JP2008107559A - Zoom lens and electronic imaging apparatus using the same - Google Patents

Zoom lens and electronic imaging apparatus using the same Download PDF

Info

Publication number
JP2008107559A
JP2008107559A JP2006290117A JP2006290117A JP2008107559A JP 2008107559 A JP2008107559 A JP 2008107559A JP 2006290117 A JP2006290117 A JP 2006290117A JP 2006290117 A JP2006290117 A JP 2006290117A JP 2008107559 A JP2008107559 A JP 2008107559A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
positive
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006290117A
Other languages
Japanese (ja)
Other versions
JP5006007B2 (en
JP2008107559A5 (en
Inventor
Kouyuki Sabe
校之 左部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2006290117A priority Critical patent/JP5006007B2/en
Priority to US11/901,633 priority patent/US7477457B2/en
Priority to CN2009100073088A priority patent/CN101556369B/en
Publication of JP2008107559A publication Critical patent/JP2008107559A/en
Publication of JP2008107559A5 publication Critical patent/JP2008107559A5/ja
Application granted granted Critical
Publication of JP5006007B2 publication Critical patent/JP5006007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens which is easily made small in size when it is collapsed, and easily secures an angle of view and optical performance. <P>SOLUTION: The zoom lens has a first positive group G1, a second negative group G2 and a third positive group G3. When varying power from a wide angle end to a telephoto end, space between the first group G1 and the second group G2, and space between the second group G2 and the third group G3 are changed so that the space between the first group G1 and the second group G2 may be wider at the telephoto end than at the wide angle end and the space between the second group G2 and the third group G3 may be narrower at the telephoto end than at the wide angle end. The first group G1 includes a positive lens and comprises lenses whose total number is two or less. The second group G2 comprises three lenses, that is, an object-side negative lens, a positive lens and an image-side negative lens in order from an object side, wherein both the object-side surface and the image-side surface of the object-side negative lens are concave, and the image-side surface of the positive lens is convex to the image side, and the image-side surface of the positive lens is convex to the image-side, and the absolute value of the radius of curvature of the image-side surface of the positive lens is smaller than the absolute value of the radius of curvature of the object-side surface thereof. The object-side negative lens and the positive lens in the second group G2 are arranged while holding space on an optical axis in between. The zoom lens satisfies conditions (1) and (2). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ズームレンズ及びそれを用いた電子撮像装置に関し、特に小型化を実現した、ビデオカメラやデジタルカメラを始めとする電子撮像装置に適したズームレンズに関するものである。   The present invention relates to a zoom lens and an electronic imaging device using the zoom lens, and more particularly to a zoom lens suitable for an electronic imaging device such as a video camera or a digital camera that has been downsized.

近年では、銀塩フィルムカメラに代わり、CCDやCMOSのような電子撮像素子を用いて被写体を撮影するようにしたデジタルカメラが主流となっている。さらに、それは業務用高機能タイプからコンパクトな普及タイプまで幅広い範囲でいくつものカテゴリーを有するようになってきている。   In recent years, digital cameras that shoot subjects using electronic image pickup devices such as CCDs and CMOSs instead of silver salt film cameras have become mainstream. Furthermore, it has come to have a number of categories in a wide range from high-functional types for business use to compact popular types.

普及タイプのデジタルカメラのユーザーは、いつでもどこでも手軽に様々なシーンで撮影を楽しみたいという要望をもっている。そのため、小型の商品、特に服やカバンのポケット等への収納性がよく持ち運びが便利な、厚み方向のサイズが薄型であるタイプのデジタルカメラが好まれるようになっている。   Users of popular digital cameras have a desire to enjoy shooting in various scenes anytime and anywhere. For this reason, a digital camera of a small size, in particular, a type in which the size in the thickness direction is thin, which can be easily carried in a pocket of a clothes or a bag, is easy to carry.

一方、コンパクトタイプのデジタルカメラの変倍比は3倍程度が一般的であったが、さらに従来よりも高変倍比のカメラが求められている。   On the other hand, a zoom ratio of a compact type digital camera is generally about 3 times, but a camera with a higher zoom ratio than the conventional one is demanded.

比較的高変倍比を維持しやすいズームレンズとして、物体側より正屈折力の第1レンズ群、負屈折力の第2レンズ群、正屈折力の第3レンズ群を有するタイプのズームレンズが知られている。   As a zoom lens that can easily maintain a relatively high zoom ratio, there is a zoom lens having a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power from the object side. Are known.


一方、カメラの大きさの中、厚さ方向のサイズは主にレンズ鏡筒のサイズで決まってしまうため、カメラの薄型化達成のためにはレンズ鏡筒を薄型化することが効果的である。

On the other hand, the size of the camera in the thickness direction is mainly determined by the size of the lens barrel, so it is effective to make the lens barrel thinner in order to achieve a thinner camera. .

最近では、カメラ使用状態ではレンズ鏡筒をカメラボディ内からせり出し携帯時にはカメラボディ内に収納するいわゆる沈胴式鏡筒が一般的になっている。そのため、沈胴時のレンズ鏡筒の薄型化を考慮したズームレンズが求められる。   Recently, a so-called collapsible lens barrel is generally used in which the lens barrel protrudes from the camera body and is housed in the camera body when being carried. Therefore, there is a need for a zoom lens that takes into account the reduction in thickness of the lens barrel when retracted.

以下の特許文献1〜6の従来技術では、第1レンズ群を2枚又は3枚のレンズで構成し、第2レンズ群を、物体側から順に、負レンズ、正レンズ、負レンズの対称的なパワー配置にすることにより、第2レンズ群の収差補正と小型化とを行ったズームレンズが開示されている。
特開2005−242116 特開2005−326743 特開2006−78979 特開2005―32674 特開2005−148420 特開2005−242116
In the prior arts of Patent Documents 1 to 6 below, the first lens group is composed of two or three lenses, and the second lens group is symmetrical from the object side in order of a negative lens, a positive lens, and a negative lens. There has been disclosed a zoom lens in which aberration correction and miniaturization of the second lens group are performed by using a simple power arrangement.
JP-A-2005-242116 JP-A-2005-326743 JP 2006-78979 A JP 2005-32684 A JP-A-2005-148420 JP-A-2005-242116

しかしながら、上述の従来技術には以下の課題がある。   However, the above-described conventional techniques have the following problems.

上述の従来技術では、第2レンズ群の最も物体側の面が物体側に凸面を向けている。このような構成の場合、第2レンズ群自体の厚みが厚くなり、第1レンズ群を第2レンズ群に近づけようとしても干渉が起こりやすくなり、沈胴時の小型化や高変倍比化に不利になる。   In the above-described conventional technology, the most object side surface of the second lens group has a convex surface facing the object side. In such a configuration, the thickness of the second lens group itself is increased, and interference is likely to occur even if the first lens group is brought closer to the second lens group, so that the size of the retracted lens can be reduced and the zoom ratio can be increased. It will be disadvantageous.

また、広角側で第1レンズ群を第2レンズ群に近づけられないことにより画角の確保のためには第1レンズ群の径方向が大きくなるといった課題を有する。第1レンズ群をレンズ3枚構成としたものについては、さらに小型化に不利である。
本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、第1レンズ群、第2レンズ群のレンズ枚数を少なくし、第2レンズ群の厚みを小さくして、第1レンズ群との距離を近づけやすくし、小型化、変倍比の確保を行いつつも、光学性能の確保を行いやすいズームレンズを提供することである。
また、そのようなズームレンズを備えることで、小型化しやすい電子撮像装置を提供することを目的とするものである。
さらには、ズームレンズの各レンズ群等の工夫により、小型化、収差性能の確保、変倍比の確保をより行いやすいズームレンズとそれを用いた電子撮像装置を提供することを目的とするものである。
Further, since the first lens group cannot be brought close to the second lens group on the wide angle side, there is a problem that the radial direction of the first lens group becomes large in order to secure the angle of view. The first lens group having three lenses is disadvantageous for further miniaturization.
The present invention has been made in view of such problems of the prior art, and its object is to reduce the number of lenses in the first lens group and the second lens group and to reduce the thickness of the second lens group. It is an object of the present invention to provide a zoom lens that facilitates ensuring optical performance while facilitating the distance from the first lens group to be close, miniaturizing, and securing a zoom ratio.
It is another object of the present invention to provide an electronic imaging device that is easy to miniaturize by providing such a zoom lens.
Furthermore, it is an object of the present invention to provide a zoom lens and an electronic image pickup apparatus using the zoom lens that are easier to reduce in size, ensure aberration performance, and ensure a zoom ratio by devising each lens group of the zoom lens. It is.

上記目的を達成する本発明のズームレンズは、物体側から順に、正屈折力の第1レンズ群、負屈折力の第2レンズ群、正屈折力の第3レンズ群を有し、
広角端から望遠端への変倍の際に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔を変化させ、
前記第1レンズ群と前記第2レンズ群との間隔は広角端に対して望遠端にて広がり、
前記第2レンズ群と前記第3レンズ群との間隔は広角端に対して望遠端にて狭まり、
前記第1レンズ群は、正レンズを含み、総レンズ枚数が2枚以下のレンズからなり、
前記第2レンズ群は、物体側から順に、物体側負レンズ、正レンズ、像側負レンズの3枚のレンズからなり、
前記物体側負レンズの物体側面と像側面はともに凹面であり、
前記正レンズの像側面は像側に凸の面であり、物体側面の曲率半径絶対値よりも像側面の曲率半径絶対値のほうが小さく、
前記第2レンズ群中の前記物体側負レンズと前記正レンズは光軸上にて空気間隔を挟んで配置し、
以下の条件式を満足することを特徴とするものである。
The zoom lens of the present invention that achieves the above object has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
During zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group are changed,
The distance between the first lens group and the second lens group is wider at the telephoto end than at the wide angle end,
The distance between the second lens group and the third lens group is narrower at the telephoto end than at the wide-angle end,
The first lens group includes a positive lens, and the total number of lenses is two or less.
The second lens group is composed of three lenses in order from the object side: an object-side negative lens, a positive lens, and an image-side negative lens;
The object side surface and the image side surface of the object side negative lens are both concave surfaces,
The image side surface of the positive lens is a convex surface on the image side, and the curvature radius absolute value of the image side surface is smaller than the curvature radius absolute value of the object side surface,
The object side negative lens and the positive lens in the second lens group are arranged with an air gap on the optical axis,
The following conditional expression is satisfied.

0.0<f2/R2n1f<0.4 ・・・(1)
−1.6<SF2air <−0.5 ・・・(2)
ただし、R2n1fは、第2レンズ群中の物体側負レンズの物体側面の近軸曲率半径、
2は、第2レンズ群の焦点距離、
SF2air=(R2n1r+R2pf)/(R2n1r−R2pf)で定義され、
2n1rは、第2レンズ群の物体側負レンズの像側面の近軸曲率半径、
2pfは、第2レンズ群の正レンズの物体側面の近軸曲率半径、
である。
0.0 <f 2 / R 2n1f <0.4 (1)
−1.6 <SF 2air <−0.5 (2)
Where R 2n1f is the paraxial radius of curvature of the object side surface of the object side negative lens in the second lens group,
f 2 is the focal length of the second lens group,
SF 2air = (R 2n1r + R 2pf ) / (R 2n1r −R 2pf )
R 2n1r is the paraxial radius of curvature of the image side surface of the object side negative lens of the second lens group,
R 2pf is the paraxial radius of curvature of the object side surface of the positive lens in the second lens group,
It is.

以下、このような構成をとった理由と作用を説明する。   Hereinafter, the reason and effect | action which took such a structure are demonstrated.

本発明では、物体側から順に、正屈折力の第1レンズ群、負屈折力の第2レンズ群、正屈折力の第3レンズ群を有し、広角端から望遠端への変倍の際に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔を変化させ、前記第1レンズ群と前記第2レンズ群との間隔は広角端に対して望遠端にて広がり、前記第2レンズ群と前記第3レンズ群との間隔は広角端に対して望遠端にて狭まる構成とすることで変倍を行う構成を採用した。   In the present invention, in order from the object side, a first lens unit having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power are provided, and zooming from the wide angle end to the telephoto end is performed. Further, the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group are changed, and the distance between the first lens group and the second lens group is A configuration is adopted in which zooming is performed by widening at the telephoto end with respect to the wide-angle end and narrowing the distance between the second lens group and the third lens group at the telephoto end with respect to the wide-angle end.

このような構成をとることにより、第2レンズ群と第3レンズ群に変倍の負担を効率的に分担させることができ、変倍比を確保しつつ変倍時の収差変動を小さく抑えやすくなる。   By adopting such a configuration, it is possible to efficiently share the burden of zooming between the second lens group and the third lens group, and it is easy to suppress aberration fluctuation during zooming while ensuring a zoom ratio. Become.

そして、第1レンズ群を2枚以下のレンズ、第2レンズ群をレンズ3枚という少ない枚数にて構成することで、ズームレンズの沈胴時の厚みを抑えやすくなる。また、広角端での第1レンズ群最物体側面から入射瞳までの距離も小さくしやすくなり、ズームレンズの径方向のサイズの小型化も行いやすくなる。   By configuring the first lens group with as few as two lenses and the second lens group with as few as three lenses, it is easy to suppress the thickness of the zoom lens when retracted. In addition, the distance from the most object side surface of the first lens group to the entrance pupil at the wide-angle end can be easily reduced, and the size of the zoom lens in the radial direction can be easily reduced.

そして、本発明では第2レンズ群中に2枚の負レンズを配置して第2レンズ群の負パワーを分担させ収差を抑えやすくし、そして物体側から順に負レンズ、正レンズ、負レンズの並びとすることでレンズ構成の対称性を良くし第2レンズ群内で効率良く収差補正を行える構成としている。   In the present invention, two negative lenses are arranged in the second lens group to share the negative power of the second lens group so that aberration can be easily suppressed, and the negative lens, the positive lens, and the negative lens are sequentially arranged from the object side. By arranging them in a line, the symmetry of the lens configuration is improved, and the aberration can be corrected efficiently in the second lens group.

さらに本発明では、第2レンズ群の物体側負レンズの物体側面と像側面はともに凹面としている。   In the present invention, the object side surface and the image side surface of the object side negative lens of the second lens group are both concave.

このような形状とすることで、望遠端での球面収差の発生を抑えつつ第2レンズ群の負パワーの確保を容易とし、また、第2レンズ群の光軸上での厚みを抑えやすくなる。   By adopting such a shape, it is easy to secure the negative power of the second lens group while suppressing the occurrence of spherical aberration at the telephoto end, and it becomes easy to suppress the thickness of the second lens group on the optical axis. .

そして、第2レンズ群の正レンズの像側面を像側に凸の面とし、物体側面の曲率半径絶対値よりも像側面の曲率半径絶対値のほうを小さくし、また、第2レンズ群中の物体側負レンズと正レンズを光軸上にて空気間隔を挟んで配置した。このように構成することで、第2レンズ群中の唯一の正レンズの正屈折力を確保しつつ、第2レンズ群の主点を物体よりにして変倍比の確保を有利にしている。また、物体側の両凹負レンズと像側の負レンズとの収差バランスをとりやすくなる。   Then, the image side surface of the positive lens of the second lens group is convex to the image side, and the absolute value of the curvature radius of the image side surface is made smaller than the absolute value of the curvature radius of the object side surface. The object-side negative lens and the positive lens were arranged on the optical axis with an air gap therebetween. With this configuration, it is advantageous to secure a zoom ratio by making the principal point of the second lens group the object, while ensuring the positive refractive power of the only positive lens in the second lens group. In addition, it becomes easy to balance aberration between the object-side biconcave negative lens and the image-side negative lens.

さらに、以下の条件式を満足することが好ましい。   Furthermore, it is preferable that the following conditional expression is satisfied.

0.0<f2/R2n1f<0.4 ・・・(1)
−1.6<SF2air <−0.5 ・・・(2)
ただし、R2n1fは、第2レンズ群中の物体側負レンズの物体側面の近軸曲率半径、
2は、第2レンズ群の焦点距離、
SF2air=(R2n1r+R2pf)/(R2n1r−R2pf)で定義され、
2n1rは、第2レンズ群の物体側負レンズの像側面の近軸曲率半径、
2pfは、第2レンズ群の正レンズの物体側面の近軸曲率半径、
である。
0.0 <f 2 / R 2n1f <0.4 (1)
−1.6 <SF 2air <−0.5 (2)
Where R 2n1f is the paraxial radius of curvature of the object side surface of the object side negative lens in the second lens group,
f 2 is the focal length of the second lens group,
SF 2air = (R 2n1r + R 2pf ) / (R 2n1r −R 2pf )
R 2n1r is the paraxial radius of curvature of the image side surface of the object side negative lens of the second lens group,
R 2pf is the paraxial radius of curvature of the object side surface of the positive lens in the second lens group,
It is.

本発明では、第2レンズ群の最も物体側の負レンズの物体側面を物体側に凹面の形状とした。そうすると第2レンズ群の主点位置がより第1レンズ群に近づき、全長を短縮したり、第2レンズ群の倍率を大きくして変倍比を大きくしたりすることができる。このとき、条件式(1)を満足するようにするとよい。   In the present invention, the object side surface of the negative lens closest to the object side in the second lens group is concave on the object side. As a result, the principal point position of the second lens group becomes closer to the first lens group, and the overall length can be shortened, or the magnification of the second lens group can be increased to increase the zoom ratio. At this time, conditional expression (1) should be satisfied.

条件式(1)の下限0.0を下回らないようにすることで、第2レンズ群の主点位置を第1レンズ群に近づける効果を得やすくなり、全長の小型化や高変倍比化に有利となる。   By avoiding falling below the lower limit 0.0 of conditional expression (1), it becomes easier to obtain the effect of bringing the principal point position of the second lens group closer to the first lens group, and the overall length is reduced and the zoom ratio is increased. Is advantageous.

上限0.4を上回らないようにして、この面の曲率を適度に抑えることで、特に広角端での像面湾曲の補正過剰を抑えやすくなる。   By suppressing the curvature of this surface appropriately so as not to exceed the upper limit of 0.4, it becomes easy to suppress excessive correction of curvature of field, particularly at the wide angle end.

条件式(1)を満足するようにすると、第2レンズ群の負パワーが強くなりやすい。そこで、第2レンズ群の負パワーを適正な範囲に保ち収差状況を良好に維持しやすくするために、条件式(2)を満足するようにするとよい。   If conditional expression (1) is satisfied, the negative power of the second lens group tends to increase. Therefore, in order to maintain the negative power of the second lens group within an appropriate range and easily maintain the aberration state, it is preferable to satisfy the conditional expression (2).

条件式(2)の上限−0.5を上回らないようにして、第2レンズ群の負のパワーを適度に抑え、諸収差の発生を抑えることが好ましい。特に像面湾曲の補正過剰を抑えやすくなる。   It is preferable not to exceed the upper limit of −0.5 of conditional expression (2) so as to moderately suppress the negative power of the second lens group and suppress the occurrence of various aberrations. In particular, it becomes easy to suppress excessive correction of curvature of field.

下限−1.6を下回らないようにして、正レンズの物体側面の曲率を抑え、軸外光線の上側光線と下側光線での屈折角度の差を小さくし、望遠端でのコマ収差の発生量を適度に抑え、負レンズで発生する収差量に対する正レンズでの収差量の過剰を抑えることが好ましい。   The curvature of the object side of the positive lens is suppressed so that it does not fall below the lower limit of −1.6, the difference in refraction angle between the upper and lower rays of off-axis rays is reduced, and coma occurs at the telephoto end. It is preferable to suppress the amount of aberration in the positive lens with respect to the amount of aberration generated in the negative lens by appropriately suppressing the amount.

条件式(1)について、以下のようにするとさらに好ましい。   Regarding conditional expression (1), the following is more preferable.

0.005<R2n1f/f2<0.3 ・・・(1)’
以下を満足するとなお好ましい。
0.005 <R 2n1f / f 2 <0.3 (1) ′
It is more preferable that the following is satisfied.

0.01<R2n1f/f2<0.2 ・・・(1)’’
条件式(2)について、以下のようにするとさらに好ましい。
0.01 <R 2n1f / f 2 <0.2 (1) ''
Regarding conditional expression (2), the following is more preferable.

−1.4<SF2air<−0.7 ・・・(2)’
以下を満足するとなお好ましい。
−1.4 <SF 2air <−0.7 (2) ′
It is more preferable that the following is satisfied.

−1.2<SF2air<−0.9 ・・・(2)’’
さらには、ズームレンズの第3レンズ群よりも像側のレンズ枚数を3枚以下とすることが好ましい。
-1.2 <SF 2air <-0.9 (2) ''
Furthermore, it is preferable that the number of lenses on the image side with respect to the third lens group of the zoom lens be three or less.

沈動時の薄型化や、ズームレンズの構成の簡略化に有利となる。   This is advantageous in reducing the thickness of the lens when it is moved down and simplifying the configuration of the zoom lens.

ズームレンズを3群ズームレンズとすれば、レンズを移動させる機構を簡略化できる。   If the zoom lens is a three-group zoom lens, the mechanism for moving the lens can be simplified.

ズームレンズを4群ズームレンズとし、第4レンズ群を正屈折力とすると、第4レンズ群に射出瞳を遠くする機能を確保でき好ましい。さらに、第4レンズ群をフォーカシング時に移動させる構成とすると、フォーカシング時の画角変化を抑えやすい。   If the zoom lens is a four-group zoom lens and the fourth lens group has a positive refractive power, it is preferable to ensure the function of moving the exit pupil away from the fourth lens group. Furthermore, if the fourth lens group is configured to move during focusing, it is easy to suppress changes in the angle of view during focusing.

ズームレンズを4群ズームレンズとし、第4レンズ群を1枚の正レンズとすれば、射出瞳を遠くする機能を確保でき、沈胴時の小型化等にも好ましい。   If the zoom lens is a four-group zoom lens and the fourth lens group is a single positive lens, the function of moving the exit pupil away can be secured, which is preferable for downsizing when the lens is retracted.

ズームレンズを5群ズームレンズとし、第4レンズ群を負屈折力、第5レンズ群を正屈折力とすると、ズームレンズ全体の群のパワー配置を対称配置にでき、変倍時の非点収差の変動を抑えやすくなり、好ましい。   If the zoom lens is a 5-group zoom lens, the fourth lens group has negative refracting power and the fifth lens group has positive refracting power, the power arrangement of the entire zoom lens group can be made symmetrical, and astigmatism during zooming can be achieved. This is preferable because it is easy to suppress fluctuations.

また、上述の各発明にて、第1レンズ群と第2レンズ群とにはさまれる空間の両側の面にて、以下の条件式を満足させることで、小型化と収差バランスをより良好にしやすくなる。   In each of the above-described inventions, the following conditional expressions are satisfied on both sides of the space sandwiched between the first lens group and the second lens group, so that the miniaturization and the aberration balance are improved. It becomes easy.

0.00<(1/R2n1f−1/R1r)・f2<0.40 ・・・(3)
ただし、R1rは、第1レンズ群中の最も像側のレンズの像側面の近軸曲率半径、
である。
0.00 <(1 / R 2n1f −1 / R 1r ) · f 2 <0.40 (3)
Where R 1r is the paraxial radius of curvature of the image side surface of the most image side lens in the first lens group,
It is.

この条件式は、広角端から望遠端での収差バランスを取りやすくするために、第1レンズ群と第2レンズに挟まれる空間前後のレンズ面の曲率の差を規定するものである。   This conditional expression defines the difference in curvature between the lens surfaces before and after the space between the first lens group and the second lens in order to easily balance the aberration from the wide-angle end to the telephoto end.

下限0.00を下回らないようにすることで広角端での第1レンズ群と第2レンズ群の軸外のレンズ面近づけやすくなり、両レンズ面の曲率の差を確保し、広角端での像面湾曲の補正に有利となる。   By avoiding falling below the lower limit of 0.00, it becomes easier to bring the first lens unit and the second lens unit closer to the off-axis lens at the wide-angle end, ensuring a difference in curvature between both lens surfaces, and at the wide-angle end. This is advantageous for correcting curvature of field.

上限0.40を上回らないようにすることで、第1レンズ群のパワーの確保に有利となり、望遠端での球面収差の補正に有利となる。   By making sure that the upper limit of 0.40 is not exceeded, it is advantageous for securing the power of the first lens group, and it is advantageous for correcting spherical aberration at the telephoto end.

さらには
0.03<(1/R2n1−1/R1r)・f2<0.30 ・・・(3)’
さらには
0.07<(1/R2n1−1/R1r)・f2<0.20 ・・・(3)’’
とするとより好ましい。
Furthermore, 0.03 <(1 / R 2n1 −1 / R 1r ) · f 2 <0.30 (3) ′
Furthermore, 0.07 <(1 / R 2n1 -1 / R 1r ) · f 2 <0.20 (3) ''
It is more preferable.

上述の条件式の下限値のみ、もしくは上限値のみを限定してもよい。   Only the lower limit value or only the upper limit value of the conditional expression described above may be limited.

以降に示す各条件式についても同様である。   The same applies to the following conditional expressions.

第2レンズ群の正レンズについて条件式(4)、(5)を満足することが好ましい。これは第2レンズ群の正レンズの屈折率とアッペ数に関する条件式である。     It is preferable that conditional expressions (4) and (5) are satisfied for the positive lens in the second lens group. This is a conditional expression regarding the refractive index and the Abbe number of the positive lens of the second lens group.

1.84<nd2p<2.20 ・・・(4)
13.0<νd2p<30.0 ・・・(5)
ただし、nd2pは、第2レンズ群中の正レンズのd線に対する屈折率、
νd2pは、第2レンズ群中の正レンズのアッベ数、
である。
1.84 <n d2p <2.20 (4)
13.0 <ν d2p <30.0 (5)
Where n d2p is the refractive index of the positive lens in the second lens group with respect to the d-line,
ν d2p is the Abbe number of the positive lens in the second lens group,
It is.

条件式(4)の上限の2.20を上回らないようにすることで、材料の量産性や入手性を良くし、コストコスト低減をおこなうことが好ましい。   By avoiding exceeding the upper limit of 2.20 of conditional expression (4), it is preferable to improve the mass productivity and availability of the material and reduce the cost.

その下限の1.84を下回らないようにすることで、パワーを確保してもレンズ面の曲率絶対値を小さくでき、球面収差やコマ収差の発生抑えやすくなる。   By making sure that the lower limit of 1.84 is not exceeded, the absolute value of the curvature of the lens surface can be reduced even if the power is secured, and it becomes easy to suppress the occurrence of spherical aberration and coma.

条件式(5)は、色収差補正、特に軸外の倍率色収差補正に関する条件式である。大きな負パワーにより発生する色収差をこの群内で良好に補正するためには、正レンズに適正な範囲で比較的色分散性の大きな材料を用いることが好ましい。   Conditional expression (5) is a conditional expression related to chromatic aberration correction, in particular, off-axis chromatic aberration correction. In order to satisfactorily correct chromatic aberration caused by a large negative power within this group, it is preferable to use a material having a relatively large color dispersion within a proper range for the positive lens.

条件式(4)の上限の30.0を上回らないようにして、分散を確保し、負レンズで発生する色収差を補正を行うことが好ましい。   It is preferable not to exceed the upper limit of 30.0 in conditional expression (4) to ensure dispersion and correct chromatic aberration generated in the negative lens.

その下限の13.0を下回らないようにして、短波長側での色分散を抑え、この正レンズで発生する短波長側の色収差をおさえて2次スペクトルの発生を抑えることが好ましい。   It is preferable not to fall below the lower limit of 13.0 so as to suppress chromatic dispersion on the short wavelength side and suppress chromatic aberration on the short wavelength side generated by the positive lens to suppress the generation of the secondary spectrum.

以下のようにするとさらによい。   It is better to do the following.

1.87<nd2p<2.15 ・・・(4)’
15.0<νd2p<26.0 ・・・(5)’
以下のようにするとなおよい。
1.87 <n d2p <2.15 (4) ′
15.0 <ν d2p <26.0 (5) ′
It is even better to do the following:

1.90<nd2p<2.12 ・・・(4)’’
17.0<νd2p<21.0 ・・・(5)’’
第2レンズ群内の収差の発生をより小さくするためには、第2レンズ群の正レンズの形状を以下の条件式を満たすようにするとより好ましい。
1.90 <n d2p <2.12 (4) ''
17.0 <ν d2p <21.0 (5) ''
In order to reduce the occurrence of aberration in the second lens group, it is more preferable that the shape of the positive lens in the second lens group satisfies the following conditional expression.

0.45<SF2p<1.80 ・・・(6)
ただし、SF2p =(R2pf+R2pr)/(R2pf−R2pr)で定義され、
2pfは、第2レンズ群中の正レンズの物体側面の近軸曲率半径、
2prは、第2レンズ群中の正レンズの像側面の近軸曲率半径、
である。
0.45 <SF 2p <1.80 (6)
However, as defined in SF 2p = (R 2pf + R 2pr) / (R 2pf -R 2pr),
R 2pf is the paraxial radius of curvature of the object side surface of the positive lens in the second lens group,
R 2pr is the paraxial radius of curvature of the image side surface of the positive lens in the second lens group,
It is.

正レンズを条件式(6)の上限の1.80及び下限の0.45の間の形状とすることで、球面収差とコマ収差の発生をバランスよく抑えやすくなる。   By forming the positive lens in a shape between the upper limit of 1.80 and the lower limit of 0.45 in conditional expression (6), it becomes easy to suppress the occurrence of spherical aberration and coma aberration in a well-balanced manner.

以下のようにするとさらによい。   It is better to do the following.

0.55<SF2p<1.6 ・・・(6)’
以下を満足するとなおよい。
0.55 <SF 2p <1.6 (6) ′
It is even better to satisfy the following.

0.6<SF2p<1.3 ・・・(6)’’
第2レンズ群の最も物体側の負レンズの材料が、以下の条件を満足することが好ましい。
0.6 <SF 2p <1.3 (6) ''
The material of the negative lens closest to the object side in the second lens group preferably satisfies the following conditions.

1.78<nd2n1<2.20 ・・・(7)
35<νd2n1<50 ・・・(8)
ただし、nd2n1は、第2レンズ群中の物体側負レンズのd線に対する屈折率、
νd2n1は、第2レンズ群中の物体側負レンズのアッベ数、
である。
1.78 <n d2n1 <2.20 (7)
35 <ν d2n1 <50 (8)
Where n d2n1 is the refractive index of the object side negative lens in the second lens group with respect to the d-line,
ν d2n1 is the Abbe number of the object side negative lens in the second lens group,
It is.

条件式(7)の上限の2.20を上回らないようにして、材料の量産性や入手性を良くし、コスト低減を行うことが好ましい。下限の1.78を下回らないようにして、屈折力を確保しつつレンズ面の曲率絶対値を小さくして、広角端でコマ収差や像面湾曲を抑えやすくすることが好ましい。   It is preferable not to exceed the upper limit of 2.20 of conditional expression (7) to improve the mass productivity and availability of the material and reduce the cost. It is preferable that the absolute value of curvature of the lens surface is made small while ensuring the refractive power so as not to fall below the lower limit of 1.78 so that coma and curvature of field can be easily suppressed at the wide angle end.

条件式(8)の上限の50を上回らないようにして、屈折率の高い材料の入手性を確保することが好ましい。下限の35を下回らないようにして、色分散を適度に抑え、色収差を抑えやすくすることが好ましい。   It is preferable not to exceed the upper limit of 50 in conditional expression (8) to ensure the availability of a material with a high refractive index. It is preferable not to fall below the lower limit of 35 so that chromatic dispersion is moderately suppressed and chromatic aberration is easily suppressed.

以下のようにするとさらによい。   It is better to do the following.

1.79<nd2n1<1.95 ・・・(7)’
37<νd2n1<47 ・・・(8)’
以下を満足するとなおよい。
1.79 <n d2n1 <1.95 (7) ′
37 <ν d2n1 <47 (8) ′
It is even better to satisfy the following.

1.80<nd2n1<1.90 ・・・(7)’’
40<νd2n1<43 ・・・(8)’’
第2レンズ群の最も像側の負レンズについて最適な材料を設定しておくのがよい。具体的には以下の条件式を満足するようにするとよい。
1.80 <n d2n1 <1.90 (7) ''
40 <ν d2n1 <43 (8) ''
It is preferable to set an optimum material for the negative lens closest to the image side in the second lens group. Specifically, the following conditional expression should be satisfied.

1.78 < nd2n2 < 2.00・・・(9)
35 < Vd2n2 < 50 ・・・(10)
ただし、nd2n2は、第2レンズ群中の像側負レンズのd線に対する屈折率、
d2n2は、第2レンズ群中の像側負レンズのアッベ数、
である。
1.78 <n d2n2 <2.00 (9)
35 < Vd2n2 <50 (10)
Where n d2n2 is the refractive index of the image-side negative lens in the second lens group with respect to the d-line,
V d2n2 is the Abbe number of the image-side negative lens in the second lens group,
It is.

条件式(9)の上限の2.00を上回らないようにして、材料の量産性や入手性を良くし、コスト低減を行うことが好ましい。下限の1.78を下回らないようにすることで、屈折力を確保してもレンズ面の曲率絶対値を小さくでき、球面収差やコマ収差の発生を抑えやすくなる。   It is preferable not to exceed the upper limit of 2.00 of the conditional expression (9) to improve the mass productivity and availability of the material and reduce the cost. By making it not below the lower limit of 1.78, the absolute value of the curvature of the lens surface can be reduced even if the refractive power is secured, and it becomes easy to suppress the occurrence of spherical aberration and coma.

条件式(10)の上限の50を上回らないようにして、屈折率の高い材料の入手性を高くすることが好ましい。下限の35を下回らないようにすることで、色分散を抑え、色収差の補正に有利となる。   It is preferable to increase the availability of a material having a high refractive index so as not to exceed the upper limit of 50 in conditional expression (10). By making it not below the lower limit of 35, chromatic dispersion is suppressed, which is advantageous for correcting chromatic aberration.

