JP2008102062A - Method and device for inspecting substrate, and inline deposition system with the same - Google Patents

Method and device for inspecting substrate, and inline deposition system with the same Download PDF

Info

Publication number
JP2008102062A
JP2008102062A JP2006285893A JP2006285893A JP2008102062A JP 2008102062 A JP2008102062 A JP 2008102062A JP 2006285893 A JP2006285893 A JP 2006285893A JP 2006285893 A JP2006285893 A JP 2006285893A JP 2008102062 A JP2008102062 A JP 2008102062A
Authority
JP
Japan
Prior art keywords
glass substrate
inspection
substrate
stress
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006285893A
Other languages
Japanese (ja)
Inventor
Toshiro Kobayashi
Hiroaki Ogasawara
Keiichi Sato
Yoshikimi Tsumoto
Yuji Yanagi
恵一 佐藤
敏郎 小林
弘明 小笠原
雄二 柳
良公 津元
Original Assignee
Mitsubishi Heavy Ind Ltd
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd, 三菱重工業株式会社 filed Critical Mitsubishi Heavy Ind Ltd
Priority to JP2006285893A priority Critical patent/JP2008102062A/en
Publication of JP2008102062A publication Critical patent/JP2008102062A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for previously inspecting substrates that inspect the substrates for which a possibility exists resulting in breakage to remove them, and to provide an inline deposition system equipped with them. <P>SOLUTION: A glass substrate 6 is heated by a heating heater 7 under the same conditions as the heating conditions in a process that is performed after inspection; the edges of or the whole surface of the heated glass substrate 6 is inspected by break sensors 8, 9 to detect breakage and damage of the glass substrate 6; and a glass substrate 6 with the breakage greater than a predetermined size which has a possibility of resulting in damage and a glass substrate 6 that is damaged are removed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基板の事前検査を行う基板検査方法及び基板検査装置及びそれを備えたインライン成膜装置に関する。   The present invention relates to a substrate inspection method, a substrate inspection apparatus, and an in-line film forming apparatus including the same.
蒸着窓を有する蒸着マスク上にガラス基板を載置し、蒸着マスクの蒸着窓を通して、蒸着材料の蒸気をガラス基板に付着して、ガラス基板上に成膜を行う方法が知られている(特許文献1)。   A method is known in which a glass substrate is placed on a vapor deposition mask having a vapor deposition window, vapor of a vapor deposition material is attached to the glass substrate through the vapor deposition window of the vapor deposition mask, and a film is formed on the glass substrate (patent). Reference 1).
特公昭63−15714号公報Japanese Patent Publication No. 63-15714
上記成膜方法では、蒸着マスクを支持するマスクホルダや蒸着マスク自身の陰になる部分のガラス基板の温度が低くなるため、ガラス基板の面内の温度差が大きくなり、その結果、ガラス基板の熱変形、熱応力を大きくさせていた。例えば、図3(a)に示すように、ガラス基板の面内温度分布は、ガラス基板の中央部が高く、周辺部が低いという傾向があるが、マスクホルダや蒸着マスクの陰になる部分(図3(a)中の格子形状の部分)は更に温度が低くなっていた。又、図3(b)に示すように、ガラス基板の面内温度分布に応じて、ガラス基板の中央部が鉛直下方へ下がり、周辺部が鉛直上方へ上がるという熱変形を生じていた。そして、ガラス基板の面内温度差が大きくなると、その熱変形、熱応力も大きくなり、熱応力が甚だしい場合には、ガラス基板が破損するという問題が生じていた。   In the above film forming method, the temperature of the glass substrate in the shadow of the mask holder supporting the vapor deposition mask and the vapor deposition mask itself is lowered, and therefore the temperature difference in the surface of the glass substrate is increased. Thermal deformation and thermal stress were increased. For example, as shown in FIG. 3 (a), the in-plane temperature distribution of the glass substrate tends to be high at the central portion and low at the peripheral portion of the glass substrate. The temperature of the lattice-shaped portion in FIG. Further, as shown in FIG. 3B, thermal deformation has occurred in which the central portion of the glass substrate is lowered vertically and the peripheral portion is vertically raised according to the in-plane temperature distribution of the glass substrate. And when the in-plane temperature difference of the glass substrate increases, the thermal deformation and thermal stress also increase. When the thermal stress is excessive, the glass substrate is damaged.
なお、ここでは、ガラス基板が割れて、ガラス基板の一部でも分離した状態(その後のプロセスが続行不可能となるような状態)を「破損」と定義して説明を行い、クラック等の割れが入った状態、つまり、ガラス基板が分離していない状態とは区別して説明する。   Here, the state where the glass substrate is broken and even a part of the glass substrate is separated (the state in which the subsequent process cannot be continued) is defined as “breakage”, and cracks and the like are broken. It will be described separately from the state in which the glass substrate enters, that is, the state where the glass substrate is not separated.
このような問題を避けるため、面内温度差を小さくして、熱変形、熱応力を小さくする対策が取られているが、ガラス基板が破損するという問題は、熱応力が甚だしくない場合にも起こることがあった。これは、主にガラス基板の端部に存在する初期欠陥(微細亀裂や欠け)等の特異点が起点となって、ガラス基板が破損に至るものであった。   In order to avoid such problems, measures are taken to reduce the in-plane temperature difference to reduce thermal deformation and thermal stress. However, the problem that the glass substrate breaks is also a problem when thermal stress is not significant. It happened. This is because the glass substrate is damaged mainly from singular points such as initial defects (fine cracks and chips) existing at the end of the glass substrate.
