JP2008095132A - Device component for vacuum film deposition device, etching device or the like, method for producing the same, and method for reproducing the same - Google Patents

Device component for vacuum film deposition device, etching device or the like, method for producing the same, and method for reproducing the same Download PDF

Info

Publication number
JP2008095132A
JP2008095132A JP2006275555A JP2006275555A JP2008095132A JP 2008095132 A JP2008095132 A JP 2008095132A JP 2006275555 A JP2006275555 A JP 2006275555A JP 2006275555 A JP2006275555 A JP 2006275555A JP 2008095132 A JP2008095132 A JP 2008095132A
Authority
JP
Japan
Prior art keywords
sprayed film
film
sprayed
component
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006275555A
Other languages
Japanese (ja)
Other versions
JP4970887B2 (en
Inventor
Hisafumi Iwadare
尚史 岩垂
Takanobu Takayama
孝信 高山
Tsutomu Kawauchi
力 川内
Naoko Kimoto
直子 紀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Techno Ltd
Original Assignee
Ulvac Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Materials Inc filed Critical Ulvac Materials Inc
Priority to JP2006275555A priority Critical patent/JP4970887B2/en
Publication of JP2008095132A publication Critical patent/JP2008095132A/en
Application granted granted Critical
Publication of JP4970887B2 publication Critical patent/JP4970887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device component arranged at the inside of a film deposition device, a precleaning device or the like in which the peeling and falling of substance stuck thereto in a thin film shape are suppressed for a long time, so as to prevent the generation of the particles of a pollution source, and from which depositions can easily be removed upon the maintenance of the device. <P>SOLUTION: Using a quartz holder 1 arranged in a plasma precleaning device 10 as a base material, an Al sprayed coating is formed on the face subjected to blast treatment and whose surface roughness Ra is controlled to about 10 μm, so as to be the surface roughness Ra of 14 to 50 μm, and, an Al<SB>2</SB>O<SB>3</SB>sprayed coating by a plasma spray method is further formed on the surface, so as to control the surface roughness Ra to 10 to 50 μm. The sprayed quartz holder 1A is not easily peeled even if depositions are thickly filmed, and, the Al sprayed coating is dissolved with an alkali aqueous solution upon maintenance, thus depositions are removed from the quartz holder 1 as a base material together with the Al<SB>2</SB>O<SB>3</SB>sprayed coating, and its reuse is made possible. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体装置の製造プロセスにおける真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置内に配置される装置構成部品に関するものであり、更に詳しくは、装置構成部品に膜状に付着した物質が長時間に亘って剥離、脱落し難く、装置のメンテナンスに際しては付着した膜状の物質の除去が容易である装置構成部品に関するものである。   The present invention relates to a device component disposed in a vacuum film forming device, an etching device, a pre-cleaning device, or an ashing device in a semiconductor device manufacturing process, and more specifically, is attached to the device component in a film shape. The present invention relates to an apparatus component that makes it difficult for a substance to be peeled off and dropped off over a long period of time, and that an attached film-like substance is easily removed during maintenance of the apparatus.

従来、半導体装置の製造プロセスにおいては、例えば真空成膜装置を使用して、ウェーハ基板に各種の金属または金属酸化物、金属窒化物等の薄膜が形成される。その薄膜成形時には成膜材料がウェーハ基板以外に、真空成膜装置自体の内部表面や装置内に配置される装置構成部品、例えば防着板にも付着する。ウェーハ基板は所定の膜厚に薄膜が形成されると新しいウェーハ基板に交換されるが、真空成膜装置とその内部に配置される装置構成部品は継続して使用されるので、ウェーハ基板の成膜枚数が増大するに伴い膜状に付着した物質の厚さは次第に大となって遂には剥離、脱落する。そして、その一部は粉塵状のパーティクルとなって真空成膜装置内に浮遊し、ウェーハ基板の表面に沈着し汚染する。   Conventionally, in a semiconductor device manufacturing process, thin films such as various metals, metal oxides, and metal nitrides are formed on a wafer substrate using, for example, a vacuum film forming apparatus. At the time of forming the thin film, the film forming material adheres not only to the wafer substrate but also to the internal surface of the vacuum film forming apparatus itself and apparatus components arranged in the apparatus, for example, a deposition plate. When a thin film is formed to a predetermined thickness, the wafer substrate is replaced with a new wafer substrate. However, since the vacuum film-forming device and the device components placed inside it are continuously used, the wafer substrate is formed. As the number of films increases, the thickness of the substance adhering to the film gradually increases and eventually peels off and drops off. A part of the particles becomes dust particles and floats in the vacuum film forming apparatus, and is deposited and contaminated on the surface of the wafer substrate.

また成膜前のウェーハ基板の表面に自然発生的に形成されている例えばシリコン酸化物の薄膜を除去するプレクリーニング装置においても、ウェーハ基板の表面から除去された物質がプレクリーニング装置内の装置構成部品の表面に膜状に付着し、プレクリーニング装置が連続使用される間に付着厚さが大になって剥離、脱落し、パーティクルとなってウェーハ基板を汚染すると言う問題がある。このことは、成膜後のウェーハ基板に形成されている金属膜等を部分的に除去するエッチング装置、ウェーハ基板上のレジスト膜を除去するアッシング装置においても同様である。   In addition, even in a pre-cleaning apparatus that removes, for example, a silicon oxide thin film that is naturally formed on the surface of a wafer substrate before film formation, the configuration in which the substances removed from the surface of the wafer substrate are included in the pre-cleaning apparatus. There is a problem in that the film adheres to the surface of the component and becomes thick during the continuous use of the pre-cleaning device, peels off, drops off, and contaminates the wafer substrate as particles. The same applies to an etching apparatus that partially removes a metal film or the like formed on a wafer substrate after film formation, and an ashing apparatus that removes a resist film on the wafer substrate.

これに対して、従来は、例えばTiNの薄膜を形成させる真空薄膜形成装置内に配置する防着板に予めアルミニウム(Al)または銅(Cu)の溶射膜(膜厚50〜150μm)を形成しておき、防着板へのTiN付着物の厚さが約500μmに達した時点で、Alの場合は例えば10%HClで洗浄し、Cuの場合は例えば15%HNO3 で洗浄することにより、付着物を洗い落として防着板を再生させることが提案されている(特許文献1を参照)。 On the other hand, conventionally, for example, an aluminum (Al) or copper (Cu) sprayed film (with a film thickness of 50 to 150 μm) is previously formed on a deposition plate placed in a vacuum thin film forming apparatus for forming a TiN thin film. When the thickness of the TiN deposit on the deposition preventing plate reaches about 500 μm, it is cleaned with, for example, 10% HCl in the case of Al, and with 15% HNO 3 in the case of Cu. It has been proposed to wash off the deposits and regenerate the adhesion-preventing plate (see Patent Document 1).

また最近では、成膜プロセスやエッチング・プロセス等において処理効率を向上させるためにプラズマを利用することが多くなっているが、プラズマを所定の領域内に均等に閉じ込めるために電気絶縁性の石英ガラスまたはセラミックスからなる装置構成部品、例えばシールド・リング、フォーカス・リング等が、真空成膜装置、エッチング装置、プレクリーニング装置、アッシング装置内に配置されるようになっている。然しながら、例えば石英ガラス部品はプラズマによって表面エロージョンを受け、それに伴って発生する粉塵がウェーハ基板に付着して汚染し、製品である半導体装置の歩留まりを低下させると言う問題がある。   Recently, plasma is often used to improve the processing efficiency in the film forming process, etching process, etc., but in order to confine the plasma uniformly within a predetermined region, an electrically insulating quartz glass is used. Alternatively, device components made of ceramics, such as a shield ring and a focus ring, are arranged in a vacuum film forming apparatus, an etching apparatus, a pre-cleaning apparatus, and an ashing apparatus. However, for example, quartz glass parts are subject to surface erosion due to plasma, and dust generated thereby adheres to the wafer substrate and is contaminated, resulting in a decrease in the yield of semiconductor devices as products.

これに対し、粗面にした石英ガラス部品、マイクロ・クラックを有する石英ガラス部品、または溝を設けた石英ガラス部品にAl2 3(アルミナ)等のセラッミックス溶射膜を形成させることにより、セラッミックス溶射膜に膜状に付着した物質が剥離し難くなる上、石英ガラス部品に対するセラッミックス溶射膜の密着性が高く、優れた耐プラズマ性を有し、かつ長時間の連続使用が可能になるとしている(特許文献2を参照)。そのほかAl2 3 部品や石英ガラス部品をエッチングして粗面化し、Y2 3(イットリア)等をプラズマ溶射することにより、密着力が大であり、耐プラズマ性に優れた保護膜を形成することができるとしている(特許文献3を参照)。 On the other hand, by forming a ceramic sprayed film such as Al 2 O 3 (alumina) on a roughened quartz glass part, a quartz glass part having micro cracks, or a quartz glass part having a groove, ceramic spraying is performed. It is said that the substance adhering to the film is difficult to peel off, the adhesion of the ceramic sprayed film to the quartz glass part is high, has excellent plasma resistance, and can be used continuously for a long time ( (See Patent Document 2). In addition, Al 2 O 3 parts and quartz glass parts are etched and roughened, and Y 2 O 3 (yttria) is plasma sprayed to form a protective film with high adhesion and excellent plasma resistance. (See Patent Document 3).