以下のようにするとさらによい。   It is better to do the following.

1.79<nd2n2<1.95 ・・・(9)’
38<Vd2n2<48 ・・・(10)’
以下を満足するとなおよい。
1.79 <n d2n2 <1.95 (9) ′
38 <V d2n2 <48 (10) ′
It is even better to satisfy the following.

1.80<nd2n2<1.90 ・・・(9)’’
40<Vd2n2<47 ・・・(10)’’
この負レンズの形状については以下の条件式を満足するようにするとよい。
1.80 <n d2n2 <1.90 (9) ''
40 <V d2n2 <47 (10) ''
The shape of this negative lens should satisfy the following conditional expression.

−3.0<SF2n2<−0.6 ・・・(11)
ただし、SF2n2=(R2n2f+R2n2r)/(R2n2f−R2n2r)で定義され、
2n1fは、第2レンズ群中の像側負レンズの物体側面の近軸曲率半径、
2n1rは、第2レンズ群中の像側負レンズの像側面の近軸曲率半径、
である。
−3.0 <SF 2n2 <−0.6 (11)
However, SF 2n2 = (R 2n2f + R 2n2r ) / (R 2n2f −R 2n2r ),
R 2n1f is the paraxial radius of curvature of the object side surface of the image-side negative lens in the second lens group,
R 2n1r is the paraxial radius of curvature of the image side surface of the image side negative lens in the second lens group,
It is.

条件式(11)の上限の−0.6を上回らないようにして、像面湾曲の補正不足を抑えることが好ましい。下限の−3.0を下回らないようにして、両レンズ面の曲率絶対値を適度に小さくし、球面収差やコマ収差の発生を抑えやすくすることが好ましい。   It is preferable not to exceed the upper limit of -0.6 of conditional expression (11) to suppress insufficient correction of field curvature. It is preferable that the absolute value of curvature of both lens surfaces is appropriately reduced so as not to fall below the lower limit of −3.0 so that the occurrence of spherical aberration and coma is easily suppressed.

以下のようにするとさらによい。   It is better to do the following.

−2.6<SF2n2<−0.9 ・・・(11)’
以下を満足するとなおよい。
−2.6 <SF 2n2 <−0.9 (11) ′
It is even better to satisfy the following.

−2.1<SF2n2<−1.1 ・・・(11)’’

また、良好な収差補正のために、第2レンズ群の正レンズは以下の条件式を満足するようにするとよい。
-2.1 <SF 2n2 <-1.1 (11) ''

In addition, in order to satisfactorily correct aberrations, the positive lens of the second lens group should satisfy the following conditional expression.

−3.0<f2p/f2<−1.0 ・・・(12)
ただし、f2pは、第2レンズ群の正レンズの焦点距離、
である。
−3.0 <f 2p / f 2 <−1.0 (12)
Where f 2p is the focal length of the positive lens of the second lens group,
It is.

条件式(12)の上限の−1.0を上回らないようにして、正レンズのパワーを適度に抑えることで像面湾曲が補正不足を抑えやすくなる。下限の−3.0を下回らないようにして、正レンズのパワーを適度に確保することで、第2レンズ群の負レンズで発生する球面収差やコマ収差の補正に有利となる。何れにしても、良好な光学性能を確保することに有利となる。   By making the power of the positive lens moderately low so as not to exceed the upper limit of −1.0 of conditional expression (12), it becomes easy to suppress insufficient correction of field curvature. By ensuring that the power of the positive lens is appropriately secured so as not to fall below the lower limit of −3.0, it is advantageous for correcting spherical aberration and coma generated in the negative lens of the second lens group. In any case, it is advantageous to ensure good optical performance.

以下のようにするとさらによい。   It is better to do the following.

−2.8<f2p/f2<−1.4 ・・・(12)’
以下を満足するとなおよい。
−2.8 <f 2p / f 2 <−1.4 (12) ′
It is even better to satisfy the following.

−2.6<f2p/f2<−1.8 ・・・(12)’’
また、さらに収差の発生を抑えて良好な光学性能を得るためには、第2レンズ群の最も物体側の負レンズの少なくとも1つのレンズ面を非球面とするとよい。また、両面非球面としてもよい。コマ収差や像面湾曲の補正に効果がある。
-2.6 <f 2p / f 2 <-1.8 (12) ''
Further, in order to further suppress the occurrence of aberrations and obtain good optical performance, it is preferable that at least one lens surface of the negative lens closest to the object side in the second lens group be an aspherical surface. Moreover, it is good also as a double-sided aspherical surface. Effective for correcting coma and curvature of field.

このとき、以下の条件式を満足するようにするとよい。   At this time, it is preferable to satisfy the following conditional expression.

0.002<(asp2n1f+|asp2n1r|)/fw<0.10
・・・(13A)
−0.06<(asp2n1r−asp2n1f)/fw<0.06 ・・・(13B)
ただし、asp2n1fは第2レンズ群中の物体側負レンズの物体側のレンズ面における非球面偏倚量、
asp2n1rは第2レンズ群中の物体側負レンズの像側のレンズ面における非球面偏倚量、
wは、広角端でのズームレンズ全系の焦点距離、
であり、非球面偏倚量は、図41に示すように、レンズ面の面頂と同じ面頂を持ちそのレンズ面の近軸曲率半径を曲率半径とする球面を基準球面としたとき、そのレンズ面における広角端での最大光線入射高の位置にて、光軸に平行な方向に測ったときのその基準球面からそのレンズ面までの距離であり、像側方向を正符号とする。レンズ面が球面又は平面の場合の非球面偏倚量は0となる。
0.002 <(asp 2n1f + | asp 2n1r |) / f w <0.10
... (13A)
−0.06 <(asp 2n1r −asp 2n1f ) / f w <0.06 (13B)
Where asp 2n1f is the amount of aspherical deviation on the object-side lens surface of the object-side negative lens in the second lens group,
asp 2n1r is the amount of aspherical deviation on the image side lens surface of the object side negative lens in the second lens group,
f w is the focal length of the entire zoom lens system at the wide-angle end,
As shown in FIG. 41, when the spherical surface having the same apex as that of the lens surface and having the paraxial radius of curvature of the lens surface as the radius of curvature is used as the reference spherical surface, as shown in FIG. The distance from the reference spherical surface to the lens surface when measured in the direction parallel to the optical axis at the position of the maximum light incident height at the wide-angle end on the surface, and the image side direction is a positive sign. When the lens surface is spherical or flat, the aspherical deviation amount is zero.

条件式(13A)の下限の0.002を下回らないようにすることで、非球面による収差補正効果を確保しやすくなり、過剰なたる型の歪曲収差を抑えやすくなる。上限の0.10を上回らないようにすることで、非球面の形状変化の程度を抑えられ、偏心による収差への影響、過剰なコマ収差の補正を抑えやすくなる。   By making sure that the lower limit of 0.002 of conditional expression (13A) is not exceeded, it becomes easy to secure the aberration correction effect due to the aspheric surface, and it becomes easy to suppress excessive barrel distortion. By not exceeding the upper limit of 0.10, the degree of aspherical shape change can be suppressed, and the influence of decentration on aberrations and excessive correction of coma can be easily suppressed.

条件式(13B)の上限の0.06を上回らないようにすることで、像面湾曲が補正過剰を抑えやすくなる。下限の−0.06を下回らないようにすることで、像面湾曲の補正不足を抑えやすくなる。いずれにしても良好な光学性能を得ることに有効である。   By making the upper limit of 0.06 of conditional expression (13B) not exceeded, it becomes easier for the field curvature to suppress overcorrection. By making it not below the lower limit of −0.06, it becomes easy to suppress insufficient correction of curvature of field. In any case, it is effective for obtaining good optical performance.

以下のようにするとさらによい。   It is better to do the following.

−0.059<(asp2n1r−asp2n1f)/fw<0.04 ・・・(13B)’
以下を満足するとなおよい。
−0.059 <(asp 2n1r −asp 2n1f ) / fw <0.04 (13B) ′
It is even better to satisfy the following.

−0.055<(asp2n1r−asp2n1f)/fw<0.015
・・・(13B)’’
さらには、第2レンズ群中の物体側負レンズにおける物体側面は、光軸から離れるに従い屈折力が大きくなる非球面とするとよい(実施例1〜10、12、13参照)。
−0.055 <(asp 2n1r −asp 2n1f ) / fw <0.015
... (13B) ''
Furthermore, the object side surface of the object-side negative lens in the second lens group may be an aspheric surface whose refractive power increases as the distance from the optical axis increases (see Examples 1 to 10, 12, and 13).

なお、屈折力が大きくなるとは、負の屈折力が小さくなるか、若しくは、正の屈折力が大きくなるという意味である。   In addition, that refractive power becomes large means that negative refractive power becomes small or positive refractive power becomes large.

このような形状とすることで、広角端での軸外収差の補正に有利となる。   Such a shape is advantageous for correcting off-axis aberrations at the wide-angle end.

さらに、第2レンズ群中の物体側負レンズを両凹負レンズとし、両凹負レンズの物体側面を光軸から離れるに従い負の屈折力が小さくなる非球面とし、両凹負レンズの像側面を光軸から離れるに従い負の屈折力が大きくなる非球面とすることが好ましい(実施例1〜10参照)。   Further, the object side negative lens in the second lens group is a biconcave negative lens, and the object side surface of the biconcave negative lens is an aspheric surface whose negative refractive power decreases as the distance from the optical axis increases. Is preferably an aspheric surface in which the negative refractive power increases as the distance from the optical axis increases (see Examples 1 to 10).

このような形状とすることで、レンズの中心部分、周辺部分での負パワーを確保しつつ、広角端での軸外コマ収差の補正に有利となり、画角の確保に有利となる。また、第2レンズ群全体の薄型化にも有利となる。   Such a shape is advantageous for correcting off-axis coma at the wide-angle end while securing negative power at the center and peripheral portions of the lens, and is advantageous for securing a field angle. Further, it is advantageous for reducing the thickness of the entire second lens group.

第2レンズ群の最も像側の負レンズの像側面を非球面とすると、収差補正上効果的である。球面収差やコマ収差の補正に効果がある。このとき、以下の条件式を満足するようにするとよい。   It is effective in correcting aberrations if the image side surface of the negative lens closest to the image side in the second lens group is an aspherical surface. Effective for correcting spherical aberration and coma. At this time, it is preferable to satisfy the following conditional expression.

−0.09<(asp2n2r−asp2n2f)/fw<−0.003 ・・・(14)
ただし、asp2n2fは、第2レンズ群中の像側負レンズの物体側のレンズ面における非球面偏倚量、
asp2n2rは、第2レンズ群中の像側負レンズの像側のレンズ面における非球面偏倚量、
wは、広角端でのズームレンズ全系の焦点距離、
であり、非球面偏倚量は、図41に示すように、レンズ面の面頂と同じ面頂を持ちそのレンズ面の近軸曲率半径を曲率半径とする球面を基準球面としたとき、そのレンズ面における広角端での最大光線入射高の位置にて、光軸に平行な方向に測ったときのその基準球面からそのレンズ面まで距離であり、像側方向(図の右方向)を正符号とする。レンズ面が球面または平面の場合の非球面偏倚量は0となる。
−0.09 <(asp 2n2r −asp 2n2f ) / f w < −0.003 (14)
Where asp 2n2f is the amount of aspherical deviation on the object-side lens surface of the image-side negative lens in the second lens group,
asp 2n2r is the amount of aspherical deviation on the image side lens surface of the image side negative lens in the second lens group,
f w is the focal length of the entire zoom lens system at the wide-angle end,
As shown in FIG. 41, when the spherical surface having the same apex as that of the lens surface and having the paraxial radius of curvature of the lens surface as the radius of curvature is used as the reference spherical surface, as shown in FIG. This is the distance from the reference spherical surface to the lens surface when measured in the direction parallel to the optical axis at the position of the maximum light incident height at the wide-angle end on the surface, and the image side direction (right direction in the figure) is a positive sign And When the lens surface is spherical or flat, the aspherical deviation amount is zero.

条件式(14)の上限の−0.003を上回らないようにすると、像面湾曲の補正過剰を抑えやすい。下限の−0.09を下回らないようにすると球面収差やコマ収差の補正に有利となる。何れも良好な光学性能を得ることに有利となる。   If the upper limit of -0.003 of conditional expression (14) is not exceeded, it is easy to suppress overcorrection of field curvature. If it does not fall below the lower limit of −0.09, it is advantageous for correction of spherical aberration and coma aberration. Both are advantageous for obtaining good optical performance.

以下のようにするとさらによい。   It is better to do the following.

−0.07<(asp2n2r−asp2n2f)/fw<−0.005 ・・・(14)’
以下を満足するとなおよい。
−0.07 <(asp 2n2r −asp 2n2f ) / f w <−0.005 (14) ′
It is even better to satisfy the following.

−0.05<(asp2n2r−asp2n2f)/fw<−0.015 ・・・(14)’’
さらに、第2レンズ群の像側負レンズを、像側に凸面を向けた負メニスカスレンズとし、負メニスカスレンズの像側の面は光軸から離れるに従い正の屈折力が強くなる非球面とすることが好ましい(実施例1〜11、13参照)。
−0.05 <(asp 2n2r −asp 2n2f ) / f w <−0.015 (14) ″
Further, the image side negative lens of the second lens group is a negative meniscus lens having a convex surface facing the image side, and the image side surface of the negative meniscus lens is an aspherical surface whose positive refractive power increases as the distance from the optical axis increases. It is preferable (see Examples 1 to 11 and 13).

このような構成により、第2レンズ群の球面収差、軸外諸収差の補正を良好に行うことに有利となる。   Such a configuration is advantageous in favorably correcting the spherical aberration and off-axis aberrations of the second lens group.

第2レンズ群の正レンズと最も像側の負レンズは、接合されていないそれぞれ独立した単レンズとしてもよいし、接合レンズとしてもよい。接合しない方が空気接触面を利用した収差補正の自由度が大きくなる。一方、接合とすると色収差補正が有利となり、また、相対偏心による光学性能劣化に起因する歩留まり悪化を緩和できコストダウンにつながる。   The positive lens of the second lens group and the negative lens closest to the image may be independent single lenses that are not cemented or may be cemented lenses. When not joined, the degree of freedom of aberration correction using the air contact surface is increased. On the other hand, if it is joined, chromatic aberration correction is advantageous, and deterioration in yield due to optical performance deterioration due to relative decentration can be mitigated, leading to cost reduction.

また、第1レンズ群は、正レンズと負レンズを備えることが、色収差補正上好ましい。   The first lens group preferably includes a positive lens and a negative lens in terms of correcting chromatic aberration.

特に、第1レンズ群は、物体側から順に、負レンズ、正レンズの並びとするよい。このようにすると、第1レンズ群、第2レンズ群トータルで考えたときに、物体側から順に、負レンズ、正レンズ、負レンズ、正レンズ、負レンズと対称性のよい構成となる。特に広角端での第1レンズ群、第2レンズ群の合成系で発生する収差を効率よくキャンセルすることができる。また、第1レンズ群の後側主点位置が像側に寄るため、変倍比の確保にも効果がある。   In particular, the first lens group may be an array of negative lenses and positive lenses in order from the object side. In this way, when considering the total of the first lens group and the second lens group, a configuration having good symmetry with the negative lens, the positive lens, the negative lens, the positive lens, and the negative lens in order from the object side. In particular, it is possible to efficiently cancel aberration generated in the synthesis system of the first lens group and the second lens group at the wide angle end. In addition, since the rear principal point position of the first lens group is closer to the image side, it is effective in securing a zoom ratio.

第1レンズ群の負レンズと正レンズは接合されていないそれぞれ独立したレンズ成分からなる構成としてもよい。   The negative lens and the positive lens of the first lens group may be composed of independent lens components that are not joined.

このようにすると、2つのレンズの間に形成される空気レンズを利用して、特に望遠端のコマ収差を良好に補正できるようになる。   In this way, the coma aberration at the telephoto end can be particularly favorably corrected using the air lens formed between the two lenses.

このとき、両レンズの間隔が以下の条件式を満足するようにするとよい。   At this time, the distance between both lenses should satisfy the following conditional expression.

0.0≦L1np/L1<0.2 ・・・(15)
ただし、L1npは前記第1レンズ群の負レンズと正レンズの間隔、
1は前記第1レンズ群の軸上の総厚み、
である。
0.0 ≦ L 1np / L 1 <0.2 (15)
Where L 1np is the distance between the negative lens and the positive lens in the first lens group,
L 1 is the total thickness on the axis of the first lens group,
It is.

条件式(15)の上限の0.2を越えると、最も物体側のレンズを通る軸外光線高が高くなりレンズ有効径が大きくなってしまい、径方向のコンパクト化が難しくなる。下限の0.0を超えることはない。   If the upper limit of 0.2 in conditional expression (15) is exceeded, the height of off-axis rays passing through the lens closest to the object side becomes high, the effective lens diameter becomes large, and it becomes difficult to make the lens compact in the radial direction. The lower limit of 0.0 is not exceeded.

以下のようにするとさらによい。   It is better to do the following.

0.0≦L1np/L1<0.16 ・・・(15)’
以下を満足するとなおよい。
0.0 ≦ L 1np / L 1 <0.16 (15) ′
It is even better to satisfy the following.

0.0≦L1np/L1<0.12 ・・・(15)’’
また、第1レンズ群の負レンズと正レンズは接合してもよい。広角端の倍率色収差や望遠端の軸上色収差を良好に補正できる。また、相対偏心による性能劣化に起因する歩留まり悪化を緩和できコストダウンにつながる。
0.0 ≦ L 1np / L 1 <0.12 (15) ″
Further, the negative lens and the positive lens of the first lens group may be cemented. The lateral chromatic aberration at the wide-angle end and the axial chromatic aberration at the telephoto end can be corrected well. In addition, yield deterioration due to performance deterioration due to relative eccentricity can be alleviated, leading to cost reduction.

また、第1レンズ群を、1枚の正レンズで構成しても、小型化、低コスト化に有利となる。   Further, even if the first lens group is composed of one positive lens, it is advantageous for size reduction and cost reduction.

第3レンズ群の構成は、鏡筒の薄型化のためには3枚以下のレンズからなる構成とするのがよい。   The configuration of the third lens group is preferably composed of three or less lenses in order to reduce the thickness of the lens barrel.

特に、第3レンズ群は、物体側から順に、正レンズ、正レンズ、負レンズの3枚からなる構成とすることが好ましい。正レンズのパワーを2枚のレンズに分散させ、負レンズを用いることで、球面収差、コマ収差、色収差の補正に有利となる。また、主点が物体寄りになるので、高変倍比化にも有利となる。   In particular, it is preferable that the third lens group has a configuration including three lenses of a positive lens, a positive lens, and a negative lens in order from the object side. Dispersing the power of the positive lens between the two lenses and using the negative lens is advantageous for correcting spherical aberration, coma aberration, and chromatic aberration. In addition, since the principal point is closer to the object, it is advantageous for increasing the zoom ratio.

さらには、第3レンズ群の物体側から2番目の正レンズと負レンズを光軸上にて接合することが好ましい。正レンズと負レンズを接合することで、軸上色収差の補正をより効果的に行うことができる。また、正レンズのパワーを2枚のレンズに分散させ、正レンズと負レンズを接合レンズとすることで、組み立て工程でのレンズ同士の相対偏心による光学性能の劣化を防ぐことができるため、歩留まりの向上やコストダウンにつながる。   Furthermore, it is preferable that the second positive lens and the negative lens from the object side of the third lens group are cemented on the optical axis. By joining the positive lens and the negative lens, the axial chromatic aberration can be corrected more effectively. Also, by dispersing the power of the positive lens between the two lenses and using the positive lens and the negative lens as a cemented lens, it is possible to prevent deterioration in optical performance due to the relative decentration of the lenses in the assembly process. Lead to improvement and cost reduction.

さらに、第3レンズ群内に1面以上の非球面を配置することで球面収差やコマ収差の補正に効果がある。特に、第3レンズ群の最も物体側の正レンズを両面非球面レンズとすることで諸収差の補正に有利となる。複数のレンズに非球面を配置するとレンズの相対偏心による光学性能劣化が大きくなりがちだが、このように1枚のレンズの両側面を非球面とすることで、レンズ相対偏心による光学性能劣化を小さく抑えながら、球面収差とコマ収差をより良好に補正することが可能となる。   Furthermore, arranging one or more aspheric surfaces in the third lens group is effective in correcting spherical aberration and coma. Particularly, the positive lens closest to the object side of the third lens group is a double-sided aspheric lens, which is advantageous for correcting various aberrations. If aspherical surfaces are arranged on a plurality of lenses, the optical performance deterioration due to the relative decentering of the lens tends to be large, but by making both sides of one lens aspherical in this way, the optical performance deterioration due to the lens relative decentering is reduced. While suppressing, spherical aberration and coma aberration can be corrected more favorably.

第2レンズ群のパワーについては以下の条件式を満足するようにするとよい。   The power of the second lens group should satisfy the following conditional expression.

0.20<|f2/ft|<0.325 ・・・(16)
ただし、ftは、望遠端でのズームレンズ全系の焦点距離、
である。
0.20 <| f 2 / f t | <0.325 (16)
Where f t is the focal length of the entire zoom lens system at the telephoto end,
It is.

条件式(16)の上限の0.325を上回らないようにして、パワーを確保し変倍のための移動量を抑え、鏡筒のコンパクト化に有利となる。下限の0.20を下回らないようにして、屈折力を抑えることで収差補正が容易となる。   The upper limit of 0.325 in conditional expression (16) is not exceeded, so that power is secured and the amount of movement for zooming is suppressed, which is advantageous for making the lens barrel compact. Aberration correction is facilitated by suppressing the refractive power so as not to fall below the lower limit of 0.20.

以下のようにするとさらによい。   It is better to do the following.

0.25<|f2/ft|<0.320 ・・・(16)’
以下を満足するとなおよい。
0.25 <| f 2 / f t | <0.320 ··· (16) '
It is even better to satisfy the following.

0.29<|f2/ft|<0.315 ・・・(16)’’
コンパクト化と光学性能のバランスの観点から、第1レンズ群のパワーを以下の条件式を満足するように設定することが望ましい。
0.29 <| f 2 / f t | <0.315 (16) ''
From the viewpoint of compactness and balance of optical performance, it is desirable to set the power of the first lens group so as to satisfy the following conditional expression.

0.7<f1/ft<1.8 ・・・(17)
ただし、f1は、第1レンズ群の合成焦点距離、
tは、望遠端でのズームレンズ全系の焦点距離、
である。
0.7 <f 1 / f t < 1.8 ··· (17)
Where f 1 is the combined focal length of the first lens group,
f t is the focal length of the entire zoom lens system at the telephoto end,
It is.

条件式(17)の上限の1.8を上回らないようにして、第1レンズ群のパワーを確保することで、ズームレンズ全系の全長を小さくしやすくなり小型化しやすくなる。下限の0.7を下回らないようにして、パワーを適度に抑え、望遠端での球面収差やコマ収差を抑えやすくなる。   By securing the power of the first lens group so as not to exceed the upper limit of 1.8 of conditional expression (17), the entire length of the entire zoom lens system can be easily reduced and miniaturized. The power is moderately suppressed so as not to fall below the lower limit of 0.7, and spherical aberration and coma at the telephoto end can be easily suppressed.

以下のようにするとさらによい。   It is better to do the following.

1.0<f1/ft<1.7 ・・・(17)’
以下を満足するとなおよい。
1.0 <f 1 / f t < 1.7 ··· (17) '
It is even better to satisfy the following.

1.3<f1/ft<1.6 ・・・(17)’’
第3レンズ群のパワーについては以下の条件式を満足するようにするとよい。
1.3 <f 1 / f t < 1.6 ··· (17) ''
The power of the third lens group should satisfy the following conditional expression.

0.25<f3/ft<0.50 ・・・(18)
ただし、f3は第3レンズ群の焦点距離、
tは望遠端でのズームレンズ全系の焦点距離、
である。
0.25 <f 3 / ft <0.50 (18)
Where f 3 is the focal length of the third lens group,
f t is the focal length of the entire zoom lens system at the telephoto end,
It is.

条件式(18)の上限の0.50を上回らないようにして、パワーを確保することで、全長の短縮化や変倍比の確保に有利となる。下限の0.25を下回らないようにして、屈折力を抑えることで、収差補正に有利となる。   By securing the power so as not to exceed the upper limit of 0.50 of conditional expression (18), it is advantageous for shortening the overall length and securing the zoom ratio. By suppressing the refractive power so as not to fall below the lower limit of 0.25, it is advantageous for aberration correction.

以下のようにするとさらによい。   It is better to do the following.

0.30<f3/ft<0.40 ・・・(18)’
以下を満足するとなおよい。
0.30 <f 3 / ft <0.40 (18) ′
It is even better to satisfy the following.

0.34<f3/ft<0.38 ・・・(18)’’
さらに、正屈折力の第4レンズ群を備える構成とし、全体として4群ズームレンズとする場合、第4レンズ群のパワーについては、以下の条件式を満足するようにするとよい。
0.34 <f 3 / f t < 0.38 ··· (18) ''
Furthermore, when the fourth lens group having a positive refractive power is provided and the zoom lens is a four-group zoom lens as a whole, the power of the fourth lens group should satisfy the following conditional expression.

0.40<f4/ft<1.0 ・・・(19)
ただし、f4は第4レンズ群の焦点距離、
tは望遠端でのズームレンズ全系の焦点距離、
である。
0.40 <f 4 / ft <1.0 (19)
Where f 4 is the focal length of the fourth lens group,
f t is the focal length of the entire zoom lens system at the telephoto end,
It is.

条件式(19)の上限の1.0を上回らないようにして、第4レンズ群のパワーを確保することで、軸外光線を屈折させる作用を確保することが好ましい。像面に配置するCCDやCMOS等の電子撮像素子に入射する光線角度を小さくでき、画面の隅での明るさの陰り(シェーディング)の発生を抑えやすくなる。下限の0.40を下回らないようにして第4レンズ群のパワーを適度に抑えることで、像面湾曲が補正不足を抑えやすくなる。また、前述のとおり、フォーカシング動作は第4レンズ群を移動させて行うのが望ましいが、フォーカシング時の像面湾曲の変動を抑えやすくなる。   It is preferable to ensure the action of refracting off-axis rays by ensuring the power of the fourth lens group so as not to exceed the upper limit of 1.0 of conditional expression (19). The angle of light incident on an electronic image sensor such as a CCD or CMOS arranged on the image plane can be reduced, and it becomes easy to suppress the occurrence of shading in the corners of the screen. By suppressing the power of the fourth lens group appropriately so as not to fall below the lower limit of 0.40, it becomes easy to suppress insufficient correction of field curvature. As described above, the focusing operation is desirably performed by moving the fourth lens group, but it is easy to suppress fluctuations in field curvature during focusing.

以下のようにするとさらによい。   It is better to do the following.

0.50<f4/ft<0.80 ・・・(19)’
以下を満足するとなおよい。
0.50 <f 4 / f t < 0.80 ··· (19) '
It is even better to satisfy the following.

0.62<f4/ft<0.66 ・・・(19)’’
第4レンズ群はプラスチック材料で形成してもよい。第4レンズ群の主な役割として、射出瞳位置を適切な位置に配置してCCDやCMOS等の電子撮像素子に効率よく光線を入射させることが好ましい。そのような役割のためには、上述した条件式(19)のような範囲内にパワーが設定されていれば、比較的大きなパワーは必要とせず、プラスチックレンズのような屈折率の低い硝材を用いて構成することも可能である。第4レンズ群にプラスチックレンズを用いれば、コストを安く抑え、より安価なズームレンズを提供することが可能となる。
0.62 <f 4 / f t < 0.66 ··· (19) ''
The fourth lens group may be formed of a plastic material. As a main role of the fourth lens group, it is preferable that the exit pupil position is arranged at an appropriate position so that a light beam is efficiently incident on an electronic image pickup device such as a CCD or a CMOS. For such a role, if the power is set within the range of the conditional expression (19), a relatively large power is not required, and a glass material having a low refractive index such as a plastic lens is used. It is also possible to use it. If a plastic lens is used for the fourth lens group, the cost can be reduced and a more inexpensive zoom lens can be provided.

なお、性能を維持しつつ高変倍比化するためには、各レンズ群に効率よく変倍作用を与えて、かつ、全変倍領域において収差をバランスよく補正することが好ましい。   In order to achieve a high zoom ratio while maintaining the performance, it is preferable to efficiently apply a zooming action to each lens group and correct aberrations in a balanced manner in the entire zooming region.

本発明のズームレンズを4群ズームレンズとする場合、広角端から望遠端への変倍時に、第1レンズ群と第2レンズ群との間隔が広がり、第2レンズ群と第3レンズ群との間隔が狭まり、第3レンズ群と第4レンズ群との間隔が広がるように、第1レンズ群、第2レンズ群、第3レンズ群、第4レンズ群はそれぞれ移動する構成とすることが好ましい。   When the zoom lens of the present invention is a four-group zoom lens, the distance between the first lens group and the second lens group is widened at the time of zooming from the wide-angle end to the telephoto end, and the second lens group and the third lens group The first lens group, the second lens group, the third lens group, and the fourth lens group are configured to move so that the distance between the third lens group and the fourth lens group increases. preferable.

このように全てのレンズ群を移動させることにより、収差バランスをとりながら変倍を行いやすくなり、高変倍比化に有利となる。また、明るさ絞りを移動させることにより、倍率色収差や歪曲収差の効果的補正が可能になって、性能面で効果を出せるだけでなく、入射瞳位置、射出瞳位置を適切にコントロールすることが可能となる。   By moving all the lens groups in this way, it becomes easier to perform zooming while maintaining aberration balance, which is advantageous for achieving a high zoom ratio. In addition, by moving the aperture stop, it is possible to effectively correct lateral chromatic aberration and distortion, and not only can be effective in terms of performance, but also the entrance pupil position and exit pupil position can be controlled appropriately. It becomes possible.

そのため、CCDやCMOS等に入射する光線角度を適当な範囲に保ち、画面の隅での明るさの陰り(シェーディング)の発生を防ぐことができ、電子撮像素子を用いる撮像装置に好適となる。   Therefore, the angle of light incident on the CCD, CMOS, or the like can be maintained within an appropriate range, and the occurrence of shading in the corners of the screen can be prevented, which is suitable for an imaging apparatus using an electronic imaging device.

また、広角端から望遠端への変倍時に、第1レンズ群は広角端よりも望遠端で物体側にあるように移動し、第2レンズ群は移動し、第3レンズ群は物体側へのみ移動し、第4レンズ群は移動する構成とするとよい。広角端での全長を小さくしつつ、変倍比の確保に有利となる。   Further, at the time of zooming from the wide angle end to the telephoto end, the first lens unit moves so as to be closer to the object side at the telephoto end than the wide angle end, the second lens unit moves, and the third lens unit moves toward the object side. It is preferable that the fourth lens unit move only. This is advantageous for securing a zoom ratio while reducing the overall length at the wide-angle end.

その際、第1レンズ群は物体側へのみ移動させてもよいし、像側に凸の軌跡で移動させてもよい。   At that time, the first lens group may be moved only to the object side, or may be moved along a locus convex toward the image side.

第2レンズ群は像側へのみ移動させてもよいし、像側に凸の軌跡で移動させてもよい。   The second lens group may be moved only to the image side, or may be moved along a locus convex toward the image side.

第3レンズ群は物体側へのみに移動させるのがよい。   The third lens group is preferably moved only to the object side.

第4レンズ群は物体側へのみ移動させてもよいし、像側へのみ移動させてもよい。あるいは物体側に凸、または像側に凸の軌跡で移動させてもよい。   The fourth lens group may be moved only to the object side, or may be moved only to the image side. Alternatively, it may be moved along a locus convex toward the object side or convex toward the image side.

第2レンズ群と第3レンズ群の間に明るさ絞り及びシャッターユニットを配置し、シャッターユニットも変倍時に第3レンズ群と一体で移動させるとよい。入射瞳を物体側からみて近い位置に位置させることができ、射出瞳を像面から遠ざけることができる。また、軸外光線の高さが低くなる場所であるのでシャッターユニットが大型化せずにすみ、明るさ絞りおよびシャッターユニットを移動させるときのデッドスペースが小さくてすむ。   An aperture stop and a shutter unit may be disposed between the second lens group and the third lens group, and the shutter unit may be moved together with the third lens group during zooming. The entrance pupil can be positioned close to the object side, and the exit pupil can be moved away from the image plane. In addition, since the off-axis light beam height is low, the shutter unit does not need to be enlarged, and the dead space when moving the aperture stop and the shutter unit can be reduced.

また、本発明のズームレンズは以下の条件式を満足するのがよい。   The zoom lens according to the present invention preferably satisfies the following conditional expression.

3.8 < ft/fw < 15.0 ・・・(21)
ただし、fwは、広角端でのズームレンズ全系の焦点距離、
tは、望遠端でのズームレンズ全系の焦点距離、
である。
3.8 < ft / fw <15.0 (21)
Where f w is the focal length of the entire zoom lens system at the wide-angle end,
f t is the focal length of the entire zoom lens system at the telephoto end,
It is.

条件式(21)の上限の15.0を上回らないようにして、光学性能を確保しやすくすることが好ましい。下限の3.8を下回らないようにして、変倍比を確保することで、本発明のズームレンズの小型化、高変倍比化の機能を十分に生かせる。   It is preferable not to exceed the upper limit of 15.0 of the conditional expression (21) so that the optical performance is easily secured. By ensuring the zoom ratio so as not to fall below the lower limit of 3.8, the zoom lens according to the present invention can sufficiently utilize the functions of downsizing and high zoom ratio.

以下のようにするとさらによい。   It is better to do the following.

4.2<ft/fw<10.0 ・・・(21)’
以下を満足するとなおよい。
4.2 <f t / f w <10.0 (21) ′
It is even better to satisfy the following.