例えば、図4(a)に示すように、金属材料の破損分布は、平均破壊応力σmを中心に比較的狭い範囲に集中しているため、その破損分布を完全に避けた低い応力を許容応力σaに設定し、金属材料に付与する応力を許容応力σa以下とすれば、金属材料の破損を確実に避けることができる。   For example, as shown in FIG. 4 (a), the failure distribution of the metal material is concentrated in a relatively narrow range centering on the average failure stress σm. If it is set to σa and the stress applied to the metal material is set to the allowable stress σa or less, the breakage of the metal material can be surely avoided.
これに対して、脆性材料(ガラス)の破損分布は、図4(b)に示すように、平均破壊応力σmを中心にかなり広い範囲に分布しているため、その破損分布を完全に避けた低い応力を許容応力σaに設定すると、脆性材料に付与する応力が極端に低くなってしまい、熱処理等の熱負荷を付与することも難しい状況となってしまう。そのため、実際は、破壊確率が1/10000の時の応力を許容応力σaと設定して、脆性材料(ガラス)に付与する応力を許容応力σa以下とすることにより、脆性材料(ガラス)の破損を避けるようにしている。しかしながら、上述したように初期欠陥等の特異点が存在する場合には、付与する応力を上記許容応力σa以下としても、想定以上の確率で破損に至ることがあった。このように、ガラス基板の破損を確実に避けるため、ガラス基板に存在する初期欠陥等の特異点を十分考慮する必要があった。   On the other hand, the damage distribution of the brittle material (glass) is distributed in a fairly wide range centering on the average fracture stress σm as shown in FIG. When the low stress is set to the allowable stress σa, the stress applied to the brittle material becomes extremely low, and it becomes difficult to apply a heat load such as heat treatment. Therefore, in fact, by setting the stress when the fracture probability is 1/10000 as the allowable stress σa and setting the stress applied to the brittle material (glass) to be equal to or less than the allowable stress σa, the brittle material (glass) is damaged. I try to avoid it. However, as described above, when there are singular points such as initial defects, even if the applied stress is less than or equal to the allowable stress σa, damage may occur with a probability higher than expected. As described above, in order to surely avoid the breakage of the glass substrate, it is necessary to sufficiently consider singular points such as initial defects existing in the glass substrate.
本発明は上記課題に鑑みなされたもので、破損に至るおそれがある基板を事前に検査して排除する基板検査方法及び基板検査装置及びそれを備えたインライン成膜装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a substrate inspection method, a substrate inspection apparatus, and an in-line film forming apparatus including the substrate inspection method for inspecting and removing a substrate that may be damaged in advance. To do.
上記課題を解決する第1の発明に係る基板検査方法は、
検査後に行われるプロセスで付与される応力と同等以上の条件で、ガラス基板に応力を付与し、
応力が付与されたガラス基板の少なくとも端部の一部又は全面の一部、望ましくは端部の全て又は全面を光学手段で検査して、該ガラス基板の割れ及び破損を検出し、
検出した割れの大きさが所定の大きさより大きく、破損に至るおそれがあるガラス基板及び破損したガラス基板を排除することを特徴とする。
A substrate inspection method according to a first invention for solving the above-mentioned problems is as follows.
Stress is applied to the glass substrate under conditions equivalent to or higher than the stress applied in the process performed after inspection,
Inspect at least part of the edge or part of the entire surface of the glass substrate to which stress is applied, preferably all or the entire surface of the edge by optical means to detect cracks and breakage of the glass substrate,
The size of the detected crack is larger than a predetermined size, and the glass substrate and the broken glass substrate which may be damaged are excluded.
上記課題を解決する第2の発明に係る基板検査方法は、
検査後に行われるプロセスでの加熱条件と同等以上の条件で、ガラス基板を加熱ヒータにより加熱し、
加熱したガラス基板の少なくとも端部の一部又は全面の一部、望ましくは端部の全て又は全面を光学手段で検査して、該ガラス基板の割れ及び破損を検出し、
検出した割れの大きさが所定の大きさより大きく、破損に至るおそれがあるガラス基板及び破損したガラス基板を排除することを特徴とする。
A substrate inspection method according to a second invention for solving the above-described problem is as follows.
The glass substrate is heated with a heater under conditions equivalent to or better than the heating conditions in the process performed after the inspection,
Inspect at least part of the heated glass substrate or a part of the entire surface, preferably all or the entire surface of the glass substrate with optical means to detect cracks and breakage of the glass substrate,
The size of the detected crack is larger than a predetermined size, and the glass substrate and the broken glass substrate which may be damaged are excluded.
上記課題を解決する第3の発明に係る基板検査方法は、
上記第1又は第2の発明に記載の基板検査方法において、
前記光学手段として、光学式センサ、ラインカメラ、エリアカメラを用いることを特徴とする。
A substrate inspection method according to a third aspect of the present invention for solving the above problem is as follows:
In the substrate inspection method according to the first or second invention,
As the optical means, an optical sensor, a line camera, or an area camera is used.
上記課題を解決する第4の発明に係る基板検査装置は、
検査後に行われるプロセスで付与される応力と同等以上の条件でガラス基板に応力を付与する応力付与手段と、
応力が付与されたガラス基板の少なくとも端部の一部又は全面の一部、望ましくは端部の全て又は全面を検査して、該ガラス基板の割れ及び破損を検出する光学手段と、
前記応力付与手段、前記光学手段を制御する制御手段とを備え、
前記制御手段は、前記光学手段により検出された割れの大きさが所定の大きさより大きく、破損に至るおそれがあるガラス基板及び破損したガラス基板を排除することを特徴とする。
A substrate inspection apparatus according to a fourth aspect of the present invention for solving the above problem is as follows.