特開平06−220600号公報Japanese Patent Laid-Open No. 06-220600 特開2003−212598号公報JP 2003-212598 A 特開2005−126768号公報JP 2005-126768 A

上記の特許文献1では防着板の再生時間の短縮に注力されており、付着した成膜材料の剥離、脱落の抑制については触れていない。特許文献2では成膜材料の付着性を高めると共に、溶射膜の密着性、耐プラズマ性の向上が図られており、特許文献3では形成した耐プラズマ性保護膜の密着性の向上が図られているが、何れも溶射膜を形成させる基材としての石英ガラス部品、セラミックス部品の再生については何等言及していない。   The above-mentioned Patent Document 1 focuses on shortening the regeneration time of the deposition preventing plate, and does not touch on the prevention of peeling and dropping of the deposited film forming material. In Patent Document 2, the adhesion of the film forming material is improved and the adhesion of the sprayed film and the plasma resistance are improved. In Patent Document 3, the adhesion of the formed plasma-resistant protective film is improved. However, none mentions the regeneration of quartz glass parts and ceramic parts as a base material on which a sprayed film is formed.

本発明は上述の問題に鑑みてなされ、真空成膜装置、エッチング装置、プレクリーニング装置、アッシング装置等の内部に配置される例えば石英ガラスからなる装置構成部品に膜状に付着し厚膜化した物質の剥離、脱落を抑制してウェーハ基板の汚染源となるパーティクルを長時間に亘って発生させず、かつ装置のメンテナンスに際しては、厚膜状に付着している物質を容易に除去することが可能で、上記石英ガラスを繰り返し再使用することができる装置構成部品を提供することを課題とする。   The present invention has been made in view of the above-described problems, and is attached to a device component made of, for example, quartz glass, which is disposed inside a vacuum film forming apparatus, an etching apparatus, a pre-cleaning apparatus, an ashing apparatus, etc., and thickened. Suppresses the peeling and dropping of substances and does not generate particles that become a contamination source of the wafer substrate over a long period of time, and it is possible to easily remove substances that are attached in the form of thick films during equipment maintenance. Thus, an object of the present invention is to provide an apparatus component capable of repeatedly reusing the quartz glass.

上記の課題は請求項1、請求項7、または請求項8の構成によって解決されるが、その解決手段を説明すれば次に示す如くである。   The above problem can be solved by the structure of claim 1, claim 7, or claim 8, and the solution means will be described as follows.

請求項1の装置構成部品は、真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置内に配置される装置構成部品であって、その装置構成部品は、電気絶縁性基材と、電気絶縁性基材の表面に形成された金属溶射膜と、金属溶射膜の表面に形成されたセラミックス溶射膜とからなり、セラミックス溶射膜の表面の中心線平均粗さRaが10〜50μmの範囲内にあるものである。
このような装置構成部品は、セラミックス溶射膜の表面に付着し厚膜化する物質を長時間に亘って剥離、脱落させず、ウェーハ基板を汚染するパーティクルを発生させないほか、装置のメンテナンスに際しては、セラミックス溶射膜の表面に物質が膜状に付着している装置構成部品を無機酸またはアルカリの水溶液からなる洗浄液に浸漬して金属溶射膜を溶解、除去することにより、物質が膜状に付着しているセラミックス溶射膜と電気絶縁性基材とを容易に分離することができる。
The apparatus component of claim 1 is an apparatus component disposed in a vacuum film forming apparatus, an etching apparatus, a pre-cleaning apparatus, or an ashing apparatus, and the apparatus component includes an electrically insulating substrate, It consists of a metal sprayed film formed on the surface of the insulating substrate and a ceramic sprayed film formed on the surface of the metal sprayed film, and the center line average roughness Ra of the surface of the ceramic sprayed film is in the range of 10 to 50 μm. It is what.
Such equipment component parts do not cause the material that adheres to the surface of the ceramic sprayed film to thicken and peel off for a long time and do not generate particles that contaminate the wafer substrate. By immersing the component parts of the ceramic sprayed film on the surface of the ceramic sprayed film in a cleaning solution consisting of an aqueous solution of inorganic acid or alkali to dissolve and remove the metal sprayed film, the material adheres to the film. The ceramic sprayed film and the electrically insulating substrate can be easily separated.

請求項2の装置構成部品は、電気絶縁性基材が石英ガラス、アルミナ、炭化シリコンのうちの何れか一種からなるものである。
このような電気絶縁性基材は入手および加工が比較的容易であって、装置構成部品を任意の形状に製造することができる。
According to a second aspect of the present invention, the electrically insulating base material is made of any one of quartz glass, alumina, and silicon carbide.
Such an electrically insulating substrate is relatively easy to obtain and process, and the device components can be manufactured in an arbitrary shape.

請求項3の装置構成部品は、金属溶射膜がアルミニウム、アルミニウム合金、 銅、銅合金のうちの何れか一種以上を含む溶射膜であり、金属溶射膜の膜厚が50〜300μmの範囲内に形成されているものである。
このような装置構成部品は、金属溶射膜の膜厚を50〜300μmの範囲内とすることにより、その表面に形成されるセラミックス溶射膜の表面粗さRaを10〜50μmとしてセラミックス溶射膜の表面に膜状に付着する物質の剥離、脱落を長時間に亘って抑制することができるほか、上記金属は一般的な無機酸またはアルカリの水溶液によって溶解するで、これらの水溶液を洗浄液とすることにより、セラミックス溶射膜の表面に膜状に付着した物質をセラミックス溶射膜と共に電気絶縁性基材から分離することが可能である。
The apparatus component according to claim 3 is a thermal spray film in which the metal spray film includes any one or more of aluminum, aluminum alloy, copper, and copper alloy, and the film thickness of the metal spray film is within a range of 50 to 300 μm. Is formed.
Such an apparatus component has the surface roughness Ra of the ceramic sprayed film by setting the surface roughness Ra of the ceramic sprayed film formed on the surface thereof to 10 to 50 μm by setting the film thickness of the metal sprayed film within the range of 50 to 300 μm. In addition to being able to suppress the peeling and dropping of substances adhering to the film shape over a long period of time, the above metal is dissolved by a general inorganic acid or alkali aqueous solution. It is possible to separate the substance adhering to the surface of the ceramic sprayed film from the electrically insulating substrate together with the ceramic sprayed film.

請求項4の装置構成部品は、金属溶射膜がアーク溶射法によって形成されているものである。
このような装置構成部品は、金属溶射膜が一般的なアーク溶射法で形成されるものであり、金属溶射膜の形成が極めて容易である。
According to a fourth aspect of the present invention, the metal sprayed film is formed by arc spraying.
In such an apparatus component, a metal sprayed film is formed by a general arc spraying method, and it is very easy to form a metal sprayed film.

請求項5の装置構成部品は、セラミックス溶射膜がアルミナ、 ジルコニア、マグネシア、チタニア、イットリアのうちの何れかの溶射膜であり、セラミックス溶射膜の膜厚が100〜200μmの範囲内にあるものである。
このような装置構成部品は、セラミックス溶射膜が電気絶縁性であり、融点が電気絶縁性基材と同程度に高いことから、プラズマ雰囲気の高温度に耐え、かつプラズマによるエロージョンを受け難くする。
In the apparatus component according to claim 5, the ceramic sprayed film is any one of alumina, zirconia, magnesia, titania and yttria, and the ceramic sprayed film has a thickness in the range of 100 to 200 μm. is there.
In such an apparatus component, the ceramic sprayed film is electrically insulating and the melting point is as high as that of the electrically insulating substrate, so that it can withstand the high temperature of the plasma atmosphere and is less susceptible to erosion by plasma.

請求項6の装置構成部品は、セラミックス溶射膜がプラズマ溶射法によって形成されているものである。
このような装置構成部品は、セラミックスの粉末がプラズマ雰囲気内の高温で溶解されるので、緻密な溶射膜を与える。
According to a sixth aspect of the present invention, a ceramic sprayed film is formed by a plasma spraying method.
Such a device component provides a dense sprayed film because the ceramic powder is melted at a high temperature in the plasma atmosphere.

請求項7の装置構成部品の製造方法は、真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置内に配置される装置構成部品の製造方法であって、電気絶縁性基材の表面に金属溶射膜を形成する工程と、金属溶射膜の表面にセラミックス溶射膜を形成する工程とからなり、セラミックス溶射膜の表面の中心線平均粗さRaを10〜50μmの範囲内となるように形成する方法である。
このような装置構成部品の製造方法は、セラミックス溶射膜の表面に膜状に付着した物質の剥離、脱落を長時間に亘って抑制してウェーハ基板を汚染するパーティクルを発生させず、装置のメンテナンスに際しては、金属溶射膜を溶解、除去することにより、膜状に付着した物質をセラミックス溶射膜と共に電気絶縁性基材から容易に分離することができる。
The manufacturing method of the apparatus component of Claim 7 is a manufacturing method of the apparatus component arrange | positioned in a vacuum film-forming apparatus, an etching apparatus, a pre-cleaning apparatus, or an ashing apparatus, Comprising: On the surface of an electrically insulating base material It consists of a step of forming a metal sprayed film and a step of forming a ceramic sprayed film on the surface of the metal sprayed film, and the center line average roughness Ra of the surface of the ceramic sprayed film is formed within a range of 10 to 50 μm. It is a method to do.
Such a device component manufacturing method is capable of maintaining the apparatus without generating particles that contaminate the wafer substrate by suppressing the separation and dropping of the substance adhering to the surface of the ceramic sprayed film over a long period of time. At this time, by dissolving and removing the metal sprayed film, the substance adhering to the film can be easily separated from the electrically insulating substrate together with the ceramic sprayed film.