4.5<ft/fw<6 ・・・(21)’’
本発明は、上述のズームレンズと、その像側に配置され、ズームレンズにより形成される光学像を電気信号に変換する電子撮像素子とを有する電子撮像装置を包含するものである。
4.5 < ft / fw <6 (21) ''
The present invention includes an electronic imaging apparatus having the above-described zoom lens and an electronic imaging device that is disposed on the image side and converts an optical image formed by the zoom lens into an electrical signal.

また、このような電子撮像装置は以下の条件式を満足するのがよい。   In addition, such an electronic imaging device preferably satisfies the following conditional expression.

0.70<Im/fw<1.00 ・・・(20)
ただし、Imは最大像高、
wは広角端でのズームレンズ全系の焦点距離、
である。
0.70 <I m / f w <1.00 (20)
Where Im is the maximum image height,
f w is the focal length of the entire zoom lens system at the wide-angle end,
It is.

条件式(20)の上限の1.00を上回らないようにすることで、撮影画角が大きくなりすぎないようにし、タル型の歪曲収差の発生を小さくすることに有利となる。下限の0.70を下回らないようにして、本構成を採用することによる小型、広角化のメリットを生かすことが好ましい。   By making sure that the upper limit of 1.00 of the conditional expression (20) is not exceeded, it is advantageous to prevent the shooting angle of view from becoming too large and to reduce the occurrence of Tal distortion. It is preferable not to fall below the lower limit of 0.70 and take advantage of the small size and wide angle by adopting this configuration.

以下のようにするとさらによい。   It is better to do the following.

0.72<Im/fw<0.90 ・・・(20)’
以下を満足するとなおよい。
0.72 <I m / f w <0.90 (20) ′
It is even better to satisfy the following.

0.74<Im/fw<0.77 ・・・(20)’’ 0.74 <I m / f w <0.77 (20) ''

本発明によれば、第1レンズ群、第2レンズ群のレンズ枚数を少なくし、第2レンズ群の厚みを小さくして、第1レンズ群との距離を近づけやすくし、小型化、変倍比の確保を行いつつも、光学性能の確保を行いやすいズームレンズを提供できる。また、そのようなズームレンズを備えることで、小型化しやすい電子撮像装置を提供できる。さらには、ズームレンズの各レンズ群等の工夫により、小型化、収差性能の確保、変倍比の確保をより行いやすいズームレンズ及び電子撮像装置を提供することができる。 According to the present invention, the number of lenses of the first lens group and the second lens group is reduced, the thickness of the second lens group is reduced, the distance from the first lens group is easily made closer, and the size and magnification are reduced. It is possible to provide a zoom lens that facilitates ensuring optical performance while ensuring the ratio. In addition, by providing such a zoom lens, it is possible to provide an electronic imaging device that can be easily miniaturized. Furthermore, by devising each lens group of the zoom lens and the like, it is possible to provide a zoom lens and an electronic image pickup device that are easier to miniaturize, ensure aberration performance, and ensure a zoom ratio.

以下に示す本発明に基づく実施例では、上述のような工夫を施すことで、カメラの携帯性を損なうことなく従来よりも撮影領域を広げたいというユーザーの要望を満たせるような、カメラの小型化と広角化・高変倍比化を同時に満たしており、撮影画像の画質が良好に維持された、CCDやCMOS等の電子撮像素子に適している、安価なズームレンズ光学系を提供している。   In the embodiment based on the present invention shown below, the above-described device is used to reduce the size of the camera so that it can satisfy the user's desire to expand the shooting area more than before without impairing the portability of the camera. Provides an inexpensive zoom lens optical system that is suitable for electronic image sensors such as CCDs and CMOSs that satisfy both the wide angle and the high zoom ratio at the same time, and that maintains the image quality of captured images. .

具体的には、鏡筒の沈胴時の薄型化に適していて、半画角が39°程度の広画角、5倍程度の高変倍比化が確保されており、さらに、撮影画像の画質が良好に維持された、CCDやCMOS等の電子撮像素子に適した安価なズームレンズ光学系を提供している。   Specifically, it is suitable for thinning when the lens barrel is retracted, and has a wide angle of view of about 39 ° and a high zoom ratio of about 5 times. An inexpensive zoom lens optical system suitable for an electronic image pickup device such as a CCD or a CMOS having good image quality is provided.

以下、本発明のズームレンズの実施例1〜20について説明する。実施例1〜20の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図をそれぞれ図1〜図20に示す。各図中、第1レンズ群はG1、第2レンズ群はG2、開口絞りはS、第3レンズ群はG3、第4レンズ群はG4、第5レンズ群はG5、光学的ローパスフィルターはF、電子撮像素子であるCCDのカバーガラスはC、CCDの像面はIで示してある。なお、近赤外シャープカットコートについては、例えば光学的ローパスフィルターFに直接コートを施こしてもよく、また、別に赤外カット吸収フィルターを配置してもよい。   Examples 1 to 20 of the zoom lens according to the present invention will be described below. Lens cross-sectional views at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in Examples 1 to 20 are shown in FIGS. In each figure, the first lens group is G1, the second lens group is G2, the aperture stop is S, the third lens group is G3, the fourth lens group is G4, the fifth lens group is G5, and the optical low-pass filter is F. The cover glass of the CCD, which is an electronic image sensor, is indicated by C, and the image plane of the CCD is indicated by I. As for the near-infrared sharp cut coat, for example, the optical low-pass filter F may be directly coated, or an infrared cut absorption filter may be separately arranged.

実施例1のズームレンズは、図1に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 1, the zoom lens according to the first embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 includes a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface directed toward the object side, and an object The fourth lens group G4 is composed of a single biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the image side surface of the negative meniscus lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例2のズームレンズは、図2に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 2, the zoom lens according to the second embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 includes a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface directed toward the object side, and an object The fourth lens group G4 is composed of a single biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the image side surface of the negative meniscus lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例3のズームレンズは、図3に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 3, the zoom lens of Example 3 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 includes a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface directed toward the object side, and an object The fourth lens group G4 is composed of a single biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the image side surface of the negative meniscus lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例4のズームレンズは、図4に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 4, the zoom lens of Example 4 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 is composed of a cemented lens composed of a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens and a positive meniscus lens having a convex surface directed toward the object side. The fourth lens group G4 is composed of one biconvex positive lens. The cemented lens is composed of a lens and a negative meniscus lens having a convex surface facing the object side.

非球面は、第2レンズ群G2の両凹負レンズの両面、接合レンズの最も像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the most image-side surface of the cemented lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例5のズームレンズは、図5に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 5, the zoom lens of Example 5 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸正レンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and the second lens group G2 has a biconcave negative lens and a convex surface facing the image side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface facing the object side, and a convex surface facing the object side. The fourth lens group G4 is composed of a single biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、接合レンズの最も像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the most image-side surface of the cemented lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例6のズームレンズは、図6に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 6, the zoom lens of Example 6 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 includes a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface directed toward the object side, and an object It consists of a cemented lens with a negative meniscus lens with its side convex surface facing, and the fourth lens group G4 consists of one biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the image side surface of the negative meniscus lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例7のズームレンズは、図7に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 7, the zoom lens according to the seventh exemplary embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 includes a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface directed toward the object side, and an object It consists of a cemented lens with a negative meniscus lens with its side convex surface facing, and the fourth lens group G4 consists of one biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the image side surface of the negative meniscus lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例8のズームレンズは、図8に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 8, the zoom lens according to the eighth embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 is composed of a cemented lens composed of a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens and a positive meniscus lens having a convex surface directed toward the object side. The fourth lens group G4 is composed of one biconvex positive lens. The cemented lens is composed of a lens and a negative meniscus lens having a convex surface facing the object side.

非球面は、第2レンズ群G2の両凹負レンズの両面、接合レンズの最も像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the most image-side surface of the cemented lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例9のズームレンズは、図9に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 9, the zoom lens according to the ninth embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 is composed of a cemented lens composed of a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens and a positive meniscus lens having a convex surface directed toward the object side. The fourth lens group G4 is composed of one biconvex positive lens. The cemented lens is composed of a lens and a negative meniscus lens having a convex surface facing the object side.

非球面は、第2レンズ群G2の両凹負レンズの両面、接合レンズの最も像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the most image-side surface of the cemented lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例10のズームレンズは、図10に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡で移動し、中間状態では広角端の位置より若干像側に位置し、望遠端では広角端の位置より物体側に位置し、第2レンズ群G2は第1レンズ群G1との間隔を広げながら像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は広角端から中間状態までは第3レンズ群G3との間隔を広げながら物体側へ移動し、中間状態から望遠端までは略固定である。   As shown in FIG. 10, the zoom lens of Example 10 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens unit G3 includes a fourth lens unit G4 having positive refracting power. When zooming from the wide angle end to the telephoto end, the first lens unit G1 moves along a locus convex toward the image side. In the state, it is located slightly on the image side from the wide-angle end position, and on the telephoto end is located closer to the object side than the wide-angle end position. The second lens group G2 moves to the image side while increasing the distance from the first lens group G1. . The aperture stop S and the third lens group G3 integrally move toward the object side, and the fourth lens group G4 moves toward the object side while increasing the distance from the third lens group G3 from the wide-angle end to the intermediate state. From the telephoto end to the telephoto end is substantially fixed.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合レンズからなり、第2レンズ群G2は、両凹負レンズと、両凸正レンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 is composed of a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 is a biconcave negative lens. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface facing the object side, and a convex surface facing the object side. The fourth lens group G4 is composed of a single biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the image side surface of the negative meniscus lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例11のズームレンズは、図11に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 11, the zoom lens of Example 11 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 includes a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface directed toward the object side, and an object The fourth lens group G4 is composed of a single biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの物体側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the object side surface of the negative meniscus lens, the double-sided positive lens of the third lens group G3, and the biconvex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

実施例12のズームレンズは、図12に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 12, in the zoom lens of Example 12, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move integrally toward the object side, the fourth lens group G4 moves along a convex locus toward the object side while widening the distance from the third lens group G3, and the wide-angle end at the telephoto end. It is located slightly on the object side from the position of.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, The third lens group G3 includes a positive meniscus lens having a convex surface directed toward the image side and a negative meniscus lens having a convex surface directed toward the image side. The third lens group G3 includes a biconvex positive lens, a positive meniscus lens having a convex surface directed toward the object side, and an object The fourth lens group G4 is composed of a single biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの両面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, both sides of the negative meniscus lens, both sides of the biconvex positive lens of the third lens group G3, and the object side of the biconvex positive lens of the fourth lens group G4. It is used for 6 surfaces.

実施例13のズームレンズは、図13に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を一旦広げ次いで狭めながら物体側に移動し、第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側へ移動する。   As shown in FIG. 13, the zoom lens according to the thirteenth embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having negative refracting power and a fifth lens group G5 having positive refracting power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is an object. The second lens group G2 moves to the image side. The aperture stop S and the third lens group G3 move integrally to the object side, the fourth lens group G4 moves to the object side while once widening and narrowing the distance from the third lens group G3, and the fifth lens group G5 It moves to the object side while widening the distance from the fourth lens group G4.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, It consists of a cemented lens of a positive meniscus lens having a convex surface facing the image side and a negative meniscus lens having a convex surface facing the image side. The third lens group G3 is composed of one biconvex positive lens, and the fourth lens group G4 is The fifth lens group G5 is composed of a single biconvex positive lens. The cemented lens is composed of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side.

非球面は、第2レンズ群G2の両凹負レンズの両面、接合レンズの最も像側の面、第3レンズ群G3の両凸正レンズの両面、第5レンズ群G5の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the most image side surface of the cemented lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fifth lens group G5. It is used for 6 surfaces on the object side.

実施例14のズームレンズは、図14に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を一旦広げ次いで狭めながら物体側に移動し、第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 14, the zoom lens of Example 14 includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power in order from the object side. The lens group G3 includes a fourth lens group G4 having negative refracting power and a fifth lens group G5 having positive refracting power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is an object. The second lens group G2 moves to the image side. The aperture stop S and the third lens group G3 move integrally to the object side, the fourth lens group G4 moves to the object side while once widening and narrowing the distance from the third lens group G3, and the fifth lens group G5 It moves along a convex locus toward the object side while increasing the distance from the fourth lens group G4, and is slightly closer to the object side at the telephoto end than at the wide-angle end.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, A positive meniscus lens having a convex surface facing the image side and a negative meniscus lens having a convex surface facing the image side. The third lens group G3 includes one biconvex positive lens, and the fourth lens group G4 includes the object side. The fifth lens group G5 is composed of a single biconvex positive lens. The cemented lens is composed of a positive meniscus lens having a convex surface facing the convex surface and a negative meniscus lens having a convex surface facing the object side.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの物体側の面、第3レンズ群G3の両凸正レンズの両面、第5レンズ群G5の両凸正レンズの物体側の面の6面に用いている。   The aspherical surfaces include both surfaces of the biconcave negative lens of the second lens group G2, the object side surface of the negative meniscus lens, both surfaces of the biconvex positive lens of the third lens group G3, and the biconvex positive lens of the fifth lens group G5. It is used for 6 surfaces on the object side.

実施例15のズームレンズは、図15に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側に凸の軌跡で移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を一旦広げ次いで狭めながら物体側に移動し、第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 15, the zoom lens according to the fifteenth embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having negative refracting power and a fifth lens group G5 having positive refracting power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is an object. The second lens group G2 moves along a locus convex toward the image side, and is located closer to the image side at the telephoto end than at the wide-angle end. The aperture stop S and the third lens group G3 move integrally to the object side, the fourth lens group G4 moves to the object side while once widening and narrowing the distance from the third lens group G3, and the fifth lens group G5 It moves along a convex locus toward the object side while increasing the distance from the fourth lens group G4, and is slightly closer to the object side at the telephoto end than at the wide-angle end.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸正レンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと像側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and the second lens group G2 has a biconcave negative lens and a convex surface facing the image side. A positive meniscus lens and a negative meniscus lens having a convex surface facing the image side. The third lens group G3 includes one biconvex positive lens, and the fourth lens group G4 has a convex surface on the object side. The fifth lens group G5 is composed of one biconvex positive lens. The cemented lens is composed of a positive meniscus lens directed toward the object and a negative meniscus lens having a convex surface directed toward the object side.

非球面は、第2レンズ群G2の両凹負レンズの両面、接合レンズの最も像側の面、第3レンズ群G3の両凸正レンズの両面、第5レンズ群G5の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the most image side surface of the cemented lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fifth lens group G5. It is used for 6 surfaces on the object side.

実施例16のズームレンズは、図16に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は像側に凸の軌跡で移動し、中間状態では広角端の位置より若干像側に位置し、望遠端では広角端の位置より物体側に位置する。第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側に凸の軌跡で移動し、望遠端では中間状態の位置より若干像側であって広角端の位置より物体側に位置し、第4レンズ群G4は第3レンズ群G3との間隔を一旦広げ次いで狭めながら物体側に凸の軌跡で移動し、望遠端では中間状態の位置より若干像側であって広角端の位置より物体側に位置し、第5レンズ群G5は第4レンズ群G4との間隔を一旦広げ次いで若干狭めながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 16, the zoom lens of Example 16 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The first lens group G1 is composed of a lens group G3, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power. When changing the magnification from the wide angle end to the telephoto end, the first lens group G1 is an image. In the intermediate state, it moves slightly closer to the image side than the wide-angle end position, and at the telephoto end it is closer to the object side than the wide-angle end position. The second lens group G2 moves to the image side. The aperture stop S and the third lens group G3 integrally move along a convex locus toward the object side, are slightly on the image side at the telephoto end from the intermediate position, and are closer to the object side than the wide-angle end. The group G4 moves along a convex locus toward the object side while once increasing and narrowing the distance from the third lens group G3, and is slightly closer to the image side than the intermediate position at the telephoto end and closer to the object side than the wide-angle end position. The fifth lens group G5 moves along a locus convex toward the object side while temporarily increasing the distance from the fourth lens group G4 and then slightly narrowing it, and is positioned slightly closer to the object side than the wide-angle end position at the telephoto end.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと物体側に凸面を向けた正メニスカスレンズとの接合レンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 is composed of a cemented lens of a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side, and the second lens group G2 is a biconcave negative lens. The lens includes a positive meniscus lens having a convex surface facing the image side, and a negative meniscus lens having a convex surface facing the image side. The third lens group G3 includes one biconvex positive lens, and the fourth lens group G4 includes The fifth lens group G5 is composed of a single biconvex positive lens. The cemented lens is composed of a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第5レンズ群G5の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the image side surface of the negative meniscus lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fifth lens group G5. It is used for 6 surfaces on the object side.

実施例17のズームレンズは、図17に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を一旦広げ次いで狭めながら物体側へ移動し、第5レンズ群G5は第4レンズ群G4との間隔を広げながら物体側に凸の軌跡で移動し、望遠端では広角端の位置より若干物体側に位置する。   As shown in FIG. 17, the zoom lens according to the seventeenth embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having negative refracting power and a fifth lens group G5 having positive refracting power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 is an object. The second lens group G2 moves to the image side. The aperture stop S and the third lens group G3 move integrally to the object side, the fourth lens group G4 moves to the object side while temporarily widening and then narrowing the distance from the third lens group G3, and the fifth lens group G5 It moves along a convex locus toward the object side while increasing the distance from the fourth lens group G4, and is slightly closer to the object side at the telephoto end than at the wide-angle end.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凹負レンズと、像側に凸面を向けた正メニスカスレンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズ1枚からなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconcave negative lens, A positive meniscus lens having a convex surface facing the image side and a negative meniscus lens having a convex surface facing the image side. The third lens group G3 includes one biconvex positive lens, and the fourth lens group G4 includes the object side. The fifth lens group G5 is composed of a single biconvex positive lens. The cemented lens is composed of a positive meniscus lens having a convex surface facing the convex surface and a negative meniscus lens having a convex surface facing the object side.

非球面は、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第5レンズ群G5の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the image side surface of the negative meniscus lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fifth lens group G5. It is used for 6 surfaces on the object side.

実施例18のズームレンズは、図18に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側へ移動する。   As shown in FIG. 18, in the zoom lens of Example 18, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move together toward the object side, and the fourth lens group G4 moves toward the object side while increasing the distance from the third lens group G3.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズ1枚からなり、第2レンズ群G2は、両凹負レンズと、両凸正レンズと、像側に凸面を向けた負メニスカスレンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes a single positive meniscus lens having a convex surface directed toward the object side, and the second lens group G2 includes a biconcave negative lens, a biconvex positive lens, and a convex surface on the image side. The third lens group G3 is composed of a cemented lens of a biconvex positive lens, a positive meniscus lens having a convex surface directed toward the object side, and a negative meniscus lens having a convex surface directed toward the object side, The fourth lens group G4 is composed of one positive meniscus lens having a convex surface directed toward the image side.

非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の両凹負レンズの両面、負メニスカスレンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の正メニスカスレンズの物体側の面の8面に用いている。   The aspheric surfaces are both surfaces of the positive meniscus lens of the first lens group G1, both surfaces of the biconcave negative lens of the second lens group G2, the image side surface of the negative meniscus lens, and both surfaces of the biconvex positive lens of the third lens group G3. , And are used for eight surfaces on the object side of the positive meniscus lens in the fourth lens group G4.

実施例19のズームレンズは、図19に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に物体側へ移動し、第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側へ移動する。   As shown in FIG. 19, the zoom lens of Example 19 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S and the third lens group G3 move together toward the object side, and the fourth lens group G4 moves toward the object side while increasing the distance from the third lens group G3.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた正メニスカスレンズ1枚からなり、第2レンズ群G2は、両凹負レンズと、両凸正レンズと、両凹負レンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、像側に凸面を向けた正メニスカスレンズ1枚からなる。   In order from the object side, the first lens group G1 includes one positive meniscus lens having a convex surface directed toward the object side, and the second lens group G2 includes a biconcave negative lens, a biconvex positive lens, and a biconcave negative lens. The third lens group G3 includes a cemented lens of a biconvex positive lens, a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side, and the fourth lens group G4 includes And one positive meniscus lens having a convex surface facing the image side.

非球面は、第1レンズ群G1の正メニスカスレンズの両面、第2レンズ群G2の物体側の両凹負レンズの両面、像側の両凹負レンズの像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の正メニスカスレンズの物体側の面の8面に用いている。   The aspheric surfaces are both surfaces of the positive meniscus lens of the first lens group G1, both surfaces of the object side biconcave negative lens of the second lens group G2, the image side surface of the image side biconcave negative lens, and the third lens group G3. Are used on both surfaces of the biconvex positive lens and on the object side surface of the positive meniscus lens in the fourth lens group G4.

実施例20のズームレンズは、図20に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、正屈折力の第4レンズ群G4から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSは第3レンズ群G3とは独立して物体側へ移動し、第3レンズ群G3は開口絞りSとの間隔を広角端から中間状態にかけては狭め、中間状態から望遠端にかけては広げながら物体側へ移動する。第4レンズ群G4は第3レンズ群G3との間隔を広げながら物体側へ若干移動する。   As shown in FIG. 20, in the zoom lens of Example 20, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves to the object side, and the second lens group G2 Moves to the image side. The aperture stop S moves to the object side independently of the third lens group G3, and the third lens group G3 narrows the distance from the aperture stop S from the wide-angle end to the intermediate state and widens from the intermediate state to the telephoto end. While moving to the object side. The fourth lens group G4 slightly moves toward the object side while widening the distance from the third lens group G3.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、両凸正レンズからなり、第2レンズ群G2は、両凹負レンズと、両凸正レンズと両凹負レンズとの接合レンズからなり、第3レンズ群G3は、両凸正レンズと、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズとの接合レンズからなり、第4レンズ群G4は、両凸正レンズ1枚からなる。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface directed toward the object side, and a biconvex positive lens. The second lens group G2 includes a biconcave negative lens, a biconvex positive lens, The third lens group G3 is composed of a cemented lens of a biconvex positive lens, a positive meniscus lens having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side. The fourth lens group G4 is composed of one biconvex positive lens.

非球面は、第2レンズ群G2の両凹負レンズの両面、接合レンズの最も像側の面、第3レンズ群G3の両凸正レンズの両面、第4レンズ群G4の両凸正レンズの物体側の面の6面に用いている。   The aspheric surfaces are the double-sided negative lens of the second lens group G2, the most image-side surface of the cemented lens, the double-sided positive lens of the third lens group G3, and the double-convex positive lens of the fourth lens group G4. It is used for 6 surfaces on the object side.

以下に、各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FnoはFナンバー、2ωは画角、WEは広角端、STは中間状態、TEは望遠端、r1、r2…は各レンズ面の曲率半径、d1、d2…各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 The numerical data of each example is shown below. Symbols are the above, f is the total focal length, F no is the F number, 2ω is the angle of view, WE is the wide angle end, ST is the intermediate state, and TE is telephoto. End, r 1 , r 2 ... Curvature radius of each lens surface, d 1 , d 2 ... Spacing between each lens surface, n d1 , n d2 ..., Refractive index of d-line of each lens, ν d1 , ν d2 ... is the Abbe number of each lens. The aspherical shape is represented by the following expression, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2/r)/[1+{1−(K+1)(y/r)21/2
+A44+A66+A88+A1010
ただし、rは近軸曲率半径、Kは円錐係数、A4、A6、A8、A10はそれぞれ4次、6次、8次、10次の非球面係数である。

実施例1
1 = 19.996 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 15.394 d2 = 0.26
3 = 17.278 d3 = 3.11 nd2 =1.76802 νd2 =49.24
4 = 534.344 d4 = (可変)
5 = -58.703 (非球面) d5 = 0.82 nd3 =1.88300 νd3 =40.76
6 = 5.969 (非球面) d6 = 2.65
7 = -431.058 d7 = 1.95 nd4 =2.00170 νd4 =20.64
8 = -14.597 d8 = 0.07
9 = -13.708 d9 = 0.67 nd5 =1.81600 νd5 =46.62
10= -67.948 (非球面) d10= (可変)
11= ∞ (絞り) d11= 0.10
12= 5.491 (非球面) d12= 2.70 nd6 =1.58913 νd6 =61.14
13= -11.075 (非球面) d13= 0.10
14= 5.503 d14= 1.38 nd7 =1.59201 νd7 =67.02
15= 13.913 d15= 0.80 nd8 =2.00069 νd8 =25.46
16= 3.463 d16= (可変)
17= 19.919 (非球面) d17= 2.07 nd9 =1.74330 νd9 =49.33
18= -25.922 d18= (可変)
19= ∞ d19= 0.40 nd10=1.54771 νd10=62.84
20= ∞ d20= 0.50
21= ∞ d21= 0.50 nd11=1.51633 νd11=64.14
22= ∞ d22= 0.36
23= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 1.99104×10-4
6 = -8.59909×10-6
8 = 2.01071×10-7
10= -1.73584×10-9
第6面
= 0.000
4 = 7.61962×10-5
6 = 2.30339×10-5
8 = -1.98717×10-6
10= 4.99512×10-8
第10面
= 10.849
4 = -2.64668×10-4
6 = -1.16671×10-6
8 = -1.29451×10-7
10= 0
第12面
= -0.000
4 = -9.20803×10-4
6 = 7.90503×10-6
8 = -4.58612×10-6
10= 5.46733×10-7
第13面
= 0.000
4 = 5.31169×10-4
6 = 2.85804×10-5
8 = -8.58478×10-6
10= 9.90563×10-7
第17面
= 0.000
4 = -2.06640×10-6
6 = 1.19043×10-5
8 = -4.13589×10-7
10= 6.77582×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.10 4.58 4.91
2ω(°) 80.14 35.47 17.64
4 0.73 4.49 13.26
10 10.82 3.67 0.68
16 2.75 8.58 9.99
18 2.83 3.05 2.97 。

実施例2
1 = 23.279 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 16.155 d2 = 0.18
3 = 17.729 d3 = 3.05 nd2 =1.85719 νd2 =43.01
4 = 577.289 d4 = (可変)
5 = -57.796 (非球面) d5 = 0.80 nd3 =1.83481 νd3 =42.71
6 = 5.963 (非球面) d6 = 2.79
7 = -136.071 d7 = 1.78 nd4 =1.94595 νd4 =17.98
8 = -16.198 d8 = 0.09
9 = -14.697 d9 = 0.68 nd5 =1.83481 νd5 =42.71
10= -44.810 (非球面) d10= (可変)
11= ∞ (絞り) d11= 0.10
12= 5.548 (非球面) d12= 2.70 nd6 =1.58913 νd6 =61.14
13= -10.984 (非球面) d13= 0.10
14= 5.510 d14= 1.36 nd7 =1.59201 νd7 =67.02
15= 13.333 d15= 0.80 nd8 =2.00069 νd8 =25.46
16= 3.476 d16= (可変)
17= 19.243 (非球面) d17= 2.07 nd9 =1.74330 νd9 =49.33
18= -28.285 d18= (可変)
19= ∞ d19= 0.40 nd10=1.54771 νd10=62.84
20= ∞ d20= 0.50
21= ∞ d21= 0.50 nd11=1.51633 νd11=64.14
22= ∞ d22= 0.36
23= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 1.91532×10-4
6 = -6.16585×10-6
8 = 9.93129×10-8
10= -6.19551×10-10
第6面
= 0.000
4 = 8.56780×10-5
6 = 2.37196×10-5
8 = -1.32112×10-6
10= 1.29769×10-8
第10面
= 5.360
4 = -2.35672×10-4
6 = -2.32986×10-6
8 = 3.46565×10-8
10= 0
第12面
= -0.000
4 = -9.12531×10-4
6 = -2.10029×10-6
8 = -2.33162×10-6
10= 3.38870×10-7
第13面
= 0.000
4 = 5.13813×10-4
6 = 9.30700×10-6
8 = -3.76459×10-6
10= 5.20840×10-7
第17面
= 0.000
4 = 1.55240×10-5
6 = 1.05486×10-5
8 = -3.44689×10-7
10= 5.43477×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.11 4.54 4.94
2ω(°) 80.14 35.40 17.62
4 0.73 4.73 13.26
10 10.87 3.73 0.66
16 2.77 8.48 10.09
18 2.86 3.06 2.97 。

実施例3
1 = 24.343 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 16.189 d2 = 0.16
3 = 17.639 d3 = 3.05 nd2 =1.88300 νd2 =40.76
4 = 598.304 d4 = (可変)
5 = -58.725 (非球面) d5 = 0.82 nd3 =1.88300 νd3 =40.76
6 = 6.041 (非球面) d6 = 2.60
7 = 407.018 d7 = 2.01 nd4 =2.00170 νd4 =20.64
8 = -14.787 d8 = 0.08
9 = -13.762 d9 = 0.68 nd5 =1.83481 νd5 =42.71
10= -88.096 (非球面) d10= (可変)
11= ∞ (絞り) d11= 0.10
12= 5.462 (非球面) d12= 2.70 nd6 =1.58913 νd6 =61.14
13= -11.013 (非球面) d13= 0.10
14= 5.530 d14= 1.36 nd7 =1.59201 νd7 =67.02
15= 13.426 d15= 0.80 nd8 =2.00069 νd8 =25.46
16= 3.443 d16= (可変)
17= 19.462 (非球面) d17= 2.07 nd9 =1.74330 νd9 =49.33
18= -27.222 d18= (可変)
19= ∞ d19= 0.40 nd10=1.54771 νd10=62.84
20= ∞ d20= 0.50
21= ∞ d21= 0.50 nd11=1.51633 νd11=64.14
22= ∞ d22= 0.36
23= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 1.78466×10-4
6 = -8.17272×10-6
8 = 2.01295×10-7
10= -1.77746×10-9
第6面
= 0.000
4 = 5.13913×10-5
6 = 2.24397×10-5
8 = -1.94651×10-6
10= 5.11678×10-8
第10面
= 11.427
4 = -2.56902×10-4
6 = -1.57604×10-6
8 = -1.15551×10-7
10= 0
第12面
= -0.000
4 = -9.39293×10-4
6 = -5.83997×10-6
8 = -2.22901×10-6
10= 3.45022×10-7
第13面
= 0.000
4 = 5.38804×10-4
6 = 3.49744×10-6
8 = -2.93189×10-6
10= 4.74550×10-7
第17面
= 0.000
4 = 2.27544×10-5
6 = 1.04163×10-5
8 = -3.36814×10-7
10= 5.32127×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.11 4.62 4.92
2ω(°) 80.16 35.55 17.62
4 0.73 4.28 13.31
10 10.93 3.71 0.72
16 2.76 8.74 9.98
18 2.84 3.04 2.97 。

実施例4
1 = 20.367 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 15.608 d2 = 0.29
3 = 17.741 d3 = 3.14 nd2 =1.76802 νd2 =49.24
4 = 3497.716 d4 = (可変)
5 = -45.639 (非球面) d5 = 0.80 nd3 =1.83481 νd3 =42.71
6 = 5.950 (非球面) d6 = 2.73
7 = -255.106 d7 = 1.84 nd4 =1.92286 νd4 =18.90
8 = -15.843 d8 = 0.68 nd5 =1.83481 νd5 =42.71
9 = -58.807 (非球面) d9 = (可変)
10= ∞ (絞り) d10= 0.10
11= 5.586 (非球面) d11= 2.70 nd6 =1.58913 νd6 =61.14
12= -11.262 (非球面) d12= 0.10
13= 5.436 d13= 1.38 nd7 =1.59201 νd7 =67.02
14= 13.074 d14= 0.80 nd8 =2.00069 νd8 =25.46
15= 3.469 d15= (可変)
16= 19.614 (非球面) d16= 2.07 nd9 =1.74330 νd9 =49.33
17= -26.892 d17= (可変)
18= ∞ d18= 0.40 nd10=1.54771 νd10=62.84
19= ∞ d19= 0.50
20= ∞ d20= 0.50 nd11=1.51633 νd11=64.14
21= ∞ d21= 0.36
22= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.17672×10-4
6 = -5.32946×10-6
8 = 7.95875×10-8
10= -5.34232×10-10
第6面
= 0.000
4 = 1.20203×10-4
6 = 2.54566×10-5
8 = -1.22695×10-6
10= 2.02973×10-8
第9面
= 19.659
4 = -2.47017×10-4
6 = -1.58699×10-6
8 = -1.04315×10-7
10= 0
第11面
= -0.000
4 = -8.71078×10-4
6 = -4.22508×10-7
8 = -1.92565×10-6
10= 3.14754×10-7
第12面
= 0.000
4 = 5.15823×10-4
6 = 1.00484×10-5
8 = -2.82400×10-6
10= 4.47946×10-7
第16面
= 0.000
4 = 6.80361×10-6
6 = 1.09868×10-5
8 = -3.72817×10-7
10= 5.90895×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.10 4.44 4.93
2ω(°) 80.12 35.18 17.61
4 0.72 5.37 13.24
9 10.83 3.84 0.65
15 2.75 8.06 10.08
17 2.86 3.05 2.97 。

