JP2008092735A - Stator structure of axial gap type rotary electric machine - Google Patents

Stator structure of axial gap type rotary electric machine Download PDF

Info

Publication number
JP2008092735A
JP2008092735A JP2006273067A JP2006273067A JP2008092735A JP 2008092735 A JP2008092735 A JP 2008092735A JP 2006273067 A JP2006273067 A JP 2006273067A JP 2006273067 A JP2006273067 A JP 2006273067A JP 2008092735 A JP2008092735 A JP 2008092735A
Authority
JP
Japan
Prior art keywords
stator
strength
circumferential direction
gap type
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006273067A
Other languages
Japanese (ja)
Other versions
JP4935285B2 (en
Inventor
Yuichi Shibukawa
祐一 渋川
Yukihiro Nishiyama
幸広 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006273067A priority Critical patent/JP4935285B2/en
Publication of JP2008092735A publication Critical patent/JP2008092735A/en
Application granted granted Critical
Publication of JP4935285B2 publication Critical patent/JP4935285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an eddy current and improve stiffness to bending moment, in a stator structure molded. <P>SOLUTION: A plurality of cores 1 are arranged on a stator 12 of a rotary electric machine in a peripheral direction. A fin 9 which is a sheet type high-strength metal member is arranged between the cores 1, 1 adjoining each other in a peripheral direction so that it may face to a direction of a shaft O and to an axial direction, and may form right angles in the peripheral direction, over space from an end of an inside diametrical side to an end of an outside diametrical side of the stator 12, then these cores 1 and the fin 9 are molded with resin 5 to form the stator 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、モールドされた回転電機のステータの剛性を高める技術に関するものである。   The present invention relates to a technique for increasing the rigidity of a stator of a molded rotating electrical machine.

コアを周方向に複数配置したステータにあっては、各コア間に樹脂を流し込んでモールドすることによりステータを成形することが一般的である。図9は、ロータおよびステータを軸方向に対向配置したアキシャルギャップ型回転電機において、モールドしたステータを、回転軸Oを含む面で破断し、半分のみを模式的に示す縦断面図である。また、図10は図9に表された1個のコアにつき電機子コイルを巻回した状態を示す斜視図である。図中101はコアを、102は電機子コイルを、103は絶縁のためのインシュレータを、104は回転電機ケースを、105は、モールドされた樹脂部材を示す。   In a stator in which a plurality of cores are arranged in the circumferential direction, it is common to mold the stator by pouring resin between the cores and molding. FIG. 9 is a longitudinal cross-sectional view schematically showing only a half of a molded stator fractured on a plane including the rotation axis O in an axial gap type rotating electrical machine in which a rotor and a stator are arranged to face each other in the axial direction. FIG. 10 is a perspective view showing a state in which an armature coil is wound around one core shown in FIG. In the figure, 101 is a core, 102 is an armature coil, 103 is an insulator for insulation, 104 is a rotating electrical machine case, and 105 is a molded resin member.

ところで、回転電機の運転中は、回転電機のステータには図10に示すように、軸O方向の反力Fおよびトルク反力Tθが作用するため、各コア101をしっかりとした剛性で支持する必要がある。しかしながら樹脂のみでは剛性が低いことから、金属製の高強度部材をモールドする技術が既に、特許文献1〜特許文献3に開示されている。図11および図13は特許文献1〜特許文献3に開示された従来のステータ構造を、回転軸Oを含む面で破断し、半分を模式的に示す縦断面図である。また図12は同ステータ構造の一部を示す斜視図である。また図14は同ステータ構造を回転軸O方向から見た状態を一部において示す正面図である。図中106は径方向に延在する高強度部材を、107は周方向に延在する高強度部材を示す。 Incidentally, during the operation of the rotary electric machine, the stator of the rotary electric machine as shown in FIG. 10, since the reaction force in the axial O direction F z and the torque reaction force T theta acts, with a solid rigid each core 101 Need to support. However, since the rigidity is low only with resin, techniques for molding a metal high-strength member have already been disclosed in Patent Documents 1 to 3. 11 and 13 are longitudinal sectional views schematically showing a half of the conventional stator structure disclosed in Patent Documents 1 to 3, with the surface including the rotation axis O broken. FIG. 12 is a perspective view showing a part of the stator structure. FIG. 14 is a partial front view of the stator structure as viewed from the direction of the rotation axis O. In the figure, 106 indicates a high-strength member extending in the radial direction, and 107 indicates a high-strength member extending in the circumferential direction.