Stress applying means for applying stress to the glass substrate under conditions equivalent to or higher than the stress applied in the process performed after the inspection;
Optical means for detecting cracks and breakage of the glass substrate by inspecting at least part of the edge or part of the entire surface of the glass substrate to which stress is applied, preferably all or the entire surface of the edge,
Control means for controlling the stress applying means and the optical means,
The control means excludes a glass substrate that is larger than a predetermined size and is likely to be broken and a broken glass substrate that is detected by the optical means.
上記課題を解決する第5の発明に係る基板検査装置は、
上記第4の発明に記載の基板検査装置において、
前記光学手段を、光学式センサ、ラインカメラ、エリアカメラとしたことを特徴とする。
A substrate inspection apparatus according to a fifth invention for solving the above-described problem is
In the substrate inspection apparatus according to the fourth invention,
The optical means is an optical sensor, a line camera, or an area camera.
上記課題を解決する第6の発明に係る基板検査装置は、
上記第4又は第5の発明に記載の基板検査装置において、
前記応力付与手段を、検査後に行われるプロセスでの加熱条件と同等以上の条件でガラス基板を加熱する加熱ヒータとすることを特徴とする。
A substrate inspection apparatus according to a sixth invention for solving the above-mentioned problems is as follows.
In the substrate inspection apparatus according to the fourth or fifth invention,
The stress applying means is a heater that heats the glass substrate under conditions equal to or higher than the heating conditions in the process performed after the inspection.
上記課題を解決する第7の発明に係る基板検査装置を備えたインライン成膜装置は、
複数の成膜チャンバを有するインライン成膜装置の前段側に、上記第4乃至第6の発明のいずれかに記載の基板検査装置を備え、
前記基板検査装置は、破損に至るおそれがあるガラス基板及び破損したガラス基板を排除し、排除されなかったガラス基板を前記複数の成膜チャンバ側に供給することを特徴とする。
An in-line film forming apparatus provided with a substrate inspection apparatus according to a seventh invention for solving the above-described problems,
The substrate inspection apparatus according to any one of the fourth to sixth inventions is provided on the front side of an inline film formation apparatus having a plurality of film formation chambers,
The substrate inspection apparatus excludes a glass substrate that may be damaged and a damaged glass substrate, and supplies the glass substrates that are not excluded to the plurality of film forming chambers.
上記課題を解決する第8の発明に係る基板検査装置を備えたインライン成膜装置は、
上記第7の発明に記載の基板検査装置を備えたインライン成膜装置において、
前記基板検査装置における応力付与手段は、前記複数の成膜チャンバのなかでガラス基板に付与される最も大きな応力と同等若しくはそれ以上の応力を付与するものであることを特徴とする。
An in-line film forming apparatus provided with a substrate inspection apparatus according to an eighth invention for solving the above-described problems,
In the in-line film forming apparatus provided with the substrate inspection apparatus according to the seventh invention,
The stress applying means in the substrate inspection apparatus applies stress equal to or greater than the largest stress applied to the glass substrate among the plurality of film forming chambers.
第1〜第6の発明によれば、ガラス基板にプロセス時と同等以上の応力をかけた後、ガラス基板の割れを検査するので、プロセス時に破損に至るおそれがあるガラス基板及び破損に至ったガラス基板を事前に排除することができる。   According to the first to sixth inventions, the glass substrate is inspected for cracks after applying a stress equal to or higher than that at the time of processing to the glass substrate. The glass substrate can be eliminated in advance.
第7、第8の発明によれば、インライン成膜装置の前段側に第4乃至第6の発明のいずれかに記載の基板検査装置を備えたので、プロセス時に破損に至るおそれがあるガラス基板及び破損に至ったガラス基板を事前に排除し、良好なガラス基板のみを後段側の成膜チャンバに供給して、プロセス時のガラス基板の破損を確実に防止することができる。   According to the seventh and eighth inventions, since the substrate inspection apparatus according to any one of the fourth to sixth inventions is provided on the front side of the in-line film forming apparatus, the glass substrate may be damaged during the process. In addition, the glass substrate that has been damaged can be eliminated in advance, and only a good glass substrate can be supplied to the film forming chamber on the rear stage side, thereby reliably preventing the glass substrate from being damaged during the process.
以下、図1、図2を用いて本発明に係る基板検査装置及びそれを備えたインライン成膜装置を説明する。   Hereinafter, a substrate inspection apparatus according to the present invention and an in-line film forming apparatus including the same will be described with reference to FIGS.
図1は、本発明に係る基板検査装置の実施形態の一例を示す概略図である。
図1に示すように、本実施例の基板検査装置10は、ロードロックチャンバ1と、ゲートドア2を介してロードロックチャンバ1と接続された加熱チャンバ3と、加熱チャンバ3と接続された検査チャンバ4とを有し、ロードロックチャンバ1、加熱チャンバ3、検査チャンバ4が一直線上に配置されたものである。ロードロックチャンバ1、加熱チャンバ3、検査チャンバ4の内部には、各々搬送ベルト5が設けられており、搬送ベルト5によりガラス基板6が矢印方向へ順次搬送される構成である。又、ロードロックチャンバ1、加熱チャンバ3、検査チャンバ4には、各々真空ポンプ、ガス供給系(図示省略)が設けられ、内部を所望の雰囲気、圧力に制御可能な構成である。
FIG. 1 is a schematic view showing an example of an embodiment of a substrate inspection apparatus according to the present invention.
As shown in FIG. 1, the substrate inspection apparatus 10 of this embodiment includes a load lock chamber 1, a heating chamber 3 connected to the load lock chamber 1 through a gate door 2, and an inspection chamber connected to the heating chamber 3. The load lock chamber 1, the heating chamber 3, and the inspection chamber 4 are arranged in a straight line. Each of the load lock chamber 1, the heating chamber 3, and the inspection chamber 4 is provided with a conveyance belt 5, and the glass substrate 6 is sequentially conveyed in the arrow direction by the conveyance belt 5. The load lock chamber 1, the heating chamber 3, and the inspection chamber 4 are each provided with a vacuum pump and a gas supply system (not shown) so that the inside can be controlled to a desired atmosphere and pressure.