請求項8の装置構成部品の再生方法は、真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置内に配置される装置構成部品の再生方法であって、電気絶縁性基材と、電気絶縁性基材の表面に形成された金属溶射膜と、金属溶射膜の表面に形成されたセラミックス溶射膜とからなり、セラミックス溶射膜の表面に物質が膜状に付着している装置構成部品を無機酸またはアルカリの水溶液からなる洗浄液に浸漬して金属溶射膜を溶解、除去し、膜状に物質が付着しているセラミックス溶射膜と電気絶縁性基材とに分離して、電気絶縁性基材を再使用する方法である。
このような装置構成部品の再生方法は、装置構成部品の電気絶縁性基材を繰り返し使用することを可能にする。
An apparatus component regeneration method according to claim 8 is a method for regenerating an apparatus component disposed in a vacuum film forming apparatus, an etching apparatus, a pre-cleaning apparatus, or an ashing apparatus, comprising: an electrically insulating substrate; An apparatus component comprising a metal sprayed film formed on the surface of an insulating substrate and a ceramic sprayed film formed on the surface of the metal sprayed film, and a substance adhered to the surface of the ceramic sprayed film. The metal sprayed film is dissolved and removed by immersing it in a cleaning solution composed of an inorganic acid or alkali aqueous solution, and separated into a ceramic sprayed film and an electrically insulating substrate on which the substance is adhered in the form of a film. This is a method of reusing materials.
Such a method for regenerating the device component allows the electrical insulating base material of the device component to be used repeatedly.

請求項1の装置構成部品によれば、最外層のセラミックス溶射膜に膜状に付着した物質が長時間に亘って剥離、脱落し難く、ウェーハ基板の汚染源となるパーティクルを発生し難いので、製品である半導体装置の歩留まりを向上させるほか、装置のメンテナンスの間隔を長時間化することができるので、真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置の稼動率を向上させ、半導体装置のコストを低減させる。また金属溶射膜を溶解、除去して装置構成部品の電気絶縁性基材を容易に再使用し得ることもコストの低減を支援する。   According to the apparatus component of claim 1, since the substance adhering to the outermost ceramic sprayed film is difficult to peel off and drop off over a long period of time, it is difficult to generate particles that cause contamination of the wafer substrate. In addition to improving the yield of the semiconductor device, the maintenance interval of the device can be extended, so that the operating rate of the vacuum film forming device, etching device, pre-cleaning device, or ashing device is improved, and the semiconductor device Reduce costs. Moreover, the metal sprayed film can be dissolved and removed to easily reuse the electrically insulating base material of the apparatus component parts, which also helps to reduce the cost.

請求項2の装置構成部品によれば、電気絶縁性基材である石英ガラス、アルミナ、炭化シリコンは入手および加工が容易であるので、目的に応じて最も適した形状の装置構成部品を提供することができ、使用範囲に制限を受けず広範囲の装置構成部品に適用される。   According to the apparatus component of claim 2, since quartz glass, alumina, and silicon carbide, which are electrically insulating substrates, are easily available and processed, an apparatus component having the most suitable shape according to the purpose is provided. It can be applied to a wide range of apparatus components without being limited by the range of use.

請求項3の装置構成部品によれば、金属溶射膜の面に形成されるセラミックス溶射膜の表面の中心線平均粗さRaを10〜50μmとして、セラミックス溶射膜の表面に膜状に付着する物質の剥離、脱落を長時間に亘って抑制することができるほか、上記金属は一般的な無機酸またはアルカリの水溶液によって溶解するので、これらの水溶液を洗浄液とすることにより、セラミックス溶射膜の表面に膜状に付着した物質をセラミックス溶射膜と共に電気絶縁性基材から分離することができ、電気絶縁性基材の再使用を可能にする。   According to the apparatus component of claim 3, the material adhered to the surface of the ceramic sprayed film with the center line average roughness Ra of the surface of the ceramic sprayed film formed on the surface of the metal sprayed film being 10 to 50 μm In addition to being able to suppress the peeling and dropping of the metal over a long period of time, the metal is dissolved by a general inorganic acid or alkali aqueous solution. The material adhering in the form of a film can be separated from the electrically insulating substrate together with the ceramic sprayed film, and the electrical insulating substrate can be reused.

請求項4の装置構成部品によれば、金属溶射膜が一般的なアーク溶射法によって形成されているので、金属溶射膜の形成が極めて容易であり、結果的に装置構成部品のコストを軽減させる。   According to the apparatus component of claim 4, since the metal sprayed film is formed by a general arc spraying method, it is very easy to form the metal sprayed film, and as a result, the cost of the apparatus component is reduced. .

請求項5の装置構成部品によれば、膜厚50〜300μmの金属溶射膜上に形成させる膜厚100〜200μmのセラミックス溶射膜は、その表面の適切な凹凸(中心線平均粗さRaが10〜50μm)によって、膜状に付着する物質の剥離、脱落を長時間に亘って抑制するので、ウェーハ基板の汚染源であるパーティクルの発生を抑制して製品である半導体装置の歩留まりを向上させるほか、金属酸化物の溶射膜であることから下層の金属溶射膜との接着性が良好で、金属溶射膜とセラミックス溶射膜との間で剥離するようなトラブルを生じ難く、かつ融点は電気絶縁性基材と同程度に高く、かつ充分な電気絶縁性を有したものとなる。   According to the apparatus component of claim 5, the ceramic sprayed film having a film thickness of 100 to 200 μm formed on the metal sprayed film having a film thickness of 50 to 300 μm has an appropriate unevenness (centerline average roughness Ra is 10). ~ 50μm), the peeling and dropping of substances adhering to the film shape is suppressed over a long period of time, so that the generation of particles as a contamination source of the wafer substrate is suppressed and the yield of the semiconductor device as a product is improved. Because it is a metal oxide sprayed film, it has good adhesion to the underlying metal sprayed film, and is unlikely to cause trouble such as peeling between the metal sprayed film and the ceramic sprayed film. It is as high as the material and has sufficient electrical insulation.

請求項6の装置構成部品によれば、最外層にセラミックス溶射膜がプラズマ溶射法によって緻密に形成されるので、このような装置構成部品はプラズマ雰囲気の高温度に耐え、かつプラズマによるエロージョンを受け難い。   According to the apparatus component of claim 6, since the ceramic sprayed film is densely formed on the outermost layer by the plasma spraying method, such an apparatus component can withstand the high temperature of the plasma atmosphere and is subject to erosion by the plasma. hard.

請求項7の装置構成部品の製造方法によれば、最外層のセラミックス溶射膜へ膜状に付着した物質が長時間に亘って剥離、脱落し難く、ウェーハ基板の汚染源となるパーティクルを発生し難い装置構成部品を与えるので、製品である半導体装置の歩留まりを向上させるほか、装置構成部品から厚膜化した付着物状を除去する洗浄操作の間隔を長時間化するので、真空成膜装置、エッチング装置、プレクリーニング装置、アッシング装置の稼動率を向上させ、半導体装置のコストを低減させる。また金属溶射膜を溶解、除去して装置構成部品の電気絶縁性基材を容易に再使用し得ることもコストの低減を支援する。   According to the method of manufacturing an apparatus component according to claim 7, the substance adhering to the outermost ceramic sprayed film is unlikely to peel off or drop off over a long period of time, and it is difficult to generate particles that cause contamination of the wafer substrate. Since device components are provided, the yield of semiconductor devices, which are products, is improved, and the interval between cleaning operations to remove thickened deposits from the device components is extended, so that vacuum deposition equipment and etching are used. The operating rate of the apparatus, the pre-cleaning apparatus, and the ashing apparatus is improved, and the cost of the semiconductor device is reduced. Moreover, the metal sprayed film can be dissolved and removed to easily reuse the electrically insulating base material of the apparatus component parts, which also helps to reduce the cost.

請求項8の装置構成部品の再生方法によれば、表面に物質が膜状に付着した装置構成部品を無機酸またはアルカリの水溶液に浸漬して金属溶射膜を溶解、除去し、付着物質をセラミックス溶射膜と共に電気絶縁性基材から分離することができるので、所定の形状に加工された電気絶縁性基材を繰り返して使用することが可能であり、結果的に製品である半導体装置のコストを低減させる。   According to the method for regenerating an apparatus component according to claim 8, the apparatus component having a substance adhered to the surface is immersed in an aqueous solution of an inorganic acid or alkali to dissolve and remove the metal sprayed film, and the adhered substance is ceramics. Since it can be separated from the electrically insulating substrate together with the sprayed film, it is possible to repeatedly use the electrically insulating substrate processed into a predetermined shape, resulting in the cost of the semiconductor device as a product as a result. Reduce.

本発明は半導体装置の製造プロセスにおける真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置の内部に配置される電気絶縁性の装置構成部品として、石英ガラス、アルミナ、炭化シリコンのうちの一種を電気絶縁性基材として、その表面にアルミニウム、アルミニウム合金、 銅、銅合金のうちの何れか一種以上を含む金属溶射膜を形成し、その上へ電気絶縁性であり、融点が石英ガラスの融解温度1800℃以上であるアルミナ、 ジルコニア、マグネシア、チタニア、イットリアのうちの何れかのセラミックス溶射膜を形成したものである。   The present invention is a kind of one of quartz glass, alumina, and silicon carbide as an electrically insulating device component disposed inside a vacuum film forming device, an etching device, a pre-cleaning device, or an ashing device in a semiconductor device manufacturing process. Is a metal sprayed film containing one or more of aluminum, aluminum alloy, copper, and copper alloy on its surface, and is electrically insulative thereon, and has a melting point of quartz glass. A ceramic sprayed film of any one of alumina, zirconia, magnesia, titania, and yttria having a melting temperature of 1800 ° C. or higher is formed.

