゼクタ作用を引き起こし、オリフィス板27下流側の液体供給路の圧力を低下させて吸気孔29,29から外気を吸入させる。すなわち、円錐形状のオリフィス板27、オリフィス板27の第1噴射口41、および先部ケーシング28のエゼクタ用通路31の組み合わせにより、外気を液体供給路内に吸引する外気吸入構造52が構成される。   Next, the operation of the liquid spray nozzle 1 configured as described above will be described. First, when spraying over a wide range, as shown in FIG. 5, the handle 10 is turned by hand to advance the flow control valve 17 and seat on the valve seat plate 21 to close the water passage hole 40. To do. Therefore, the chemical liquid pressurized by the pressure pump passes through the liquid supply passage 13, the water passage holes 18 and 18, and the liquid supply passage 19, and most of the chemical solution passes through the water passage holes 36 and 36 and forms the swirl jet component forming passages 39 and 39. To be supplied. The chemical liquid supplied to the swirl jet component forming passages 39 and 39 is given a tangential swirl force in the swirl grooves 49 and 49 of the swirl core 24 and flows into the swirl generation space 50. After the turning motion is stabilized, it flows into the merge space 26. The chemical solution flowing into the merge space 26 is injected from the first injection port 41 of the orifice plate 27 after joining with the remaining chemical solution flowing from the through hole 25 through the gap portion of the water passage hole 40 of the valve seat plate 21. . When the chemical liquid ejected from the first ejection port 41 passes through the narrow ejector passage 31, it causes an ejector action, lowering the pressure of the liquid supply passage on the downstream side of the orifice plate 27 to draw outside air from the intake holes 29, 29. Inhale. That is, the combination of the conical orifice plate 27, the first injection port 41 of the orifice plate 27, and the ejector passage 31 of the front casing 28 constitutes an outside air suction structure 52 that sucks outside air into the liquid supply passage. .

そして、高速旋回をしながらエゼクタ用通路31を通過した薬液と外気は十分に広い気液混合室32内で程よく旋回混合される。更に、旋回混合された混合気液はオリフィス板33の第2噴射口34から正面より見て右回りに旋回しながら外部に噴射される。この場合、第2噴射口34の開口形状は長円形であることから、第2噴射口34から噴射された霧滴W1のスプレーパターンP1は、第2噴射口34の正面から見て水平方向(図4(d)参照)に広がった長円形ないし楕円形となり、開口形状が円形の第2噴射口を用いた場合と比べて噴霧角度が更に広くなる。また、このスプレーパターンP1は正面から見てパターン周縁のみならず中心部分も霧滴で充たされた充円錐状となっている。これらの複合特性によって、作業性を上げることができる。このときに生じた霧滴W1の径は、特許文献2記載の薬液散布ノズルを微粒広角噴射モードで用いた場合と比べて約4倍程度に大きくなった。これにより、霧滴W1の噴射から着地までの時間が従来と比べて格段に早くなり、霧滴W1がドリフト現象により遠方に飛散する度合いが極めて小さくなった。従って、或る種の薬液の噴霧が禁止されている隣の菜園に無為に噴霧されるといった不具合を防ぐことができる。その結果、ドリフト現象を考慮し噴射量を少なくして薬液散布をする必要がなくなり、作業性を低下させることなく散布作業を行なうことができた。また、基部ケーシング20が弁座板21(分岐部分22)の下流側位置(屈曲部23)で屈曲しているので、手持部Tの角度とノズル部Nの向きを手で調整するだけで第2噴射口34の向きを自由に変えることができる。これにより、野菜の葉裏に下から噴射したり、側方から茎に噴射する場合に好適に用いることができる。このように、基部ケーシング20を分岐部分22の下流側位置で屈曲させることができたのは、分岐部分22と第1噴射口41との間の液体供給路に旋回中子24を固定配備したからである。また、弁座板21の通水孔40に隙間部を設けてあるので、最大の広角散布時でも第2噴射口34からの噴射量が極端に少なくならないため、吸気孔29から外部への薬液の逆流を防ぐことができる。   Then, the chemical solution and the outside air that have passed through the ejector passage 31 while rotating at a high speed are appropriately swirled and mixed in the sufficiently large gas-liquid mixing chamber 32. Further, the swirled mixed gas / liquid is jetted to the outside from the second jet port 34 of the orifice plate 33 while swiveling clockwise as viewed from the front. In this case, since the opening shape of the second injection port 34 is an oval shape, the spray pattern P1 of the mist droplets W1 injected from the second injection port 34 is viewed in the horizontal direction when viewed from the front of the second injection port 34 ( As shown in FIG. 4 (d), the oval or elliptical shape is widened, and the spray angle is further widened as compared with the case where the second injection port having a circular opening shape is used. Further, the spray pattern P1 has a full conical shape in which not only the pattern periphery but also the central portion is filled with mist droplets when viewed from the front. These composite characteristics can improve workability. The diameter of the mist droplet W1 generated at this time was about four times larger than when the chemical spray nozzle described in Patent Document 2 was used in the fine-particle wide-angle injection mode. As a result, the time from the injection of the mist droplet W1 to the landing is much faster than before, and the degree to which the mist droplet W1 is scattered far away due to the drift phenomenon is extremely small. Therefore, it is possible to prevent a problem that the spraying of a certain chemical solution is inadvertently sprayed on the adjacent vegetable garden. As a result, it is no longer necessary to spray the chemical solution by reducing the injection amount in consideration of the drift phenomenon, and the spraying operation can be performed without deteriorating workability. Further, since the base casing 20 is bent at the downstream side position (bending portion 23) of the valve seat plate 21 (branching portion 22), the angle of the hand-held portion T and the orientation of the nozzle portion N can be adjusted by hand. The direction of the two injection ports 34 can be freely changed. Thereby, it can use suitably, when spraying from the bottom to the leaf back of vegetables, or spraying to a stem from the side. In this way, the base casing 20 can be bent at the downstream position of the branch portion 22 because the swiveling core 24 is fixedly arranged in the liquid supply path between the branch portion 22 and the first injection port 41. Because. In addition, since a gap is provided in the water passage hole 40 of the valve seat plate 21, the amount of injection from the second injection port 34 is not extremely reduced even during the maximum wide-angle spraying. Can prevent backflow.