加熱チャンバ3の下方側には、搬送ベルト5に支持されたガラス基板6を下方から望む加熱用ヒータ7が設けられている。この加熱用ヒータ7は、ガラス基板6の進行方向に垂直な幅方向(以降、幅方向と呼ぶ。)に長い矩形状のものであり、ガラス基板6を加熱することにより、ガラス基板6の面内に所定の温度分布を形成して、後述する成膜チャンバにおいてガラス基板6に生じる熱応力と同等若しくはそれ以上の熱応力を付与できるように構成されている(応力付与手段)。具体的には、加熱用ヒータ7を、成膜チャンバにより加熱される温度と同等若しくはそれ以上の温度に加熱可能な構成とする。これは、プロセス前に、プロセス時と等価若しくはそれ以上の応力状態を、加熱によりガラス基板6に付与することを意味する。   On the lower side of the heating chamber 3, a heater 7 for heating the glass substrate 6 supported by the conveyor belt 5 from below is provided. The heater 7 has a rectangular shape that is long in the width direction (hereinafter referred to as the width direction) perpendicular to the traveling direction of the glass substrate 6, and the surface of the glass substrate 6 is heated by heating the glass substrate 6. A predetermined temperature distribution is formed therein, and a thermal stress equal to or higher than the thermal stress generated in the glass substrate 6 in a film forming chamber described later can be applied (stress applying means). Specifically, the heating heater 7 is configured to be heated to a temperature equal to or higher than the temperature heated by the film forming chamber. This means that a stress state equivalent to or higher than that during the process is applied to the glass substrate 6 by heating before the process.
検査チャンバ4の上方側には、割れ検出センサ8(光学手段)が設けられており、加熱チャンバ3で加熱されたガラス基板6を搬送ベルト5上で静止させて、ガラス基板6の割れを検知するようにしている。これは、加熱等による応力により割れが発生、拡大したガラス基板6や破損に至ったガラス基板6を排除(スクリーニング)するためである。割れ検出センサ8としては、光学式センサ、ラインカメラ、エリアカメラ等を用いた画像処理方式等が適用可能であり、少なくとも、ガラス基板6の全面の一部又は4辺の端部の一部を、望ましくは、ガラス基板6の全面又は4辺の端部全てを走査できるものが望ましい。ガラス基板6の全面又は4辺の端部全てを走査する場合には、割れ検出センサ8は、ガラス基板6の幅方向に長いセンサやガラス基板6を幅方向にスキャン可能なセンサを用いればよい。なお、ガラス基板6において、応力が相対的に高くなる箇所は、解析及び実証試験で予測可能であることから、通常、割れの発生箇所は限られるため、必ずしもガラス基板6の全面又は4辺の端部全てを検査しなくても、ガラス基板6の全面の一部又は4辺の端部の一部の検査でも十分対応可能である。   A crack detection sensor 8 (optical means) is provided on the upper side of the inspection chamber 4, and the glass substrate 6 heated in the heating chamber 3 is stopped on the conveyor belt 5 to detect the breakage of the glass substrate 6. Like to do. This is for eliminating (screening) the glass substrate 6 that has been cracked and expanded due to stress caused by heating or the like, or the glass substrate 6 that has been damaged. As the crack detection sensor 8, an image processing method using an optical sensor, a line camera, an area camera, or the like is applicable, and at least a part of the entire surface of the glass substrate 6 or a part of the end portions of the four sides. Desirably, a glass substrate 6 that can scan the entire surface or all the edges of the four sides is desirable. When scanning the entire surface of the glass substrate 6 or all the edges of the four sides, the crack detection sensor 8 may be a sensor that is long in the width direction of the glass substrate 6 or a sensor that can scan the glass substrate 6 in the width direction. . In addition, since the location where the stress is relatively high in the glass substrate 6 can be predicted by analysis and verification test, since the occurrence location of the crack is usually limited, it is not necessarily the entire surface of the glass substrate 6 or the four sides. Even if all the end portions are not inspected, a part of the entire surface of the glass substrate 6 or a part of the four side end portions can be inspected sufficiently.
基板検査装置10には制御装置(図示せず)が設けられており、制御装置が、割れ検出センサ8により検出されたガラス基板6の割れの大きさ、位置等を判断して、ガラス基板6が検査後のプロセスで使用可能か判断し、使用不可能と判断した場合には、該当するガラス基板6を排除して、良好なガラス基板6のみ検査後のプロセスで使用するようにしている。当然ながら、割れ検出センサ8により破損が検出されたガラス基板6も排除される。   The substrate inspection apparatus 10 is provided with a control device (not shown), and the control device determines the size, position, etc. of the glass substrate 6 detected by the crack detection sensor 8 and determines the glass substrate 6. Is determined to be usable in the post-inspection process, and when it is determined to be unusable, the corresponding glass substrate 6 is excluded and only the good glass substrate 6 is used in the post-inspection process. Naturally, the glass substrate 6 in which breakage is detected by the crack detection sensor 8 is also excluded.