なお、高強度部材の寸法精度にばらつきが生じると回転電機ケースに対してコアのガタツキが生じてしまう懸念がある。また組み立て作業の効率化を図る必要もある。そこで図11に示す部位105dや部位105eのように、高強度部材106およびコア101間、そして高強度部材106および回転電機ケース104間に、樹脂を流し込んでモールドする。   If the dimensional accuracy of the high-strength member varies, there is a concern that the core may rattle with respect to the rotating electrical machine case. It is also necessary to improve the efficiency of assembly work. Therefore, resin is poured and molded between the high-strength member 106 and the core 101, and between the high-strength member 106 and the rotating electrical machine case 104, as in the portion 105d and the portion 105e shown in FIG.

モールドされた樹脂105は、引っ張りに対する剛性が弱いが圧縮に対する剛性は強い。図14中、コア101にトルク反力Tθが作用すると、樹脂部材105のうちの部位105a,105b,105cで周方向の圧縮力が生じることから部位105a,105b,105cは図14中に両矢印で示すように圧縮に対して対抗する。また図11中、コア101に軸方向反力Fが作用すると、樹脂部材105のうちの部位105eや部位105fで軸方向の圧縮力が生じることから部位105e,105fは図11中、両矢印で示すような圧縮応力に対して対抗する。したがって、ステータに高強度部材106をモールドすることにより、軸方向反力Fおよびトルク反力Tθに対して剛性を高めることができる。
特開2000−52657号公報 特開2003−88032号公報 特開2004−282989号公報
The molded resin 105 has low rigidity against tension but high rigidity against compression. In FIG. 14, when a torque reaction force acts on the core 101, a circumferential compressive force is generated in the portions 105a, 105b, and 105c of the resin member 105. Therefore, the portions 105a, 105b, and 105c are Compete against compression as indicated by the arrows. In FIG. 11, when an axial reaction force F z acts on the core 101, an axial compressive force is generated at the portion 105 e and the portion 105 f of the resin member 105. It counters against compressive stress as shown by. Therefore, by molding the high-strength member 106 on the stator, the rigidity can be increased with respect to the axial reaction force Fz and the torque reaction force .
JP 2000-52657 A JP 2003-88032 A JP 2004-282899 A

しかし、上記従来のような技術に基づくステータ構造にあっては、以下に説明するような問題を生ずる。つまり、高強度部材としてはアルミ素材やステンレス素材などからなる金属部材が一般的であるが、軸方向の磁束が高強度部材106,107と鎖交して、金属部材内でうず電流が発生してしまうという問題がある。図12には従来例のステータ構造においてうず電流が発生する様子を二点鎖線で示す。   However, in the stator structure based on the above-described conventional technique, the following problems occur. In other words, a metal member made of aluminum or stainless steel is generally used as the high-strength member, but an axial magnetic flux is linked to the high-strength members 106 and 107, and an eddy current is generated in the metal member. There is a problem that it ends up. FIG. 12 shows a state where eddy current is generated in a conventional stator structure by a two-dot chain line.

また設計上、アキシャルギャップ型回転電機の薄型化が進み、ステータの軸方向寸法に対してステータの径方向寸法が大きくなると、図13に示すような曲げモーメントMが無視できないほど大きなものとなる。モーメントMが作用すると、図13中の部位105eで引っ張り応力が作用することから樹脂部材105が変形してしまい、充分な剛性を確保することができなかった。   Further, when the axial gap type rotating electrical machine is thinned by design and the radial dimension of the stator becomes larger than the axial dimension of the stator, the bending moment M as shown in FIG. 13 becomes so large that it cannot be ignored. When the moment M is applied, a tensile stress is applied at the portion 105e in FIG. 13, so that the resin member 105 is deformed and sufficient rigidity cannot be ensured.