一方、薬液を遠方に噴霧する場合は、図6に示すように、握り柄10を手で回して流量制御弁17を後退させ弁座板21から離間させて通水孔40を開放する。すると、圧送ポンプで加圧されている薬液はその大部分が通水孔40から旋回中子24の貫通孔25(直進噴出成分形成用通路53)に供給されて合流空間26に流入する。残りの薬液は通水孔36,36から旋回噴出成分形成用通路39,39に供給され、図5で述べたと同様、旋回中子24で旋回運動が付与されたのちに合流空間26に流入する。合流空間26に流入した直進噴出成分の薬液は当該空間内で合流した旋回噴出成分の薬液によりわずかながら旋回力を付与される。このように合流した薬液はオリフィス板27の第1噴射口41から噴射される。第1噴射口41から噴出した薬液は前記した外気吸入構造52により吸気孔29,29から外気を吸入させる。エゼクタ用通路31を通過した薬液と外気は気液混合室32内で混合されたのちにオリフィス板33の第2噴射口34から外部に噴射される。第2噴射口34から噴射された霧滴W2は直進噴出成分の薬液が多く旋回噴出成分の薬液が少ないので、近傍では拡がらずスプレーパターンP2のスプレー角度は狭く、長円形ないし楕円形の断面形状を保ちながらわずかずつ拡がって遠方まで噴射される。そして、このときに生じた霧滴W2の径も、従来の薬液散布ノズルを直進噴出モードで操作した場合と比べて大きくなり、微細な霧滴の発生量も極めて少なくなる。従って、直進噴射において微細な霧滴によるドリフト現象を抑制することができる。更に、霧滴W2の径が大きいことに加えて、ノズル部Nが屈曲部23で屈曲していることから、液体散布ノズル1を竪向きに持って第2噴射口34を高く掲げることにより、特許文献1,2に記載のものと比べて、霧滴W2の飛距離を延ばすことが可能となる。   On the other hand, when spraying a chemical solution in the distance, as shown in FIG. 6, the handle 10 is turned by hand, the flow control valve 17 is moved backward to be separated from the valve seat plate 21 and the water passage hole 40 is opened. Then, most of the chemical liquid pressurized by the pressure feed pump is supplied from the water passage hole 40 to the through hole 25 (straight forward ejection component forming passage 53) of the turning core 24 and flows into the merge space 26. The remaining chemical liquid is supplied to the swirl jet component forming passages 39 and 39 from the water flow holes 36 and 36 and flows into the merge space 26 after the swirl motion is given by the swirl core 24 as described in FIG. . The chemical solution of the straight jet component flowing into the merge space 26 is given a slight turning force by the chemical solution of the swirl jet component that merges in the space. The combined chemicals are ejected from the first ejection port 41 of the orifice plate 27. The chemical liquid ejected from the first injection port 41 causes the outside air suction structure 52 to suck the outside air from the intake holes 29 and 29. The chemical solution and the outside air that have passed through the ejector passage 31 are mixed in the gas-liquid mixing chamber 32 and then injected to the outside from the second injection port 34 of the orifice plate 33. The mist droplet W2 ejected from the second ejection port 34 has a large amount of straight-spouted component chemical and a small swirl-sprayed component, so that it does not spread in the vicinity and the spray angle of the spray pattern P2 is narrow and an oval or elliptical cross section While maintaining the shape, it expands little by little and is sprayed far away. Then, the diameter of the mist droplet W2 generated at this time is also larger than that in the case where the conventional chemical solution spray nozzle is operated in the straight jet mode, and the amount of fine mist droplets generated is extremely reduced. Accordingly, it is possible to suppress a drift phenomenon caused by fine mist droplets in the straight-ahead injection. Furthermore, in addition to the large diameter of the mist droplet W2, since the nozzle portion N is bent at the bent portion 23, by holding the liquid spray nozzle 1 in the saddle direction and raising the second injection port 34, Compared with those described in Patent Documents 1 and 2, the flying distance of the mist droplet W2 can be extended.