実施例5
1 = 25.173 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 16.537 d2 = 0.20
3 = 18.252 d3 = 3.06 nd2 =1.88300 νd2 =40.76
4 = -4161.584 d4 = (可変)
5 = -44.093 (非球面) d5 = 0.80 nd3 =1.83481 νd3 =42.71
6 = 6.129 (非球面) d6 = 2.67
7 = -897.611 d7 = 1.86 nd4 =1.92286 νd4 =18.90
8 = -16.194 d8 = 0.68 nd5 =1.83481 νd5 =42.71
9 = -75.584 (非球面) d9 = (可変)
10= ∞ (絞り) d10= 0.10
11= 5.515 (非球面) d11= 2.70 nd6 =1.58913 νd6 =61.14
12= -10.975 (非球面) d12= 0.10
13= 5.494 d13= 1.36 nd7 =1.59201 νd7 =67.02
14= 12.850 d14= 0.80 nd8 =2.00069 νd8 =25.46
15= 3.429 d15= (可変)
16= 19.614 (非球面) d16= 2.07 nd9 =1.74330 νd9 =49.33
17= -27.158 d17= (可変)
18= ∞ d18= 0.40 nd10 =1.54771 νd10=62.84
19= ∞ d19= 0.50
20= ∞ d20= 0.50 nd11 =1.51633 νd11=64.14
21= ∞ d21= 0.36
22= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.01152×10-4
6 = -5.53549×10-6
8 = 1.09307×10-7
10= -9.22389×10-10
第6面
= 0.000
4 = 1.24289 ×10-4
6 = 2.52204 ×10-5
8 = -1.55015 ×10-6
10= 3.87174 ×10-8
第9面
= 15.880
4 = -2.56363×10-4
6 = 3.83459×10-7
8 = -1.74921×10-7
10= 0
第11面
= -0.000
4 = -9.56239×10-4
6 = -9.52999×10-6
8 = -3.92591×10-7
10= 1.39818×10-7
第12面
= 0.000
4 = 4.88481×10-4
6 = -6.29539×10-6
8 = 4.03797×10-7
10= 1.15552×10-7
第16面
= 0.000
4 = 3.74250×10-5
6 = 1.03247×10-5
8 = -3.43630×10-7
10= 5.32503×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.11 4.48 4.93
2ω(°) 80.15 35.27 17.62
4 0.72 5.21 13.32
9 11.01 3.94 0.73
15 2.77 8.18 10.05
17 2.83 3.00 2.97 。

実施例6
1 = 23.739 d1 = 0.81 nd1 =1.94595 νd1 =17.98
2 = 16.355 d2 = 0.21
3 = 18.106 d3 = 3.01 nd2 =1.88300 νd2 =40.76
4 = 846.562 d4 = (可変)
5 = -52.113 (非球面) d5 = 0.82 nd3 =1.88300 νd3 =40.76
6 = 6.190 (非球面) d6 = 2.65
7 = -235.098 d7 = 1.86 nd4 =1.94595 νd4 =17.98
8 = -15.562 d8 = 0.09
9 = -14.315 d9 = 0.80 nd5 =1.88300 νd5 =40.76
10= -41.886 (非球面) d10= (可変)
11= ∞ (絞り) d11= 0.10
12= 5.555 (非球面) d12= 2.70 nd6 =1.58913 νd6 =61.14
13= -10.974 (非球面) d13= 0.10
14= 5.438 d14= 1.38 nd7 =1.59201 νd7 =67.02
15= 13.503 d15= 0.80 nd8 =2.00069 νd8 =25.46
16= 3.433 d16= (可変)
17= 18.727 (非球面) d17= 2.07 nd9 =1.74330 νd9 =49.33
18= -29.343 d18= (可変)
19= ∞ d19= 0.40 nd10=1.54771 νd10=62.84
20= ∞ d20= 0.50
21= ∞ d21= 0.50 nd11=1.51633 νd11=64.14
22= ∞ d22= 0.37
23= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.02790×10-4
6 = -6.36728×10-6
8 = 1.15320×10-7
10= -8.37226×10-10
第6面
= 0.000
4 = 8.20642×10-5
6 = 2.47151×10-5
8 = -1.53936×10-6
10= 2.64133×10-8
第10面
= 6.008
4 = -2.06900×10-4
6 = -2.13247×10-6
8 = 1.58746×10-8
10= 0
第12面
= -0.000
4 = -9.21086×10-4
6 = -6.31048×10-6
8 = -1.81135×10-6
10= 2.67397×10-7
第13面
= 0.000
4 = 4.87773×10-4
6 = 3.10768×10-6
8 = -2.75976×10-6
10= 3.94656×10-7
第17面
= 0.000
4 = 2.23802×10-5
6 = 1.07437×10-5
8 = -3.48358×10-7
10= 5.42112×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.12 4.57 4.94
2ω(°) 80.16 35.42 17.62
4 0.72 4.78 13.23
10 10.77 3.71 0.66
16 2.77 8.47 10.05
18 2.85 3.06 2.96 。

実施例7
1 = 23.679 d1 = 0.81 nd1 =1.94595 νd1 =17.98
2 = 16.309 d2 = 0.20
3 = 17.975 d3 = 3.03 nd2 =1.88300 νd2 =40.76
4 = 652.312 d4 = (可変)
5 = -57.513 (非球面) d5 = 0.82 nd3 =1.88300 νd3 =40.76
6 = 6.169 (非球面) d6 = 2.64
7 = -172.005 d7 = 1.92 nd4 =2.10227 νd4 =17.10
8 = -18.412 d8 = 0.11
9 = -15.586 d9 = 0.80 nd5 =1.88300 νd5 =40.76
10= -47.805 (非球面) d10= (可変)
11= ∞ (絞り) d11= 0.10
12= 5.447 (非球面) d12= 2.70 nd6 =1.58913 νd6 =61.14
13= -10.900 (非球面) d13= 0.10
14= 5.577 d14= 1.35 nd7 =1.59201 νd7 =67.02
15= 13.324 d15= 0.80 nd8 =2.00069 νd8 =25.46
16= 3.452 d16= (可変)
17= 19.617 (非球面) d17= 2.07 nd9 =1.74330 νd9 =49.33
18= -26.823 d18= (可変)
19= ∞ d19= 0.40 nd10=1.54771 νd10=62.84
20= ∞ d20= 0.50
21= ∞ d21= 0.50 nd11=1.51633 νd11=64.14
22= ∞ d22= 0.36
23= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.08796×10-4
6 = -7.65961×10-6
8 = 1.42959×10-7
10= -1.03287×10-9
第6面
= 0.000
4 = 9.25739×10-5
6 = 2.37928×10-5
8 = -1.56581×10-6
10= 2.33770×10-8
第10面
= 13.662
4 = -2.04807×10-4
6 = -2.93679×10-6
8 = 7.51268×10-8
10=
第12面
= -0.000
4 = -9.47047×10-4
6 = -9.73137×10-6
8 = -9.44664×10-7
10= 2.30496×10-7
第13面
= 0.000
4 = 5.55221×10-4
6 = -3.16660×10-6
8 = -3.51784×10-7
10= 2.04855×10-7
第17面
= 0.000
4 = 2.11262×10-5
6 = 1.08100×10-5
8 = -3.55468×10-7
10= 5.58942×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.11 4.57 4.91
2ω(°) 80.18 35.47 17.61
4 0.72 4.59 13.25
10 10.75 3.70 0.68
16 2.76 8.58 9.98
18 2.86 3.06 2.97 。

実施例8
1 = 23.572 d1 = 0.81 nd1 =1.94595 νd1 =17.98
2 = 16.325 d2 = 0.19
3 = 17.924 d3 = 3.08 nd2 =1.88300 νd2 =40.76
4 = 481.040 d4 = (可変)
5 = -63.672 (非球面) d5 = 0.82 nd3 =1.88300 νd3 =40.76
6 = 6.059 (非球面) d6 = 2.72
7 = -238.294 d7 = 1.87 nd4 =2.10227 νd4 =17.10
8 = -19.462 d8 = 0.80 nd5 =1.88300 νd5 =40.76
9 = -90.854 (非球面) d9 = (可変)
10= ∞ (絞り) d10= 0.10
11= 5.548 (非球面) d11= 2.70 nd6 =1.58913 νd6 =61.14
12= -11.217 (非球面) d12= 0.10
13= 5.502 d13= 1.39 nd7 =1.59201 νd7 =67.02
14= 13.285 d14= 0.80 nd8 =2.00069 νd8 =25.46
15= 3.476 d15= (可変)
16= 19.903 (非球面) d16= 2.07 nd9 =1.74330 νd9 =49.33
17= -26.017 d17= (可変)
18= ∞ d18= 0.40 nd10=1.54771 νd10=62.84
19= ∞ d19= 0.50
20= ∞ d20= 0.50 nd11=1.51633 νd11=64.14
21= ∞ d21= 0.36
22= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.11173×10-4
6 = -8.21005×10-6
8 = 1.62208×10-7
10= -1.25817×10-9
第6面
= 0.000
4 = 1.55260×10-4
6 = 2.35459×10-5
8 = -1.47843×10-6
10= 2.40340×10-8
第9面
= 13.988
4 = -2.46764×10-4
6 = -3.00682×10-6
8 = 1.43307×10-8
10= 0
第11面
= -0.000
4 = -8.70152×10-4
6 = 2.07452×10-6
8 = -2.51898×10-6
10= 3.52050×10-7
第12面
= 0.000
4 = 5.43211×10-4
6 = 1.77046×10-5
8 = -4.53251×10-6
10= 5.84184×10-7
第16面
= 0.000
4 = 1.55829×10-5
6 = 1.00684×10-5
8 = -3.25292×10-7
10= 5.11814×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.11 4.51 4.90
2ω(°) 80.16 35.27 17.59
4 0.72 5.02 13.27
9 10.82 3.84 0.72
15 2.75 8.31 9.95
17 2.86 3.04 2.97 。

実施例9
1 = 21.524 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 15.990 d2 = 0.25
3 = 18.038 d3 = 3.04 nd2 =1.80400 νd2 =46.57
4 = 1821.002 d4 = (可変)
5 = -46.956 (非球面) d5 = 0.79 nd3 =1.80610 νd3 =40.92
6 = 5.863 (非球面) d6 = 2.76
7 = -178.037 d7 = 1.90 nd4 =1.92286 νd4 =18.90
8 = -14.340 d8 = 0.67 nd5 =1.80610 νd5 =40.92
9 = -72.767 (非球面) d9 = (可変)
10= ∞ (絞り) d10= 0.10
11= 5.470 (非球面) d11= 2.70 nd6 =1.58913 νd6 =61.14
12= -11.162 (非球面) d12= 0.10
13= 5.576 d13= 1.36 nd7 =1.59201 νd7 =67.02
14= 13.756 d14= 0.80 nd8 =2.00069 νd8 =25.46
15= 3.493 d15= (可変)
16= 19.520 (非球面) d16= 2.07 nd9 = 1.74330 νd9 =49.33
17= -27.248 d17= (可変)
18= ∞ d18= 0.40 nd10= 1.54771 νd10=62.84
19= ∞ d19= 0.50
20= ∞ d20= 0.50 nd11= 1.51633 νd11=64.14
21= ∞ d21= 0.36
22= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.34682×10-4
6 = -7.08038×10-6
8 = 1.25390×10-7
10= -9.36786×10-10
第6面
= 0.000
4 = 1.52904×10-4
6 = 2.55798×10-5
8 = -1.41637×10-6
10= 2.87416×10-8
第9面
= 0.000
4 = -2.74195×10-4
6 = -1.46147×10-6
8 = -1.44866×10-7
10= 0
第12面
= -0.000
4 = -9.07011×10-4
6 = 6.10900×10-6
8 = -3.38866×10-6
10= 4.78449×10-7
第13面
= 0.000
4 = 5.63212×10-4
6 = 2.36073×10-5
8 = -6.03623×10-6
10= 8.08280×10-7
第17面
= 0.000
4 = 1.27541×10-5
6 = 1.11474×10-5
8 = -3.87618×10-7
10= 6.24145×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.11 4.45 4.93
2ω(°) 80.13 35.19 17.61
4 0.72 5.33 13.27
9 10.94 3.89 0.69
15 2.76 8.08 10.07
17 2.86 3.05 2.97 。

実施例10
1 = 21.929 d1 = 0.81 nd1 =1.94595 νd1 =17.98
2 = 15.886 d2 = 3.02 nd2 =1.83481 νd2 =42.71
3 = 87.110 d3 = (可変)
4 = -603.712 (非球面) d4 = 0.82 nd3 =1.88300 νd3 =40.76
5 = 5.962 (非球面) d5 = 2.72
6 = 108.526 d6 = 1.76 nd4 =2.10227 νd4 =17.10
7 = -23.243 d7 = 0.16
8 = -17.863 d8 = 0.80 nd5 =1.88300 νd5 =40.76
9 = -201.302 (非球面) d9 = (可変)
10= 絞り d10= 0.10
11= 5.737 (非球面) d11= 2.70 nd6 =1.58913 νd6 =61.14
12= -10.526 (非球面) d12= 0.10
13= 5.184 d13= 1.42 nd7 =1.59201 νd7 =67.02
14= 12.685 d14= 0.80 nd8 =2.00069 νd8 =25.46
15= 3.389 d15= (可変)
16= 28.421 (非球面) d16= 2.07 nd9 =1.74330 νd9 =49.33
17= -19.743 d17= (可変)
18= ∞ d18= 0.40 nd10=1.54771 νd10=62.84
19= ∞ d19= 0.50
20= ∞ d20= 0.50 nd11=1.51633 νd11=64.14
21= ∞ d21= 0.35
22= ∞ (像面)
非球面係数
第4面
= 0.000
4 = 1.17638×10-4
6 = -1.87398×10-6
8 = -1.21415×10-8
10= 3.25687×10-10
第5面
= 0.000
4 = 9.74365×10-5
6 = 1.86507×10-5
8 = -6.27883×10-7
10= -6.71787×10-9
第9面
= 300.320
4 = -2.68737×10-4
6 = -2.18216×10-8
8 = -4.79877×10-8
10= 0
第11面
= -0.000
4 = -9.41932×10-4
6 = -1.82332×10-5
8 = -9.47875×10-7
10= 1.96272×10-7
第12面
= 0.000
4 = 4.34113×10-4
6 = -1.86904×10-5
8 = -3.97394×10-7
10= 1.70317×10-7
第16面
= 0.000
4 = 2.98825×10-5
6 = 7.00636×10-6
8 = -2.06857×10-7
10= 3.08660×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.03 4.93 4.99
2ω(°) 80.21 36.18 17.76
3 0.74 0.99 13.31
9 11.18 3.27 0.89
15 2.71 9.95 10.21
17 2.64 2.99 2.99 。

実施例11
1 = 19.964 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 15.354 d2 = 0.22
3 = 16.981 d3 = 3.10 nd2 =1.76802 νd2 =49.24
4 = 321.532 d4 = (可変)
5 = -79.400 (非球面) d5 = 0.82 nd3 =1.88300 νd3 =40.76
6 = 6.026 (非球面) d6 = 2.65
7 = -512.296 d7 = 2.00 nd4 =2.00170 νd4 =20.64
8 = -14.190 d8 = 0.13
9 = -10.837 (非球面) d9 = 0.67 nd5 =1.81600 νd5 =46.62
10= -38.820 d10= (可変)
11= ∞ (絞り) d11= 0.10
12= 5.567 (非球面) d12= 2.70 nd6 =1.58913 νd6 =61.14
13= -10.835 (非球面) d13= 0.10
14= 5.426 d14= 1.39 nd7 =1.59201 νd7 =67.02
15= 13.374 d15= 0.80 nd8 =2.00069 νd8 =25.46
16= 3.434 d16= (可変)
17= 21.181 (非球面) d17= 2.07 nd9 =1.74330 νd9 =49.33
18= -23.592 d18= (可変)
19= ∞ d19= 0.40 nd10=1.54771 νd10=62.84
20= ∞ d20= 0.50
21= ∞ d21= 0.50 nd11=1.51633 νd11=64.14
22= ∞ d22= 0.36
23= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 1.81913×10-4
6 = -7.45514×10-6
8 = 1.16696×10-7
10= -6.24258×10-10
第6面
= 0.000
4 = 3.02384×10-5
6 = 2.11070×10-5
8 = -1.27196×10-6
10= 4.98377×10-9
第9面
= -0.063
4 = 2.66985×10-4
6 = 5.08873×10-6
8 = -1.46937×10-7
10= 0
第12面
= -0.000
4 = -9.20807×10-4
6 = -4.91248×10-6
8 = -3.02284×10-6
10= 3.84485×10-7
第13面
= 0.000
4 = 5.02906×10-4
6 = 7.33058×10-6
8 = -5.38763×10-6
10= 6.41876×10-7
第17面
= 0.000
4 = 2.80646×10-6
6 = 1.03678×10-5
8 = -3.21345×10-7
10= 4.86255×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.09 4.69 4.91
2ω(°) 80.15 35.68 17.65
4 0.73 3.65 13.26
10 10.76 3.56 0.77
16 2.74 9.08 10.01
18 2.81 3.04 2.97 。

実施例12
1 = 20.035 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 15.388 d2 = 0.21
3 = 16.987 d3 = 3.10 nd2 =1.76802 νd2 =49.24
4 = 322.739 d4 = (可変)
5 = -67.042 (非球面) d5 = 0.82 nd3 =1.88300 νd3 =40.76
6 = 6.104 (非球面) d6 = 2.63
7 = -553.055 d7 = 2.02 nd4 =2.00170 νd4 =20.64
8 = -14.110 d8 = 0.17
9 = -11.468 (非球面) d9 = 0.67 nd5 =1.81600 νd5 =46.62
10= -48.428 (非球面) d10= (可変)
11= ∞ (絞り) d11= 0.10
12= 5.592 (非球面) d12= 2.70 nd6 =1.58913 νd6 =61.14
13= -10.777 (非球面) d13= 0.10
14= 5.381 d14= 1.39 nd7 =1.59201 νd7 =67.02
15= 13.633 d15= 0.80 nd8 =2.00069 νd8 =25.46
16= 3.428 d16= (可変)
17= 21.377 (非球面) d17= 2.07 nd9 =1.74330 νd9 =49.33
18= -23.467 d18= (可変)
19= ∞ d19= 0.40 nd10=1.54771 νd10=62.84
20= ∞ d20= 0.50
21= ∞ d21= 0.50 nd11=1.51633 νd11=64.14
22= ∞ d22= 0.36
23= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.02227×10-4
6 = -8.03922×10-6
8 = 1.51641×10-7
10= -1.06462×10-9
第6面
= 0.000
4 = 3.98938×10-5
6 = 1.96692×10-5
8 = -1.68354×10-6
10= 2.76679×10-8
第9面
= -0.063
4 = 2.07247×10-5
6 = -3.77371×10-6
8 = 2.63786×10-7
10= 0
第10面
= -0.897
4 = -2.19314×10-4
6 = -5.31018×10-6
8 = 3.15789×10-7
10= 0
第12面
= -0.000
4 = -9.35871×10-4
6 = -1.13973×10-5
8 = -7.24228×10-7
10= 1.19444×10-7
第13面
= 0.000
4 = 4.83658×10-4
6 = -9.01954×10-6
8 = 1.55326×10-7
10= 4.11169×10-8
第17面
= 0.000
4 = 8.51281×10-6
6 = 9.83773×10-6
8 = -3.17684×10-7
10= 5.22025×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.09 4.69 4.92
2ω(°) 80.14 35.67 17.64
4 0.73 3.64 13.26
10 10.77 3.56 0.77
16 2.74 9.08 10.02
18 2.80 3.03 2.97 。

実施例13
1 = 24.847 d1 = 0.80 nd1 =1.94595 νd1 =17.98
2 = 16.542 d2 = 0.29
3 = 18.208 d3 = 3.02 nd2 =1.88300 νd2 =40.76
4 = 3582.698 d4 = (可変)
5 = -43.179 (非球面) d5 = 0.79 nd3 =1.80610 νd3 =40.92
6 = 5.891 (非球面) d6 = 2.64
7 =-157590.062 d7 = 1.91 nd4 =1.94595 νd4 =17.98
8 = -15.395 d8 = 0.67 nd5 =1.80610 νd5 =40.92
9 = -175.340 (非球面) d9 = (可変)
10= ∞ (絞り) d10= 0.10
11= 5.417 (非球面) d11= 2.70 nd6 =1.58913 νd6 =61.14
12= -10.144 (非球面) d12= (可変)
13= 5.942 d13= 1.42 nd7 =1.59201 νd7 =67.02
14= 24.078 d14= 0.80 nd8 =2.00069 νd8 =25.46
15= 3.618 d15= (可変)
16= 17.723 (非球面) d16= 2.07 nd9 =1.74330 νd9 =49.33
17= -30.024 d17= (可変)
18= ∞ d18= 0.40 nd10=1.54771 νd10=62.84
19= ∞ d19= 0.50
20= ∞ d20= 0.50 nd11=1.51633 νd11=64.14
21= ∞ d21= 0.36
22= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.41650×10-4
6 = -7.80486×10-6
8 = 1.53963×10-7
10= -1.21087×10-9
第6面
= 0.000
4 = 1.85981×10-4
6 = 2.55754×10-5
8 = -1.92596×10-6
10= 3.81224×10-8
第9面
= -4.077
4 = -3.33609×10-4
6 = 6.19746×10-6
8 = -2.40693×10-7
10= 4.21649×10-10
第11面
= -0.000
4 = -1.00640×10-3
6 = 2.89626×10-5
8 = -5.10096×10-6
10= 7.01287×10-7
第12面
= 0.000
4 = 6.92460×10-4
6 = 4.80286×10-5
8 = -9.42465×10-6
10= 1.22823×10-6
第16面
= 0.000
4 = 3.67077×10-5
6 = 1.07760×10-5
8 = -3.84914×10-7
10= 6.38037×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.00 24.28
NO 3.23 4.54 5.07
2ω(°) 80.19 35.07 17.60
4 0.71 5.09 13.51
9 10.96 3.46 0.85
12 0.20 0.57 0.40
15 2.75 7.12 9.46
17 2.80 2.94 2.96 。

実施例14
1 = 19.959 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 15.153 d2 = 0.19
3 = 16.567 d3 = 3.19 nd2 =1.76802 νd2 =49.24
4 = 328.834 d4 = (可変)
5 = -66.705 (非球面) d5 = 0.82 nd3 =1.88300 νd3 =40.76
6 = 6.014 (非球面) d6 = 2.67
7 = -97.974 d7 = 1.95 nd4 =2.00170 νd4 =20.64
8 = -12.905 d8 = 0.12
9 = -10.476 (非球面) d9 = 0.67 nd5 =1.81600 νd5 =46.62
10= -36.471 d10= (可変)
11= ∞ (絞り) d11= 0.10
12= 5.598 (非球面) d12= 2.70 nd6 =1.58913 νd6 =61.14
13= -10.200 (非球面) d13= (可変)
14= 5.893 d14= 1.42 nd7 =1.59201 νd7 =67.02
15= 20.687 d15= 0.80 nd8 =2.00069 νd8 =25.46
16= 3.680 d16= (可変)
17= 18.589 (非球面) d17= 2.07 nd9 =1.74330 νd9 =49.33
18= -26.724 d18= (可変)
19= ∞ d19= 0.40 nd10=1.54771 νd10=62.84
20= ∞ d20= 0.50
21= ∞ d21= 0.50 nd11=1.51633 νd11=64.14
22= ∞ d22= 0.36
23= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 1.92323×10-4
6 = -4.86162×10-6
8 = 5.55922×10-8
10= -2.22548×10-10
第6面
= 0.000
4 = 9.52228×10-5
6 = 2.45561×10-5
8 = -1.19859×10-6
10= 6.02161×10-9
第9面
= 0.020
4 = 3.06753×10-4
6 = -6.37184×10-7
8 = 2.66117×10-8
10= 0
第12面
= -0.000
4 = -9.26843×10-4
6 = 3.04592×10-5
8 = -6.90151×10-6
10= 7.46676×10-7
第13面
= 0.000
4 = 6.28294×10-4
6 = 5.21648×10-5
8 = -1.31953×10-5
10= 1.46113×10-6
第17面
= 0.000
4 = -6.81284×10-6
6 = 1.02822×10-5
8 = -3.09403×10-7
10= 4.47496×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.13 4.50 4.92
2ω(°) 80.23 35.24 17.60
4 0.72 4.62 13.21
10 10.56 3.30 0.78
13 0.23 0.57 0.43
16 2.76 7.67 9.68
18 2.86 3.00 2.96 。

実施例15
1 = 25.601 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 16.493 d2 = 0.20
3 = 18.075 d3 = 3.23 nd2 =1.88300 νd2 =40.76
4 = -1234.242 d4 = (可変)
5 = -40.268 (非球面) d5 = 0.80 nd3 =1.83481 νd3 =42.71
6 = 6.022 (非球面) d6 = 2.62
7 = -407.214 d7 = 1.83 nd4 =1.92286 νd4 =18.90
8 = -15.866 d8 = 0.68 nd5 =1.83481 νd5 =42.71
9 = -66.674 (非球面) d9 = (可変)
10= ∞ (絞り) d10= 0.10
11= 5.520 (非球面) d11= 2.70 nd6 =1.58913 νd6 =61.14
12= -9.949 (非球面) d12= (可変)
13= 6.163 d13= 1.35 nd7 =1.59201 νd7 =67.02
14= 18.256 d14= 0.80 nd8 =2.00069 νd8 =25.46
15= 3.675 d15= (可変)
16= 15.963 (非球面) d16= 2.07 nd9 =1.74330 νd9 =49.33
17= -38.145 d17= (可変)
18= ∞ d18= 0.40 nd10=1.54771 νd10=62.84
19= ∞ d19= 0.50
20= ∞ d20= 0.50 nd11=1.51633 νd11=64.14
21= ∞ d21= 0.37
22= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.05163×10-4
6 = -3.37326×10-6
8 = 4.45283×10-8
10= -3.62203×10-10
第6面
= 0.000
4 = 1.47479×10-4
6 = 2.72737×10-5
8 = -1.43607×10-6
10= 3.29097×10-8
第9面
= 17.341
4 = -2.82382×10-4
6 = 3.16842×10-6
8 = -2.28861×10-7
10= 0
第11面
= -0.000
4 = -1.03741×10-3
6 = 2.15062×10-5
8 = -6.81878×10-6
10= 7.72131×10-7
第12面
= 0.000
4 = 5.90361×10-4
6 = 4.12917×10-5
8 = -1.28212×10-5
10= 1.50309×10-6
第16面
= 0.000
4 = 2.50156×10-5
6 = 1.12904×10-5
8 = -3.91013×10-7
10= 6.07074×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.00 24.29
NO 3.13 4.24 4.94
2ω(°) 80.27 34.68 17.58
4 0.71 6.26 13.33
9 10.81 3.63 0.72
12 0.27 0.57 0.42
15 2.76 6.65 9.78
17 2.83 3.00 2.96 。

実施例16
1 = 21.193 d1 = 0.81 nd1 =1.94595 νd1 =17.98
2 = 15.192 d2 = 3.09 nd2 =1.83481 νd2 =42.71
3 = 81.748 d3 = (可変)
4 = -603.712 (非球面) d4 = 0.82 nd3 =1.88300 νd3 =40.76
5 = 5.982 (非球面) d5 = 2.78
6 = -237.176 d6 = 1.71 nd4 =2.10227 νd4 =17.10
7 = -18.101 d7 = 0.09
8 = -15.997 d8 = 0.80 nd5 =1.88300 νd5 =40.76
9 = -168.381 (非球面) d9 = (可変)
10= ∞ (絞り) d10= 0.10
11= 5.812 (非球面) d11= 2.70 nd6 =1.58913 νd6 =61.14
12= -10.295 (非球面) d12= (可変)
13= 5.387 d13= 1.54 nd7 =1.59201 νd7 =67.02
14= 19.283 d14= 0.80 nd8 =2.00069 νd8 =25.46
15= 3.554 d15= (可変)
16= 24.991 (非球面) d16= 2.07 nd9 =1.74330 νd9 =49.33
17= -19.483 d17= (可変)
18= ∞ d18= 0.40 nd10=1.54771 νd10=62.84
19= ∞ d19= 0.50
20= ∞ d20= 0.50 nd11=1.51633 νd11=64.14
21= ∞ d21= 0.35
22= ∞ (像面)
非球面係数
第4面
= 0.000
4 = 1.21970×10-4
6 = -1.08084×10-6
8 = -1.14600×10-8
10= 1.97222×10-10
第5面
= 0.000
4 = 1.75555×10-4
6 = 2.16172×10-5
8 = -8.70023×10-7
10= 1.24313×10-8
第9面
= 410.383
4 = -2.79644×10-4
6 = 4.80703×10-6
8 = -2.06609×10-7
10= 0
第11面
= -0.000
4 = -8.72572×10-4
6 = 1.99478×10-5
8 = -4.51334×10-6
10= 5.24324×10-7
第12面
= 0.000
4 = 5.50797×10-4
6 = 2.74834×10-5
8 = -6.52190×10-6
10= 7.69571×10-7
第16面
= 0.000
4 = 1.78974×10-5
6 = 7.85039×10-6
8 = -2.65852×10-7
10= 4.28825×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.08 4.93 4.91
2ω(°) 80.33 36.11 17.66
3 0.74 1.00 13.34
9 10.94 3.05 0.89
12 0.16 0.57 0.55
15 2.75 9.30 9.26
17 2.70 3.00 2.99 。

実施例17
1 = 24.005 d1 = 0.80 nd1 =1.92286 νd1 =18.90
2 = 15.730 d2 = 0.18
3 = 16.798 d3 = 3.12 nd2 =1.88300 νd2 =40.76
4 = 320.063 d4 = (可変)
5 = -63.961 (非球面) d5 = 0.80 nd3 =1.83481 νd3 =42.71
6 = 5.769 (非球面) d6 = 2.79
7 = -110.876 d7 = 1.74 nd4 =1.94595 νd4 =17.98
8 = -15.935 d8 = 0.08
9 = -14.478 d9 = 0.68 nd5 =1.83481 νd5 =42.71
10= -43.168 (非球面) d10= (可変)
11= ∞ (絞り) d11= 0.10
12= 5.627 (非球面) d12= 2.70 nd6 =1.58913 νd6 =61.14
13= -9.958 (非球面) d13= (可変)
14= 6.057 d14= 1.36 nd7 =1.59201 νd7 =67.02
15= 18.994 d15= 0.80 nd8 =2.00069 νd8 =25.46
16= 3.702 d16= (可変)
17= 16.931 (非球面) d17= 2.07 nd9 =1.74330 νd9 =49.33
18= -33.088 d18= (可変)
19= ∞ d19= 0.40 nd10=1.54771 νd10=62.84
20= ∞ d20= 0.50
21= ∞ d21= 0.50 nd11=1.51633 νd11=64.14
22= ∞ d22= 0.37
23= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.20322×10-4
6 = -8.05410×10-6
8 = 1.50663×10-7
10= -1.08544×10-9
第6面
= 0.000
4 = 1.19766×10-4
6 = 2.71353×10-5
8 = -1.79261×10-6
10= 2.50985×10-8
第10面
= 4.763
4 = -2.60503×10-4
6 = -1.23050×10-6
8 = 2.35967×10-8
10= 0
第12面
= -0.000
4 = -9.80569×10-4
6 = 1.94848×10-5
8 = -5.98539×10-6
10= 6.24092×10-7
第13面
= 0.000
4 = 5.74317×10-4
6 = 3.99276×10-5
8 = -1.14945×10-5
10= 1.22736×10-6
第17面
= 0.000
4 = 8.72792×10-7
6 = 1.10477×10-5
8 = -3.58880×10-7
10= 5.71191×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.29
NO 3.14 4.56 4.90
2ω(°) 80.18 35.40 17.59
4 0.73 4.26 13.29
10 10.70 3.25 0.68
13 0.29 0.58 0.46
16 2.76 7.98 9.63
18 2.86 3.05 2.96 。

実施例18
1 = 17.636 (非球面) d1 = 3.46 nd1 =1.49700 νd1 =81.54
2 = 1651.373 (非球面) d2 = (可変)
3 = -89.845 (非球面) d3 = 0.82 nd2 =1.88300 νd2 =40.76
4 = 6.252 (非球面) d4 = 2.41
5 = 36.538 d5 = 2.14 nd3 =1.94595 νd3 =17.98
6 = -20.686 d6 = 0.20
7 = -15.473 d7 = 0.70 nd4 =1.88300 νd4 =40.76
8 = -705.490 (非球面) d8 = (可変)
9 = ∞ (絞り) d9 = 0.10
10= 5.371 (非球面) d10= 2.70 nd5 =1.58913 νd5 =61.14
11= -12.630 (非球面) d11= 0.10
12= 4.840 d12= 1.30 nd6 =1.59201 νd6 =67.02
13= 8.993 d13= 0.80 nd7 =2.00170 νd7 =20.64
14= 3.169 d14= (可変)
15= -175.389 (非球面) d15= 2.05 nd8 =2.00170 νd8 =20.64
16= -15.339 d16= (可変)
17= ∞ d17= 0.40 nd9 =1.54771 νd9 =62.84
18= ∞ d18= 0.50
19= ∞ d19= 0.50 nd10=1.51633 νd10=64.14
20= ∞ d20= 0.36
21= ∞ (像面)
非球面係数
第1面
= -0.000
4 = -9.36696×10-21
6 = -3.07965×10-7
8 = 1.40121×10-9
10= 8.27669×10-11
第2面
= -0.000
4 = 1.06767×10-5
6 = -7.16715×10-7
8 = 1.70324×10-8
10= -3.34505×10-11
第3面
= 0.000
4 = 4.52338×10-5
6 = 1.74362×10-6
8 = -8.20880×10-8
10= 1.09382×10-9
第4面
= 0.000
4 = -5.26435×10-5
6 = 9.38403×10-6
8 = -4.26308×10-7
10= 1.16873×10-8
第8面
= -3.680
4 = -2.58689×10-4
6 = 7.09681×10-6
8 = -7.55479×10-7
10= 1.66474×10-8
第10面
= -0.000
4 = -8.26225×10-4
6 = 2.42650×10-5
8 = -2.03186×10-6
10= 2.44772×10-7
第11面
= 0.000
4 = 6.51537×10-4
6 = 4.56976×10-5
8 = -3.58200×10-6
10= 4.02796×10-7
第15面
= 0.000
4 = 8.11366×10-5
6 = 1.01901×10-5
8 = -3.84282×10-7
10= 5.33610×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 11.98 24.29
NO 3.03 4.41 5.05
2ω(°) 81.54 36.13 18.37
2 0.72 4.69 12.81
8 11.55 4.15 0.93
14 2.78 7.77 10.07
16 2.78 2.99 3.33 。