例えば、アルミナ(Al2 3 )の溶射膜はAl2 3 の融点が約2000℃と高温であるためにAl2 3 の粉末を溶射原料とするプラズマ溶射法によって形成させることが望ましい。プラズマ溶射することにより緻密なAl2 3 溶射膜が得られ、その表面は溶射時に流動して下地の表面粗さを反映する。例えば実際に使用されている石英ガラス部品の表面の中心線平均粗さRa(以降、単に表面粗さRaと略)は2〜3μmであるから、その表面へAl2 3 をプラズマ溶射して得られるAl2 3 溶射面の表面粗さRaは2〜3μmより小である。なお、Al2 3 溶射膜に膜状に付着する物質の剥離、脱落を抑制するには、Al2 3 溶射膜の表面粗さRaを10〜50μmにすることを要する。 For example, an alumina (Al 2 O 3 ) sprayed film is desirably formed by a plasma spraying method using Al 2 O 3 powder as a spraying raw material because the melting point of Al 2 O 3 is as high as about 2000 ° C. By plasma spraying, a dense Al 2 O 3 sprayed film is obtained, and its surface flows during spraying to reflect the surface roughness of the substrate. For example, since the center line average roughness Ra (hereinafter simply referred to as surface roughness Ra) of the surface of a quartz glass component actually used is 2 to 3 μm, Al 2 O 3 is plasma sprayed onto the surface. The surface roughness Ra of the Al 2 O 3 sprayed surface obtained is smaller than 2 to 3 μm. Incidentally, separation of substances adhering to the Al 2 O 3 sprayed coating in film form, in order to suppress dropping, requires that the surface roughness Ra of the Al 2 O 3 sprayed coating in 10 to 50 [mu] m.

Al2 3 溶射膜の膜厚を厚くすると、表面の平滑化が進むと共に石英ガラス部品の表面からAl2 3 溶射膜が剥離するようになる。Al2 3 溶射膜の密着力の向上と表面粗さとの確保とのために、石英ガラス部品の表面をブラスト処理して粗面することは可能であるが、表面粗さRaを10μm以上にするまでブラスト処理を行うと、石英ガラス部品の消耗および変形を生じて好ましくないので、石英ガラス部品の表面のブラスト処理は石英ガラス部品の密着性改善の範囲に留めておくことが望ましい。 When the film thickness of the Al 2 O 3 sprayed film is increased, the surface becomes smooth and the Al 2 O 3 sprayed film peels from the surface of the quartz glass part. In order to improve the adhesion of the Al 2 O 3 sprayed film and ensure the surface roughness, it is possible to roughen the surface of the quartz glass part by blasting, but the surface roughness Ra should be 10 μm or more. If the blasting process is performed until then, the quartz glass part is consumed and deformed, which is not preferable. Therefore, the blasting process of the surface of the quartz glass part is preferably limited to the range of improving the adhesion of the quartz glass part.

他方、例えばプラズマ溶射法によって溶射する場合におけるAl2 3 溶射膜の表面の平滑化を考慮すると、Al2 3 溶射膜の表面粗さRaを10μmより大とするには、石英ガラス部品の表面粗さRaを14μmより大とすることが不可欠である。また、石英ガラス部品に付着物が所定の厚さまで付着した時、セラミックス溶射膜を一般的な薬液で溶解除去することはできないので、フッ酸(HF)の水溶液によって洗浄を行うが、石英ガラス部品はフッ酸によって損耗するので、基材である石英ガラス部品の寿命を短くしてしまう。 On the other hand, considering the smoothness of the surface of the Al 2 O 3 sprayed film, for example, when sprayed by plasma spraying, in order to make the surface roughness Ra of the Al 2 O 3 sprayed film larger than 10 μm, quartz glass parts It is essential that the surface roughness Ra is greater than 14 μm. In addition, when the deposit adheres to the quartz glass part up to a predetermined thickness, the ceramic sprayed film cannot be dissolved and removed with a general chemical solution. Therefore, the quartz glass part is washed with an aqueous solution of hydrofluoric acid (HF). Is worn out by hydrofluoric acid, which shortens the life of the quartz glass component as a base material.

従って本発明は、真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置内に配置される電気絶縁性の装置構成部品として、石英ガラス、アルミナ、炭化シリコンのうちの何れかの電気絶縁性材料を基材とし、その表面に形成したアルミニウム、アルミニウム合金、 銅、銅合金のうちの何れか一種以上を含む金属溶射膜を介してセラミックスの溶射膜を形成し、当該セラミックス溶射膜の表面粗さRaを10〜50μmとしたものである。勿論、金属溶射膜の厚さを更に大にして表面粗さRaを更に大にすることによって、その上に形成させるセラミックス溶射膜の表面粗さRaを更に大にすることは可能である。   Therefore, the present invention provides an electrically insulating device component of quartz glass, alumina, or silicon carbide as an electrically insulating device component disposed in a vacuum film forming device, an etching device, a pre-cleaning device, or an ashing device. Using a material as a base material, a ceramic sprayed film is formed through a metal sprayed film containing at least one of aluminum, aluminum alloy, copper, and copper alloy formed on the surface, and the surface of the ceramic sprayed film is roughened. The thickness Ra is 10 to 50 μm. Of course, it is possible to further increase the surface roughness Ra of the ceramic sprayed film formed thereon by further increasing the thickness of the metal sprayed film and further increasing the surface roughness Ra.

具体的には、例えば電気絶縁性である石英ガラスからなる基材を、その表面粗さRaが約10μmとなるようにブラスト処理して純水で洗浄する。その後、石英ガラス基材の表面にAl溶射膜を膜厚約50μmに形成した時のAl溶射膜の表面粗さRaは約14μmであった。Alは導電性であるから一般的なアーク溶射法によって容易に溶射膜を形成することができる。その上へプラズマ溶射法によってAl2 3 溶射膜を膜厚約200μmに形成させた。この時のAl2 3 溶射膜の表面粗さRaは約10μmであった。上記においてはAl溶射膜の膜厚を約50μmとしたが、この膜厚は50〜300μmの範囲内で選択することができ、上述したように、Al溶射膜の膜厚を大にするほど、その上に形成させるAl2 3 溶射膜の表面粗さRaを大にすることができる。また、Al溶射膜に換えて、Al合金溶射膜、Cu溶射膜、またはCu合金溶射膜の如き金属溶射膜を使用することができる。更には、Al溶射膜とCu溶射膜との積層溶射膜としてもよい。なお、Al合金、Cu、Cu合金は導電性であるから常法に従ってアーク溶射法で溶射することができる。 Specifically, for example, a base material made of quartz glass that is electrically insulating is blasted so that its surface roughness Ra is about 10 μm and washed with pure water. Thereafter, when the Al sprayed film was formed on the surface of the quartz glass substrate to a film thickness of about 50 μm, the surface roughness Ra of the Al sprayed film was about 14 μm. Since Al is conductive, a sprayed film can be easily formed by a general arc spraying method. An Al 2 O 3 sprayed film was formed thereon with a film thickness of about 200 μm by plasma spraying. The surface roughness Ra of the Al 2 O 3 sprayed film at this time was about 10 μm. In the above, the film thickness of the Al sprayed film is about 50 μm, but this film thickness can be selected within the range of 50 to 300 μm, and as described above, the larger the film thickness of the Al sprayed film, The surface roughness Ra of the Al 2 O 3 sprayed film formed thereon can be increased. Further, in place of the Al sprayed film, a metal sprayed film such as an Al alloy sprayed film, a Cu sprayed film, or a Cu alloy sprayed film can be used. Furthermore, it is good also as a multilayer sprayed film of Al sprayed film and Cu sprayed film. Since Al alloy, Cu, and Cu alloy are conductive, they can be sprayed by arc spraying according to a conventional method.

このような最外層にAl2 3 溶射膜を有する石英ガラス基材は、例えば真空成膜装置において長時間使用し、Al2 3 溶射膜の表面に膜状に厚く付着した物質を除去するに際しては、石英ガラス基材とAl2 3 溶射膜との間のAl溶射膜を塩酸または水酸化カリウムの水溶液で溶解、除去することによって、付着物質をAl2 3 溶射膜と共に石英ガラス基材から除去することができ、かつ石英ガラス基材へ直接にAl2 3 溶射膜を形成した場合のようにAl2 3 溶射膜の除去にフッ酸を使用しないので、石英ガラス基材を損耗させず、石英ガラス基材を繰り返して使用することができる。上記はAl溶射膜を使用する場合であるが、Cu溶射膜を使用する場合には、Cu溶射膜を溶解除去し、石英ガラス部品を損耗させない薬液、例えば硫酸や硝酸を使用することができる。 Such a quartz glass substrate having an Al 2 O 3 sprayed film as the outermost layer is used for a long time, for example, in a vacuum film forming apparatus, and removes a substance adhering thickly to the surface of the Al 2 O 3 sprayed film. At this time, the Al sprayed film between the quartz glass substrate and the Al 2 O 3 sprayed film is dissolved and removed with an aqueous solution of hydrochloric acid or potassium hydroxide to remove the adhered substance together with the Al 2 O 3 sprayed film. can be removed from the timber, and does not use hydrofluoric acid for removing the Al 2 O 3 sprayed coating as in the case of forming the Al 2 O 3 sprayed coating directly to a quartz glass substrate, a quartz glass substrate The quartz glass substrate can be used repeatedly without being worn out. The above is a case where an Al sprayed film is used. However, when a Cu sprayed film is used, a chemical solution that dissolves and removes the Cu sprayed film and does not wear the quartz glass component, such as sulfuric acid or nitric acid, can be used.