尚、上記の実施形態では流量制御弁を直進噴出成分形成用通路に設けた例を示したが、本発明はそれに限定されるものでなく、例えば流量制御弁を旋回噴出成分形成用通路に設けても構わない。あるいは、直進噴出成分形成用通路と旋回噴出成分形成用通路の双方に流量制御弁を設けてもよい。
また、上記では手持部Tに対しノズル部Nを屈曲させた例を示したが、本発明はそれに限定されず、手持部とノズル部とが直線状に構成されたものも含んでいる。このように全体が直線状に構成された液体散布ノズルであっても、第2噴射口から噴射された霧滴の径は大きいので、相応の効果を奏し得る。
あるいは、手持部の末端側において内パイプを回転・進退させる握り柄の下流側に、接続口を有する別の握り柄を手持部の軸心から傾けて設け、この握り柄の近傍に接続口からの液体供給路を開閉する開閉弁を設け、この開閉弁の近傍に揺動自在に設けたトリガレバーの操作により開閉弁を開閉させるようにした、いわゆるガンタイプの液体散布ノズルも本発明に含まれる。
そして、弁座板21の通水孔40は流量制御弁17が当接停止したときに完全に封止される開口形状に形成してよいことは言うまでもない。
また、第2噴射口の開口形状は長円形に限らず、使用目的に応じて適宜選択されてよく、例えば円形、その他の形状であってよい
また、本発明に適用される液体としては堆肥、農薬に限らず、噴霧に好適に用いることのできるものであれば特に限定されない。
In the above embodiment, the flow control valve is provided in the straight jet component forming passage. However, the present invention is not limited thereto. For example, the flow control valve is provided in the swirl jet component forming passage. It doesn't matter. Alternatively, flow control valves may be provided in both the straight jet component forming passage and the swirl jet component forming passage.
Moreover, although the example which bent the nozzle part N with respect to the hand-held part T was shown above, this invention is not limited to it, The thing with which the hand-held part and the nozzle part were comprised linearly is included. Thus, even if the liquid spraying nozzle is configured linearly as a whole, since the diameter of the mist droplets ejected from the second ejection port is large, a corresponding effect can be obtained.
Alternatively, on the downstream side of the grip handle that rotates / retracts the inner pipe on the end side of the handle portion, another handle handle having a connection port is provided at an angle from the axis of the handle portion, and from the connection port near the handle handle Also included in the present invention is a so-called gun-type liquid spray nozzle that is provided with an on-off valve that opens and closes the liquid supply path, and that is opened and closed by operating a trigger lever that is swingably provided in the vicinity of the on-off valve. It is.
And it goes without saying that the water passage hole 40 of the valve seat plate 21 may be formed in an opening shape that is completely sealed when the flow control valve 17 stops contacting.
Further, the opening shape of the second injection port is not limited to an oval shape, and may be appropriately selected according to the purpose of use. For example, the shape may be a circular shape or other shapes. Not limited to agricultural chemicals, there is no particular limitation as long as it can be suitably used for spraying.