実施例19
1 = 15.057 (非球面) d1 = 3.36 nd1 =1.43875 νd1 =94.93
2 = 16740.605 (非球面) d2 = (可変)
3 = -109.482 (非球面) d3 = 0.82 nd2 =1.88300 νd2 =40.76
4 = 5.865 (非球面) d4 = 2.48
5 = 29.434 d5 = 2.25 nd3 =1.94595 νd3 =17.98
6 = -21.699 d6 = 0.26
7 = -15.455 d7 = 0.70 nd4 =1.88300 νd4 =40.76
8 = 61494.611 (非球面) d8 = (可変)
9 = ∞ (絞り) d9 = 0.10
10= 5.519 (非球面) d10= 2.70 nd5 =1.58913 νd5 =61.14
11= -12.178 (非球面) d11= 0.10
12= 4.874 d12= 1.36 nd6 =1.59201 νd6 =67.02
13= 9.784 d13= 0.80 nd7 =2.00170 νd7 =20.64
14= 3.227 d14= (可変)
15= -455.052 (非球面) d15= 2.04 nd8 =2.00170 νd8 =20.64
16= -15.796 d16= (可変)
17= ∞ d17= 0.40 nd9 =1.54771 νd9 =62.84
18= ∞ d18= 0.50
19= ∞ d19= 0.50 nd10=1.51633 νd10=64.14
20= ∞ d20= 0.36
21= ∞ (像面)
非球面係数
第1面
= -0.000
4 = -9.36696×10-21
6 = -2.82322×10-7
8 = -3.32314×10-9
10= 9.80939×10-11
第2面
= -0.000
4 = 2.03046×10-5
6 = -8.63339×10-7
8 = 1.39119×10-8
10= -2.72606×10-11
第3面
= 0.000
4 = 1.45879×10-4
6 = -7.06884×10-6
8 = 1.23121×10-7
10= -5.62979×10-10
第4面
= 0.000
4 = -5.29316×10-5
6 = 3.56817×10-6
8 = -1.11723×10-6
10= 1.49013×10-8
第8面
= -3.680
4 = -2.43119×10-4
6 = 1.50423×10-6
8 = -8.73464×10-8
10= 2.80319×10-9
第10面
= -0.000
4 = -7.77230×10-4
6 = 1.47499×10-5
8 = -1.23145×10-6
10= 1.55776×10-7
第11面
= 0.000
4 = 6.35918×10-4
6 = 3.49158×10-5
8 = -2.91520×10-6
10= 2.80196×10-7
第15面
= 0.000
4 = 4.02871×10-5
6 = 1.18379×10-5
8 = -4.08960×10-7
10= 5.70846×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 11.98 24.29
NO 3.11 4.53 5.05
2ω(°) 81.61 36.13 18.35
2 0.72 4.72 12.77
8 11.25 4.14 0.96
14 2.79 7.94 9.79
16 2.84 2.99 3.34 。

実施例20
1 = 24.617 d1 = 0.80 nd1 =1.94595 νd1 =17.98
2 = 16.485 d2 = 0.34
3 = 18.513 d3 = 3.03 nd2 =1.88300 νd2 =40.76
4 = -1350.827 d4 = (可変)
5 = -39.777 (非球面) d5 = 0.79 nd3 =1.80610 νd3 =40.92
6 = 5.736 (非球面) d6 = 2.50
7 = 46.539 d7 = 1.93 nd4 =1.94595 νd4 =17.98
8 = -22.674 d8 = 0.64 nd5 =1.80610 νd5 =40.92
9 = 177.436 (非球面) d9 = (可変)
10= ∞ (絞り) d10= (可変)
11= 5.325 (非球面) d11= 2.70 nd6 =1.58913 νd6 =61.14
12= -9.884 (非球面) d12= 0.10
13= 6.305 d13= 1.41 nd7 =1.59201 νd7 =67.02
14= 18.239 d14= 0.80 nd8 =2.00069 νd8 =25.46
15= 3.616 d15= (可変)
16= 17.024 (非球面) d16= 2.07 nd9 =1.74330 νd9 =49.33
17= 34.757 d17= (可変)
18= ∞ d18= 0.40 nd10=1.54771 νd10=62.84
19= ∞ d19= 0.50
20= ∞ d20= 0.50 nd11=1.51633 νd11=64.14
21= ∞ d21= 0.37
22= ∞ (像面)
非球面係数
第5面
= 0.000
4 = 2.65294×10-4
6 = -4.86067×10-6
8 = -4.95916×10-8
10= 1.45582×10-9
第6面
= 0.000
4 = 1.22290×10-4
6 = 3.07865×10-5
8 = -1.23246×10-6
10= -2.75048×10-8
第9面
= -4.077
4 = -3.44903×10-4
6 = 4.47305×10-6
8 = -7.49149×10-7
10= 2.89043×10-8
第11面
= -0.000
4 = -1.06943×10-3
6 = 1.88431×10-5
8 = -3.97910×10-6
10= 3.05632×10-7
第12面
= 0.000
4 = 7.51908×10-4
6 = 1.59771×10-5
8 = -2.43151×10-6
10= 2.99982×10-7
第16面
= 0.000
4 = 2.22601×10-5
6 = 1.31566×10-5
8 = -4.73811×10-7
10= 7.81341×10-9
ズームデータ(∞)
WE ST TE
f(mm) 5.06 12.01 24.28
NO 3.07 4.72 5.05
2ω(°) 80.13 35.38 17.61
4 0.71 4.88 13.53
9 9.86 4.07 0.85
10 1.54 0.22 0.28
15 2.73 8.32 9.66
17 2.75 2.95 2.96 。

以上の実施例1〜20の無限遠物点合焦時の収差図をそれぞれ図21〜図40に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端における球面収差、非点収差、歪曲収差、倍率色収差を示す。各図中、“FIY”は最大像高を示す。
    x = (y2/ R) / [1+ {1- (K + 1) (y / r)2}1/2]
                                    + AFouryFour+ A6y6+ A8y8+ ATenyTen
  Where r is the paraxial radius of curvature, K is the cone coefficient, AFour, A6, A8, ATenAre the 4th, 6th, 8th and 10th order aspherical coefficients, respectively.

Example 1
r1= 19.996 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 15.394 d2= 0.26
rThree= 17.278 dThree= 3.11 nd2= 1.76802 νd2= 49.24
rFour= 534.344 dFour= (Variable)
rFive= -58.703 (Aspherical surface) dFive= 0.82 nd3= 1.88300 νd3= 40.76
r6= 5.969 (aspherical surface) d6= 2.65
r7= -431.058 d7= 1.95 nd4= 2.00170 νd4= 20.64
r8= -14.597 d8= 0.07
r9= -13.708 d9= 0.67 nd5= 1.81600 νd5= 46.62
rTen= -67.948 (aspherical surface) dTen= (Variable)
r11= ∞ (aperture) d11= 0.10
r12= 5.491 (aspherical surface) d12= 2.70 nd6= 1.58913 νd6= 61.14
r13= -11.075 (aspherical surface) d13= 0.10
r14= 5.503 d14= 1.38 nd7= 1.59201 νd7= 67.02
r15= 13.913 d15= 0.80 nd8= 2.00069 νd8= 25.46
r16= 3.463 d16= (Variable)
r17= 19.919 (aspherical surface) d17= 2.07 nd9= 1.74330 νd9= 49.33
r18= -25.922 d18= (Variable)
r19= ∞ d19= 0.40 nd10= 1.54771 νd10= 62.84
r20= ∞ d20= 0.50
rtwenty one= ∞ dtwenty one= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty two= ∞ dtwenty two= 0.36
rtwenty three= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 1.99104 × 10-Four
    A6= -8.59909 × 10-6
    A8= 2.01071 × 10-7
    ATen= -1.73584 × 10-9
    6th page
    K = 0.000
    AFour= 7.61962 × 10-Five
    A6= 2.30339 × 10-Five
    A8= -1.98717 × 10-6
    ATen= 4.99512 × 10-8
    10th page
    K = 10.849
    AFour= -2.64668 × 10-Four
    A6= -1.16671 × 10-6
    A8= -1.29451 × 10-7
    ATen= 0
    12th page
    K = -0.000
    AFour= -9.20803 × 10-Four
    A6= 7.90503 × 10-6
    A8= -4.58612 × 10-6
    ATen= 5.46733 × 10-7
    13th page
    K = 0.000
    AFour= 5.31169 × 10-Four
    A6= 2.85804 × 10-Five
    A8= -8.58478 × 10-6
    ATen= 9.90563 × 10-7
    17th page
    K = 0.000
    AFour= -2.06640 × 10-6
    A6= 1.19043 × 10-Five
    A8= -4.13589 × 10-7
    ATen= 6.77582 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.10 4.58 4.91
2ω (°)   80.14 35.47 17.64
dFour                 0.73 4.49 13.26
dTen                10.82 3.67 0.68
d16                 2.75 8.58 9.99
d18                 2.83 3.05 2.97.

Example 2
r1= 23.279 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 16.155 d2= 0.18
rThree= 17.729 dThree= 3.05 nd2= 1.85719 νd2= 43.01
rFour= 577.289 dFour= (Variable)
rFive= -57.796 (aspherical surface) dFive= 0.80 nd3= 1.83481 νd3= 42.71
r6= 5.963 (aspherical surface) d6= 2.79
r7= -136.071 d7= 1.78 nd4= 1.94595 νd4= 17.98
r8= -16.198 d8= 0.09
r9= -14.697 d9= 0.68 nd5= 1.83481 νd5= 42.71
rTen= -44.810 (Aspherical surface) dTen= (Variable)
r11= ∞ (aperture) d11= 0.10
r12= 5.548 (aspherical surface) d12= 2.70 nd6= 1.58913 νd6= 61.14
r13= -10.984 (aspherical surface) d13= 0.10
r14= 5.510 d14= 1.36 nd7= 1.59201 νd7= 67.02
r15= 13.333 d15= 0.80 nd8= 2.00069 νd8= 25.46
r16= 3.476 d16= (Variable)
r17= 19.243 (aspherical surface) d17= 2.07 nd9= 1.74330 νd9= 49.33
r18= -28.285 d18= (Variable)
r19= ∞ d19= 0.40 nd10= 1.54771 νd10= 62.84
r20= ∞ d20= 0.50
rtwenty one= ∞ dtwenty one= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty two= ∞ dtwenty two= 0.36
rtwenty three= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 1.91532 × 10-Four
    A6= -6.16585 × 10-6
    A8= 9.93129 × 10-8
    ATen= -6.19551 × 10-Ten
    6th page
    K = 0.000
    AFour= 8.56780 × 10-Five
    A6= 2.37196 × 10-Five
    A8= -1.32112 × 10-6
    ATen= 1.29769 × 10-8
    10th page
    K = 5.360
    AFour= -2.35672 × 10-Four
    A6= -2.32986 × 10-6
    A8= 3.46565 × 10-8
    ATen= 0
    12th page
    K = -0.000
    AFour= -9.12531 × 10-Four
    A6= -2.10029 × 10-6
    A8= -2.33162 × 10-6
    ATen= 3.38870 × 10-7
    13th page
    K = 0.000
    AFour= 5.13813 × 10-Four
    A6= 9.30700 × 10-6
    A8= -3.76459 × 10-6
    ATen= 5.20840 × 10-7
    17th page
    K = 0.000
    AFour= 1.55240 × 10-Five
    A6= 1.05486 × 10-Five
    A8= -3.44689 × 10-7
    ATen= 5.43477 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.11 4.54 4.94
2ω (°)   80.14 35.40 17.62
dFour                 0.73 4.73 13.26
dTen                10.87 3.73 0.66
d16                 2.77 8.48 10.09
d18                 2.86 3.06 2.97.

Example 3
r1= 24.343 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 16.189 d2= 0.16
rThree= 17.639 dThree= 3.05 nd2= 1.88300 νd2= 40.76
rFour= 598.304 dFour= (Variable)
rFive= -58.725 (Aspherical surface) dFive= 0.82 nd3= 1.88300 νd3= 40.76
r6= 6.041 (Aspherical surface) d6= 2.60
r7= 407.018 d7= 2.01 nd4= 2.00170 νd4= 20.64
r8= -14.787 d8= 0.08
r9= -13.762 d9= 0.68 nd5= 1.83481 νd5= 42.71
rTen= -88.096 (Aspherical surface) dTen= (Variable)
r11= ∞ (aperture) d11= 0.10
r12= 5.462 (Aspherical surface) d12= 2.70 nd6= 1.58913 νd6= 61.14
r13= -11.013 (Aspherical surface) d13= 0.10
r14= 5.530 d14= 1.36 nd7= 1.59201 νd7= 67.02
r15= 13.426 d15= 0.80 nd8= 2.00069 νd8= 25.46
r16= 3.443 d16= (Variable)
r17= 19.462 (Aspherical surface) d17= 2.07 nd9= 1.74330 νd9= 49.33
r18= -27.222 d18= (Variable)
r19= ∞ d19= 0.40 nd10= 1.54771 νd10= 62.84
r20= ∞ d20= 0.50
rtwenty one= ∞ dtwenty one= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty two= ∞ dtwenty two= 0.36
rtwenty three= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 1.78466 × 10-Four
    A6= -8.17272 × 10-6
    A8= 2.01295 × 10-7
    ATen= -1.77746 × 10-9
    6th page
    K = 0.000
    AFour= 5.13913 × 10-Five
    A6= 2.24397 × 10-Five
    A8= -1.94651 × 10-6
    ATen= 5.11678 × 10-8
    10th page
    K = 11.427
    AFour= -2.56902 × 10-Four
    A6= -1.57604 × 10-6
    A8= -1.15551 × 10-7
    ATen= 0
    12th page
    K = -0.000
    AFour= -9.39293 × 10-Four
    A6= -5.83997 × 10-6
    A8= -2.22901 × 10-6
    ATen= 3.45022 × 10-7
    13th page
    K = 0.000
    AFour= 5.38804 × 10-Four
    A6= 3.49744 × 10-6
    A8= -2.93189 × 10-6
    ATen= 4.74550 × 10-7
    17th page
    K = 0.000
    AFour= 2.27544 × 10-Five
    A6= 1.04163 × 10-Five
    A8= -3.36814 × 10-7
    ATen= 5.32127 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.11 4.62 4.92
2ω (°)   80.16 35.55 17.62
dFour                 0.73 4.28 13.31
dTen                10.93 3.71 0.72
d16                 2.76 8.74 9.98
d18                 2.84 3.04 2.97.

Example 4
r1= 20.367 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 15.608 d2= 0.29
rThree= 17.741 dThree= 3.14 nd2= 1.76802 νd2= 49.24
rFour= 3497.716 dFour= (Variable)
rFive= -45.639 (Aspherical surface) dFive= 0.80 nd3= 1.83481 νd3= 42.71
r6= 5.950 (aspherical surface) d6= 2.73
r7= -255.106 d7= 1.84 nd4= 1.92286 νd4= 18.90
r8= -15.843 d8= 0.68 nd5= 1.83481 νd5= 42.71
r9= -58.807 (Aspherical surface) d9= (Variable)
rTen= ∞ (aperture) dTen= 0.10
r11= 5.586 (Aspherical surface) d11= 2.70 nd6= 1.58913 νd6= 61.14
r12= -11.262 (aspherical surface) d12= 0.10
r13= 5.436 d13= 1.38 nd7= 1.59201 νd7= 67.02
r14= 13.074 d14= 0.80 nd8= 2.00069 νd8= 25.46
r15= 3.469 d15= (Variable)
r16= 19.614 (Aspherical surface) d16= 2.07 nd9= 1.74330 νd9= 49.33
r17= -26.892 d17= (Variable)
r18= ∞ d18= 0.40 nd10= 1.54771 νd10= 62.84
r19= ∞ d19= 0.50
r20= ∞ d20= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty one= ∞ dtwenty one= 0.36
rtwenty two= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.17672 × 10-Four
    A6= -5.32946 × 10-6
    A8= 7.95875 × 10-8
    ATen= -5.34232 × 10-Ten
    6th page
    K = 0.000
    AFour= 1.20203 × 10-Four
    A6= 2.54566 × 10-Five
    A8= -1.22695 × 10-6
    ATen= 2.02973 × 10-8
    9th page
    K = 19.659
    AFour= -2.47017 × 10-Four
    A6= -1.58699 × 10-6
    A8= -1.04315 × 10-7
    ATen= 0
    11th page
    K = -0.000
    AFour= -8.71078 × 10-Four
    A6= -4.22508 × 10-7
    A8= -1.92565 × 10-6
    ATen= 3.14754 × 10-7
    12th page
    K = 0.000
    AFour= 5.15823 × 10-Four
    A6= 1.00484 × 10-Five
    A8= -2.82400 × 10-6
    ATen= 4.47946 × 10-7
    16th page
    K = 0.000
    AFour= 6.80361 × 10-6
    A6= 1.09868 × 10-Five
    A8= -3.72817 × 10-7
    ATen= 5.90895 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.10 4.44 4.93
2ω (°)   80.12 35.18 17.61
dFour                 0.72 5.37 13.24
d9                10.83 3.84 0.65
d15                 2.75 8.06 10.08
d17                 2.86 3.05 2.97.

Example 5
r1= 25.173 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 16.537 d2= 0.20
rThree= 18.252 dThree= 3.06 nd2= 1.88300 νd2= 40.76
rFour= -4161.584 dFour= (Variable)
rFive= -44.093 (aspherical surface) dFive= 0.80 nd3= 1.83481 νd3= 42.71
r6= 6.129 (aspherical surface) d6= 2.67
r7= -897.611 d7= 1.86 nd4= 1.92286 νd4= 18.90
r8= -16.194 d8= 0.68 nd5= 1.83481 νd5= 42.71
r9= -75.584 (aspherical surface) d9= (Variable)
rTen= ∞ (aperture) dTen= 0.10
r11= 5.515 (Aspherical surface) d11= 2.70 nd6= 1.58913 νd6= 61.14
r12= -10.975 (aspherical surface) d12= 0.10
r13= 5.494 d13= 1.36 nd7= 1.59201 νd7= 67.02
r14= 12.850 d14= 0.80 nd8= 2.00069 νd8= 25.46
r15= 3.429 d15= (Variable)
r16= 19.614 (Aspherical surface) d16= 2.07 nd9= 1.74330 νd9= 49.33
r17= -27.158 d17= (Variable)
r18= ∞ d18= 0.40 nd10= 1.54771 νd10= 62.84
r19= ∞ d19= 0.50
r20= ∞ d20= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty one= ∞ dtwenty one= 0.36
rtwenty two= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.01152 × 10-Four
    A6= -5.53549 × 10-6
    A8= 1.09307 × 10-7
    ATen= -9.22389 × 10-Ten
    6th page
    K = 0.000
    AFour= 1.24289 x10-Four
    A6= 2.52204 x10-Five
    A8= -1.55015 x10-6
    ATen= 3.87174 × 10-8
    9th page
    K = 15.880
    AFour= -2.56363 × 10-Four
    A6= 3.83459 × 10-7
    A8= -1.74921 × 10-7
    ATen= 0
    11th page
    K = -0.000
    AFour= -9.56239 × 10-Four
    A6= -9.52999 × 10-6
    A8= -3.92591 × 10-7
    ATen= 1.39818 × 10-7
    12th page
    K = 0.000
    AFour= 4.88481 × 10-Four
    A6= -6.29539 × 10-6
    A8= 4.03797 × 10-7
    ATen= 1.15552 × 10-7
    16th page
    K = 0.000
    AFour= 3.74250 × 10-Five
    A6= 1.03247 × 10-Five
    A8= -3.43630 × 10-7
    ATen= 5.32503 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.11 4.48 4.93
2ω (°)   80.15 35.27 17.62
dFour                 0.72 5.21 13.32
d9                11.01 3.94 0.73
d15                 2.77 8.18 10.05
d17                 2.83 3.00 2.97.

Example 6
r1= 23.739 d1= 0.81 nd1= 1.94595 νd1= 17.98
r2= 16.355 d2= 0.21
rThree= 18.106 dThree= 3.01 nd2= 1.88300 νd2= 40.76
rFour= 846.562 dFour= (Variable)
rFive= -52.113 (Aspherical surface) dFive= 0.82 nd3= 1.88300 νd3= 40.76
r6= 6.190 (Aspherical surface) d6= 2.65
r7= -235.098 d7= 1.86 nd4= 1.94595 νd4= 17.98
r8= -15.562 d8= 0.09
r9= -14.315 d9= 0.80 nd5= 1.88300 νd5= 40.76
rTen= -41.886 (Aspherical surface) dTen= (Variable)
r11= ∞ (aperture) d11= 0.10
r12= 5.555 (Aspherical surface) d12= 2.70 nd6= 1.58913 νd6= 61.14
r13= -10.974 (aspherical surface) d13= 0.10
r14= 5.438 d14= 1.38 nd7= 1.59201 νd7= 67.02
r15= 13.503 d15= 0.80 nd8= 2.00069 νd8= 25.46
r16= 3.433 d16= (Variable)
r17= 18.727 (Aspherical surface) d17= 2.07 nd9= 1.74330 νd9= 49.33
r18= -29.343 d18= (Variable)
r19= ∞ d19= 0.40 nd10= 1.54771 νd10= 62.84
r20= ∞ d20= 0.50
rtwenty one= ∞ dtwenty one= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty two= ∞ dtwenty two= 0.37
rtwenty three= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.02790 × 10-Four
    A6= -6.36728 × 10-6
    A8= 1.15320 × 10-7
    ATen= -8.37226 × 10-Ten
    6th page
    K = 0.000
    AFour= 8.20642 × 10-Five
    A6= 2.47151 × 10-Five
    A8= -1.53936 × 10-6
    ATen= 2.64133 × 10-8
    10th page
    K = 6.008
    AFour= -2.06900 × 10-Four
    A6= -2.13247 × 10-6
    A8= 1.58746 × 10-8
    ATen= 0
    12th page
    K = -0.000
    AFour= -9.21086 × 10-Four
    A6= -6.31048 × 10-6
    A8= -1.81135 × 10-6
    ATen= 2.67397 × 10-7
    13th page
    K = 0.000
    AFour= 4.87773 × 10-Four
    A6= 3.10768 × 10-6
    A8= -2.75976 × 10-6
    ATen= 3.94656 × 10-7
    17th page
    K = 0.000
    AFour= 2.23802 × 10-Five
    A6= 1.07437 × 10-Five
    A8= -3.48358 × 10-7
    ATen= 5.42112 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.12 4.57 4.94
2ω (°)   80.16 35.42 17.62
dFour                 0.72 4.78 13.23
dTen                10.77 3.71 0.66
d16                 2.77 8.47 10.05
d18                 2.85 3.06 2.96.

Example 7
r1= 23.679 d1= 0.81 nd1= 1.94595 νd1= 17.98
r2= 16.309 d2= 0.20
rThree= 17.975 dThree= 3.03 nd2= 1.88300 νd2= 40.76
rFour= 652.312 dFour= (Variable)
rFive= -57.513 (Aspherical surface) dFive= 0.82 nd3= 1.88300 νd3= 40.76
r6= 6.169 (aspherical surface) d6= 2.64
r7= -172.005 d7= 1.92 nd4= 2.10227 νd4= 17.10
r8= -18.412 d8= 0.11
r9= -15.586 d9= 0.80 nd5= 1.88300 νd5= 40.76
rTen= -47.805 (aspherical surface) dTen= (Variable)
r11= ∞ (aperture) d11= 0.10
r12= 5.447 (Aspherical surface) d12= 2.70 nd6= 1.58913 νd6= 61.14
r13= -10.900 (aspherical surface) d13= 0.10
r14= 5.577 d14= 1.35 nd7= 1.59201 νd7= 67.02
r15= 13.324 d15= 0.80 nd8= 2.00069 νd8= 25.46
r16= 3.452 d16= (Variable)
r17= 19.617 (aspherical surface) d17= 2.07 nd9= 1.74330 νd9= 49.33
r18= -26.823 d18= (Variable)
r19= ∞ d19= 0.40 nd10= 1.54771 νd10= 62.84
r20= ∞ d20= 0.50
rtwenty one= ∞ dtwenty one= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty two= ∞ dtwenty two= 0.36
rtwenty three= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.08796 × 10-Four
    A6= -7.65961 × 10-6
    A8= 1.42959 × 10-7
    ATen= -1.03287 × 10-9
    6th page
    K = 0.000
    AFour= 9.25739 × 10-Five
    A6= 2.37928 × 10-Five
    A8= -1.56581 × 10-6
    ATen= 2.33770 × 10-8
    10th page
    K = 13.662
    AFour= -2.04807 × 10-Four
    A6= -2.93679 × 10-6
    A8= 7.51268 × 10-8
    ATen=
    12th page
    K = -0.000
    AFour= -9.47047 × 10-Four
    A6= -9.73137 × 10-6
    A8= -9.44664 × 10-7
    ATen= 2.30496 × 10-7
    13th page
    K = 0.000
    AFour= 5.55221 × 10-Four
    A6= -3.16660 × 10-6
    A8= -3.51784 × 10-7
    ATen= 2.04855 × 10-7
    17th page
    K = 0.000
    AFour= 2.11262 × 10-Five
    A6= 1.08100 × 10-Five
    A8= -3.55468 × 10-7
    ATen= 5.58942 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.11 4.57 4.91
2ω (°)   80.18 35.47 17.61
dFour                 0.72 4.59 13.25
dTen                10.75 3.70 0.68
d16                 2.76 8.58 9.98
d18                 2.86 3.06 2.97.

Example 8
r1= 23.572 d1= 0.81 nd1= 1.94595 νd1= 17.98
r2= 16.325 d2= 0.19
rThree= 17.924 dThree= 3.08 nd2= 1.88300 νd2= 40.76
rFour= 481.040 dFour= (Variable)
rFive= -63.672 (Aspherical surface) dFive= 0.82 nd3= 1.88300 νd3= 40.76
r6= 6.059 (Aspherical surface) d6= 2.72
r7= -238.294 d7= 1.87 nd4= 2.10227 νd4= 17.10
r8= -19.462 d8= 0.80 nd5= 1.88300 νd5= 40.76
r9= -90.854 (Aspherical surface) d9= (Variable)
rTen= ∞ (aperture) dTen= 0.10
r11= 5.548 (aspherical surface) d11= 2.70 nd6= 1.58913 νd6= 61.14
r12= -11.217 (Aspherical surface) d12= 0.10
r13= 5.502 d13= 1.39 nd7= 1.59201 νd7= 67.02
r14= 13.285 d14= 0.80 nd8= 2.00069 νd8= 25.46
r15= 3.476 d15= (Variable)
r16= 19.903 (aspherical surface) d16= 2.07 nd9= 1.74330 νd9= 49.33
r17= -26.017 d17= (Variable)
r18= ∞ d18= 0.40 nd10= 1.54771 νd10= 62.84
r19= ∞ d19= 0.50
r20= ∞ d20= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty one= ∞ dtwenty one= 0.36
rtwenty two= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.11173 × 10-Four
    A6= -8.21005 × 10-6
    A8= 1.62208 × 10-7
    ATen= -1.25817 × 10-9
    6th page
    K = 0.000
    AFour= 1.55260 × 10-Four
    A6= 2.35459 × 10-Five
    A8= -1.47843 × 10-6
    ATen= 2.40340 × 10-8
    9th page
    K = 13.988
    AFour= -2.46764 × 10-Four
    A6= -3.00682 × 10-6
    A8= 1.43307 × 10-8
    ATen= 0
    11th page
    K = -0.000
    AFour= -8.70152 × 10-Four
    A6= 2.07452 × 10-6
    A8= -2.51898 × 10-6
    ATen= 3.52050 × 10-7
    12th page
    K = 0.000
    AFour= 5.43211 × 10-Four
    A6= 1.77046 × 10-Five
    A8= -4.53251 × 10-6
    ATen= 5.84184 × 10-7
    16th page
    K = 0.000
    AFour= 1.55829 × 10-Five
    A6= 1.00684 × 10-Five
    A8= -3.25292 × 10-7
    ATen= 5.11814 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.11 4.51 4.90
2ω (°)   80.16 35.27 17.59
dFour                 0.72 5.02 13.27
d9                 10.82 3.84 0.72
d15                 2.75 8.31 9.95
d17                 2.86 3.04 2.97.

Example 9
r1= 21.524 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 15.990 d2= 0.25
rThree= 18.038 dThree= 3.04 nd2= 1.80400 νd2= 46.57
rFour= 1821.002 dFour= (Variable)
rFive= -46.956 (Aspherical surface) dFive= 0.79 nd3= 1.80610 νd3= 40.92
r6= 5.863 (aspherical surface) d6= 2.76
r7= -178.037 d7= 1.90 nd4= 1.92286 νd4= 18.90
r8= -14.340 d8= 0.67 nd5= 1.80610 νd5= 40.92
r9= -72.767 (aspherical surface) d9= (Variable)
rTen= ∞ (aperture) dTen= 0.10
r11= 5.470 (aspherical surface) d11= 2.70 nd6= 1.58913 νd6= 61.14
r12= -11.162 (aspherical surface) d12= 0.10
r13= 5.576 d13= 1.36 nd7= 1.59201 νd7= 67.02
r14= 13.756 d14= 0.80 nd8= 2.00069 νd8= 25.46
r15= 3.493 d15= (Variable)
r16= 19.520 (Aspherical surface) d16= 2.07 nd9= 1.74330 νd9= 49.33
r17= -27.248 d17= (Variable)
r18= ∞ d18= 0.40 nd10= 1.54771 νd10= 62.84
r19= ∞ d19= 0.50
r20= ∞ d20= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty one= ∞ dtwenty one= 0.36
rtwenty two= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.34682 × 10-Four
    A6= -7.08038 × 10-6
    A8= 1.25390 × 10-7
    ATen= -9.36786 × 10-Ten
    6th page
    K = 0.000
    AFour= 1.52904 × 10-Four
    A6= 2.55798 × 10-Five
    A8= -1.41637 × 10-6
    ATen= 2.87416 × 10-8
    9th page
    K = 0.000
    AFour= -2.74195 × 10-Four
    A6= -1.46147 × 10-6
    A8= -1.44866 × 10-7
    ATen= 0
    12th page
    K = -0.000
    AFour= -9.07011 × 10-Four
    A6= 6.10900 × 10-6
    A8= -3.38866 × 10-6
    ATen= 4.78449 × 10-7
    13th page
    K = 0.000
    AFour= 5.63212 × 10-Four
    A6= 2.36073 × 10-Five
    A8= -6.03623 × 10-6
    ATen= 8.08280 × 10-7
    17th page
    K = 0.000
    AFour= 1.27541 × 10-Five
    A6= 1.11474 × 10-Five
    A8= -3.87618 × 10-7
    ATen= 6.24145 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.11 4.45 4.93
2ω (°)   80.13 35.19 17.61
dFour                 0.72 5.33 13.27
d9                10.94 3.89 0.69
d15                 2.76 8.08 10.07
d17                 2.86 3.05 2.97.

Example 10
r1= 21.929 d1= 0.81 nd1= 1.94595 νd1= 17.98
r2= 15.886 d2= 3.02 nd2= 1.83481 νd2= 42.71
rThree= 87.110 dThree= (Variable)
rFour= -603.712 (aspherical surface) dFour= 0.82 nd3= 1.88300 νd3= 40.76
rFive= 5.962 (aspherical surface) dFive= 2.72
r6= 108.526 d6= 1.76 nd4= 2.10227 νd4= 17.10
r7= -23.243 d7= 0.16
r8= -17.863 d8= 0.80 nd5= 1.88300 νd5= 40.76
r9= -201.302 (Aspherical surface) d9= (Variable)
rTen= Aperture dTen= 0.10
r11= 5.737 (aspherical surface) d11= 2.70 nd6= 1.58913 νd6= 61.14
r12= -10.526 (Aspherical surface) d12= 0.10
r13= 5.184 d13= 1.42 nd7= 1.59201 νd7= 67.02
r14= 12.685 d14= 0.80 nd8= 2.00069 νd8= 25.46
r15= 3.389 d15= (Variable)
r16= 28.421 (aspherical surface) d16= 2.07 nd9= 1.74330 νd9= 49.33
r17= -19.743 d17= (Variable)
r18= ∞ d18= 0.40 nd10= 1.54771 νd10= 62.84
r19= ∞ d19= 0.50
r20= ∞ d20= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty one= ∞ dtwenty one= 0.35
rtwenty two= ∞ (image plane)
Aspheric coefficient
    4th page
    K = 0.000
    AFour= 1.17638 × 10-Four
    A6= -1.87398 × 10-6
    A8= -1.21415 × 10-8
    ATen= 3.25687 × 10-Ten
    5th page
    K = 0.000
    AFour= 9.74365 × 10-Five
    A6= 1.86507 × 10-Five
    A8= -6.27883 × 10-7
    ATen= -6.71787 × 10-9
    9th page
    K = 300.320
    AFour= -2.68737 × 10-Four
    A6= -2.18216 × 10-8
    A8= -4.79877 × 10-8
    ATen= 0
    11th page
    K = -0.000
    AFour= -9.41932 × 10-Four
    A6= -1.82332 × 10-Five
    A8= -9.47875 × 10-7
    ATen= 1.96272 × 10-7
    12th page
    K = 0.000
    AFour= 4.34113 × 10-Four
    A6= -1.86904 × 10-Five
    A8= -3.97394 × 10-7
    ATen= 1.70317 × 10-7
    16th page
    K = 0.000
    AFour= 2.98825 × 10-Five
    A6= 7.00636 × 10-6
    A8= -2.06857 × 10-7
    ATen= 3.08660 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.03 4.93 4.99
2ω (°)   80.21 36.18 17.76
dThree                 0.74 0.99 13.31
d9                11.18 3.27 0.89
d15                 2.71 9.95 10.21
d17                 2.64 2.99 2.99.