Al系溶射膜またはCu系溶射膜の上に被覆するセラミックス溶射膜の材料としては上記アルミナ(Al2 3 )やイットリア(Y2 3 )等のような石英ガラスの融点1800℃と同等以上の高融点を有するセラミックスを使用することが望ましい。 As the material of the ceramic sprayed film coated on the Al-based sprayed film or the Cu-based sprayed film, the melting point of the quartz glass such as alumina (Al 2 O 3 ) or yttria (Y 2 O 3 ) is equal to or higher than 1800 ° C. It is desirable to use ceramics having a high melting point.

(従来例) 図1はウェーハ基板の表面の極めて薄い層を除去するためのベルジャー型のプラズマ・プレクリーニング装置10と、その内部に配置される石英ガラス製の石英ホルダー1を示す模式的断面図であり、従来例の装置を示すが、実施例にも援用される図である。同装置10は、石英ホルダー1、下部電極2、ウェーハ基板3を内部に備えた筐体11上に、石英ガラスからなるベルジャー12が被せられており、ベルジャー12の周囲にはICP(誘導結合プラズマ)コイル4が配置され、同コイル4とベルジャー12とを覆ってカバー13が設けられている。そしてICPコイル4には高周波コイル電源5が接続され、下部電極2には高周波バイアス電源6が絶縁性パイプ7内を通るリード線によって接続されている。また筐体11とベルジャー12との内部へは外部からMFC(マスフローコントローラ)14を経由してクリーニングガス(例えばアルゴンガス)が導入され、ターボ分子ポンプ15によって真空排気されるようになっている。 FIG. 1 is a schematic cross-sectional view showing a bell jar type plasma pre-cleaning apparatus 10 for removing an extremely thin layer on the surface of a wafer substrate and a quartz glass quartz holder 1 disposed therein. Although the apparatus of a prior art example is shown, it is a figure used also for an Example. In the apparatus 10, a bell jar 12 made of quartz glass is covered on a casing 11 having a quartz holder 1, a lower electrode 2 and a wafer substrate 3 therein, and around the bell jar 12, an ICP (inductively coupled plasma) is provided. ) The coil 4 is disposed, and a cover 13 is provided so as to cover the coil 4 and the bell jar 12. A high frequency coil power source 5 is connected to the ICP coil 4, and a high frequency bias power source 6 is connected to the lower electrode 2 by a lead wire passing through the insulating pipe 7. A cleaning gas (for example, argon gas) is introduced into the housing 11 and the bell jar 12 from the outside via an MFC (mass flow controller) 14 and evacuated by a turbo molecular pump 15.

すなわち、上記のプラズマ・プレクリーニング装置10は、導入されたクリーニングガスが高周波電力の印加されたICPコイル4によってプラズマ化され、形成されるアルゴンイオンがウェーハ基板3をスッパッタリングすることを利用して、ウェーハ基板3の表面の極めて薄い層を除去してクリーニングする。この時、下部電極2はウェーハ基板3によって隠蔽されているので付着問題はないが、ウェーハ基板3の周囲の石英ホルダー1にはスパッタクリーニングによって除去された物質が付着する。ウェーハ基板3は所定のクリーニングが完了すると交換されるが、石英ホルダー1は交換されることなく連続使用されるので付着物が堆積して厚膜化する。   That is, the plasma pre-cleaning apparatus 10 utilizes the fact that the introduced cleaning gas is turned into plasma by the ICP coil 4 to which high-frequency power is applied, and the formed argon ions sputtering the wafer substrate 3. Then, an extremely thin layer on the surface of the wafer substrate 3 is removed and cleaned. At this time, since the lower electrode 2 is concealed by the wafer substrate 3, there is no problem of adhesion, but the substance removed by the sputter cleaning adheres to the quartz holder 1 around the wafer substrate 3. The wafer substrate 3 is replaced when the predetermined cleaning is completed. However, since the quartz holder 1 is continuously used without being replaced, deposits accumulate and the film becomes thicker.

そして厚膜化が限度を超えると付着物は剥離、脱落して、その一部は装置10内を浮遊し、ウェーハ基板3に沈着して汚染する。付着物が厚膜化して剥離するに至る前に石英ホルダー1を洗浄して付着物を除去するのも汚染対策の一つであるが、その方法では洗浄の頻度が高くなってプラズマ・プレクリーニング装置10の稼動率を低下させる。従って、石英ホルダー1への付着物が厚膜化しても剥離を抑制することができる対策が望まれる。更には、そのような対策が成功しても何れは剥離するようになるので、その前に洗浄することを要するが、その洗浄に際しては、厚膜化した付着物を容易に除去し得ることが望ましい。従って、石英ホルダー1に対して以下の実施例に述べるような処理を施した。   When the film thickness exceeds the limit, the deposits are peeled off and dropped, and a part of the deposits floats in the apparatus 10 and deposits on the wafer substrate 3 to be contaminated. Cleaning the quartz holder 1 and removing the deposits before the deposits thicken and peel off is one of the countermeasures against contamination. However, this method increases the frequency of cleaning and plasma pre-cleaning. The operating rate of the apparatus 10 is reduced. Therefore, a measure that can suppress peeling even if the deposit on the quartz holder 1 is thickened is desired. Furthermore, even if such a countermeasure is successful, it will eventually be peeled off, so it is necessary to wash it before that, but in that washing, the thickened deposits can be easily removed. desirable. Accordingly, the quartz holder 1 was processed as described in the following examples.

(実施例1) 石英ホルダー1を基材として、その表面をブラスト処理し表面粗さRaを約10μmとして純水で洗浄した後、その表面にアーク溶射法によって膜厚が50μm、100μm、200μm、または300μmのAl溶射膜を形成させた。これらAl溶射膜の表面粗さRaは14〜50μmであった。更にそれぞれのAl溶射膜の上へプラズマ溶射法によって膜厚が100μmまたは200μmのAl23 溶射膜を形成させたが、それらのAl23 溶射膜の表面粗さRaは表1に示す如くであった。 (Example 1) Using the quartz holder 1 as a base material, the surface was blasted and washed with pure water with a surface roughness Ra of about 10 μm, and then the surface was subjected to arc spraying to have a film thickness of 50 μm, 100 μm, 200 μm, Alternatively, a 300 μm Al sprayed film was formed. The surface roughness Ra of these Al sprayed films was 14 to 50 μm. Further, an Al 2 O 3 sprayed film having a film thickness of 100 μm or 200 μm was formed on each Al sprayed film by plasma spraying. The surface roughness Ra of the Al 2 O 3 sprayed film is shown in Table 1. It was like that.

Figure 2008095132
Figure 2008095132

図2は、石英ホルダー1を基材として、その表面をブラスト処理し、そのブラスト面へアーク溶射法による膜厚200μmのAl溶射膜を形成し、更にその表面へプラズマ溶射法による膜厚100μmのAl2 3 溶射膜を形成した試料(16)の断面を示す走査型電子顕微鏡(SEM)による断面写真を複写したものである。Al2 3 溶射膜がAl溶射膜の表面の凹凸に沿って形成されていることが認められる。 In FIG. 2, the quartz holder 1 is used as a base material, the surface is blasted, an Al sprayed film having a film thickness of 200 μm is formed on the blasted surface by an arc spraying method, and a 100 μm film thickness is formed on the surface by a plasma spraying method. A cross-sectional photograph taken by a scanning electron microscope (SEM) showing a cross section of a sample (16) on which an Al 2 O 3 sprayed film is formed is copied. It can be seen that the Al 2 O 3 sprayed film is formed along the unevenness of the surface of the Al sprayed film.

上記の表1において試料番号(11)のAl溶射膜の膜厚を10μmとしたものはAl溶射膜が一様に形成されず実用に耐えないと判断されたので、その上へのAl2 3 溶射膜の形成は行わなかった。試料番号(12)〜(18)の試料、すなわち溶射石英ホルダー1Aを、図1に示したプラズマ・プレクリーニング装置10における石英ホルダー1に換えて使用した時の、溶射石英ホルダー1Aへの付着物が剥離、脱落して生ずるパーティクルによるウェーハ基板3の汚染を評価した。すなわち、直径8インチ(≒205.4mm)のウェーハ基板3上におけるサイズ0.2μm以上のパーティクルの個数が使用可能な限界の20個以下であって、溶射石英ホルダー1Aの連続使用が可能である期間内にプラズマ・プレクリーニングし得たウェーハ基板3の枚数(ウェーハ基板3の交換回数)は、基材の石英ホルダー1にAl溶射膜を形成させることなくAl2 3 溶射膜を形成させたものと比較して大幅に増加した。 Since that the film thickness of the thermally sprayed Al film of Sample No. 11 and 10μm in Table 1 above was determined to be thermally sprayed Al film can not be practically not formed uniformly, Al 2 O to thereon 3 No sprayed film was formed. Sample Nos. (12) to (18), that is, the sprayed quartz holder 1A, adhered to the sprayed quartz holder 1A when used instead of the quartz holder 1 in the plasma precleaning apparatus 10 shown in FIG. The contamination of the wafer substrate 3 by particles generated by peeling and dropping was evaluated. That is, the number of particles having a size of 0.2 μm or more on the wafer substrate 3 having a diameter of 8 inches (≈205.4 mm) is 20 or less of the usable limit, and the sprayed quartz holder 1A can be used continuously. The number of wafer substrates 3 that could be plasma pre-cleaned during the period (number of wafer substrate 3 replacements) was such that an Al 2 O 3 sprayed film was formed without forming an Al sprayed film on the quartz holder 1 of the base material. Increased significantly compared to the one.