本発明は、上述の実情に鑑み、うず電流を防止し、曲げモーメントに対しても剛性を具えたモールドを提案するものである。   In view of the above-described circumstances, the present invention proposes a mold that prevents eddy current and has rigidity against bending moment.

この目的のため本発明によるステータのモールド構造は、請求項1に記載のごとく、
回転電機のステータにコアを周方向に複数配置し、該ステータに、回転自在に軸支したロータを、軸方向に対向するようを配置したアキシャルギャップ型の回転電機において、
周方向で隣り合う前記コア同士の間には、板状の高強度金属部材を、ステータの内径側端部から外径側端部に亘って、軸方向および径方向となり、周方向に直角となるよう配置し、これらコアおよび高強度金属部材を樹脂でモールドして構成したことを特徴としたものである。
For this purpose, the mold structure of the stator according to the invention is as described in claim 1,
In an axial gap type rotating electric machine in which a plurality of cores are arranged in a circumferential direction on a stator of a rotating electric machine, and a rotor rotatably supported on the stator is arranged so as to face the axial direction.
Between the cores adjacent in the circumferential direction, a plate-shaped high-strength metal member is formed in the axial direction and the radial direction from the inner diameter side end portion to the outer diameter side end portion of the stator, and is perpendicular to the circumferential direction. The core and the high-strength metal member are molded with a resin and are configured.

かかる本発明の構成によれば、上記請求項の高強度金属部材が磁束と直角ではないため、うず電流を防止することができる。また、曲げモーメントに対しても剛性を確保することができる。   According to the configuration of the present invention, since the high-strength metal member of the above claims is not perpendicular to the magnetic flux, eddy current can be prevented. Moreover, rigidity can be ensured with respect to a bending moment.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は本発明の一実施例になるステータ構造の一部を取り出して模式的に示す斜視図である。この実施例は、アキシャルギャップ型の回転電機に係る。コア1は、ステータの周方向に複数配置される。軸方向に延在するコア1の中程には、電機子コイル2を巻回する。電機子コイル2からは、コア1の両端が突出し、鍔状に拡幅する。鍔状のコア端部8は、図示しないロータと対向する。図示しないロータは回転電機において回転自在に軸支される。
Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
FIG. 1 is a perspective view schematically showing a part of a stator structure according to an embodiment of the present invention. This embodiment relates to an axial gap type rotating electrical machine. A plurality of cores 1 are arranged in the circumferential direction of the stator. An armature coil 2 is wound in the middle of the core 1 extending in the axial direction. From the armature coil 2, both ends of the core 1 protrude and widen like a bowl. The bowl-shaped core end portion 8 faces a rotor (not shown). A rotor (not shown) is rotatably supported in the rotating electric machine.

図1に示すように、周方向で隣り合うコア1,1同士の間には、板状の高強度金属部材であるフィン9を配置する。フィン9は、コアと同数個配置する。フィン9は回転電機の軸方向および径方向に広がり、周方向と直交する。そしてフィン9の内径方向端には、ステータの径方向内縁部に設けたステータ支持部材11を連結する。またフィン9の外径方向端には、配管10を結合する。配管10もフィン9と同一の金属部材、例えばアルミニウム、アルミニウム合金、ステンレスまたはステンレス合金製、であって回転電機の軸方向に延在する。   As shown in FIG. 1, fins 9, which are plate-like high-strength metal members, are arranged between the cores 1 and 1 that are adjacent in the circumferential direction. The same number of fins 9 as the cores are arranged. The fins 9 extend in the axial direction and the radial direction of the rotating electrical machine and are orthogonal to the circumferential direction. And the stator support member 11 provided in the radial direction inner edge part of the stator is connected to the inner diameter direction end of the fin 9. A pipe 10 is coupled to the end of the fin 9 in the outer diameter direction. The pipe 10 is also made of the same metal member as the fin 9, for example, aluminum, aluminum alloy, stainless steel, or stainless steel alloy, and extends in the axial direction of the rotating electrical machine.