Example 11
r1= 19.964 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 15.354 d2= 0.22
rThree= 16.981 dThree= 3.10 nd2= 1.76802 νd2= 49.24
rFour= 321.532 dFour= (Variable)
rFive= -79.400 (aspherical surface) dFive= 0.82 nd3= 1.88300 νd3= 40.76
r6= 6.026 (Aspherical surface) d6= 2.65
r7= -512.296 d7= 2.00 nd4= 2.00170 νd4= 20.64
r8= -14.190 d8= 0.13
r9= -10.837 (Aspherical surface) d9= 0.67 nd5= 1.81600 νd5= 46.62
rTen= -38.820 dTen= (Variable)
r11= ∞ (aperture) d11= 0.10
r12= 5.567 (aspherical surface) d12= 2.70 nd6= 1.58913 νd6= 61.14
r13= -10.835 (aspherical surface) d13= 0.10
r14= 5.426 d14= 1.39 nd7= 1.59201 νd7= 67.02
r15= 13.374 d15= 0.80 nd8= 2.00069 νd8= 25.46
r16= 3.434 d16= (Variable)
r17= 21.181 (aspherical surface) d17= 2.07 nd9= 1.74330 νd9= 49.33
r18= -23.592 d18= (Variable)
r19= ∞ d19= 0.40 nd10= 1.54771 νd10= 62.84
r20= ∞ d20= 0.50
rtwenty one= ∞ dtwenty one= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty two= ∞ dtwenty two= 0.36
rtwenty three= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 1.81913 × 10-Four
    A6= -7.45514 × 10-6
    A8= 1.16696 × 10-7
    ATen= -6.24258 × 10-Ten
    6th page
    K = 0.000
    AFour= 3.02384 × 10-Five
    A6= 2.11070 × 10-Five
    A8= -1.27196 × 10-6
    ATen= 4.98377 × 10-9
    9th page
    K = -0.063
    AFour= 2.66985 × 10-Four
    A6= 5.08873 × 10-6
    A8= -1.46937 × 10-7
    ATen= 0
    12th page
    K = -0.000
    AFour= -9.20807 × 10-Four
    A6= -4.91248 × 10-6
    A8= -3.02284 × 10-6
    ATen= 3.84485 × 10-7
    13th page
    K = 0.000
    AFour= 5.02906 × 10-Four
    A6= 7.33058 × 10-6
    A8= -5.38763 × 10-6
    ATen= 6.41876 × 10-7
    17th page
    K = 0.000
    AFour= 2.80646 × 10-6
    A6= 1.03678 × 10-Five
    A8= -3.21345 × 10-7
    ATen= 4.86255 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.09 4.69 4.91
2ω (°)   80.15 35.68 17.65
dFour                 0.73 3.65 13.26
dTen                10.76 3.56 0.77
d16                 2.74 9.08 10.01
d18                 2.81 3.04 2.97.

Example 12
r1= 20.035 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 15.388 d2= 0.21
rThree= 16.987 dThree= 3.10 nd2= 1.76802 νd2= 49.24
rFour= 322.739 dFour= (Variable)
rFive= -67.042 (Aspherical surface) dFive= 0.82 nd3= 1.88300 νd3= 40.76
r6= 6.104 (Aspherical surface) d6= 2.63
r7= -553.055 d7= 2.02 nd4= 2.00170 νd4= 20.64
r8= -14.110 d8= 0.17
r9= -11.468 (Aspherical surface) d9= 0.67 nd5= 1.81600 νd5= 46.62
rTen= -48.428 (Aspherical surface) dTen= (Variable)
r11= ∞ (aperture) d11= 0.10
r12= 5.592 (aspherical surface) d12= 2.70 nd6= 1.58913 νd6= 61.14
r13= -10.777 (aspherical surface) d13= 0.10
r14= 5.381 d14= 1.39 nd7= 1.59201 νd7= 67.02
r15= 13.633 d15= 0.80 nd8= 2.00069 νd8= 25.46
r16= 3.428 d16= (Variable)
r17= 21.377 (aspherical surface) d17= 2.07 nd9= 1.74330 νd9= 49.33
r18= -23.467 d18= (Variable)
r19= ∞ d19= 0.40 nd10= 1.54771 νd10= 62.84
r20= ∞ d20= 0.50
rtwenty one= ∞ dtwenty one= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty two= ∞ dtwenty two= 0.36
rtwenty three= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.02227 × 10-Four
    A6= -8.03922 × 10-6
    A8= 1.51641 × 10-7
    ATen= -1.06462 × 10-9
    6th page
    K = 0.000
    AFour= 3.98938 × 10-Five
    A6= 1.96692 × 10-Five
    A8= -1.68354 × 10-6
    ATen= 2.76679 × 10-8
    9th page
    K = -0.063
    AFour= 2.07247 × 10-Five
    A6= -3.77371 × 10-6
    A8= 2.63786 × 10-7
    ATen= 0
    10th page
    K = -0.897
    AFour= -2.19314 × 10-Four
    A6= -5.31018 × 10-6
    A8= 3.15789 × 10-7
    ATen= 0
    12th page
    K = -0.000
    AFour= -9.35871 × 10-Four
    A6= -1.13973 × 10-Five
    A8= -7.24228 × 10-7
    ATen= 1.19444 × 10-7
    13th page
    K = 0.000
    AFour= 4.83658 × 10-Four
    A6= -9.01954 × 10-6
    A8= 1.55326 × 10-7
    ATen= 4.11169 × 10-8
    17th page
    K = 0.000
    AFour= 8.51281 × 10-6
    A6= 9.83773 × 10-6
    A8= -3.17684 × 10-7
    ATen= 5.22025 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.09 4.69 4.92
2ω (°)   80.14 35.67 17.64
dFour                 0.73 3.64 13.26
dTen                10.77 3.56 0.77
d16                 2.74 9.08 10.02
d18                 2.80 3.03 2.97.

Example 13
r1= 24.847 d1= 0.80 nd1= 1.94595 νd1= 17.98
r2= 16.542 d2= 0.29
rThree= 18.208 dThree= 3.02 nd2= 1.88300 νd2= 40.76
rFour= 3582.698 dFour= (Variable)
rFive= -43.179 (aspherical surface) dFive= 0.79 nd3= 1.80610 νd3= 40.92
r6= 5.891 (aspherical surface) d6= 2.64
r7= -157590.062 d7= 1.91 nd4= 1.94595 νd4= 17.98
r8= -15.395 d8= 0.67 nd5= 1.80610 νd5= 40.92
r9= -175.340 (aspherical surface) d9= (Variable)
rTen= ∞ (aperture) dTen= 0.10
r11= 5.417 (aspherical surface) d11= 2.70 nd6= 1.58913 νd6= 61.14
r12= -10.144 (aspherical surface) d12= (Variable)
r13= 5.942 d13= 1.42 nd7= 1.59201 νd7= 67.02
r14= 24.078 d14= 0.80 nd8= 2.00069 νd8= 25.46
r15= 3.618 d15= (Variable)
r16= 17.723 (aspherical surface) d16= 2.07 nd9= 1.74330 νd9= 49.33
r17= -30.024 d17= (Variable)
r18= ∞ d18= 0.40 nd10= 1.54771 νd10= 62.84
r19= ∞ d19= 0.50
r20= ∞ d20= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty one= ∞ dtwenty one= 0.36
rtwenty two= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.41650 × 10-Four
    A6= -7.80486 × 10-6
    A8= 1.53963 × 10-7
    ATen= -1.21087 × 10-9
    6th page
    K = 0.000
    AFour= 1.85981 × 10-Four
    A6= 2.55754 × 10-Five
    A8= -1.92596 × 10-6
    ATen= 3.81224 × 10-8
    9th page
    K = -4.077
    AFour= -3.33609 × 10-Four
    A6= 6.19746 × 10-6
    A8= -2.40693 × 10-7
    ATen= 4.21649 × 10-Ten
    11th page
    K = -0.000
    AFour= -1.00640 × 10-3
    A6= 2.89626 × 10-Five
    A8= -5.10096 × 10-6
    ATen= 7.01287 × 10-7
    12th page
    K = 0.000
    AFour= 6.92460 × 10-Four
    A6= 4.80286 × 10-Five
    A8= -9.42465 × 10-6
    ATen= 1.22823 × 10-6
    16th page
    K = 0.000
    AFour= 3.67077 × 10-Five
    A6= 1.07760 × 10-Five
    A8= -3.84914 × 10-7
    ATen= 6.38037 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.00 24.28
FNO                 3.23 4.54 5.07
2ω (°)   80.19 35.07 17.60
dFour                 0.71 5.09 13.51
d9                10.96 3.46 0.85
d12                 0.20 0.57 0.40
d15                 2.75 7.12 9.46
d17                 2.80 2.94 2.96.

Example 14
r1= 19.959 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 15.153 d2= 0.19
rThree= 16.567 dThree= 3.19 nd2= 1.76802 νd2= 49.24
rFour= 328.834 dFour= (Variable)
rFive= -66.705 (Aspherical surface) dFive= 0.82 nd3= 1.88300 νd3= 40.76
r6= 6.014 (Aspherical surface) d6= 2.67
r7= -97.974 d7= 1.95 nd4= 2.00170 νd4= 20.64
r8= -12.905 d8= 0.12
r9= -10.476 (aspherical surface) d9= 0.67 nd5= 1.81600 νd5= 46.62
rTen= -36.471 dTen= (Variable)
r11= ∞ (aperture) d11= 0.10
r12= 5.598 (Aspherical surface) d12= 2.70 nd6= 1.58913 νd6= 61.14
r13= -10.200 (aspherical surface) d13= (Variable)
r14= 5.893 d14= 1.42 nd7= 1.59201 νd7= 67.02
r15= 20.687 d15= 0.80 nd8= 2.00069 νd8= 25.46
r16= 3.680 d16= (Variable)
r17= 18.589 (Aspherical surface) d17= 2.07 nd9= 1.74330 νd9= 49.33
r18= -26.724 d18= (Variable)
r19= ∞ d19= 0.40 nd10= 1.54771 νd10= 62.84
r20= ∞ d20= 0.50
rtwenty one= ∞ dtwenty one= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty two= ∞ dtwenty two= 0.36
rtwenty three= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 1.92323 × 10-Four
    A6= -4.86162 × 10-6
    A8= 5.55922 × 10-8
    ATen= -2.22548 × 10-Ten
    6th page
    K = 0.000
    AFour= 9.52228 × 10-Five
    A6= 2.45561 × 10-Five
    A8= -1.19859 × 10-6
    ATen= 6.02161 × 10-9
    9th page
    K = 0.020
    AFour= 3.06753 × 10-Four
    A6= -6.37184 × 10-7
    A8= 2.66117 × 10-8
    ATen= 0
    12th page
    K = -0.000
    AFour= -9.26843 × 10-Four
    A6= 3.04592 × 10-Five
    A8= -6.90151 × 10-6
    ATen= 7.46676 × 10-7
    13th page
    K = 0.000
    AFour= 6.28294 × 10-Four
    A6= 5.21648 × 10-Five
    A8= -1.31953 × 10-Five
    ATen= 1.46113 × 10-6
    17th page
    K = 0.000
    AFour= -6.81284 × 10-6
    A6= 1.02822 × 10-Five
    A8= -3.09403 × 10-7
    ATen= 4.47496 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.13 4.50 4.92
2ω (°)   80.23 35.24 17.60
dFour                 0.72 4.62 13.21
dTen                10.56 3.30 0.78
d13                 0.23 0.57 0.43
d16                 2.76 7.67 9.68
d18                 2.86 3.00 2.96.

Example 15
r1= 25.601 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 16.493 d2= 0.20
rThree= 18.075 dThree= 3.23 nd2= 1.88300 νd2= 40.76
rFour= -1234.242 dFour= (Variable)
rFive= -40.268 (aspherical surface) dFive= 0.80 nd3= 1.83481 νd3= 42.71
r6= 6.022 (Aspherical surface) d6= 2.62
r7= -407.214 d7= 1.83 nd4= 1.92286 νd4= 18.90
r8= -15.866 d8= 0.68 nd5= 1.83481 νd5= 42.71
r9= -66.674 (Aspherical surface) d9= (Variable)
rTen= ∞ (aperture) dTen= 0.10
r11= 5.520 (aspherical surface) d11= 2.70 nd6= 1.58913 νd6= 61.14
r12= -9.949 (aspherical surface) d12= (Variable)
r13= 6.163 d13= 1.35 nd7= 1.59201 νd7= 67.02
r14= 18.256 d14= 0.80 nd8= 2.00069 νd8= 25.46
r15= 3.675 d15= (Variable)
r16= 15.963 (aspherical surface) d16= 2.07 nd9= 1.74330 νd9= 49.33
r17= -38.145 d17= (Variable)
r18= ∞ d18= 0.40 nd10= 1.54771 νd10= 62.84
r19= ∞ d19= 0.50
r20= ∞ d20= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty one= ∞ dtwenty one= 0.37
rtwenty two= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.05163 × 10-Four
    A6= -3.37326 × 10-6
    A8= 4.45283 × 10-8
    ATen= -3.62203 × 10-Ten
    6th page
    K = 0.000
    AFour= 1.47479 × 10-Four
    A6= 2.72737 × 10-Five
    A8= -1.43607 × 10-6
    ATen= 3.29097 × 10-8
    9th page
    K = 17.341
    AFour= -2.82382 × 10-Four
    A6= 3.16842 × 10-6
    A8= -2.28861 × 10-7
    ATen= 0
    11th page
    K = -0.000
    AFour= -1.03741 × 10-3
    A6= 2.15062 × 10-Five
    A8= -6.81878 × 10-6
    ATen= 7.72131 × 10-7
    12th page
    K = 0.000
    AFour= 5.90361 × 10-Four
    A6= 4.12917 × 10-Five
    A8= -1.28212 × 10-Five
    ATen= 1.50309 × 10-6
    16th page
    K = 0.000
    AFour= 2.50156 × 10-Five
    A6= 1.12904 × 10-Five
    A8= -3.91013 × 10-7
    ATen= 6.07074 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.00 24.29
FNO                 3.13 4.24 4.94
2ω (°)   80.27 34.68 17.58
dFour                 0.71 6.26 13.33
d9                10.81 3.63 0.72
d12                 0.27 0.57 0.42
d15                 2.76 6.65 9.78
d17                 2.83 3.00 2.96.

Example 16
r1= 21.193 d1= 0.81 nd1= 1.94595 νd1= 17.98
r2= 15.192 d2= 3.09 nd2= 1.83481 νd2= 42.71
rThree= 81.748 dThree= (Variable)
rFour= -603.712 (aspherical surface) dFour= 0.82 nd3= 1.88300 νd3= 40.76
rFive= 5.982 (aspherical surface) dFive= 2.78
r6= -237.176 d6= 1.71 nd4= 2.10227 νd4= 17.10
r7= -18.101 d7= 0.09
r8= -15.997 d8= 0.80 nd5= 1.88300 νd5= 40.76
r9= -168.381 (aspherical surface) d9= (Variable)
rTen= ∞ (aperture) dTen= 0.10
r11= 5.812 (Aspherical surface) d11= 2.70 nd6= 1.58913 νd6= 61.14
r12= -10.295 (Aspherical surface) d12= (Variable)
r13= 5.387 d13= 1.54 nd7= 1.59201 νd7= 67.02
r14= 19.283 d14= 0.80 nd8= 2.00069 νd8= 25.46
r15= 3.554 d15= (Variable)
r16= 24.991 (aspherical surface) d16= 2.07 nd9= 1.74330 νd9= 49.33
r17= -19.483 d17= (Variable)
r18= ∞ d18= 0.40 nd10= 1.54771 νd10= 62.84
r19= ∞ d19= 0.50
r20= ∞ d20= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty one= ∞ dtwenty one= 0.35
rtwenty two= ∞ (image plane)
Aspheric coefficient
    4th page
    K = 0.000
    AFour= 1.21970 × 10-Four
    A6= -1.08084 × 10-6
    A8= -1.14600 × 10-8
    ATen= 1.97222 × 10-Ten
    5th page
    K = 0.000
    AFour= 1.75555 × 10-Four
    A6= 2.16172 × 10-Five
    A8= -8.70023 × 10-7
    ATen= 1.24313 × 10-8
    9th page
    K = 410.383
    AFour= -2.79644 × 10-Four
    A6= 4.80703 × 10-6
    A8= -2.06609 × 10-7
    ATen= 0
    11th page
    K = -0.000
    AFour= -8.72572 × 10-Four
    A6= 1.99478 × 10-Five
    A8= -4.51334 × 10-6
    ATen= 5.24324 × 10-7
    12th page
    K = 0.000
    AFour= 5.50797 × 10-Four
    A6= 2.74834 × 10-Five
    A8= -6.52190 × 10-6
    ATen= 7.69571 × 10-7
    16th page
    K = 0.000
    AFour= 1.78974 × 10-Five
    A6= 7.85039 × 10-6
    A8= -2.65852 × 10-7
    ATen= 4.28825 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.08 4.93 4.91
2ω (°)   80.33 36.11 17.66
dThree                 0.74 1.00 13.34
d9                10.94 3.05 0.89
d12                 0.16 0.57 0.55
d15                 2.75 9.30 9.26
d17                 2.70 3.00 2.99.

Example 17
r1= 24.005 d1= 0.80 nd1= 1.92286 νd1= 18.90
r2= 15.730 d2= 0.18
rThree= 16.798 dThree= 3.12 nd2= 1.88300 νd2= 40.76
rFour= 320.063 dFour= (Variable)
rFive= -63.961 (Aspherical surface) dFive= 0.80 nd3= 1.83481 νd3= 42.71
r6= 5.769 (aspherical surface) d6= 2.79
r7= -110.876 d7= 1.74 nd4= 1.94595 νd4= 17.98
r8= -15.935 d8= 0.08
r9= -14.478 d9= 0.68 nd5= 1.83481 νd5= 42.71
rTen= -43.168 (Aspherical surface) dTen= (Variable)
r11= ∞ (aperture) d11= 0.10
r12= 5.627 (Aspherical surface) d12= 2.70 nd6= 1.58913 νd6= 61.14
r13= -9.958 (Aspherical surface) d13= (Variable)
r14= 6.057 d14= 1.36 nd7= 1.59201 νd7= 67.02
r15= 18.994 d15= 0.80 nd8= 2.00069 νd8= 25.46
r16= 3.702 d16= (Variable)
r17= 16.931 (aspherical surface) d17= 2.07 nd9= 1.74330 νd9= 49.33
r18= -33.088 d18= (Variable)
r19= ∞ d19= 0.40 nd10= 1.54771 νd10= 62.84
r20= ∞ d20= 0.50
rtwenty one= ∞ dtwenty one= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty two= ∞ dtwenty two= 0.37
rtwenty three= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.20322 × 10-Four
    A6= -8.05410 × 10-6
    A8= 1.50663 × 10-7
    ATen= -1.08544 × 10-9
    6th page
    K = 0.000
    AFour= 1.19766 × 10-Four
    A6= 2.71353 × 10-Five
    A8= -1.79261 × 10-6
    ATen= 2.50985 × 10-8
    10th page
    K = 4.763
    AFour= -2.60503 × 10-Four
    A6= -1.23050 × 10-6
    A8= 2.35967 × 10-8
    ATen= 0
    12th page
    K = -0.000
    AFour= -9.80569 × 10-Four
    A6= 1.94848 × 10-Five
    A8= -5.98539 × 10-6
    ATen= 6.24092 × 10-7
    13th page
    K = 0.000
    AFour= 5.74317 × 10-Four
    A6= 3.99276 × 10-Five
    A8= -1.14945 × 10-Five
    ATen= 1.22736 × 10-6
    17th page
    K = 0.000
    AFour= 8.72792 × 10-7
    A6= 1.10477 × 10-Five
    A8= -3.58880 × 10-7
    ATen= 5.71191 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.29
FNO                 3.14 4.56 4.90
2ω (°)   80.18 35.40 17.59
dFour                 0.73 4.26 13.29
dTen                10.70 3.25 0.68
d13                 0.29 0.58 0.46
d16                 2.76 7.98 9.63
d18                 2.86 3.05 2.96.

Example 18
r1= 17.636 (Aspherical surface) d1= 3.46 nd1= 1.49700 νd1= 81.54
r2= 1651.373 (aspherical surface) d2= (Variable)
rThree= -89.845 (Aspherical surface) dThree= 0.82 nd2= 1.88300 νd2= 40.76
rFour= 6.252 (Aspherical surface) dFour= 2.41
rFive= 36.538 dFive= 2.14 nd3= 1.94595 νd3= 17.98
r6= -20.686 d6= 0.20
r7= -15.473 d7= 0.70 nd4= 1.88300 νd4= 40.76
r8= -705.490 (aspherical surface) d8= (Variable)
r9= ∞ (aperture) d9= 0.10
rTen= 5.371 (aspherical surface) dTen= 2.70 nd5= 1.58913 νd5= 61.14
r11= -12.630 (aspherical surface) d11= 0.10
r12= 4.840 d12= 1.30 nd6= 1.59201 νd6= 67.02
r13= 8.993 d13= 0.80 nd7= 2.00170 νd7= 20.64
r14= 3.169 d14= (Variable)
r15= -175.389 (Aspherical surface) d15= 2.05 nd8= 2.00170 νd8= 20.64
r16= -15.339 d16= (Variable)
r17= ∞ d17= 0.40 nd9= 1.54771 νd9= 62.84
r18= ∞ d18= 0.50
r19= ∞ d19= 0.50 nd10= 1.51633 νd10= 64.14
r20= ∞ d20= 0.36
rtwenty one= ∞ (image plane)
Aspheric coefficient
    First side
    K = -0.000
    AFour= -9.36696 × 10-twenty one
    A6= -3.07965 × 10-7
    A8= 1.40121 × 10-9
    ATen= 8.27669 × 10-11
    Second side
    K = -0.000
    AFour= 1.06767 × 10-Five
    A6= -7.16715 × 10-7
    A8= 1.70324 × 10-8
    ATen= -3.34505 × 10-11
    Third side
    K = 0.000
    AFour= 4.52338 × 10-Five
    A6= 1.74362 × 10-6
    A8= -8.20880 × 10-8
    ATen= 1.09382 × 10-9
    4th page
    K = 0.000
    AFour= -5.26435 × 10-Five
    A6= 9.38403 × 10-6
    A8= -4.26308 × 10-7
    ATen= 1.16873 × 10-8
    8th page
    K = -3.680
    AFour= -2.58689 × 10-Four
    A6= 7.09681 × 10-6
    A8= -7.55479 × 10-7
    ATen= 1.66474 × 10-8
    10th page
    K = -0.000
    AFour= -8.26225 × 10-Four
    A6= 2.42650 × 10-Five
    A8= -2.03186 × 10-6
    ATen= 2.44772 × 10-7
    11th page
    K = 0.000
    AFour= 6.51537 × 10-Four
    A6= 4.56976 × 10-Five
    A8= -3.58200 × 10-6
    ATen= 4.02796 × 10-7
    15th page
    K = 0.000
    AFour= 8.11366 × 10-Five
    A6= 1.01901 × 10-Five
    A8= -3.84282 × 10-7
    ATen= 5.33610 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 11.98 24.29
FNO                 3.03 4.41 5.05
2ω (°)   81.54 36.13 18.37
d2                 0.72 4.69 12.81
d8                11.55 4.15 0.93
d14                 2.78 7.77 10.07
d16                 2.78 2.99 3.33.

Example 19
r1= 15.057 (aspherical surface) d1= 3.36 nd1= 1.43875 νd1= 94.93
r2= 16740.605 (aspherical surface) d2= (Variable)
rThree= -109.482 (aspherical surface) dThree= 0.82 nd2= 1.88300 νd2= 40.76
rFour= 5.865 (aspherical surface) dFour= 2.48
rFive= 29.434 dFive= 2.25 nd3= 1.94595 νd3= 17.98
r6= -21.699 d6= 0.26
r7= -15.455 d7= 0.70 nd4= 1.88300 νd4= 40.76
r8= 61494.611 (Aspherical surface) d8= (Variable)
r9= ∞ (aperture) d9= 0.10
rTen= 5.519 (Aspherical surface) dTen= 2.70 nd5= 1.58913 νd5= 61.14
r11= -12.178 (Aspherical surface) d11= 0.10
r12= 4.874 d12= 1.36 nd6= 1.59201 νd6= 67.02
r13= 9.784 d13= 0.80 nd7= 2.00170 νd7= 20.64
r14= 3.227 d14= (Variable)
r15= -455.052 (aspherical surface) d15= 2.04 nd8= 2.00170 νd8= 20.64
r16= -15.796 d16= (Variable)
r17= ∞ d17= 0.40 nd9= 1.54771 νd9= 62.84
r18= ∞ d18= 0.50
r19= ∞ d19= 0.50 nd10= 1.51633 νd10= 64.14
r20= ∞ d20= 0.36
rtwenty one= ∞ (image plane)
Aspheric coefficient
    First side
    K = -0.000
    AFour= -9.36696 × 10-twenty one
    A6= -2.82322 × 10-7
    A8= -3.32314 × 10-9
    ATen= 9.80939 × 10-11
    Second side
    K = -0.000
    AFour= 2.03046 × 10-Five
    A6= -8.63339 × 10-7
    A8= 1.39119 × 10-8
    ATen= -2.72606 × 10-11
    Third side
    K = 0.000
    AFour= 1.45879 × 10-Four
    A6= -7.06884 × 10-6
    A8= 1.23121 × 10-7
    ATen= -5.62979 × 10-Ten
    4th page
    K = 0.000
    AFour= -5.29316 × 10-Five
    A6= 3.56817 × 10-6
    A8= -1.11723 × 10-6
    ATen= 1.49013 × 10-8
    8th page
    K = -3.680
    AFour= -2.43119 × 10-Four
    A6= 1.50423 × 10-6
    A8= -8.73464 × 10-8
    ATen= 2.80319 × 10-9
    10th page
    K = -0.000
    AFour= -7.77230 × 10-Four
    A6= 1.47499 × 10-Five
    A8= -1.23145 × 10-6
    ATen= 1.55776 × 10-7
    11th page
    K = 0.000
    AFour= 6.35918 × 10-Four
    A6= 3.49158 × 10-Five
    A8= -2.91520 × 10-6
    ATen= 2.80196 × 10-7
    15th page
    K = 0.000
    AFour= 4.02871 × 10-Five
    A6= 1.18379 × 10-Five
    A8= -4.08960 × 10-7
    ATen= 5.70846 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 11.98 24.29
FNO                 3.11 4.53 5.05
2ω (°)   81.61 36.13 18.35
d2                 0.72 4.72 12.77
d8                11.25 4.14 0.96
d14                 2.79 7.94 9.79
d16                 2.84 2.99 3.34.

Example 20
r1= 24.617 d1= 0.80 nd1= 1.94595 νd1= 17.98
r2= 16.485 d2= 0.34
rThree= 18.513 dThree= 3.03 nd2= 1.88300 νd2= 40.76
rFour= -1350.827 dFour= (Variable)
rFive= -39.777 (aspherical surface) dFive= 0.79 nd3= 1.80610 νd3= 40.92
r6= 5.736 (aspherical surface) d6= 2.50
r7= 46.539 d7= 1.93 nd4= 1.94595 νd4= 17.98
r8= -22.674 d8= 0.64 nd5= 1.80610 νd5= 40.92
r9= 177.436 (aspherical surface) d9= (Variable)
rTen= ∞ (aperture) dTen= (Variable)
r11= 5.325 (aspherical surface) d11= 2.70 nd6= 1.58913 νd6= 61.14
r12= -9.884 (aspherical surface) d12= 0.10
r13= 6.305 d13= 1.41 nd7= 1.59201 νd7= 67.02
r14= 18.239 d14= 0.80 nd8= 2.00069 νd8= 25.46
r15= 3.616 d15= (Variable)
r16= 17.024 (aspherical surface) d16= 2.07 nd9= 1.74330 νd9= 49.33
r17= 34.757 d17= (Variable)
r18= ∞ d18= 0.40 nd10= 1.54771 νd10= 62.84
r19= ∞ d19= 0.50
r20= ∞ d20= 0.50 nd11= 1.51633 νd11= 64.14
rtwenty one= ∞ dtwenty one= 0.37
rtwenty two= ∞ (image plane)
Aspheric coefficient
    5th page
    K = 0.000
    AFour= 2.65294 × 10-Four
    A6= -4.86067 × 10-6
    A8= -4.95916 × 10-8
    ATen= 1.45582 × 10-9
    6th page
    K = 0.000
    AFour= 1.22290 × 10-Four
    A6= 3.07865 × 10-Five
    A8= -1.23246 × 10-6
    ATen= -2.75048 × 10-8
    9th page
    K = -4.077
    AFour= -3.44903 × 10-Four
    A6= 4.47305 × 10-6
    A8= -7.49149 × 10-7
    ATen= 2.89043 × 10-8
    11th page
    K = -0.000
    AFour= -1.06943 × 10-3
    A6= 1.88431 × 10-Five
    A8= -3.97910 × 10-6
    ATen= 3.05632 × 10-7
    12th page
    K = 0.000
    AFour= 7.51908 × 10-Four
    A6= 1.59771 × 10-Five
    A8= -2.43151 × 10-6
    ATen= 2.99982 × 10-7
    16th page
    K = 0.000
    AFour= 2.22601 × 10-Five
    A6= 1.31566 × 10-Five
    A8= -4.73811 × 10-7
    ATen= 7.81341 × 10-9
Zoom data (∞)
                   WE ST TE
f (mm)      5.06 12.01 24.28
FNO                 3.07 4.72 5.05
2ω (°)   80.13 35.38 17.61
dFour                 0.71 4.88 13.53
d9                 9.86 4.07 0.85
dTen                 1.54 0.22 0.28
d15                 2.73 8.32 9.66
d17                 2.75 2.95 2.96.

  FIGS. 21 to 40 show aberration diagrams of Examples 1 to 20 when focusing on an object point at infinity, respectively. In these aberration diagrams, (a) is a wide-angle end, (b) is an intermediate state, and (c) is spherical aberration, astigmatism, distortion, and lateral chromatic aberration at a telephoto end. In each figure, “FIY” indicates the maximum image height.