なお、検査チャンバ4を省略して、加熱チャンバ3に、割れ検出センサ8と同等の割れ検出センサ9を設け、加熱チャンバ3において、搬送ベルト5でガラス基板6を搬送しながら、ガラス基板6の加熱及び割れ検査を行うようにしてもよい。又、応力付与手段としては、加熱だけではなく、ガラス基板6に荷重をかけて、応力を付与するようにしてもよい。又、加熱チャンバ3は、真空雰囲気下においてガラス基板6を加熱すれば、ガラス基板6のベーキング装置としても兼用可能である。   Note that the inspection chamber 4 is omitted, and a crack detection sensor 9 equivalent to the crack detection sensor 8 is provided in the heating chamber 3, while the glass substrate 6 is transported by the transport belt 5 in the heating chamber 3. You may make it perform a heating and a crack test | inspection. Further, as the stress applying means, not only heating but also a load may be applied to the glass substrate 6 to apply the stress. The heating chamber 3 can also be used as a baking apparatus for the glass substrate 6 by heating the glass substrate 6 in a vacuum atmosphere.
ここで、基板検査装置10における検査手順を説明する。
(1)まず、マスク(図示省略)が装着されたガラス基板6をロードロックチャンバ1へ搬入する。ロードロックチャンバ1を所定の真空圧力まで減圧した後、ゲートドア2を開き、返送ベルト5により、ガラス基板6を加熱チャンバ3へ搬送する。
Here, an inspection procedure in the substrate inspection apparatus 10 will be described.
(1) First, the glass substrate 6 on which a mask (not shown) is mounted is carried into the load lock chamber 1. After reducing the load lock chamber 1 to a predetermined vacuum pressure, the gate door 2 is opened, and the glass substrate 6 is conveyed to the heating chamber 3 by the return belt 5.
(2)次に、加熱チャンバ3でガラス基板6の加熱を行う。このとき、加熱チャンバ3では、成膜チャンバと同じ条件下(例えば、ガラス基板6の搬送速度、加熱チャンバ3の真空圧力等)、若しくは、更に熱負荷の大きい条件下でガラス基板6の加熱を行う。   (2) Next, the glass substrate 6 is heated in the heating chamber 3. At this time, in the heating chamber 3, the glass substrate 6 is heated under the same conditions as the film forming chamber (for example, the conveyance speed of the glass substrate 6, the vacuum pressure of the heating chamber 3, etc.) or under a condition with a larger heat load. Do.
(3)最後に、ガラス基板6を検査チャンバ4へ搬送して、ガラス基板6の割れ検査を行う。このとき、少なくとも、ガラス基板6の全面の一部又は4辺の端部の一部を、望ましくは、ガラス基板6の全面又は4辺の端部全てを検査し、例えば、成膜チャンバで成膜を行うガラス基板6の領域まで割れが入っていたり、予め規定した大きさ以上の割れ(例えば、0.5mm以上)が検出されたりした場合、そして、破損が検出された場合、該当するガラス基板6を排除して、良好なガラス基板6のみ成膜チャンバで使用するようにする。   (3) Finally, the glass substrate 6 is transported to the inspection chamber 4 and the glass substrate 6 is inspected for cracking. At this time, at least a part of the entire surface of the glass substrate 6 or a part of the end portions of the four sides, preferably, the entire surface of the glass substrate 6 or all of the end portions of the four sides are inspected. If the glass substrate 6 on which the film is formed is cracked, or a crack larger than a predetermined size (for example, 0.5 mm or more) is detected, and if breakage is detected, the corresponding glass The substrate 6 is excluded, and only a good glass substrate 6 is used in the deposition chamber.
つまり、基板検査装置10は、事前に(プロセス前に)、プロセス時と同等以上の熱負荷をガラス基板6に与え、このときの熱負荷による応力により破損したガラス基板6及び割れが発生、拡大したガラス基板6を検出して、該当するガラス基板6のみを排除するものである。従って、基板検査装置10を用いることにより、プロセス時に割れが発生する可能性があるガラス基板6を、事前に排除することができ、実際のプロセス時におけるガラス基板6の割れを回避することができる。   In other words, the substrate inspection apparatus 10 applies a thermal load equal to or higher than that at the time of the process to the glass substrate 6 in advance (before the process), and the glass substrate 6 and cracks that are damaged due to the stress due to the thermal load are generated and expanded The detected glass substrate 6 is detected, and only the corresponding glass substrate 6 is excluded. Therefore, by using the substrate inspection apparatus 10, the glass substrate 6 that may be broken during the process can be eliminated in advance, and the breakage of the glass substrate 6 during the actual process can be avoided. .
図2は、本発明に係る基板検査装置を備えたインライン成膜装置の実施形態の一例を示す概略図であり、図2(a)は、その平面を、図2(b)はその側面を示すものである。   FIG. 2 is a schematic view showing an example of an embodiment of an in-line film forming apparatus equipped with a substrate inspection apparatus according to the present invention. FIG. 2 (a) is a plan view thereof, and FIG. 2 (b) is a side view thereof. It is shown.
図2に示すように、本実施例のインライン成膜装置は、その前段側に実施例1(図1)に示した基板検査装置10を設置し、基板検査装置10を含めて、インライン成膜装置が一直線上に配置されたものである。   As shown in FIG. 2, the in-line film forming apparatus of the present embodiment has the substrate inspection apparatus 10 shown in the first embodiment (FIG. 1) installed on the front side thereof, and includes the substrate inspection apparatus 10 to perform in-line film formation. The devices are arranged in a straight line.
インライン成膜装置の前段側の基板検査装置10については、実施例1で説明した通りであり、加熱チャンバ3において、成膜前に、成膜時と同等以上の応力状態を与え、その後、検査チャンバ4において、ガラス基板6の割れを検査して、破損したガラス基板6及び成膜時に割れが発生する可能性があるガラス基板6を排除し、良好なガラス基板6のみを後段側の成膜チャンバ11〜18に搬送するようにしたものである。   The substrate inspection apparatus 10 on the upstream side of the in-line film formation apparatus is as described in the first embodiment. In the heating chamber 3, a stress state equal to or higher than that at the time of film formation is applied before film formation, and then the inspection is performed. In the chamber 4, the glass substrate 6 is inspected for cracks, and the broken glass substrate 6 and the glass substrate 6 that may be cracked during film formation are removed, and only the good glass substrate 6 is formed on the downstream side. It is made to convey to the chambers 11-18.