そして、ウェーハ基板3のパーティクルによる汚染が限度に達し、溶射石英ホルダー1Aの最外層であるAl2 3 溶射膜への付着物を洗浄して電気絶縁性基材の石英ホルダー1を再生するに際しては、溶射石英ホルダー1Aを洗浄液である水酸化カリウム(KOH)の水溶液に浸漬してAl溶射膜を溶解させることにより、付着物をAl2 3 溶射膜と共に除去することができた。電気絶縁性基材の石英ホルダー1にAl溶射膜を形成させることなく直接にAl2 3 溶射膜を形成させたものは、石英ホルダー1を再生させるための洗浄液としてフッ酸(HF)を使用することを要し、フッ酸は石英ホルダー1を化学的に損耗させる。実際上は、再生時に機械的な損傷も発生するので、洗浄液の種類のみによる比較データは所持していないが、Al2 3 溶射膜の下にAl溶射膜を形成させたものの再生回数は15回であり、Al溶射膜を形成させないものの再生回数は10回であることから、異なった洗浄液を使用することによる再生回数の差異は明確に認められた。 When the contamination of the wafer substrate 3 due to particles reaches the limit, the deposit on the Al 2 O 3 sprayed film, which is the outermost layer of the sprayed quartz holder 1A, is washed to regenerate the quartz holder 1 of the electrically insulating substrate. Was able to remove deposits together with the Al 2 O 3 sprayed film by immersing the sprayed quartz holder 1A in an aqueous solution of potassium hydroxide (KOH) as a cleaning solution to dissolve the Al sprayed film. In the case where the Al 2 O 3 sprayed film is formed directly on the quartz holder 1 of the electrically insulating substrate without forming the Al sprayed film, hydrofluoric acid (HF) is used as a cleaning liquid for regenerating the quartz holder 1. Therefore, the hydrofluoric acid chemically wears the quartz holder 1. In practice, since also occur mechanical damage during playback, but comparative data only due to the type of the cleaning liquid does not hold, Views but to form a thermally sprayed Al film under Al 2 O 3 sprayed coating 15 Since the number of regenerations was 10 times and the Al sprayed film was not formed, the difference in the number of regenerations by using different cleaning solutions was clearly recognized.

上記の実施例では金属溶射膜としてAl溶射膜を採用したが、Cu溶射膜を形成させた場合にも同様な結果が得られた。ただし、電気絶縁性基材の石英ホルダー1の再生時においてCu溶射膜を溶解させる洗浄液としては希硝酸を使用した。   In the above embodiment, an Al sprayed film is used as the metal sprayed film, but similar results were obtained when a Cu sprayed film was formed. However, dilute nitric acid was used as a cleaning solution for dissolving the Cu sprayed film during the regeneration of the quartz holder 1 of the electrically insulating substrate.

(実施例2) 実施例1と同様に石英ホルダー1を電気絶縁性基材とし、その表面をブラスト処理して表面粗さRaを約10μmとして純水で洗浄した後、その表面にアーク溶射法によって膜厚が50μm、100μm、200μm、または300μmのAl溶射膜を形成させた。これらAl溶射膜の表面粗さRaは14〜51μmであった。更にそれぞれのAl溶射膜の上へプラズマ溶射法によって膜厚が100μmまたは200μmのY2 3 溶射膜を形成させたが、それらY2 3 溶射膜の表面粗さRaは表2に示す如くであった。 (Example 2) As in Example 1, the quartz holder 1 is an electrically insulating substrate, the surface is blasted to a surface roughness Ra of about 10 μm, washed with pure water, and then the surface is arc sprayed. As a result, an Al sprayed film having a film thickness of 50 μm, 100 μm, 200 μm, or 300 μm was formed. The surface roughness Ra of these Al sprayed films was 14 to 51 μm. Further, a Y 2 O 3 sprayed film having a film thickness of 100 μm or 200 μm was formed on each Al sprayed film by plasma spraying. The surface roughness Ra of these Y 2 O 3 sprayed films is as shown in Table 2. Met.

Figure 2008095132
Figure 2008095132

表2において、試料番号(21)のAl溶射膜の膜厚を10μmとしたものはAl溶射膜が一様に形成されなかったが、そのことは実施例1の場合と同様である。試料番号(22)〜(28)の試料である溶射石英ホルダー1Yを、図1に示したプラズマ・プレクリーニング装置10における石英ホルダー1に換えて使用して、溶射石英ホルダー1Yの最外層のY2 3 溶射膜への付着物に基づくパーティクルによるウェーハ基板3の汚染について実施例1と同様な評価を行った。 直径8インチ(≒205.4mm)のウェーハ基板3上におけるサイズ0.2μm以上のパーティクルの個数が使用可能な限界の20個以下であって、溶射石英ホルダー1Yの連続使用が可能である期間内にプラズマ・プレクリーニングし得たウェーハ基板3の枚数(ウェーハ基板3の交換回数)は、基材の石英ホルダー1にAl溶射膜を形成させることなく直接にY2 3 溶射膜を形成させたものと比較して、実施例1の場合と同様、大幅に増大した。 In Table 2, when the film thickness of the Al sprayed film of sample number (21) was 10 μm, the Al sprayed film was not formed uniformly. This is the same as in Example 1. The sprayed quartz holder 1Y which is the sample of the sample numbers (22) to (28) is used in place of the quartz holder 1 in the plasma precleaning apparatus 10 shown in FIG. 1, and the outermost layer Y of the sprayed quartz holder 1Y is used. The same evaluation as in Example 1 was performed on contamination of the wafer substrate 3 with particles based on the deposits on the 2 O 3 sprayed film. The number of particles having a size of 0.2 μm or more on a wafer substrate 3 having a diameter of 8 inches (≈205.4 mm) is 20 or less of the usable limit, and the sprayed quartz holder 1Y can be used continuously. The number of wafer substrates 3 obtained by plasma pre-cleaning (number of wafer substrate 3 replacements) was such that the Y 2 O 3 sprayed film was formed directly without forming the Al sprayed film on the quartz holder 1 of the base material. As compared with the case of Example 1, it increased significantly as in the case of Example 1.

そして、ウェーハ基板3のパーティクルによる汚染が限度に達し、溶射石英ホルダー1YのY2 3 溶射膜への付着物を洗浄、除去して石英ホルダー1を再生するに際し、洗浄液としての水酸化カリウム(KOH)の水溶液に浸漬してAl溶射膜を溶解させることにより、Y2 3 溶射膜と共に付着物を除去することができた。石英ホルダー1を電気絶縁性基材としてAl溶射膜を形成し、その上へY2 3 溶射膜を形成させた実施例2の試料は、石英ホルダー1にAl溶射膜を形成させることなく直接にY2 3 溶射膜を形成させたものと比較して、実施例1の場合と同様、石英ホルダー1の再生回数は増大した。 Then, when the contamination of the wafer substrate 3 by the particle reaches the limit, and the quartz holder 1 is regenerated by cleaning and removing the deposits on the Y 2 O 3 sprayed film of the sprayed quartz holder 1Y, potassium hydroxide ( By immersing in an aqueous solution of KOH) and dissolving the Al sprayed film, the deposits could be removed together with the Y 2 O 3 sprayed film. The sample of Example 2 in which the Al sprayed film was formed using the quartz holder 1 as the electrically insulating base material and the Y 2 O 3 sprayed film was formed thereon was directly formed on the quartz holder 1 without forming the Al sprayed film. As compared with the case where the Y 2 O 3 sprayed film was formed on the quartz holder 1, the number of times of regeneration of the quartz holder 1 increased.

以上、プラズマ・プレクリーニング装置における本発明の装置構成部品、およびその製造方法と再生方法を実施例によって説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, the apparatus component parts of the present invention in the plasma pre-cleaning apparatus, and the manufacturing method and the regeneration method thereof have been described by way of examples, but of course, the present invention is not limited to these, and the technical idea of the present invention is not limited thereto. Various modifications are possible based on this.

例えば本実施例においては、装置構成部品として石英ガラスからなる石英ホルダーを電気絶縁性基材とした溶射石英ホルダーを例示したが、電気絶縁性基材はアルミナまたは炭化シリコンからなるものであってもよく、それらの面にAl系またはCu系の金属溶射膜を形成し、更にその上へプラズマ溶射法によるAl2 3 溶射膜を形成したものにおける金属溶射膜の厚さとAl2 3 溶射膜の表面粗さRaとの関係は石英ガラスを電気絶縁性基材とした場合と同様であった。 For example, in the present embodiment, a sprayed quartz holder in which a quartz holder made of quartz glass is used as an apparatus constituent component is illustrated as an electrically insulating substrate, but the electrically insulating substrate may be made of alumina or silicon carbide. well, an Al-based or Cu-based metal sprayed film formed on their surfaces, yet the thickness and Al 2 O 3 sprayed coating of sprayed metal film in which the formation of the Al 2 O 3 sprayed coating onto the plasma spraying method The relationship with the surface roughness Ra was the same as when quartz glass was used as the electrically insulating substrate.

また本実施例においては、装置構成部品として石英ホルダーを電気絶縁性基材とする溶射石英ホルダーを例示したが、装置構成部品としては、ホルダー以外のもの、例えば、シールド・リングやフォーカス・リングにも本発明を適用することができる。   Further, in this embodiment, the sprayed quartz holder using the quartz holder as the electrically insulating base material is exemplified as the device component, but as the device component other than the holder, for example, a shield ring or a focus ring. The present invention can also be applied.

また本実施例においては、プラズマ溶射法によるセラミックス溶射膜としてAl2 3 溶射膜とY2 3 溶射膜とを例示したが、それらに換えてジルコニア(ZrO2 )溶射膜、マグネシア(MgO)溶射膜、チタニア(TiO2 )溶射膜を形成しても同様な結果が得られた。 In the present embodiment, the Al 2 O 3 sprayed film and the Y 2 O 3 sprayed film are exemplified as the ceramic sprayed film by the plasma spraying method. Instead, a zirconia (ZrO 2 ) sprayed film, magnesia (MgO) is used. Similar results were obtained even when a sprayed coating and a titania (TiO 2 ) sprayed coating were formed.