次に、上記各実施例における条件式(1)〜(21)の値を示す。
実施例 1 2 3 4 5 6 7
(1) 0.128 0.131 0.129 0.165 0.173 0.144 0.130
(2) -0.973 -0.916 -1.030 -0.954 -0.986 -0.949 -0.931
(3) 0.142 0.144 0.142 0.168 0.171 0.153 0.142
(4) 2.0017 1.94595 2.0017 1.92286 1.92286 1.94595 2.10226
(5) 20.6 18.0 20.6 18.9 18.9 18.0 17.1
(6) 1.142 1.270 0.930 1.132 1.037 1.070 1.240
(7) 1.8830 1.8348 1.8830 1.8348 1.8348 1.8830 1.8830
(8) 40.8 42.7 40.8 42.7 42.7 40.8 40.8
(9) 1.8160 1.8348 1.8348 1.8348 1.8348 1.8830 1.8830
(10) 46.6 42.7 42.7 42.7 42.7 40.8 40.8
(11) -1.505 -1.976 -1.370 -1.738 -1.545 -2.038 -1.967
(12) 2.001 2.553 1.885 2.416 2.341 2.334 2.477
(13A ) 0.029 0.030 0.027 0.036 0.054 0.052 0.028
(13B ) -0.007 -0.008 -0.006 -0.004 -0.001 -0.008 -0.008
(14) -0.025 -0.021 -0.025 -0.025 -0.025 -0.019 -0.019
(15) 0.008 0.005 0.005 0.009 0.006 0.006 0.006
(16) 0.310 0.311 0.312 0.311 0.314 0.309 0.309
(17) 1.383 1.383 1.380 1.385 1.385 1.367 1.367
(18) 0.370 0.372 0.371 0.371 0.371 0.371 0.370
(19) 0.636 0.646 0.641 0.640 0.643 0.645 0.640
(20) 0.759 0.759 0.759 0.759 0.759 0.759 0.759
(21) 4.800 4.800 4.800 4.799 4.800 4.801 4.800

実施例 8 9 10 11 12 13 14
(1) 0.118 0.162 0.013 0.094 0.111 0.172 0.108
(2) -0.950 -0.936 -1.116 -0.977 -0.978 -1.000 -0.884
(3) 0.134 0.166 0.100 0.117 0.134 0.174 0.130
(4) 2.10226 1.92286 2.10226 2.0017 2.0017 1.94595 2.0017
(5) 17.1 18.9 17.1 20.6 20.6 17.98 20.64
(6) 1.178 1.175 0.647 1.057 1.052 1.000 1.303
(7) 1.8830 1.8061 1.8830 1.8830 1.8830 1.8061 1.883
(8) 40.8 40.9 40.8 40.8 40.8 40.92 40.76
(9) 1.8830 1.8061 1.8830 1.8160 1.8160 1.8061 1.816
(10) 40.8 40.9 40.8 46.6 46.6 40.92 46.62
(11) -1.545 -1.491 -1.195 -1.775 -1.621 -1.193 -1.806
(12) 2.548 2.215 2.307 1.953 1.936 2.195 2.038
(13A ) 0.035 0.053 0.027 0.013 0.020 0.047 0.033
(13B ) 0.001 -0.001 -0.001 -0.013 -0.020 -0.010 -0.008
(14) -0.022 -0.028 -0.022 -0.026 -0.019 -0.021 -0.022
(15) 0.006 0.008 0.000 0.006 0.006 0.008 0.006
(16) 0.309 0.312 0.312 0.306 0.307 0.305 0.296
(17) 1.371 1.386 1.501 1.393 1.396 1.394 1.376
(18) 0.370 0.372 0.356 0.366 0.366 0.264 0.270
(19) 0.637 0.642 0.657 0.631 0.632 - -
(20) 0.759 0.759 0.759 0.759 0.759 0.759 0.759
(21) 4.799 4.799 4.798 4.800 4.800 4.800 4.800

実施例 15 16 17 18 19 20
(1) 0.185 0.012 0.115 0.084 0.067 0.192
(2) -0.971 -0.951 -0.901 -1.413 -1.498 -1.281
(3) 0.179 0.100 0.138 0.089 0.068 0.186
(4) 1.92286 2.10226 1.94595 1.94595 1.94595 1.94595
(5) 18.90 17.10 17.98 17.98 17.98 17.98
(6) 1.081 1.165 1.336 0.277 0.151 0.345
(7) 1.83481 1.883 1.83481 1.883 1.883 1.8061
(8) 42.71 40.76 42.71 40.76 40.76 40.92
(9) 1.83481 1.883 1.83481 1.8830 1.8830 1.8061
(10) 42.71 40.76 42.71 40.76 40.76 40.92
(11) -1.625 -1.210 -2.009 -1.045 -0.999 -0.773
(12) 2.400 2.458 2.657 1.874 1.831 2.140
(13A ) 0.061 0.050 0.031 0.025 0.051 0.034
(13B ) -0.004 0.008 -0.008 -0.010 -0.051 -0.034
(14) -0.022 -0.018 -0.020 -0.022 -0.017 -0.025
(15) 0.006 0.000 0.005 - - 0.010
(16) 0.306 0.297 0.302 0.313 0.303 0.314
(17) 1.376 1.467 1.370 1.476 1.414 1.382
(18) 0.265 0.277 0.269 0.349 0.351 0.370
(19) - - - 0.687 0.671 0.644
(20) 0.758 0.759 0.759 0.759 0.760 0.759
(21) 4.797 4.800 4.800 4.802 4.804 4.798
Next, the values of conditional expressions (1) to (21) in the above-described embodiments will be shown.
Example 1 2 3 4 5 6 7
(1) 0.128 0.131 0.129 0.165 0.173 0.144 0.130
(2) -0.973 -0.916 -1.030 -0.954 -0.986 -0.949 -0.931
(3) 0.142 0.144 0.142 0.168 0.171 0.153 0.142
(4) 2.0017 1.94595 2.0017 1.92286 1.92286 1.94595 2.10226
(5) 20.6 18.0 20.6 18.9 18.9 18.0 17.1
(6) 1.142 1.270 0.930 1.132 1.037 1.070 1.240
(7) 1.8830 1.8348 1.8830 1.8348 1.8348 1.8830 1.8830
(8) 40.8 42.7 40.8 42.7 42.7 40.8 40.8
(9) 1.8160 1.8348 1.8348 1.8348 1.8348 1.8830 1.8830
(10) 46.6 42.7 42.7 42.7 42.7 40.8 40.8
(11) -1.505 -1.976 -1.370 -1.738 -1.545 -2.038 -1.967
(12) 2.001 2.553 1.885 2.416 2.341 2.334 2.477
(13A) 0.029 0.030 0.027 0.036 0.054 0.052 0.028
(13B) -0.007 -0.008 -0.006 -0.004 -0.001 -0.008 -0.008
(14) -0.025 -0.021 -0.025 -0.025 -0.025 -0.019 -0.019
(15) 0.008 0.005 0.005 0.009 0.006 0.006 0.006
(16) 0.310 0.311 0.312 0.311 0.314 0.309 0.309
(17) 1.383 1.383 1.380 1.385 1.385 1.367 1.367
(18) 0.370 0.372 0.371 0.371 0.371 0.371 0.370
(19) 0.636 0.646 0.641 0.640 0.643 0.645 0.640
(20) 0.759 0.759 0.759 0.759 0.759 0.759 0.759
(21) 4.800 4.800 4.800 4.799 4.800 4.801 4.800
.
Example 8 9 10 11 12 13 14
(1) 0.118 0.162 0.013 0.094 0.111 0.172 0.108
(2) -0.950 -0.936 -1.116 -0.977 -0.978 -1.000 -0.884
(3) 0.134 0.166 0.100 0.117 0.134 0.174 0.130
(4) 2.10226 1.92286 2.10226 2.0017 2.0017 1.94595 2.0017
(5) 17.1 18.9 17.1 20.6 20.6 17.98 20.64
(6) 1.178 1.175 0.647 1.057 1.052 1.000 1.303
(7) 1.8830 1.8061 1.8830 1.8830 1.8830 1.8061 1.883
(8) 40.8 40.9 40.8 40.8 40.8 40.92 40.76
(9) 1.8830 1.8061 1.8830 1.8160 1.8160 1.8061 1.816
(10) 40.8 40.9 40.8 46.6 46.6 40.92 46.62
(11) -1.545 -1.491 -1.195 -1.775 -1.621 -1.193 -1.806
(12) 2.548 2.215 2.307 1.953 1.936 2.195 2.038
(13A) 0.035 0.053 0.027 0.013 0.020 0.047 0.033
(13B) 0.001 -0.001 -0.001 -0.013 -0.020 -0.010 -0.008
(14) -0.022 -0.028 -0.022 -0.026 -0.019 -0.021 -0.022
(15) 0.006 0.008 0.000 0.006 0.006 0.008 0.006
(16) 0.309 0.312 0.312 0.306 0.307 0.305 0.296
(17) 1.371 1.386 1.501 1.393 1.396 1.394 1.376
(18) 0.370 0.372 0.356 0.366 0.366 0.264 0.270
(19) 0.637 0.642 0.657 0.631 0.632--
(20) 0.759 0.759 0.759 0.759 0.759 0.759 0.759
(21) 4.799 4.799 4.798 4.800 4.800 4.800 4.800
.
Example 15 16 17 18 19 20
(1) 0.185 0.012 0.115 0.084 0.067 0.192
(2) -0.971 -0.951 -0.901 -1.413 -1.498 -1.281
(3) 0.179 0.100 0.138 0.089 0.068 0.186
(4) 1.92286 2.10226 1.94595 1.94595 1.94595 1.94595
(5) 18.90 17.10 17.98 17.98 17.98 17.98
(6) 1.081 1.165 1.336 0.277 0.151 0.345
(7) 1.83481 1.883 1.83481 1.883 1.883 1.8061
(8) 42.71 40.76 42.71 40.76 40.76 40.92
(9) 1.83481 1.883 1.83481 1.8830 1.8830 1.8061
(10) 42.71 40.76 42.71 40.76 40.76 40.92
(11) -1.625 -1.210 -2.009 -1.045 -0.999 -0.773
(12) 2.400 2.458 2.657 1.874 1.831 2.140
(13A) 0.061 0.050 0.031 0.025 0.051 0.034
(13B) -0.004 0.008 -0.008 -0.010 -0.051 -0.034
(14) -0.022 -0.018 -0.020 -0.022 -0.017 -0.025
(15) 0.006 0.000 0.005--0.010
(16) 0.306 0.297 0.302 0.313 0.303 0.314
(17) 1.376 1.467 1.370 1.476 1.414 1.382
(18) 0.265 0.277 0.269 0.349 0.351 0.370
(19)---0.687 0.671 0.644
(20) 0.758 0.759 0.759 0.759 0.760 0.759
(21) 4.797 4.800 4.800 4.802 4.804 4.798
.

各実施例にて、以下の構成としてもよい。   In each embodiment, the following configuration may be adopted.

ゴースト、フレア等の不要光をカットするために、明るさ絞りS以外にフレア絞りを配置してもかまわない。第1レンズ群G1の物体側、第1レンズ群G1と第2レンズ群G2間、第2レンズ群G2と第3レンズ群G3間、第3レンズ群G3と第4レンズ群G4間、第4レンズ群G4から像面Iの間、第4レンズ群G4と第5レンズ群G5間、第5レンズ群G5から像面Iの間の何れの場所に配置してもよい。また、枠部材によりフレア光線をカットするように構成してもよいし、別の部材を構成してもよい。また、レンズの表面に直接印刷しても、塗装しても、シール等を接着してもかまわない。また、その形状は円形、楕円形、矩形、多角形、関数曲線で囲まれる範囲等、如何なる形状でもかまわない。また、有害光束をカットするだけでなく、画面周辺のコマフレア等の光束をカットするようにしてもよい。   In order to cut off unnecessary light such as ghost and flare, a flare stop other than the brightness stop S may be arranged. The object side of the first lens group G1, between the first lens group G1 and the second lens group G2, between the second lens group G2 and the third lens group G3, between the third lens group G3 and the fourth lens group G4, and fourth. It may be arranged at any location between the lens group G4 and the image plane I, between the fourth lens group G4 and the fifth lens group G5, and between the fifth lens group G5 and the image plane I. Moreover, you may comprise so that a flare ray may be cut with a frame member, and you may comprise another member. Also, it may be printed directly on the surface of the lens, painted, or adhered with a seal or the like. Further, the shape may be any shape such as a circle, an ellipse, a rectangle, a polygon, or a range surrounded by a function curve. Further, not only the harmful light flux but also the light flux such as coma flare around the screen may be cut.

また、各レンズには反射防止コートを行い、ゴースト、フレアを軽減してもかまわない。マルチコートであれば効果的にゴースト、フレアを軽減できるので望ましい。また、赤外カットコートをレンズ面、カバーガラス等に施してもよい。   Each lens may be provided with an antireflection coating to reduce ghosts and flares. A multi-coat is desirable because it can effectively reduce ghost and flare. Moreover, you may give an infrared cut coat to a lens surface, a cover glass, etc.

また、ピント調節を行うためのフォーカシングは、第4レンズ群G4若しくは第5レンズ群G5で行うことが望ましい。第4レンズ群G4又は第5レンズ群G5でフォーカシングを行うと、レンズ重量が軽量なためモーター等の駆動系にかかる負荷が少ない。さらに、フォーカシング時に全長が変化しないし、鏡枠内部に駆動モーターを配置できるため、鏡枠のコンパクト化に有利である。上述のように、第4レンズ群G4フォーカシング、第5レンズ群G5フォーカシングが望ましいが、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3でフォーカシングを行ってもよい。また、複数のレンズ群を移動してフォーカシングを行ってもよい。また、レンズ系全体を繰り出してフォーカシングを行ってもよいし、群内の一部のレンズを繰り出すか、若しくは、繰り込みしてフォーカスしてもよい。   Further, focusing for adjusting the focus is preferably performed by the fourth lens group G4 or the fifth lens group G5. When focusing is performed by the fourth lens group G4 or the fifth lens group G5, the weight of the lens is light, so that a load applied to a drive system such as a motor is small. Furthermore, the total length does not change during focusing, and the drive motor can be arranged inside the lens frame, which is advantageous for making the lens frame compact. As described above, the fourth lens group G4 focusing and the fifth lens group G5 focusing are desirable, but the first lens group G1, the second lens group G2, and the third lens group G3 may perform focusing. Further, focusing may be performed by moving a plurality of lens groups. Further, focusing may be performed by extending the entire lens system, or a part of the lenses in the group may be extended or focused by focusing.

また、画像周辺部の明るさの陰り(シェーディング)をCCDのマイクロレンズをシフトすることにより軽減してもよい。例えば、各像高における光線の入射角に合わせてCCDのマイクロレンズの設計を変えてもよい。また画像処理により画像周辺部の低下量を補正してもよい。   Further, the shading of the brightness at the periphery of the image may be reduced by shifting the micro lens of the CCD. For example, the design of the CCD microlens may be changed according to the incident angle of the light beam at each image height. Further, the amount of decrease in the peripheral portion of the image may be corrected by image processing.

また、意図的に光学系で歪曲収差を出しておき、撮影後に電気的に画像処理を行って歪みを補正してもかまわない。その場合の像の歪曲をデジタル補正するための基本的概念について説明する。   Alternatively, the distortion may be intentionally generated by the optical system, and the distortion may be corrected by electrically performing image processing after shooting. A basic concept for digitally correcting image distortion in that case will be described.

例えば、図42に示すように、光軸と撮像面との交点を中心として有効撮像面の長辺に内接する半径Rの円周上(像高)での倍率を固定し、この円周を補正の基準とする。そして、それ以外の任意の半径r(ω)の円周上(像高)の各点を略放射方向に移動させて、半径r'(ω)となるように同心円状に移動させることで補正する。例えば、図42において、半径Rの円の内側に位置する任意の半径r1(ω)の円周上の点P1は、円の中心に向けて補正すべき半径r1'(ω)円周上の点P2に移動させる。また、半径Rの円の外側に位置する任意の半径r2(ω)円周上の点Q1は、円の中心から離れる方向に向けて補正すべき半径r2'(ω)円周上の点Q2に移動させる。ここで、r'(ω)は次のように表わすことができる。 For example, as shown in FIG. 42, the magnification on the circumference (image height) of the radius R inscribed in the long side of the effective imaging surface around the intersection of the optical axis and the imaging surface is fixed, and this circumference is Use as a reference for correction. Then, correction is performed by moving each point on the circumference (image height) of any other radius r (ω) in a substantially radial direction and concentrically so as to have the radius r ′ (ω). To do. For example, in FIG. 42, a point P 1 on the circumference of an arbitrary radius r 1 (ω) located inside the circle of radius R is a radius r 1 ′ (ω) circle to be corrected toward the center of the circle. Move to point P 2 on the circumference. A point Q 1 on the circumference of an arbitrary radius r 2 (ω) located outside the circle of radius R is on the radius r 2 ′ (ω) circumference to be corrected in a direction away from the center of the circle. To point Q 2 . Here, r ′ (ω) can be expressed as follows.

r'(ω)=αftanω (0≦α≦1)
ただし、ωは被写体半画角、fは結像光学系(本発明では、ズームレンズ)の焦点距離である。
r ′ (ω) = αf tan ω (0 ≦ α ≦ 1)
Here, ω is the subject half angle of view, and f is the focal length of the imaging optical system (in the present invention, the zoom lens).

ここで、前記半径rの円上(像高)に対応する理想像高をYとすると、
α=R/Y=R/ftanω
となる。
Here, if the ideal image height corresponding to the circle (image height) of the radius r is Y,
α = R / Y = R / ftanω
It becomes.

光学系は、理想的には、光軸に対して回転対称であり、すなわち歪曲収差も光軸に対して回転対称に発生する。したがって、上述のように、光学的に発生した歪曲収差を電気的に補正する場合には、再現画像上で光軸と撮像面との交点を中心とした有効撮像面の長辺に内接する半径Rの円の円周上(像高)の倍率を固定して、それ以外の半径r(ω)の円周上(像高)の各点を略放射方向に移動させて、半径r'(ω)となるように同心円状に移動させることで補正することができれば、データ量や演算量の点で有利と考えられる。   The optical system is ideally rotationally symmetric with respect to the optical axis, that is, distortion is also generated rotationally symmetric with respect to the optical axis. Therefore, as described above, when the optically generated distortion aberration is electrically corrected, the radius inscribed in the long side of the effective imaging surface around the intersection of the optical axis and the imaging surface on the reproduced image. The magnification on the circumference of the circle of R (image height) is fixed, and the other points on the circumference of the circle (image height) of radius r (ω) are moved in a substantially radial direction to obtain a radius r ′ ( If correction can be performed by moving the concentric circles so that ω), it is considered advantageous in terms of data amount and calculation amount.

ところが、光学像は、電子撮像素子で撮像された時点で(サンプリングのため)連続量ではなくなる。したがって、厳密には光学像上に描かれる上記半径Rの円も、電子撮像素子上の画素が放射状に配列されていない限り正確な円ではなくなる。つまり、離散的座標点毎に表わされる画像データの形状補正においては、上記倍率を固定できる円は存在しない。そこで、各画素(Xi,Yj)毎に、移動先の座標(X'i,Y'j)を決める方法を用いるのがよい。なお、座標(X'i,Y'j)に(Xi,Yj)の2点以上が移動してきた場合には、各画素が有する値の平均値をとる。また、移動してくる点がない場合には、周囲のいくつかの画素の座標(X'i,Y'j)の値を用いて補間すればよい。 However, the optical image is no longer a continuous amount (due to sampling) when captured by the electronic image sensor. Therefore, strictly speaking, the circle with the radius R drawn on the optical image is not an accurate circle unless the pixels on the electronic image sensor are arranged radially. That is, in the shape correction of the image data represented for each discrete coordinate point, there is no circle that can fix the magnification. Therefore, it is preferable to use a method of determining the coordinates (X ′ i , Y ′ j ) of the movement destination for each pixel (X i , Y j ). When two or more points (X i , Y j ) have moved to the coordinates (X ′ i , Y ′ j ), the average value of the values of each pixel is taken. If there is no moving point, interpolation may be performed using the values of the coordinates (X ′ i , Y ′ j ) of some surrounding pixels.

このような方法は、特にズームレンズが有する電子撮像装置において光学系や電子撮像素子の製造誤差等のために光軸に対して歪みが著しく、前記光学像上に描かれる上記半径Rの円が非対称になった場合の補正に有効である。また、撮像素子あるいは各種出力装置において信号を画像に再現する際に幾何学的歪み等が発生する場合等の補正に有効である。   Such a method is particularly distorted with respect to the optical axis due to a manufacturing error of an optical system or an electronic imaging element in an electronic imaging device included in a zoom lens, and the circle with the radius R drawn on the optical image is It is effective for correction when it becomes asymmetric. Further, it is effective for correction when a geometric distortion or the like occurs when a signal is reproduced as an image in an image sensor or various output devices.

本発明の電子撮像装置では、補正量r'(ω)−r(ω)を計算するために、r(ω)すなわち半画角と像高との関係、あるいは、実像高rと理想像高r'/αとの関係が、電子撮像装置に内蔵された記録媒体に記録されている構成としてもよい。   In the electronic imaging apparatus of the present invention, in order to calculate the correction amount r ′ (ω) −r (ω), r (ω), that is, the relationship between the half field angle and the image height, or the real image height r and the ideal image height. The relationship between r ′ / α may be recorded on a recording medium built in the electronic imaging apparatus.

なお、歪曲補正後の画像が短辺方向の両端において光量が極端に不足することのないようにするには、前記半径Rが、次の条件式を満足するのがよい。   Note that the radius R preferably satisfies the following conditional expression so that the image after distortion correction does not have an extremely short amount of light at both ends in the short side direction.

0≦R≦0.6Ls
ただし、Lsは有効撮像面の短辺の長さである。
0 ≦ R ≦ 0.6L s
Note that L s is the length of the short side of the effective imaging surface.

好ましくは、前記半径Rは、次の条件式を満足するのがよい。   Preferably, the radius R satisfies the following conditional expression.

0≦R≦0.6Ls
さらには、前記半径Rは、略有効撮像面の短辺方向の内接円の半径に一致させるのが最も有利である。なお、半径R=0の近傍、すなわち、軸上近傍において倍率を固定した補正の場合は、実質画素数の面で若干の不利があるが、広角化しても小型化にするための効果は確保できる。
0 ≦ R ≦ 0.6L s
Furthermore, it is most advantageous that the radius R is substantially equal to the radius of the inscribed circle in the short side direction of the effective imaging surface. In the case of correction in which the magnification is fixed in the vicinity of the radius R = 0, that is, in the vicinity of the axis, there is a slight disadvantage in terms of the actual number of pixels, but the effect of reducing the size is ensured even if the angle is widened. it can.

なお、補正が必要な焦点距離区間については、いくつかの焦点ゾーンに分割する。そして、該分割された焦点ゾーン内の望遠端近傍で略
r'(ω)=αftanω
を満足する補正結果が得られる場合と同じ補正量で補正してもよい。ただし、その場合、分割された焦点ゾーン内の広角端において樽型歪曲量がある程度残存してしまう。また、分割ゾーン数を増加させてしまうと、補正のために必要な固有データを記録媒体に余計に保有する必要が生じあまり好ましくない。そこで、分割された焦点ゾーン内の各焦点距離に関連した1つ又は数個の係数を予め算出しておく。この係数は、シミュレーションや実機による測定に基づいて決定しておけばよい。そして、前記分割されたゾーン内の望遠鏡近傍で略
r'(ω)=αftanω
を満足する補正結果が得られる場合の補正量を算出し、この補正量に対して焦点距離毎に前記係数を一律に掛けて最終的な補正量にしてもよい。
The focal length section that needs to be corrected is divided into several focal zones. Then, in the vicinity of the telephoto end in the divided focal zone, approximately r ′ (ω) = αf tan ω
You may correct | amend with the same correction amount as the case where the correction result which satisfies is obtained. However, in that case, some barrel distortion remains at the wide-angle end in the divided focal zone. Further, if the number of divided zones is increased, it becomes unnecessary to store extraneous data necessary for correction on the recording medium, which is not preferable. Therefore, one or several coefficients related to each focal length in the divided focal zone are calculated in advance. This coefficient may be determined on the basis of simulation or actual measurement. Then, in the vicinity of the telescope in the divided zone, approximately r ′ (ω) = αf tan ω
It is also possible to calculate a correction amount when a correction result satisfying the above is obtained, and uniformly multiply the correction amount for each focal distance to obtain a final correction amount.

ところで、無限遠物体を結像させて得られた像に歪曲がない場合は、
f=y/tanω
が成立する。ただし、yは像点の光軸からの高さ(像高)、fは結像系(本発明ではズームレンズ)の焦点距離、ωは撮像面上の中心からyの位置に結ぶ像点に対応する物点方向の光軸に対する角度(被写体半画角)である。
By the way, if there is no distortion in the image obtained by imaging an object at infinity,
f = y / tan ω
Is established. Where y is the height (image height) of the image point from the optical axis, f is the focal length of the imaging system (in the present invention, the zoom lens), and ω is the image point connecting from the center on the imaging surface to the y position. It is an angle (subject half field angle) with respect to the optical axis in the corresponding object direction.

結像系に樽型の歪曲収差がある場合は、
f>y/tanω
となる。つまり、結像系の焦点距離fと、像高yとを一定とすると、ωの値は大きくなる。
If the imaging system has barrel distortion,
f> y / tan ω
It becomes. That is, if the focal length f of the imaging system and the image height y are constant, the value of ω increases.

図43〜図45は、以上のようなズームレンズを撮影光学系41に組み込んだ本発明によるデジタルカメラの構成の概念図を示す。図43はデジタルカメラ40の外観を示す前方斜視図、図44は同後方正面図、図45はデジタルカメラ40の構成を示す模式的な断面図である。ただし、図43と図45においては、撮影光学系41の非沈胴時を示している。デジタルカメラ40は、この例の場合、撮影用光路42上に位置する撮影光学系41、ファインダー用光路44上に位置するファインダー光学系43、シャッターボタン45、フラッシュ46、液晶表示モニター47、焦点距離変更ボタン61、設定変更スイッチ62等を含み、撮影光学系41の沈胴時には、カバー60をスライドすることにより、撮影光学系41とファインダー光学系43とフラッシュ46はそのカバー60で覆われる。そして、カバー60を開いてカメラ40を撮影状態に設定すると、撮影光学系41は図45の非沈胴状態になり、カメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、波長域制限コートを施したローパスフィルターFとカバーガラスCを介してCCD49の撮像面(光電変換面)上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる、なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   43 to 45 are conceptual diagrams of the configuration of a digital camera according to the present invention in which the zoom lens as described above is incorporated in the photographing optical system 41. FIG. 43 is a front perspective view showing the appearance of the digital camera 40, FIG. 44 is a rear front view thereof, and FIG. 45 is a schematic cross-sectional view showing the configuration of the digital camera 40. However, in FIGS. 43 and 45, the photographing optical system 41 is not retracted. In this example, the digital camera 40 includes a photographing optical system 41 located on the photographing optical path 42, a finder optical system 43 located on the finder optical path 44, a shutter button 45, a flash 46, a liquid crystal display monitor 47, a focal length. When the photographic optical system 41 is retracted, the photographic optical system 41, the finder optical system 43, and the flash 46 are covered with the cover 60, including the change button 61, the setting change switch 62, and the like. Then, when the cover 60 is opened and the camera 40 is set to the photographing state, the photographing optical system 41 enters the non-collapsed state of FIG. 45, and when the shutter button 45 disposed on the upper part of the camera 40 is pressed, the photographing is performed in conjunction therewith. Photographing is performed through the optical system 41, for example, the zoom lens of the first embodiment. An object image formed by the photographic optical system 41 is formed on the imaging surface (photoelectric conversion surface) of the CCD 49 via a low-pass filter F and a cover glass C that are provided with a wavelength band limiting coat. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. In addition, a recording means 52 is connected to the processing means 51 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be a floppy disk or the like. The recording and writing may be performed electronically using a memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。ファインダー用対物光学系53は、複数のレンズ群(図の場合は3群)と正立プリズム55a、55b、55cからなる正立プリズム系55とから構成され、撮影光学系41のズームレンズに連動して焦点距離が変化するズーム光学系からなり、このファインダー用対物光学系53によって形成された物体像は、像正立部材である正立プリズム系55の視野枠57上に形成される。この正立プリズム系55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、接眼光学系59の射出側にカバー部材50が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a plurality of lens groups (three groups in the figure) and an erecting prism system 55 including erecting prisms 55a, 55b, and 55c, and is linked to the zoom lens of the photographing optical system 41. The object image formed by the finder objective optical system 53 is formed on a field frame 57 of an erecting prism system 55 that is an image erecting member. Behind the erecting prism system 55, an eyepiece optical system 59 for guiding the erect image to the observer eyeball E is disposed. A cover member 50 is disposed on the exit side of the eyepiece optical system 59.

図46は、上記デジタルカメラ40の主要部の内部回路の構成ブロック図である。なお、以下の説明では、上記の処理手段51は例えばCDS/ADC部24、一次記憶メモリ17、画像処理部18等からなり、記憶手段52は例えば記憶媒体部19等からなる。   FIG. 46 is a block diagram showing the internal circuitry of the main part of the digital camera 40. In the following description, the processing unit 51 includes, for example, the CDS / ADC unit 24, the primary storage memory 17, the image processing unit 18, and the storage unit 52 includes the storage medium unit 19, for example.

図46に示すように、デジタルカメラ40は、操作部12と、この操作部12に接続された制御部13と、この制御部13の制御信号出力ポートにバス14及び15を介して接続された撮像駆動回路16並びに一次記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21を備えている。   As shown in FIG. 46, the digital camera 40 is connected to the operation unit 12, the control unit 13 connected to the operation unit 12, and the control signal output port of the control unit 13 via buses 14 and 15. An imaging drive circuit 16, a primary storage memory 17, an image processing unit 18, a storage medium unit 19, a display unit 20, and a setting information storage memory unit 21 are provided.

上記の一次記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21はバス22を介して相互にデータの入力又は出力が可能なように構成され、また、撮像駆動回路16には、CCD49とCDS/ADC部24が接続されている。   The primary storage memory 17, the image processing unit 18, the storage medium unit 19, the display unit 20, and the setting information storage memory unit 21 are configured so that data can be input or output with each other via the bus 22. The imaging drive circuit 16 is connected with a CCD 49 and a CDS / ADC unit 24.

操作部12は各種の入力ボタンやスイッチを備え、これらの入力ボタンやスイッチを介して外部(カメラ使用者)から入力されるイベント情報を制御部に通知する回路である。
制御部13は、例えばCPU等からなる中央演算処理装置であり、不図示のプログラムメモリを内蔵し、そのプログラムメモリに格納されているプログラムにしたがって、操作部12を介してカメラ使用者から入力される指示命令を受けてデジタルカメラ40全体を制御する回路である。
The operation unit 12 includes various input buttons and switches, and is a circuit that notifies the control unit of event information input from the outside (camera user) via these input buttons and switches.
The control unit 13 is a central processing unit composed of, for example, a CPU, and has a built-in program memory (not shown). The control unit 13 is input by a camera user via the operation unit 12 according to a program stored in the program memory. This circuit controls the entire digital camera 40 in response to the instruction command.

CCD49は、本発明による撮影光学系41を介して形成された物体像を受光する。CCD49は、撮影駆動回路16により駆動制御され、その物体像の各画素ごとの光量を電気信号に変換してCDS/ADC部24に出力する撮像素子である。   The CCD 49 receives an object image formed via the photographing optical system 41 according to the present invention. The CCD 49 is an image pickup element that is driven and controlled by the photographing drive circuit 16 and converts the light amount of each pixel of the object image into an electrical signal and outputs it to the CDS / ADC unit 24.

CDS/ADC部24は、CCD49から入力する電気信号を増幅しかつアナログ/デジタル変換を行って、この増幅とデジタル変換を行っただけの映像生データ(ベイヤーデータ、以下RAWデータという。)を一時メモリ17に出力する回路である。   The CDS / ADC unit 24 amplifies the electric signal input from the CCD 49 and performs analog / digital conversion, and temporarily generates the raw video data (Bayer data, hereinafter referred to as RAW data) that has just been subjected to the amplification and digital conversion. It is a circuit that outputs to the memory 17.

一次記憶メモリ17は、例えばSDRAM等からなるバッファであり、CDS/ADC部24から出力される上記RAWデータを一時的に記憶するメモリ装置である。画像処理部18は、一次記憶メモリ17に記憶されたRAWデータ又は記憶媒体部19に記憶されているRAWデータを読み出して、制御部13から指定された画質パラメータに基づいて歪曲収差補正を含む各種画像処理を電気的に行う回路である。   The primary storage memory 17 is a buffer made of, for example, SDRAM, and is a memory device that temporarily stores the RAW data output from the CDS / ADC unit 24. The image processing unit 18 reads out the RAW data stored in the primary storage memory 17 or the RAW data stored in the storage medium unit 19, and performs various corrections including distortion correction based on the image quality parameter designated by the control unit 13. It is a circuit that performs image processing electrically.

記憶媒体部19は、例えばフラッシュメモリ等からなるカード型又はスティック型の記録媒体を着脱自在に装着して、それらカード型又はスティック型のフラッシュメモリに、一次記憶メモリ17から転送されるRAWデータや画像処理部18で画像処理された画像データを記録して保持する装置の制御回路である。   The storage medium unit 19 detachably mounts a card-type or stick-type recording medium made of, for example, a flash memory, and the RAW data transferred from the primary storage memory 17 to the card-type or stick-type flash memory It is a control circuit of an apparatus that records and holds image data processed by the image processing unit 18.

表示部20は、液晶表示モニター47を備え、その液晶表示モニター47に画像や操作メニュー等を表示する回路である。設定情報記憶メモリ部21には、予め各種の画質パラメータが格納されているROM部と、そのROM部から読み出された画質パラメータの中から操作部12の入力操作によって選択された画質パラメータを記憶するRAM部が備えられている。設定情報記憶メモリ部21は、それらのメモリへの入出力を制御する回路である。   The display unit 20 includes a liquid crystal display monitor 47 and is a circuit that displays an image, an operation menu, and the like on the liquid crystal display monitor 47. The setting information storage memory unit 21 stores a ROM unit in which various image quality parameters are stored in advance, and an image quality parameter selected by an input operation of the operation unit 12 among the image quality parameters read from the ROM unit. RAM section is provided. The setting information storage memory unit 21 is a circuit for controlling input / output to / from these memories.

このように構成されたデジタルカメラ40は、撮影光学系41が、本発明により、十分な広角域を有し、コンパクトな構成としながら、高変倍で全変倍域で結像性能が極めて安定的であるので、高性能・小型化・広角化が実現できる。そして、広角側、望遠側での速い合焦動作が可能となる。   In the digital camera 40 configured in this manner, the imaging optical system 41 has a sufficiently wide angle range according to the present invention, and a compact configuration, while the imaging performance is extremely stable at a high zoom ratio and in a full zoom ratio range. Therefore, high performance, downsizing, and wide angle can be realized. In addition, fast focusing operation on the wide-angle side and the telephoto side is possible.

本発明は、以上のような一般的な被写体を撮影する所謂コンパクトデジタルカメラだけではなく、広い画角が必要な監視カメラや、レンズ交換式のカメラに適用してもよい。   The present invention may be applied not only to a so-called compact digital camera that captures a general subject as described above, but also to a surveillance camera that requires a wide angle of view and an interchangeable lens camera.