本発明の一実施形態に係る液体散布ノズルの外観図である。It is an external view of the liquid spraying nozzle which concerns on one Embodiment of this invention. 前記液体散布ノズルの要部分解斜視図である。It is a principal part disassembled perspective view of the said liquid spray nozzle. 前記液体散布ノズルの一部分省略した側断面図である。FIG. 3 is a side cross-sectional view of the liquid spray nozzle that is partially omitted. 前記液体散布ノズルの一部の部品を示し、(a)は旋回中子の斜視図、(b)は旋回中子の側面図、(c)は旋回中子の正面図、(d)は第2噴射口を有するオリフィス板の正面図である。Fig. 4 shows a part of the liquid spray nozzle, wherein (a) is a perspective view of the turning core, (b) is a side view of the turning core, (c) is a front view of the turning core, and (d) is a first view. It is a front view of an orifice plate having two injection ports. 図3におけるA−A線矢視断面図である。It is an AA arrow directional cross-sectional view in FIG. 図5の液体散布ノズルから直進噴出成分形成用通路を開放した態様を示す断面図である。It is sectional drawing which shows the aspect which open | released the straight injection component formation channel | path from the liquid spray nozzle of FIG. 従来の液体散布ノズルの一部分省略した側断面図である。It is a sectional side view in which a part of a conventional liquid spray nozzle is omitted.

符号の説明Explanation of symbols

1 液体散布ノズル
11 接続口
13 液体供給路
17 流量制御弁
18 通水孔
19 液体供給路
21 弁座板
22 分岐部分
23 屈曲部
24 旋回中子
25 貫通孔
26 合流空間
27 オリフィス板
29 吸気孔
31 エゼクタ用通路
32 気液混合室
33 オリフィス板
34 第2噴射口
36 通水孔
37 通路用外周面
38 内周面
39 旋回噴出成分形成用通路
40 通水孔
41 第1噴射口
45 中子収容室
49 旋回用溝
50 旋回発生空間
52 外気吸入構造
53 直進噴出成分形成用通路
54 旋回流付与構造
56 気液混合構造
S 液体供給路
W1,W2 霧滴
DESCRIPTION OF SYMBOLS 1 Liquid spray nozzle 11 Connection port 13 Liquid supply path 17 Flow control valve 18 Water flow hole 19 Liquid supply path 21 Valve seat plate 22 Branch part 23 Bending part 24 Turning core 25 Through hole 26 Merge space 27 Orifice plate 29 Intake hole 31 Ejector passage 32 Gas-liquid mixing chamber 33 Orifice plate 34 Second injection port 36 Water passage hole 37 Passage outer peripheral surface 38 Inner peripheral surface 39 Swirling jet component forming passage 40 Water passage hole 41 First injection port 45 Core housing chamber 49 Swirling groove 50 Swirling generation space 52 Outside air suction structure 53 Straight jet component forming passage 54 Swirling flow imparting structure 56 Gas-liquid mixing structure S Liquid supply paths W1, W2

Claims (3)