インライン成膜装置の後段側は、電荷発生層(CGL;Charge Generation Layer)を形成するCGL成膜チャンバ11と、正孔注入層(HIL;Hole Injection Layer)を形成するHIL成膜チャンバ12と、正孔輸送層(HTL;Hole Transmission Layer)を形成するHTL成膜チャンバ13と、青色の発光層(EML;Emission Layer)を形成するEML(B)成膜チャンバ14と、橙色の発光層(EML;Emission Layer)を形成するEML(O)成膜チャンバ15と、電子注入層(EIL;Electron Injection Layer)を形成するEIL成膜チャンバ16と、アルミニウム電極(陰極)を形成するAl成膜チャンバ17と、カソード電極(陽極)を形成するカソード成膜チャンバ18と、ゲートドア2を介してカソード成膜チャンバ18と接続され、ガラス基板6を搬出するロードロックチャンバ19とから構成されている。   The rear side of the in-line film forming apparatus includes a CGL film forming chamber 11 that forms a charge generation layer (CGL), an HIL film forming chamber 12 that forms a hole injection layer (HIL), An HTL film forming chamber 13 for forming a hole transport layer (HTL), an EML (B) film forming chamber 14 for forming a blue light emitting layer (EML), and an orange light emitting layer (EML) An EML (O) film forming chamber 15 for forming an Emission Layer, an EIL film forming chamber 16 for forming an electron injection layer (EIL), and an Al film forming chamber 17 for forming an aluminum electrode (cathode). And the cathode film forming chamber 18 for forming the cathode electrode (anode), and the cathode film forming chamber 18 through the gate door 2 to carry out the glass substrate 6. And a load lock chamber 19.
なお、ここでは、後段側の成膜チャンバ11〜18の一例として、照明用有機エレクトロルミネセンス(以下、ELと略す。)パネルの製造ラインを図示して説明するが、本願発明は、照明用有機ELパネルだけではなく、FPD用有機ELパネル等の他の成膜製造ラインにも適用可能である。   Here, as an example of the film forming chambers 11 to 18 on the rear stage side, a manufacturing line for an organic electroluminescence (hereinafter abbreviated as EL) panel for illumination is illustrated and described. However, the present invention is for illumination. The present invention can be applied not only to organic EL panels but also to other film production lines such as FPD organic EL panels.
これらの成膜チャンバ11〜18及びロードロックチャンバ19は、基板検査装置10と共に、一直線上に配置されており、各々搬送ベルト5や真空ポンプ、ガス供給系(図示省略)等を有している。又、成膜チャンバ11〜18の下方側には、搬送ベルト5に支持されたガラス基板6を下方から望む蒸着源21〜28が設けられており、ガラス基板6に所望の成膜ができるように構成されている。従って、成膜チャンバ11〜18側に供給されたガラス基板6は、蒸着マスクを支持するマスクホルダに載置された後、搬送ベルト5により矢印方向へ順次搬送されて、各々の成膜チャンバ11〜18において、所望の雰囲気、圧力下で、所望の成膜を行うことにより、照明用有機ELパネルが製造される。   The film forming chambers 11 to 18 and the load lock chamber 19 are arranged in a straight line together with the substrate inspection apparatus 10, and each have a transport belt 5, a vacuum pump, a gas supply system (not shown), and the like. . Further, on the lower side of the film forming chambers 11 to 18, vapor deposition sources 21 to 28 for viewing the glass substrate 6 supported by the conveyor belt 5 from below are provided so that a desired film can be formed on the glass substrate 6. It is configured. Accordingly, the glass substrate 6 supplied to the film forming chambers 11 to 18 is placed on the mask holder that supports the vapor deposition mask, and then sequentially conveyed in the direction of the arrow by the conveying belt 5, and each film forming chamber 11. -18, the organic EL panel for illumination is manufactured by performing desired film-forming under a desired atmosphere and pressure.
上記構成の成膜チャンバ11〜18においては、CGL成膜チャンバ11において、ガラス基板6に最も大きい熱応力が付与される状況である。従って、基板検査装置10の加熱用ヒータ7としては、CGL成膜チャンバ11と同等以上の条件でガラス基板を加熱できればよく、例えば、加熱用ヒータ7の設定温度としては、CGL成膜チャンバ11の蒸着源21の温度である500℃以上の温度に設定すれば、事前に、成膜チャンバ11〜18のなかで最も大きい応力を付与することになり、成膜時に割れが発生する可能性があるガラス基板を事前に排除して、実際の成膜時におけるガラス基板の割れを確実に回避することが可能となる。   In the film forming chambers 11 to 18 having the above configuration, the largest thermal stress is applied to the glass substrate 6 in the CGL film forming chamber 11. Therefore, the heating heater 7 of the substrate inspection apparatus 10 only needs to be able to heat the glass substrate under the same or higher conditions as those of the CGL film forming chamber 11. If the temperature is set to 500 ° C. or higher, which is the temperature of the vapor deposition source 21, the greatest stress is applied in advance in the film forming chambers 11 to 18, and cracking may occur during film formation. By eliminating the glass substrate in advance, it becomes possible to reliably avoid the cracking of the glass substrate during actual film formation.
本発明に係る基板検査装置は、一例として、有機ELパネルの製造ラインに好適なものであるが、プラズマディスプレイの製造ライン等にも適用可能である。   The substrate inspection apparatus according to the present invention is suitable for an organic EL panel production line as an example, but can also be applied to a plasma display production line.