また本実施例においては、Al2 3 溶射膜の形成、Y2 3 溶射膜の形成にプラズマ溶射法を採用したが、融点の高いセラミックス粉末の溶射が可能である限りにおいて、プラズマ溶射法以外の方法で溶射してもよい。また本実施例においては、Al溶射膜の形成にアーク溶射法を採用したが、金属溶射膜の形成にアーク溶射法以外の方法で溶射してもよいことは勿論である。 In this embodiment, the plasma spraying method is used for forming the Al 2 O 3 sprayed film and the Y 2 O 3 sprayed film. However, as long as the ceramic powder having a high melting point can be sprayed, the plasma spraying method is used. Thermal spraying may be performed by a method other than the above. In this embodiment, the arc spraying method is used to form the Al sprayed film. However, it goes without saying that the metal sprayed film may be sprayed by a method other than the arc spraying method.

また本実施例においては、ウェーハ基板のプラズマ・プレクリーニング装置内に配置される電気絶縁性で高融点の装置構成部品であり、物質が膜状に付着して厚膜化する石英ホルダーを対象として説明したが、付着物が厚膜化する同様な装置構成部品は真空成膜装置、エッチング装置、アッシング装置にも使用されており、それらの装置構成部品にも本発明は効果的に適用される。   In addition, in this embodiment, the target is a quartz holder which is an electrically insulating and high-melting-point device component placed in a plasma pre-cleaning device for a wafer substrate, in which a substance adheres in a film and becomes thicker. As described above, the same device components that thicken deposits are also used in vacuum film forming devices, etching devices, and ashing devices, and the present invention is effectively applied to these device components. .

また本実施例においては、プラズマ・プレクリーニング装置におけるおいて導入するガスとしてArガスを例示したが、これに換えてO2 ガス、N2 ガスも使用し得る。そのほか、エッチング装置においては、一般的に使用されている含フッ素分子のガス、含塩素分子のガスが使用されてもよい。 In this embodiment, Ar gas is exemplified as the gas to be introduced in the plasma pre-cleaning apparatus, but O 2 gas and N 2 gas may be used instead. In addition, the fluorine-containing molecule gas and the chlorine-containing molecule gas that are generally used may be used in the etching apparatus.

実施例において使用したプラズマ・プレクリーニング装置を装置構成部品で ある石英ホルダーと共に示す概念的断面図である。It is a conceptual sectional view showing a plasma precleaning device used in an example together with a quartz holder which is a device component. 実施例1で作成した石英ホルダーを電気絶縁性基材とし、そのブラスト処理面にアーク溶射法によるAl溶射膜を形成し、その上へプラズマ溶射法によるAl2 3 溶射膜を形成した溶射石英ホルダーの表面部分のSEM像を示す図である。The quartz holder prepared in Example 1 is used as an electrically insulating substrate, an Al sprayed film is formed on the blasted surface by an arc spraying method, and an Al 2 O 3 sprayed film is formed thereon by a plasma spraying method. It is a figure which shows the SEM image of the surface part of a holder.

符号の説明Explanation of symbols

1・・・石英ホルダー、 2・・・下部電極、 3・・・ウェーハ基板、
4・・・ICPコイル、 5・・・RFコイル電源、 6・・・RFバイアス電源、 7・・・絶縁性パイプ、 10・・・プラズマ・プレクリーニング装置、
11・・・筐体、 12・・・ベルジャー、 13・・・カバー、
14・・・MFC、 15・・・ターボ分子ポンプ
1 ... quartz holder, 2 ... lower electrode, 3 ... wafer substrate,
4 ... ICP coil, 5 ... RF coil power supply, 6 ... RF bias power supply, 7 ... Insulating pipe, 10 ... Plasma pre-cleaning device,
11 ... Case, 12 ... Bell jar, 13 ... Cover,
14 ... MFC, 15 ... Turbo molecular pump

Claims (8)

真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置内に配置される装置構成部品であって、
前記装置構成部品は、電気絶縁性基材と、該電気絶縁性基材の表面に形成された金属溶射膜と、該金属溶射膜の表面に形成されたセラミックス溶射膜とからなり、前記セラミックス溶射膜の表面の中心線平均粗さRaが10〜50μmの範囲内にあることを特徴とする装置構成部品。
A device component disposed in a vacuum film forming device, an etching device, a pre-cleaning device, or an ashing device,
The apparatus component includes an electrically insulating substrate, a metal sprayed film formed on the surface of the electrically insulating substrate, and a ceramic sprayed film formed on the surface of the metal sprayed film. An apparatus component having a center line average roughness Ra on the surface of the membrane in the range of 10 to 50 μm.
前記電気絶縁性基材が石英ガラス、アルミナ、炭化シリコンのうちの何れか一種からなることを特徴とする請求項1に記載の装置構成部品。   2. The apparatus component according to claim 1, wherein the electrically insulating substrate is made of any one of quartz glass, alumina, and silicon carbide. 前記金属溶射膜がアルミニウム、アルミニウム合金、 銅、銅合金のうちの何れか一種以上を含む溶射膜であり、前記金属溶射膜の膜厚が50〜300μmの範囲内にあることを特徴とする請求項1または請求項2に記載の装置構成部品。   The metal sprayed coating is a sprayed coating containing at least one of aluminum, aluminum alloy, copper, and copper alloy, and the thickness of the metal sprayed coating is in the range of 50 to 300 μm. The apparatus component of Claim 1 or Claim 2. 前記金属溶射膜がアーク溶射法によって形成されたものであることを特徴とする請求項1から請求項3までの何れかに記載の装置構成部品。   4. The apparatus component according to claim 1, wherein the metal sprayed film is formed by an arc spraying method. 前記セラミックス溶射膜がアルミナ、 ジルコニア、マグネシア、チタニア、イットリアのうちの何れかの溶射膜であり、前記セラミックス溶射膜の膜厚が100〜200μmの範囲内にあることを特徴とする請求項1から請求項4までの何れかに記載の装置構成部品。   The ceramic sprayed film is any one of alumina, zirconia, magnesia, titania, and yttria, and the ceramic sprayed film has a thickness in the range of 100 to 200 μm. The device component according to claim 4. 前記セラミックス溶射膜がプラズマ溶射法によって形成されたものであることを特徴とする請求項1から請求項5までの何れかに記載の装置構成部品。   The apparatus component according to any one of claims 1 to 5, wherein the ceramic sprayed film is formed by a plasma spraying method. 真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置内に配置される装置構成部品の製造方法であって、
電気絶縁性基材の表面に金属溶射膜を形成する工程と、該金属溶射膜の表面にセラミックス溶射膜を形成する工程とからなり、前記セラミックス溶射膜の表面の中心線平均粗さRaを10〜50μmの範囲内となるように形成することを特徴とする装置構成部品の製造方法。
A method for manufacturing apparatus components arranged in a vacuum film forming apparatus, an etching apparatus, a pre-cleaning apparatus, or an ashing apparatus,
The method comprises a step of forming a metal sprayed film on the surface of the electrically insulating substrate and a step of forming a ceramic sprayed film on the surface of the metal sprayed film. The center line average roughness Ra of the surface of the ceramic sprayed film is 10 A method for producing an apparatus component, which is formed so as to be in a range of ˜50 μm.
真空成膜装置、エッチング装置、プレクリーニング装置、またはアッシング装置内に配置される装置構成部品の再生方法であって、
電気絶縁性基材と、該電気絶縁性基材の表面に形成された金属溶射膜と、該金属溶射膜の表面に形成されたセラミックス溶射膜とからなり、該セラミックス溶射膜の表面に膜状に物質が付着している前記装置構成部品を無機酸またはアルカリの水溶液に浸漬して前記金属溶射膜を溶解、除去し、前記電気絶縁性基材と前記物質が付着している前記セラミックス溶射膜とに分離して、前記電気絶縁性基材を再使用することを特徴とする装置構成部品の再生方法。

A method for regenerating a device component arranged in a vacuum film forming device, an etching device, a pre-cleaning device, or an ashing device,
An electrically insulating substrate, a metal sprayed film formed on the surface of the electrically insulating substrate, and a ceramic sprayed film formed on the surface of the metal sprayed film. The ceramic component sprayed film in which the electrically insulating base material and the substance are adhered is obtained by immersing the device component part to which the substance is adhered in an aqueous solution of an inorganic acid or alkali to dissolve and remove the metal sprayed film. And reusing the electrical insulating substrate, and regenerating the apparatus component.