加圧された状態の液体を供給する液体供給路を備え、該液体供給路の途中で液体供給路を分岐させて直進噴出成分形成用通路と旋回噴出成分形成用通路とを形成し、前記分岐部分の液体供給路に流量制御弁を設けて直進噴出成分形成用通路と旋回噴出成分形成用通路との少なくとも一方の通路を流れる液体の流量を制御し、前記少なくとも一方の通路を流れる液体を、直進噴出成分形成用通路と旋回噴出成分形成用通路との合流位置の下流側の液体供給路に設けた第1噴射口から噴射するように構成された液体散布ノズルにおいて、第1噴射口よりも下流側の液体供給路に、外気吸入用の吸気孔と、第1噴射口から噴射された液体によって外気を吸気孔から液体供給路内へ吸入させる外気吸入構造と、該外気吸入構造により吸入された外気と第1噴射口から噴射された液体とを混合する気液混合構造と、該気液混合構造で混合された混合気液を噴射する第2噴射口とを具備してなることを特徴とする液体散布ノズル。 A liquid supply path for supplying a pressurized liquid; and branching the liquid supply path in the middle of the liquid supply path to form a straight jet component forming passage and a swirl jet component forming channel; A flow control valve is provided in the liquid supply passage of the part to control the flow rate of the liquid flowing through at least one of the straight jet component forming passage and the swirling jet component forming passage, and the liquid flowing through the at least one passage is In the liquid spray nozzle configured to inject from the first injection port provided in the liquid supply path on the downstream side of the joining position of the straight jet component formation passage and the swirl jet component formation passage, than the first injection port An intake hole for sucking outside air into the liquid supply path on the downstream side, an outside air suction structure for sucking outside air from the suction hole into the liquid supply path by the liquid ejected from the first injection port, and the outside air suction structure With outside air A liquid dispersion comprising a gas-liquid mixing structure for mixing liquid ejected from one ejection port and a second ejection port for ejecting the gas-liquid mixture mixed in the gas-liquid mixing structure nozzle. 分岐部分と第1噴射口との間の液体供給路に中子収容室が設けられ、該中子収容室に流量制御弁からの液体を旋回させる旋回中子が保持され、該旋回中子は、中子収容室の内周面との間で旋回噴出成分形成用通路を形成する通路用外周面と、直進噴出成分形成用通路を成す貫通孔と、通路用外周面からの液体に旋回流を付与する旋回流付与構造とを備えている請求項1に記載の液体散布ノズル。 A core housing chamber is provided in the liquid supply path between the branch portion and the first injection port, and a swirling core for swirling the liquid from the flow control valve is held in the core housing chamber. , A passage outer peripheral surface forming a swirl jet component forming passage with the inner peripheral surface of the core housing chamber, a through hole forming a straight jet component forming passage, and a swirl flow to the liquid from the passage outer peripheral surface The liquid spray nozzle according to claim 1, further comprising a swirl flow imparting structure that imparts a turbulent flow. 液体供給路が、分岐部分の下流側位置で屈曲して形成されている請求項1または請求項2に記載の液体散布ノズル。 The liquid spraying nozzle according to claim 1, wherein the liquid supply path is bent at a downstream position of the branching portion.
JP2006295974A 2006-10-31 2006-10-31 Liquid spraying nozzle Pending JP2008110318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295974A JP2008110318A (en) 2006-10-31 2006-10-31 Liquid spraying nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295974A JP2008110318A (en) 2006-10-31 2006-10-31 Liquid spraying nozzle

Publications (1)

Publication Number Publication Date
JP2008110318A true JP2008110318A (en) 2008-05-15

Family

ID=39443149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295974A Pending JP2008110318A (en) 2006-10-31 2006-10-31 Liquid spraying nozzle

Country Status (1)

Country Link
JP (1) JP2008110318A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010862B1 (en) 2009-11-03 2011-01-26 이경일 Spray nozzle for air gun
JP2011177605A (en) * 2010-02-26 2011-09-15 Yoshino Kogyosho Co Ltd Trigger-type sprayer
CN102941172A (en) * 2012-11-26 2013-02-27 宁波恒瑞机械有限公司 Mixed liquid foaming device
JP5369358B1 (en) * 2012-10-30 2013-12-18 ヤマホ工業株式会社 Connecting structure of rotating shaft and operation knob and sprayer using the same
KR20140074200A (en) 2012-12-06 2014-06-17 야마호고오교오가부시기가이샤 Liquid spray nozzle
JP2014131790A (en) * 2012-12-06 2014-07-17 Yamaho Kogyo Kk Liquid spray nozzle
JP2015066659A (en) * 2013-09-30 2015-04-13 ミネベア株式会社 Coolant spray device
JP2015112588A (en) * 2013-12-16 2015-06-22 ヤマホ工業株式会社 Liquid spray nozzle
JP2015147164A (en) * 2014-02-05 2015-08-20 ヤマホ工業株式会社 liquid spray nozzle
JP2017104056A (en) * 2015-12-10 2017-06-15 ヤマホ工業株式会社 Liquid spray rod
JP2021181825A (en) * 2020-05-13 2021-11-25 ヤマホ工業株式会社 Flexible pipe joint and liquid spray rod including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228564A (en) * 1988-03-04 1989-09-12 Kenzo Yamamoto Nozzle for spraying liquid adjustable for spraying distance
JP2006035081A (en) * 2004-07-27 2006-02-09 Asaba Manufacturing Inc Nozzle for spraying chemical and spray