本発明に係る基板検査装置の実施形態の一例(実施例1)を示す概略図である。It is the schematic which shows an example (Example 1) of embodiment of the board | substrate inspection apparatus which concerns on this invention. 本発明に係る基板検査装置を備えたインライン成膜装置の実施形態の一例(実施例2)を示す概略図であり、(a)は、その平面図、(b)は、その側面図である。It is the schematic which shows an example (Example 2) of embodiment of the in-line film-forming apparatus provided with the board | substrate inspection apparatus which concerns on this invention, (a) is the top view, (b) is the side view. . (a)は、ガラス基板の面内温度分布を示す図であり、(b)は、ガラス基板の熱変形を示す図である。(A) is a figure which shows the in-plane temperature distribution of a glass substrate, (b) is a figure which shows the thermal deformation of a glass substrate. (a)は、金属材料の許容応力を説明するグラフであり、(b)は、脆性材料(ガラス)の許容応力を説明するグラフである。(A) is a graph explaining the allowable stress of a metal material, (b) is a graph explaining the allowable stress of a brittle material (glass).
符号の説明Explanation of symbols
1 ロードロックチャンバ
2 ゲートドア
3 加熱チャンバ
4 検査チャンバ
5 搬送ベルト
6 ガラス基板6
7 加熱用ヒータ
8、9 割れ検出センサ
10 基板検査装置
1 Load Lock Chamber 2 Gate Door 3 Heating Chamber 4 Inspection Chamber 5 Conveying Belt 6 Glass Substrate 6
7 Heating heater 8, 9 Crack detection sensor 10 Substrate inspection device

Claims (8)

  1. 検査後に行われるプロセスで付与される応力と同等以上の条件で、ガラス基板に応力を付与し、
    応力が付与されたガラス基板の少なくとも端部の一部又は全面の一部、望ましくは端部の全て又は全面を光学手段で検査して、該ガラス基板の割れ及び破損を検出し、
    検出した割れの大きさが所定の大きさより大きく、破損に至るおそれがあるガラス基板及び破損したガラス基板を排除することを特徴とする基板検査方法。
    Stress is applied to the glass substrate under conditions equivalent to or higher than the stress applied in the process performed after inspection,
    Inspect at least part of the edge or part of the entire surface of the glass substrate to which stress is applied, preferably all or the entire surface of the edge by optical means to detect cracks and breakage of the glass substrate,
    A substrate inspection method characterized by eliminating a broken glass substrate and a glass substrate having a detected crack size larger than a predetermined size and possibly causing breakage.
  2. 検査後に行われるプロセスでの加熱条件と同等以上の条件で、ガラス基板を加熱ヒータにより加熱し、
    加熱したガラス基板の少なくとも端部の一部又は全面の一部、望ましくは端部の全て又は全面を光学手段で検査して、該ガラス基板の割れ及び破損を検出し、
    検出した割れの大きさが所定の大きさより大きく、破損に至るおそれがあるガラス基板及び破損したガラス基板を排除することを特徴とする基板検査方法。
    The glass substrate is heated with a heater under conditions equivalent to or better than the heating conditions in the process performed after the inspection,
    Inspect at least part of the heated glass substrate or a part of the entire surface, preferably all or the entire surface of the glass substrate with optical means to detect cracks and breakage of the glass substrate,
    A substrate inspection method characterized by eliminating a broken glass substrate and a glass substrate having a detected crack size larger than a predetermined size and possibly causing breakage.
  3. 請求項1又は請求項2に記載の基板検査方法において、
    前記光学手段として、光学式センサ、ラインカメラ、エリアカメラを用いることを特徴とする基板検査方法。
    In the board | substrate inspection method of Claim 1 or Claim 2,
    An optical sensor, a line camera, or an area camera is used as the optical means.
  4. 検査後に行われるプロセスで付与される応力と同等以上の条件でガラス基板に応力を付与する応力付与手段と、
    応力が付与されたガラス基板の少なくとも端部の一部又は全面の一部、望ましくは端部の全て又は全面を検査して、該ガラス基板の割れ及び破損を検出する光学手段と、
    前記応力付与手段、前記光学手段を制御する制御手段とを備え、
    前記制御手段は、前記光学手段により検出された割れの大きさが所定の大きさより大きく、破損に至るおそれがあるガラス基板及び破損したガラス基板を排除することを特徴とする基板検査装置。
    Stress applying means for applying stress to the glass substrate under conditions equivalent to or higher than the stress applied in the process performed after the inspection;
    Optical means for detecting cracks and breakage of the glass substrate by inspecting at least part of the edge or part of the entire surface of the glass substrate to which stress is applied, preferably all or the entire surface of the edge,
    Control means for controlling the stress applying means and the optical means,
    The substrate inspection apparatus is characterized in that the control means excludes a broken glass substrate and a broken glass substrate that may cause breakage because the size of the crack detected by the optical means is larger than a predetermined size.
  5. 請求項4に記載の基板検査装置において、
    前記光学手段を、光学式センサ、ラインカメラ、エリアカメラとしたことを特徴とする基板検査装置。
    The board inspection apparatus according to claim 4,
    A substrate inspection apparatus, wherein the optical means is an optical sensor, a line camera, or an area camera.
  6. 請求項4又は請求項5に記載の基板検査装置において、
    前記応力付与手段を、検査後に行われるプロセスでの加熱条件と同等以上の条件でガラス基板を加熱する加熱ヒータとすることを特徴とする基板検査装置。
    In the board | substrate inspection apparatus of Claim 4 or Claim 5,
    A substrate inspection apparatus, wherein the stress applying means is a heater for heating a glass substrate under a condition equal to or higher than a heating condition in a process performed after the inspection.