本発明のズームレンズの実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図である。FIG. 2 is a lens cross-sectional view at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity according to the first exemplary embodiment of the zoom lens of the present invention. 本発明のズームレンズの実施例2の図1と同様の図である。It is the same figure as FIG. 1 of Example 2 of the zoom lens of this invention. 本発明のズームレンズの実施例3の図1と同様の図である。It is the same figure as FIG. 1 of Example 3 of the zoom lens of this invention. 本発明のズームレンズの実施例4の図1と同様の図である。It is the same figure as FIG. 1 of Example 4 of the zoom lens of this invention. 本発明のズームレンズの実施例5の図1と同様の図である。It is the same figure as FIG. 1 of Example 5 of the zoom lens of this invention. 本発明のズームレンズの実施例6の図1と同様の図である。It is the same figure as FIG. 1 of Example 6 of the zoom lens of this invention. 本発明のズームレンズの実施例7の図1と同様の図である。It is the same figure as FIG. 1 of Example 7 of the zoom lens of this invention. 本発明のズームレンズの実施例8の図1と同様の図である。It is a figure similar to FIG. 1 of Example 8 of the zoom lens of this invention. 本発明のズームレンズの実施例9の図1と同様の図である。It is the same figure as FIG. 1 of Example 9 of the zoom lens of this invention. 本発明のズームレンズの実施例10の図1と同様の図である。It is a figure similar to FIG. 1 of Example 10 of the zoom lens of this invention. 本発明のズームレンズの実施例11の図1と同様の図である。It is the same figure as FIG. 1 of Example 11 of the zoom lens of this invention. 本発明のズームレンズの実施例12の図1と同様の図である。It is the same figure as FIG. 1 of Example 12 of the zoom lens of this invention. 本発明のズームレンズの実施例13の図1と同様の図である。It is the same figure as FIG. 1 of Example 13 of the zoom lens of this invention. 本発明のズームレンズの実施例14の図1と同様の図である。It is the same figure as FIG. 1 of Example 14 of the zoom lens of this invention. 本発明のズームレンズの実施例15の図1と同様の図である。It is the same figure as FIG. 1 of Example 15 of the zoom lens of this invention. 本発明のズームレンズの実施例16の図1と同様の図である。It is the same figure as FIG. 1 of Example 16 of the zoom lens of this invention. 本発明のズームレンズの実施例17の図1と同様の図である。It is a figure similar to FIG. 1 of Example 17 of the zoom lens of this invention. 本発明のズームレンズの実施例18の図1と同様の図である。It is the same figure as FIG. 1 of Example 18 of the zoom lens of this invention. 本発明のズームレンズの実施例19の図1と同様の図である。It is the same figure as FIG. 1 of Example 19 of the zoom lens of this invention. 本発明のズームレンズの実施例20の図1と同様の図である。It is the same figure as FIG. 1 of Example 20 of the zoom lens of this invention. 実施例1の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 1 upon focusing on an object point at infinity. 実施例2の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 2 upon focusing on an object point at infinity. 実施例3の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 3 upon focusing on an object point at infinity. 実施例4の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 4 upon focusing on an object point at infinity. 実施例5の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 5 upon focusing on an object point at infinity. 実施例6の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 6 upon focusing on an object point at infinity. 実施例7の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 7 upon focusing on an object point at infinity. 実施例8の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 8 upon focusing on an object point at infinity. 実施例9の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 9 upon focusing on an object point at infinity. 実施例10の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 10 upon focusing on an object point at infinity. 実施例11の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 11 upon focusing on an object point at infinity. 実施例12の無限遠物点合焦時の収差図である。FIG. 14 is an aberration diagram for Example 12 upon focusing on an object point at infinity. 実施例13の無限遠物点合焦時の収差図である。FIG. 14 is an aberration diagram for Example 13 upon focusing on an object point at infinity. 実施例14の無限遠物点合焦時の収差図である。FIG. 16 is an aberration diagram for Example 14 upon focusing on an object point at infinity. 実施例15の無限遠物点合焦時の収差図である。FIG. 18 is an aberration diagram for Example 15 upon focusing on an object point at infinity. 実施例16の無限遠物点合焦時の収差図である。FIG. 16 is an aberration diagram for Example 16 upon focusing on an object point at infinity. 実施例17の無限遠物点合焦時の収差図である。FIG. 18 is an aberration diagram for Example 17 upon focusing on an object point at infinity. 実施例18の無限遠物点合焦時の収差図である。FIG. 20 is an aberration diagram for Example 18 upon focusing on an object point at infinity. 実施例19の無限遠物点合焦時の収差図である。FIG. 27 is an aberration diagram for Example 19 upon focusing on an object point at infinity. 実施例20の無限遠物点合焦時の収差図である。FIG. 20 is an aberration diagram for Example 20 upon focusing on an object point at infinity. 非球面偏倚量の定義を説明するための図である。It is a figure for demonstrating the definition of the amount of aspherical deviation. 像の歪曲をデジタル補正するための基本的概念を説明するための図である。It is a figure for demonstrating the basic concept for carrying out the digital correction of the distortion of an image. 本発明によるデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera by this invention. 図43のデジタルカメラの後方斜視図である。FIG. 44 is a rear perspective view of the digital camera of FIG. 43. 図43のデジタルカメラの断面図である。It is sectional drawing of the digital camera of FIG. 図43のデジタルカメラの主要部の内部回路の構成ブロック図である。FIG. 44 is a configuration block diagram of an internal circuit of a main part of the digital camera of FIG. 43.

符号の説明Explanation of symbols

G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
G4…第4レンズ群
G5…第5レンズ群
S…開口絞り
F…光学的ローパスフィルター
C…カバーガラス
I…像面
E…観察者眼球
12…操作部
13…制御部
14、15…バス
16…撮像駆動回路
17…一次記憶メモリ
18…画像処理部
19…記憶媒体部
20…表示部
21…設定情報記憶メモリ部
22…バス
24…CDS/ADC部
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッターボタン
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…正立プリズム系
55a、55b、55c、…正立プリズム
57…視野枠
59…接眼光学系
60…カバー
61…焦点距離変更ボタン
62…設定変更スイッチ
G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group G4 ... 4th lens group G5 ... 5th lens group S ... Aperture stop F ... Optical low-pass filter C ... Cover glass I ... Image plane E ... Observer eyeball 12 ... operation section 13 ... control sections 14 and 15 ... bus 16 ... imaging drive circuit 17 ... primary storage memory 18 ... image processing section 19 ... storage medium section 20 ... display section 21 ... setting information storage memory section 22 ... bus 24 ... CDS / ADC section 40 ... digital camera 41 ... photographing optical system 42 ... photographing optical path 43 ... finder optical system 44 ... finder optical path 45 ... shutter button 46 ... flash 47 ... liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Finder objective optical system 55 ... Erect prism system 55a, 55b, 55c, ... Erect prism 57 ... Field frame 59 ... Eyepiece optical system 60 ... Cover 61 ... Focus Distance change button 62 ... Setting change switch

Claims (36)

物体側から順に、正屈折力の第1レンズ群、負屈折力の第2レンズ群、正屈折力の第3レンズ群を有し、
広角端から望遠端への変倍の際に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔を変化させ、
前記第1レンズ群と前記第2レンズ群との間隔は広角端に対して望遠端にて広がり、
前記第2レンズ群と前記第3レンズ群との間隔は広角端に対して望遠端にて狭まり、
前記第1レンズ群は、正レンズを含み、総レンズ枚数が2枚以下のレンズからなり、
前記第2レンズ群は、物体側から順に、物体側負レンズ、正レンズ、像側負レンズの3枚のレンズからなり、
前記物体側負レンズの物体側面と像側面はともに凹面であり、
前記正レンズの像側面は像側に凸の面であり、物体側面の曲率半径絶対値よりも像側面の曲率半径絶対値のほうが小さく、
前記第2レンズ群中の前記物体側負レンズと前記正レンズは光軸上にて空気間隔を挟んで配置し、
以下の条件式を満足することを特徴とするズームレンズ。
0.0<f2/R2n1f<0.4 ・・・(1)
−1.6<SF2air <−0.5 ・・・(2)
ただし、R2n1fは、第2レンズ群中の物体側負レンズの物体側面の近軸曲率半径、
2は、第2レンズ群の焦点距離、
SF2air=(R2n1r+R2pf)/(R2n1r−R2pf)で定義され、
2n1rは、第2レンズ群の物体側負レンズの像側面の近軸曲率半径、
2pfは、第2レンズ群の正レンズの物体側面の近軸曲率半径、
である。
In order from the object side, it has a first lens group with positive refractive power, a second lens group with negative refractive power, and a third lens group with positive refractive power,
During zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group are changed,
The distance between the first lens group and the second lens group is wider at the telephoto end than at the wide angle end,
The distance between the second lens group and the third lens group is narrower at the telephoto end than at the wide-angle end,
The first lens group includes a positive lens, and the total number of lenses is two or less.
The second lens group is composed of three lenses in order from the object side: an object-side negative lens, a positive lens, and an image-side negative lens;
The object side surface and the image side surface of the object side negative lens are both concave surfaces,
The image side surface of the positive lens is a convex surface on the image side, and the curvature radius absolute value of the image side surface is smaller than the curvature radius absolute value of the object side surface,
The object side negative lens and the positive lens in the second lens group are arranged with an air gap on the optical axis,
A zoom lens satisfying the following conditional expression:
0.0 <f 2 / R 2n1f <0.4 (1)
−1.6 <SF 2air <−0.5 (2)
Where R 2n1f is the paraxial radius of curvature of the object side surface of the object side negative lens in the second lens group,
f 2 is the focal length of the second lens group,
SF 2air = (R 2n1r + R 2pf ) / (R 2n1r −R 2pf )
R 2n1r is the paraxial radius of curvature of the image side surface of the object side negative lens of the second lens group,
R 2pf is the paraxial radius of curvature of the object side surface of the positive lens in the second lens group,
It is.
前記ズームレンズの前記第3レンズ群よりも像側のレンズ枚数が3枚以下であることを特徴とする請求項1記載のズームレンズ。   2. The zoom lens according to claim 1, wherein the number of lenses on the image side of the third lens group of the zoom lens is three or less. 前記ズームレンズが正屈折力を持つ第4レンズ群を有する4群ズームレンズであることを特徴とする請求項1又は2記載のズームレンズ。   3. The zoom lens according to claim 1, wherein the zoom lens is a four-group zoom lens having a fourth lens group having a positive refractive power. 前記ズームレンズが、1枚の正レンズからなる第4レンズ群を有する4群ズームレンズであることを特徴とする請求項1記載のズームレンズ。   The zoom lens according to claim 1, wherein the zoom lens is a four-group zoom lens having a fourth lens group composed of one positive lens. 前記ズームレンズが、負屈折力を持つ第4レンズ群と、正屈折力を持つ第5レンズ群を有する5群ズームレンズであることを特徴とする請求項2記載のズームレンズ。   3. The zoom lens according to claim 2, wherein the zoom lens is a five-group zoom lens having a fourth lens group having a negative refractive power and a fifth lens group having a positive refractive power. 以下の条件式を満足することを特徴とする請求項1から5の何れか1項記載のズームレンズ。
0.00<(1/R2n1f−1/R1r)・f2<0.40 ・・・(3)
ただし、R1rは第1レンズ群中の最も像側のレンズの像側面の近軸曲率半径、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
0.00 <(1 / R 2n1f −1 / R 1r ) · f 2 <0.40 (3)
Where R 1r is the paraxial radius of curvature of the image side surface of the most image side lens in the first lens group,
It is.
以下の条件式を満足することを特徴とする請求項1から6の何れか1項記載のズームレンズ。
1.84<nd2p<2.20 ・・・(4)
13.0<νd2p<30.0 ・・・(5)
ただし、nd2pは第2レンズ群中の正レンズのd線に対する屈折率、
νd2pは第2レンズ群中の正レンズのアッベ数、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
1.84 <n d2p <2.20 (4)
13.0 <ν d2p <30.0 (5)
Where n d2p is the refractive index of the positive lens in the second lens group with respect to the d-line,
ν d2p is the Abbe number of the positive lens in the second lens group,
It is.
以下の条件式を満足することを特徴とする、請求項1から7の何れか1項記載のズームレンズ。
0.45<SF2p<1.80 ・・・(6)
ただし、SF2p=(R2pf+R2pr)/(R2pf−R2pr)で定義され、
2pfは第2レンズ群中の正レンズの物体側面の近軸曲率半径、
2prは第2レンズ群中の正レンズの像側面の近軸曲率半径、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
0.45 <SF 2p <1.80 (6)
However, as defined in SF 2p = (R 2pf + R 2pr) / (R 2pf -R 2pr),
R 2pf is the paraxial radius of curvature of the object side surface of the positive lens in the second lens group,
R 2pr is the paraxial radius of curvature of the image side surface of the positive lens in the second lens group,
It is.
以下の条件式を満足することを特徴とする請求項1から8の何れか1項記載のズームレンズ。
1.78<nd2n1<2.20 ・・・(7)
35<νd2n1<50 ・・・(8)
ただし、nd2n1は第2レンズ群中の物体側負レンズのd線に対する屈折率、
νd2n1は第2レンズ群中の物体側負レンズのアッベ数、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
1.78 <n d2n1 <2.20 (7)
35 <ν d2n1 <50 (8)
Where n d2n1 is the refractive index of the object side negative lens in the second lens group with respect to the d-line,
ν d2n1 is the Abbe number of the object side negative lens in the second lens group,
It is.
以下の条件式を満足することを特徴とする請求項1から9の何れか1項記載のズームレンズ。
1.78<nd2n2<2.00 ・・・(9)
35<νd2n2<50 ・・・(10)
ただし、nd2n2は第2レンズ群中の像側負レンズのd線に対する屈折率、
νd2n2は第2レンズ群中の像側負レンズのアッベ数、
である。
The zoom lens according to any one of claims 1 to 9, wherein the following conditional expression is satisfied.
1.78 <n d2n2 <2.00 (9)
35 <ν d2n2 <50 (10)
Where n d2n2 is the refractive index of the image-side negative lens in the second lens group with respect to the d-line,
ν d2n2 is the Abbe number of the image-side negative lens in the second lens group,
It is.
以下の条件式を満足することを特徴とする請求項1から10の何れか1項記載のズームレンズ。
−3.0<SF2n2<−0.6 ・・・(11)
ただし、SF2n2=(R2n2f+R2n2r)/(R2n2f−R2n2r)で定義され、
2n1fは第2レンズ群中の像側負レンズの物体側面の近軸曲率半径、
2n1rは第2レンズ群中の像側負レンズの像側面の近軸曲率半径、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
−3.0 <SF 2n2 <−0.6 (11)
However, SF 2n2 = (R 2n2f + R 2n2r ) / (R 2n2f −R 2n2r ),
R 2n1f is the paraxial radius of curvature of the object side surface of the image side negative lens in the second lens group,
R 2n1r is the paraxial radius of curvature of the image side surface of the image side negative lens in the second lens group,
It is.
以下の条件式を満足することを特徴とする請求項1から11の何れか1項記載のズームレンズ。
−3.0<f2p/f2<−1.0 ・・・(12)
ただし、f2pは第2レンズ群の正レンズの焦点距離、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
−3.0 <f 2p / f 2 <−1.0 (12)
Where f 2p is the focal length of the positive lens in the second lens group,
It is.
前記第2レンズ群の前記物体側負レンズの少なくとも1つのレンズ面は非球面であり、以下の条件式を満足することを特徴とする請求項1から12の何れか1項記載のズームレンズ。
0.002<(asp2n1f+|asp2n1r|)/fw<0.10
・・・(13A)
−0.06<(asp2n1r−asp2n1f)/fw<0.06 ・・・(13B)
ただし、asp2n1fは第2レンズ群中の物体側負レンズの物体側のレンズ面における非球面偏倚量、
asp2n1rは第2レンズ群中の物体側負レンズの像側のレンズ面における非球面偏倚量、
wは広角端でのズームレンズ全系の焦点距離、
であり、非球面偏倚量は、前記レンズ面の面頂と同じ面頂を持ち該レンズ面の近軸曲率半径を曲率半径とする球面を基準球面としたとき、該レンズ面における広角端での最大光線入射高の位置にて、光軸に平行な方向に測ったときの該基準球面から該レンズ面まで距離であり、像側方向を正符号とし、レンズ面が球面又は平面の場合の非球面偏倚量は0となる。
13. The zoom lens according to claim 1, wherein at least one lens surface of the object-side negative lens of the second lens group is an aspherical surface, and satisfies the following conditional expression.
0.002 <(asp 2n1f + | asp 2n1r |) / f w <0.10
... (13A)
−0.06 <(asp 2n1r −asp 2n1f ) / f w <0.06 (13B)
Where asp 2n1f is the amount of aspherical deviation on the object-side lens surface of the object-side negative lens in the second lens group,
asp 2n1r is the amount of aspherical deviation on the image side lens surface of the object side negative lens in the second lens group,
f w is the focal length of the entire zoom lens system at the wide-angle end,
The aspherical deviation amount is the same as the surface top of the lens surface, and when a spherical surface having the paraxial curvature radius of the lens surface as the radius of curvature is defined as a reference spherical surface, This is the distance from the reference spherical surface to the lens surface when measured in the direction parallel to the optical axis at the position of maximum light incident height, the image side direction is a positive sign, and the non-surface when the lens surface is spherical or flat. The amount of spherical deviation is zero.
前記第2レンズ群中の前記物体側負レンズの物体側面は、光軸から離れるに従い屈折力が大きくなる非球面であることを特徴とする請求項13に記載のズームレンズ。   14. The zoom lens according to claim 13, wherein an object side surface of the object-side negative lens in the second lens group is an aspheric surface whose refractive power increases as the distance from the optical axis increases. 前記第2レンズ群中の前記物体側負レンズが両凹負レンズであり、前記両凹負レンズの物体側面は光軸から離れるに従い負の屈折力が小さくなる非球面であり、前記両凹負レンズの像側面は光軸から離れるに従い負の屈折力が大きくなる非球面であることを特徴とする請求項14に記載のズームレンズ。   The object-side negative lens in the second lens group is a biconcave negative lens, and the object side surface of the biconcave negative lens is an aspheric surface whose negative refractive power decreases as the distance from the optical axis increases. The zoom lens according to claim 14, wherein the image side surface of the lens is an aspherical surface in which negative refractive power increases as the distance from the optical axis increases. 前記第2レンズ群中の前記像側負レンズの像側のレンズ面は非球面であり、以下の条件式を満足することを特徴とする請求項1から15の何れか1項記載のズームレンズ。
−0.09<(asp2n2r−asp2n2f)/fw<−0.003 ・・・(14)
ただし、asp2n2fは第2レンズ群中の像側負レンズの物体側のレンズ面における非球面偏倚量、
asp2n2rは第2レンズ群中の像側負レンズの像側のレンズ面における非球面偏倚量、
wは広角端でのズームレンズ全系の焦点距離、
であり、非球面偏倚量は、前記レンズ面の面頂と同じ面頂を持ち前記レンズ面の近軸曲率半径を曲率半径とする球面を基準球面としたとき、前記レンズ面における広角端での最大光線入射高の位置にて、光軸に平行な方向に測った時の前記基準球面から前記レンズ面までの距離であり、像側方向を正符号としレンズ面が球面又は平面の場合の非球面偏倚量は0となる。
The zoom lens according to claim 1, wherein an image-side lens surface of the image-side negative lens in the second lens group is an aspherical surface, and satisfies the following conditional expression: .
−0.09 <(asp 2n2r −asp 2n2f ) / f w < −0.003 (14)
Where asp 2n2f is the amount of aspherical deviation on the object-side lens surface of the image-side negative lens in the second lens group,
asp 2n2r is the amount of aspherical deviation on the image side lens surface of the image side negative lens in the second lens group,
f w is the focal length of the entire zoom lens system at the wide-angle end,
The aspherical deviation amount is the same as the surface top of the lens surface, and the spherical surface having the paraxial radius of curvature of the lens surface as a reference spherical surface is a reference spherical surface. This is the distance from the reference spherical surface to the lens surface when measured in the direction parallel to the optical axis at the position where the maximum light incident height is reached. The amount of spherical deviation is zero.
前記第2レンズ群の前記像側負レンズは、像側に凸面を向けた負メニスカスレンズであり、前記負メニスカスレンズの像側の面は光軸から離れるに従い正の屈折力が強くなる非球面であることを特徴とする請求項16記載のズームレンズ。   The image-side negative lens of the second lens group is a negative meniscus lens having a convex surface facing the image side, and the image-side surface of the negative meniscus lens has an aspheric surface whose positive refractive power increases as the distance from the optical axis increases. The zoom lens according to claim 16, wherein: 前記第2レンズ群の前記正レンズと前記像側負レンズは、それぞれ単レンズからなることを特徴とする請求項1から17の何れか1項記載のズームレンズ。   18. The zoom lens according to claim 1, wherein each of the positive lens and the image-side negative lens of the second lens group is a single lens. 前記第2レンズ群の前記正レンズと前記像側負レンズは接合されていることを特徴とする請求項1から17の何れか1項記載のズームレンズ。   The zoom lens according to claim 1, wherein the positive lens and the image-side negative lens of the second lens group are cemented. 前記第1レンズ群が正レンズと負レンズとを有することを特徴とする請求項1から19の何れか1項記載のズームレンズ。   The zoom lens according to any one of claims 1 to 19, wherein the first lens group includes a positive lens and a negative lens. 前記第1レンズ群が、物体側から順に、前記負レンズ、前記正レンズの2枚のレンズからなることを特徴とする請求項20記載のズームレンズ。
21. The zoom lens according to claim 20, wherein the first lens group includes two lenses of the negative lens and the positive lens in order from the object side.
前記第1レンズ群の前記負レンズと前記正レンズはそれぞれ単レンズであることを特徴とする請求項21記載のズームレンズ。   The zoom lens according to claim 21, wherein the negative lens and the positive lens of the first lens group are each a single lens. 前記第1レンズ群の前記負レンズと前記正レンズの間隔が以下の条件式を満足することを特徴とする請求項22記載のズームレンズ。
0.0≦L1np/L1<0.2 ・・・(15)
ただし、L1npは前記第1レンズ群の負レンズと正レンズの間隔、
1は前記第1レンズ群の軸上の総厚みである。
23. The zoom lens according to claim 22, wherein an interval between the negative lens and the positive lens in the first lens group satisfies the following conditional expression.
0.0 ≦ L 1np / L 1 <0.2 (15)
Where L 1np is the distance between the negative lens and the positive lens in the first lens group,
L 1 is the total thickness on the axis of the first lens group.
前記第1レンズ群の前記負レンズと前記正レンズとが接合されていることを特徴とする請求項21記載のズームレンズ。   The zoom lens according to claim 21, wherein the negative lens and the positive lens of the first lens group are cemented. 前記第1レンズ群は1枚の正レンズからなることを特徴とする請求項1から19の何れか1項記載のズームレンズ。   The zoom lens according to claim 1, wherein the first lens group includes one positive lens. 前記第3レンズ群が3枚以下のレンズからなることを特徴とする請求項1から25の何れか1項記載のズームレンズ。   The zoom lens according to any one of claims 1 to 25, wherein the third lens group includes three or less lenses. 前記第3レンズ群は、物体側から順に、正レンズ、正レンズ、負レンズの3枚のレンズからなることを特徴とする請求項26記載のズームレンズ。   27. The zoom lens according to claim 26, wherein the third lens group includes three lenses of a positive lens, a positive lens, and a negative lens in order from the object side. 以下の条件式を満足することを特徴とする請求項1から27の何れか1項記載のズームレンズ。
0.20<|f2/ft|<0.325 ・・・(16)
ただし、f2は前記第2レンズ群の焦点距離、
tは望遠端でのズームレンズ全系の焦点距離、
である。
28. The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
0.20 <| f 2 / f t | <0.325 (16)
Where f 2 is the focal length of the second lens group,
f t is the focal length of the entire zoom lens system at the telephoto end,
It is.
以下の条件式を満足することを特徴とする請求項1から28の何れか1項記載のズームレンズ。
0.7<f1/ft<1.8 ・・・(17)
ただし、f1は前記第1レンズ群の焦点距離、
tは望遠端でのズームレンズ全系の焦点距離、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
0.7 <f 1 / f t < 1.8 ··· (17)
Where f 1 is the focal length of the first lens group,
f t is the focal length of the entire zoom lens system at the telephoto end,
It is.
以下の条件式を満足することを特徴とする、請求項1から29の何れか1項記載のズームレンズ。
0.25<f3/ft<0.50 ・・・(18)
ただし、f3は前記第3レンズ群の焦点距離、
tは望遠端でのズームレンズ全系の焦点距離、
である。
The zoom lens according to any one of claims 1 to 29, wherein the following conditional expression is satisfied.
0.25 <f 3 / ft <0.50 (18)
Where f 3 is the focal length of the third lens group,
f t is the focal length of the entire zoom lens system at the telephoto end,
It is.
以下の条件式を満足することを特徴とする、請求項3又は4に記載のズームレンズ。
0.40<f4/ft<1.0 ・・・(19)
ただし、f4は前記第4レンズ群の焦点距離、
tは望遠端でのズームレンズ全系の焦点距離、
である。
The zoom lens according to claim 3, wherein the following conditional expression is satisfied.
0.40 <f 4 / ft <1.0 (19)
Where f 4 is the focal length of the fourth lens group,
f t is the focal length of the entire zoom lens system at the telephoto end,
It is.
広角端から望遠端への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が広がり、前記第2レンズ群と前記第3レンズ群との間隔が狭まり、前記第3レンズ群と前記第4レンズ群との間隔が広がるように、前記第1レンズ群、前記第2レンズ群、前記第3レンズ群、前記第4レンズ群は移動することを特徴とする、請求項3、4、31の何れか1項記載のズームレンズ。   At the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and the third lens group The first lens group, the second lens group, the third lens group, and the fourth lens group move so that a distance between the first lens group and the fourth lens group is increased. The zoom lens according to any one of 4 and 31. 広角端から望遠端への変倍時に、前記第1レンズ群は広角端よりも望遠端で物体側にあるように移動し、前記第2レンズ群は移動し、前記第3レンズ群は物体側へのみ移動し、前記第4レンズ群は移動することを特徴とする請求項32に記載のズームレンズ。   At the time of zooming from the wide angle end to the telephoto end, the first lens group moves so that it is closer to the object side at the telephoto end than the wide angle end, the second lens group moves, and the third lens group moves toward the object side. 33. The zoom lens according to claim 32, wherein the zoom lens moves only to, and the fourth lens group moves. 以下の条件式を満足することを特徴とする、請求項1から33の何れか1項記載のズームレンズ。
3.8<ft/fw<15.0 ・・・(21)
ただし、fwは、広角端でのズームレンズ全系の焦点距離、
tは、望遠端でのズームレンズ全系の焦点距離、
である。
The zoom lens according to any one of claims 1 to 33, wherein the following conditional expression is satisfied.
3.8 < ft / fw <15.0 (21)
Where f w is the focal length of the entire zoom lens system at the wide-angle end,
f t is the focal length of the entire zoom lens system at the telephoto end,
It is.
請求項1から34の何れか1項記載のズームレンズと、前記ズームレンズの像側に配置され、前記ズームレンズにより形成される光学像を電気信号に変換する電子撮像素子とを有することを特徴とする電子撮像装置。   35. A zoom lens according to any one of claims 1 to 34, and an electronic imaging device that is disposed on an image side of the zoom lens and converts an optical image formed by the zoom lens into an electric signal. An electronic imaging device. 以下の条件式を満足することを特徴とする請求項35に記載の電子撮像装置。
0.70<Im/fw<1.00 ・・・(20)
ただし、Imは最大像高、
wは広角端でのズームレンズ全系の焦点距離、
である。
36. The electronic imaging apparatus according to claim 35, wherein the following conditional expression is satisfied.
0.70 <I m / f w <1.00 (20)
Where Im is the maximum image height,
f w is the focal length of the entire zoom lens system at the wide-angle end,
It is.
JP2006290117A 2006-09-19 2006-10-25 Zoom lens and electronic imaging apparatus using the same Active JP5006007B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006290117A JP5006007B2 (en) 2006-10-25 2006-10-25 Zoom lens and electronic imaging apparatus using the same
US11/901,633 US7477457B2 (en) 2006-09-19 2007-09-17 Zoom lens system and electronic image pickup apparatus using the same
CN2009100073088A CN101556369B (en) 2006-09-19 2007-09-19 Zoom lens and electronic imaging apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290117A JP5006007B2 (en) 2006-10-25 2006-10-25 Zoom lens and electronic imaging apparatus using the same

Publications (3)

Publication Number Publication Date
JP2008107559A true JP2008107559A (en) 2008-05-08
JP2008107559A5 JP2008107559A5 (en) 2009-11-05
JP5006007B2 JP5006007B2 (en) 2012-08-22

Family

ID=39440957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290117A Active JP5006007B2 (en) 2006-09-19 2006-10-25 Zoom lens and electronic imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP5006007B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203453A (en) * 2007-02-19 2008-09-04 Ricoh Co Ltd Zoom lens and imaging apparatus
JP2009042271A (en) * 2007-08-06 2009-02-26 Canon Inc Zoom lens and imaging device having it
WO2010001944A1 (en) * 2008-07-03 2010-01-07 株式会社ニコン Zoom lens, imaging device, and method of manufacturing zoom lens
JP2010139705A (en) * 2008-12-11 2010-06-24 Canon Inc Zoom lens and imaging apparatus with the same
JP2010271688A (en) * 2009-04-24 2010-12-02 Ricoh Co Ltd Zoom lens, camera device and portable information terminal device
EP2273299A1 (en) 2009-07-06 2011-01-12 Ricoh Company, Ltd. Zoom lens and information device
JP2011033860A (en) * 2009-08-03 2011-02-17 Nikon Corp Zoom lens, optical equipment including the zoom lens, and method for manufacturing the zoom lens
JP2011039440A (en) * 2009-08-18 2011-02-24 Tamron Co Ltd Zoom lens
EP2341382A1 (en) 2009-12-15 2011-07-06 Ricoh Company, Ltd. Zoom lens, camera apparatus, information device and mobile information terminal apparatus
US8054559B2 (en) 2009-03-18 2011-11-08 Ricoh Company, Ltd. Zoom lens, information device, and imaging apparatus
JP2012128032A (en) * 2010-12-13 2012-07-05 Ricoh Co Ltd Zoom lens, camera, and portable information terminal device
WO2015075904A1 (en) * 2013-11-21 2015-05-28 株式会社ニコン Zoom lens, optical device, and method for manufacturing zoom lens
JP2015102588A (en) * 2013-11-21 2015-06-04 株式会社ニコン Zoom lens, optical equipment, and method for manufacturing zoom lens
JP2015102587A (en) * 2013-11-21 2015-06-04 株式会社ニコン Zoom lens, optical equipment, and method for manufacturing zoom lens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241072A (en) * 1992-02-28 1993-09-21 Konica Corp Zoom lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241072A (en) * 1992-02-28 1993-09-21 Konica Corp Zoom lens

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203453A (en) * 2007-02-19 2008-09-04 Ricoh Co Ltd Zoom lens and imaging apparatus
JP2009042271A (en) * 2007-08-06 2009-02-26 Canon Inc Zoom lens and imaging device having it
WO2010001944A1 (en) * 2008-07-03 2010-01-07 株式会社ニコン Zoom lens, imaging device, and method of manufacturing zoom lens
JP2010014963A (en) * 2008-07-03 2010-01-21 Nikon Corp Zoom lens, imaging device, method for varying power of zoom lens
US8390937B2 (en) 2008-07-03 2013-03-05 Nikon Corporation Zoom lens, imaging apparatus and method for manufacturing zoom lens
JP2010139705A (en) * 2008-12-11 2010-06-24 Canon Inc Zoom lens and imaging apparatus with the same
US8054559B2 (en) 2009-03-18 2011-11-08 Ricoh Company, Ltd. Zoom lens, information device, and imaging apparatus
US8264781B2 (en) 2009-03-18 2012-09-11 Ricoh Company, Ltd. Zoom lens, information device, and imaging apparatus
JP2010271688A (en) * 2009-04-24 2010-12-02 Ricoh Co Ltd Zoom lens, camera device and portable information terminal device
CN102004302B (en) * 2009-07-06 2013-01-02 株式会社理光 Zoom lens and information device
CN102004302A (en) * 2009-07-06 2011-04-06 株式会社理光 Zoom lens and information device
US8179610B2 (en) 2009-07-06 2012-05-15 Ricoh Company, Ltd. Zoom lens and information device
EP2273299A1 (en) 2009-07-06 2011-01-12 Ricoh Company, Ltd. Zoom lens and information device
JP2011033860A (en) * 2009-08-03 2011-02-17 Nikon Corp Zoom lens, optical equipment including the zoom lens, and method for manufacturing the zoom lens
JP2011039440A (en) * 2009-08-18 2011-02-24 Tamron Co Ltd Zoom lens
US8873161B2 (en) 2009-12-15 2014-10-28 Ricoh Company, Ltd. Zoom lens, camera apparatus, information device and mobile information terminal apparatus
EP2341382A1 (en) 2009-12-15 2011-07-06 Ricoh Company, Ltd. Zoom lens, camera apparatus, information device and mobile information terminal apparatus
JP2012128032A (en) * 2010-12-13 2012-07-05 Ricoh Co Ltd Zoom lens, camera, and portable information terminal device
WO2015075904A1 (en) * 2013-11-21 2015-05-28 株式会社ニコン Zoom lens, optical device, and method for manufacturing zoom lens
JP2015102588A (en) * 2013-11-21 2015-06-04 株式会社ニコン Zoom lens, optical equipment, and method for manufacturing zoom lens
JP2015102587A (en) * 2013-11-21 2015-06-04 株式会社ニコン Zoom lens, optical equipment, and method for manufacturing zoom lens
US10133040B2 (en) 2013-11-21 2018-11-20 Nikon Corporation Zoom lens, an optical apparatus, and a manufacturing method of the zoom lens
US10502936B2 (en) 2013-11-21 2019-12-10 Nikon Corporation Zoom lens, an optical apparatus, and a manufacturing method of the zoom lens

Also Published As

Publication number Publication date
JP5006007B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP4936437B2 (en) Zoom lens and electronic imaging apparatus using the same
JP5006007B2 (en) Zoom lens and electronic imaging apparatus using the same
JP5013599B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4942091B2 (en) Wide-angle high-magnification zoom lens and imaging apparatus using the same
JP4840909B2 (en) Zoom lens and image pickup apparatus including the same
JP4900924B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4900923B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4912828B2 (en) Zoom lens and imaging apparatus having the same
JP4766933B2 (en) Optical path folding zoom lens and image pickup apparatus having the same
JP5051844B2 (en) Zoom lens and imaging apparatus using the same
JP2008209773A (en) Zoom lens, and electronic imaging apparatus using the same
JP4931121B2 (en) Zoom lens having a reflecting surface for reflecting an optical path and image pickup apparatus having the same
JP2007327991A (en) Zoom lens and imaging apparatus with the same
JP2008146016A (en) Zoom lens and electronic imaging apparatus using the same
JP2009036961A (en) Two-group zoom lens and imaging device using the same
JP2008122880A (en) Zoom lens and electronic imaging apparatus
JP2010049189A (en) Zoom lens and imaging device including the same
JP4906439B2 (en) Zoom lens and electronic imaging apparatus using the same
JP5025232B2 (en) Imaging device using variable magnification optical system
JP2010217478A (en) Zoom lens and imaging apparatus including the same
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP2009031757A (en) Zoom lens and imaging apparatus using the same
JP2009020324A (en) Three-group zoom lens and imaging apparatus using the same
JP2008122879A (en) Zoom lens and electronic imaging apparatus using the same
JP5009051B2 (en) Three-group zoom lens and image pickup apparatus including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5006007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250