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228564A (en) * 1988-03-04 1989-09-12 Kenzo Yamamoto Nozzle for spraying liquid adjustable for spraying distance
JP2006035081A (en) * 2004-07-27 2006-02-09 Asaba Manufacturing Inc Nozzle for spraying chemical and spray

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010862B1 (en) 2009-11-03 2011-01-26 이경일 Spray nozzle for air gun
JP2011177605A (en) * 2010-02-26 2011-09-15 Yoshino Kogyosho Co Ltd Trigger-type sprayer
JP5369358B1 (en) * 2012-10-30 2013-12-18 ヤマホ工業株式会社 Connecting structure of rotating shaft and operation knob and sprayer using the same
CN102941172A (en) * 2012-11-26 2013-02-27 宁波恒瑞机械有限公司 Mixed liquid foaming device
TWI611846B (en) * 2012-12-06 2018-01-21 山保工業股份有限公司 Liquid spray nozzle
KR20140074200A (en) 2012-12-06 2014-06-17 야마호고오교오가부시기가이샤 Liquid spray nozzle
JP2014131790A (en) * 2012-12-06 2014-07-17 Yamaho Kogyo Kk Liquid spray nozzle
KR102092418B1 (en) * 2012-12-06 2020-03-23 야마호고오교오가부시기가이샤 Liquid spray nozzle
JP2015066659A (en) * 2013-09-30 2015-04-13 ミネベア株式会社 Coolant spray device
JP2015112588A (en) * 2013-12-16 2015-06-22 ヤマホ工業株式会社 Liquid spray nozzle
JP2015147164A (en) * 2014-02-05 2015-08-20 ヤマホ工業株式会社 liquid spray nozzle
JP2017104056A (en) * 2015-12-10 2017-06-15 ヤマホ工業株式会社 Liquid spray rod
JP2021181825A (en) * 2020-05-13 2021-11-25 ヤマホ工業株式会社 Flexible pipe joint and liquid spray rod including the same
JP7325117B2 (en) 2020-05-13 2023-08-14 ヤマホ工業株式会社 Universal joint and liquid spray rod using it

Similar Documents

Publication Publication Date Title
JP2008110318A (en) Liquid spraying nozzle
ES2788743T3 (en) Atomizing nozzle
JP5517139B1 (en) Nebulizer
RU2008115639A (en) LIQUID SPRAY DEVICE AND SPRAY HEAD (OPTIONS)
WO2013094522A1 (en) Liquid atomization device
JP5787408B2 (en) Spray gun
JP2012179518A (en) Dry mist jet nozzle
JP6444163B2 (en) Spray gun
JP4361590B1 (en) Fire extinguishing nozzle device
JP2011098284A (en) Nozzle for mixing gas and liquid
JP5596190B2 (en) Liquid spray nozzle
JP2006035081A (en) Nozzle for spraying chemical and spray
RU2526783C1 (en) Kochetov&#39;s fluid fine sprayer
JP3143449B2 (en) Applicator
KR102220995B1 (en) spray nozzle
KR20190025481A (en) Liquid spray apparatus
JP2010069421A (en) Jetting button
JP3638580B2 (en) Fluid acceleration stabilizer
JP4495485B2 (en) Fluid ejection device
US10589138B2 (en) Enhanced foam spray pattern device
JP6820018B2 (en) Liquid spray nozzle
KR200250672Y1 (en) atomize for farming
WO2015174384A1 (en) Dispersion nozzle
JP2002096000A (en) Air-mix-jet water spray device and air-mix-jet formation device for water spray device
JP2011177670A (en) Spray nozzle and agricultural chemical sprayer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717