  7. 複数の成膜チャンバを有するインライン成膜装置の前段側に、請求項4乃至請求項6のいずれかに記載の基板検査装置を備え、
    前記基板検査装置は、破損に至るおそれがあるガラス基板及び破損したガラス基板を排除し、排除されなかったガラス基板を前記複数の成膜チャンバ側に供給することを特徴とする基板検査装置を備えたインライン成膜装置。
    The substrate inspection apparatus according to any one of claims 4 to 6 is provided on the front side of an inline film formation apparatus having a plurality of film formation chambers,
    The substrate inspection apparatus includes a substrate inspection apparatus that excludes a glass substrate that may be damaged and a damaged glass substrate, and supplies the glass substrate that is not excluded to the plurality of film forming chambers. Inline deposition system.
  8. 請求項7に記載の基板検査装置を備えたインライン成膜装置において、
    前記基板検査装置における応力付与手段は、前記複数の成膜チャンバのなかでガラス基板に付与される最も大きな応力と同等若しくはそれ以上の応力を付与するものであることを特徴とする基板検査装置を備えたインライン成膜装置。
    In the in-line film-forming apparatus provided with the board | substrate inspection apparatus of Claim 7,
    In the substrate inspection apparatus, the stress applying means applies a stress equal to or greater than the largest stress applied to the glass substrate in the plurality of film forming chambers. Equipped with an in-line deposition system.
JP2006285893A 2006-10-20 2006-10-20 Method and device for inspecting substrate, and inline deposition system with the same Pending JP2008102062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285893A JP2008102062A (en) 2006-10-20 2006-10-20 Method and device for inspecting substrate, and inline deposition system with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285893A JP2008102062A (en) 2006-10-20 2006-10-20 Method and device for inspecting substrate, and inline deposition system with the same

Publications (1)

Publication Number Publication Date
JP2008102062A true JP2008102062A (en) 2008-05-01

Family

ID=39436487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285893A Pending JP2008102062A (en) 2006-10-20 2006-10-20 Method and device for inspecting substrate, and inline deposition system with the same

Country Status (1)

Country Link
JP (1) JP2008102062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282757B1 (en) 2012-01-11 2013-07-05 (주)유텍시스템 Scan inspection apparatus and scan inspection method for glass edge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028482A (en) * 1998-07-10 2000-01-28 Shimadzu Corp Device for evaluating liquid crystal panel
JP2000129442A (en) * 1998-10-29 2000-05-09 Sharp Corp Deposition apparatus
JP2001152318A (en) * 1999-11-25 2001-06-05 Canon Inc Method of fabrication for substrate structure
JP2001255250A (en) * 2000-03-10 2001-09-21 Hirata Corp Strength inspection method of glass bottle and strength inspection device used therefor
JP2002267585A (en) * 2001-03-14 2002-09-18 Hitachi Ltd Device for evaluating plasma display panel and manufacturing process for panel module of plasma display
JP2006258632A (en) * 2005-03-17 2006-09-28 Olympus Corp Substrate inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028482A (en) * 1998-07-10 2000-01-28 Shimadzu Corp Device for evaluating liquid crystal panel
JP2000129442A (en) * 1998-10-29 2000-05-09 Sharp Corp Deposition apparatus
JP2001152318A (en) * 1999-11-25 2001-06-05 Canon Inc Method of fabrication for substrate structure
JP2001255250A (en) * 2000-03-10 2001-09-21 Hirata Corp Strength inspection method of glass bottle and strength inspection device used therefor
JP2002267585A (en) * 2001-03-14 2002-09-18 Hitachi Ltd Device for evaluating plasma display panel and manufacturing process for panel module of plasma display
JP2006258632A (en) * 2005-03-17 2006-09-28 Olympus Corp Substrate inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282757B1 (en) 2012-01-11 2013-07-05 (주)유텍시스템 Scan inspection apparatus and scan inspection method for glass edge

Similar Documents

Publication Publication Date Title
JP4246153B2 (en) Method for forming an electronic device
JP4569956B2 (en) Substrate processing apparatus restoration processing method, substrate processing apparatus, and program
TWI343618B (en)
TWI526556B (en) Deposition mask, deposition apparatus, and method for forming thin film
KR100547500B1 (en) Laser CD device and laser CD method
KR20100127200A (en) Loading table structure and processing device
US6026589A (en) Wafer carrier and semiconductor apparatus for processing a semiconductor substrate
Klumbies et al. Thickness dependent barrier performance of permeation barriers made from atomic layer deposited alumina for organic devices
US8444363B2 (en) Substrate processing apparatus
JP4034860B2 (en) Tray transfer film forming apparatus and auxiliary chamber
KR101254335B1 (en) In-line equipment using metal-plate belt source for OLED manufacturing
US8519363B2 (en) Wafer handling method and ion implanter
JP4318504B2 (en) Deposition equipment substrate tray
TWI628135B (en) Film peeling apparatus
JP2004214120A (en) Device and method for manufacturing organic electroluminescent element
US8574366B2 (en) Vacuum processing apparatus
TWI610393B (en) Carrier for a substrate and method for carrying a substrate
WO2009094275A3 (en) Apparatus and method for supporting, positioning and rotating a substrate in a processing chamber
EP1630858B1 (en) Substrate processing system
US20110174800A1 (en) Method of detecting abnormal placement of substrate, substrate processing method, computer-readable storage medium, and substrate processing apparatus
TWI520200B (en) A polymer removing device and a polymer removing method
JP2010196082A (en) Vacuum vapor deposition apparatus
CN108133903A (en) Engagement device, mating system, joint method and computer storage media
CN101188207A (en) Electrostatic sucking electrode, substrate processing apparatus and manufacturing method for electrostatic sucking electrode
JP2010045251A (en) Vertical heat treatment apparatus and heat treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726