JP2006275555A 2006-10-06 2006-10-06 Method for recycling equipment components Active JP4970887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006275555A JP4970887B2 (en) 2006-10-06 2006-10-06 Method for recycling equipment components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006275555A JP4970887B2 (en) 2006-10-06 2006-10-06 Method for recycling equipment components

Publications (2)

Publication Number Publication Date
JP2008095132A true JP2008095132A (en) 2008-04-24
JP4970887B2 JP4970887B2 (en) 2012-07-11

Family

ID=39378297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006275555A Active JP4970887B2 (en) 2006-10-06 2006-10-06 Method for recycling equipment components

Country Status (1)

Country Link
JP (1) JP4970887B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255073A (en) * 2009-04-28 2010-11-11 Nippon Steel Hardfacing Co Ltd Method of removing protective layer and method of separating the same
WO2011040610A1 (en) * 2009-10-02 2011-04-07 三洋電機株式会社 Catalytic cvd device, method for formation of film, process for production of solar cell, and substrate holder
KR101176396B1 (en) 2011-04-25 2012-08-27 피에스테크놀러지(주) Method and apparatus for cleaning process chamber component
JP2013251370A (en) * 2012-05-31 2013-12-12 Shimadzu Corp Substrate loading apparatus
TWI464300B (en) * 2008-04-30 2014-12-11 Ulvac Inc A method for producing a water-reactive aluminum film and a constituent member for a film-forming chamber
JP2016503835A (en) * 2012-12-28 2016-02-08 ビーワイディー カンパニー リミテッドByd Company Limited Stainless steel-resin composite and method for preparing the same
CN105489463A (en) * 2014-09-17 2016-04-13 北京北方微电子基地设备工艺研究中心有限责任公司 Pre-cleaning chamber and semiconductor processing device
US9770884B2 (en) 2012-02-24 2017-09-26 Shenzhen Byd Auto R&D Company Limited Metal-resin composite and method for producing the same
US9783894B2 (en) 2012-05-28 2017-10-10 Byd Company Limited Metal composite and method of preparing the same, metal-resin composite and method of preparing the same
US9802388B2 (en) 2012-02-24 2017-10-31 Shenzhen Byd Auto R&D Company Limited Aluminum alloy resin composite and method of preparing the same
US9809895B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9808974B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9862131B2 (en) 2012-02-24 2018-01-09 Byd Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
US9889588B2 (en) 2012-02-24 2018-02-13 Shenzhen Byd Auto R&D Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
JP2018538447A (en) * 2015-12-23 2018-12-27 プラクスエア エス.ティ.テクノロジー、インコーポレイテッド Improved thermal spray coating on non-smooth surfaces
CN111748798A (en) * 2019-03-29 2020-10-09 皮考逊公司 Sample protection
CN113549858A (en) * 2021-07-22 2021-10-26 福建阿石创新材料股份有限公司 High-roughness protective coating for thin-wall protective cover of sputter coating machine and preparation method thereof
CN115305434A (en) * 2022-08-11 2022-11-08 福建阿石创新材料股份有限公司 Method for preparing ceramic coating on surface of thin-wall protective cover and protective cover with coating
JP7196343B1 (en) 2022-02-15 2022-12-26 テクノクオーツ株式会社 Glass base material having base film for film adhesion, and glass part provided with film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039723A (en) * 1973-08-15 1975-04-12
JP2003297809A (en) * 2002-03-29 2003-10-17 Shinetsu Quartz Prod Co Ltd Member for plasma etching device and method for manufacturing the same
JP2004123508A (en) * 2002-08-01 2004-04-22 Tosoh Corp Quartz glass part, method of manufacturing the same, and device using the quartz glass part
JP2004143583A (en) * 2002-08-30 2004-05-20 Tosoh Corp Quartz glass component, method for producing the same, and apparatus using the same
JP2005154896A (en) * 2003-10-17 2005-06-16 Tosoh Corp Component for vacuum device, method for manufacturing the same, and device for using the same
JP2005175401A (en) * 2003-12-15 2005-06-30 Ngk Insulators Ltd Reactor vessel
JP2006097114A (en) * 2004-09-30 2006-04-13 Tosoh Corp Corrosion-resistant spray deposit member
JP2006118053A (en) * 2005-12-16 2006-05-11 Tocalo Co Ltd Member for semiconductor fabrication equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039723A (en) * 1973-08-15 1975-04-12
JP2003297809A (en) * 2002-03-29 2003-10-17 Shinetsu Quartz Prod Co Ltd Member for plasma etching device and method for manufacturing the same
JP2004123508A (en) * 2002-08-01 2004-04-22 Tosoh Corp Quartz glass part, method of manufacturing the same, and device using the quartz glass part
JP2004143583A (en) * 2002-08-30 2004-05-20 Tosoh Corp Quartz glass component, method for producing the same, and apparatus using the same
JP2005154896A (en) * 2003-10-17 2005-06-16 Tosoh Corp Component for vacuum device, method for manufacturing the same, and device for using the same
JP2005175401A (en) * 2003-12-15 2005-06-30 Ngk Insulators Ltd Reactor vessel
JP2006097114A (en) * 2004-09-30 2006-04-13 Tosoh Corp Corrosion-resistant spray deposit member
JP2006118053A (en) * 2005-12-16 2006-05-11 Tocalo Co Ltd Member for semiconductor fabrication equipment

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464300B (en) * 2008-04-30 2014-12-11 Ulvac Inc A method for producing a water-reactive aluminum film and a constituent member for a film-forming chamber
JP2010255073A (en) * 2009-04-28 2010-11-11 Nippon Steel Hardfacing Co Ltd Method of removing protective layer and method of separating the same
EP2484804A4 (en) * 2009-10-02 2017-03-22 Sanyo Electric Co., Ltd. Catalytic cvd device, method for formation of film, process for production of solar cell, and substrate holder
WO2011040610A1 (en) * 2009-10-02 2011-04-07 三洋電機株式会社 Catalytic cvd device, method for formation of film, process for production of solar cell, and substrate holder
JP2011080095A (en) * 2009-10-02 2011-04-21 Sanyo Electric Co Ltd Catalytic cvd device, method for formation of film, process for production of solar cell, and substrate holder
CN102575343A (en) * 2009-10-02 2012-07-11 三洋电机株式会社 Catalytic CVD device, method for formation of film, process for production of solar cell, and substrate holder
KR101462321B1 (en) 2009-10-02 2014-11-14 산요덴키가부시키가이샤 Catalytic cvd device, method for formation of film, process for production of solar cell, and substrate holder
US8957351B2 (en) 2009-10-02 2015-02-17 Sanyo Electric Co., Ltd. Catalytic CVD equipment, method for formation of film, process for production of solar cell, and substrate holder
KR101176396B1 (en) 2011-04-25 2012-08-27 피에스테크놀러지(주) Method and apparatus for cleaning process chamber component
US9770884B2 (en) 2012-02-24 2017-09-26 Shenzhen Byd Auto R&D Company Limited Metal-resin composite and method for producing the same
US9809895B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9889588B2 (en) 2012-02-24 2018-02-13 Shenzhen Byd Auto R&D Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
US9862131B2 (en) 2012-02-24 2018-01-09 Byd Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
US9808974B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9802388B2 (en) 2012-02-24 2017-10-31 Shenzhen Byd Auto R&D Company Limited Aluminum alloy resin composite and method of preparing the same
US9783894B2 (en) 2012-05-28 2017-10-10 Byd Company Limited Metal composite and method of preparing the same, metal-resin composite and method of preparing the same
JP2013251370A (en) * 2012-05-31 2013-12-12 Shimadzu Corp Substrate loading apparatus
JP2016503835A (en) * 2012-12-28 2016-02-08 ビーワイディー カンパニー リミテッドByd Company Limited Stainless steel-resin composite and method for preparing the same
CN105489463A (en) * 2014-09-17 2016-04-13 北京北方微电子基地设备工艺研究中心有限责任公司 Pre-cleaning chamber and semiconductor processing device
JP2018538447A (en) * 2015-12-23 2018-12-27 プラクスエア エス.ティ.テクノロジー、インコーポレイテッド Improved thermal spray coating on non-smooth surfaces
CN111748798A (en) * 2019-03-29 2020-10-09 皮考逊公司 Sample protection
CN113549858A (en) * 2021-07-22 2021-10-26 福建阿石创新材料股份有限公司 High-roughness protective coating for thin-wall protective cover of sputter coating machine and preparation method thereof
JP7196343B1 (en) 2022-02-15 2022-12-26 テクノクオーツ株式会社 Glass base material having base film for film adhesion, and glass part provided with film
CN115305434A (en) * 2022-08-11 2022-11-08 福建阿石创新材料股份有限公司 Method for preparing ceramic coating on surface of thin-wall protective cover and protective cover with coating

Also Published As

Publication number Publication date
JP4970887B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4970887B2 (en) Method for recycling equipment components
CN108884546B (en) Coated semiconductor processing component with resistance to chlorine and fluorine plasma erosion and composite oxide coating thereof
JP4985928B2 (en) Multi-layer coated corrosion resistant member
JP4571561B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
KR101304082B1 (en) Corrosion resistant multilayer member
JP4623055B2 (en) Metal film peeling prevention structure in metal film forming apparatus and semiconductor device manufacturing method using the structure
TWI533384B (en) Process kit shields and methods of use thereof
WO2013084902A1 (en) Plasma processing apparatus and plasma processing method
JP4591722B2 (en) Manufacturing method of ceramic sprayed member
JP2009081223A (en) Electrostatic chuck member
JP6326210B2 (en) Quartz glass part and method for producing quartz glass part
JP2007317887A (en) Method for forming through-hole electrode
JP4894158B2 (en) Vacuum equipment parts
JP2007138302A (en) Sprayed coating-coated member having excellent plasma erosion resistance and its production method
TW201325744A (en) Method for treating pollutant of workpiece provided with yttrium oxide coating layer
JP2007530788A (en) Manufacturing method of semiconductor coated substrate
JP2007321183A (en) Plasma resistant member
JP3995994B2 (en) Constituent member of jig for semiconductor manufacturing apparatus and manufacturing method thereof
JP5089874B2 (en) Plasma processing apparatus member and manufacturing method thereof
JP4647249B2 (en) Thin film forming apparatus component and method of manufacturing the same
JP4604640B2 (en) Vacuum device parts, manufacturing method thereof, and apparatus using the same
JP4407143B2 (en) Quartz glass component, manufacturing method thereof, and apparatus using the same
JP5296597B2 (en) Method for removing and separating protective layer
JP2004346374A (en) Method for peeling off sprayed coating, and method for manufacturing member coated with sprayed coating
JP2006057172A (en) Thin film production apparatus and production method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4970887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250