これらコア1とフィン9との間には樹脂を流し込んでモールドする。そして、全体で1個のステータ12を形成する。図2は、ステータ12を、周方向に延在する円筒面で破断し、その一部を展開して示す周方向展開図である。図2中、金属製のコア1と、交流電流が流れる電機子コイル2との間には絶縁体であるインシュレータ3を介挿しておく。電機子コイル2およびインシュレータ3を具えたコア構造体1〜3とフィン9との間には、樹脂部材5を充填する。フィン9は、引っ張り応力および圧縮応力において、樹脂部材5よりもはるかに弾性係数の大きな高強度金属部材であり、樹脂5よりも硬い。   A resin is poured between the core 1 and the fins 9 and molded. Then, one stator 12 is formed as a whole. FIG. 2 is a circumferential development view in which the stator 12 is broken by a cylindrical surface extending in the circumferential direction and a part thereof is developed. In FIG. 2, an insulator 3 that is an insulator is inserted between a metal core 1 and an armature coil 2 through which an alternating current flows. A resin member 5 is filled between the core structures 1 to 3 having the armature coil 2 and the insulator 3 and the fins 9. The fin 9 is a high-strength metal member having a much larger elastic coefficient than the resin member 5 in tensile stress and compressive stress, and is harder than the resin 5.

なお、図1および図2に示したコア1については、「背景技術」で前述した図10に示すコア101と同じ構成である。本実施例では図10中の電機子コイル102を電機子コイル2と読み替えて、図10を援用する。   The core 1 shown in FIGS. 1 and 2 has the same configuration as the core 101 shown in FIG. 10 described above in “Background Art”. In this embodiment, the armature coil 102 in FIG. 10 is replaced with the armature coil 2, and FIG. 10 is used.

図1および図2に示す本実施例によれば、コア1を通過する磁気回路の磁束が、ステータ12を軸方向に通過するため、板状のフィン9と鎖交する磁束は殆どない。したがって、フィン9に発生するうず電流を効果的に低減することができる。   According to the present embodiment shown in FIGS. 1 and 2, since the magnetic flux of the magnetic circuit passing through the core 1 passes through the stator 12 in the axial direction, there is almost no magnetic flux interlinking with the plate-like fins 9. Therefore, the eddy current generated in the fin 9 can be effectively reduced.

また視覚的理解を容易にするためステータ12から樹脂部材5を省略して示した斜視図である図3に沿って説明すると、円環状のステータ支持部材11を支点として、径方向外方に向かうほど軸方向の力が大きな太い矢で示すような曲げモーメントMがステータ12に作用しても、フィン9が全体で曲げモーメントMに対抗するため、図12に示した従来例のステータ構造と比較して、曲げモーメントに対する剛性を高くすることができる。   Further, in order to facilitate visual understanding, a description will be given with reference to FIG. 3 which is a perspective view in which the resin member 5 is omitted from the stator 12, and it is directed radially outward with the annular stator support member 11 as a fulcrum. Even if a bending moment M as indicated by a thick arrow having a large axial force acts on the stator 12, the fin 9 as a whole opposes the bending moment M, so that it is compared with the conventional stator structure shown in FIG. Thus, the rigidity against the bending moment can be increased.

また配管10に冷媒を流すことにより、アルミニウム素材などの熱伝導性に優れたフィン9がステータ12を効率的に冷却することができる。   In addition, by flowing the coolant through the pipe 10, the fins 9 having excellent thermal conductivity such as an aluminum material can cool the stator 12 efficiently.

次に本発明の他の実施例について説明する。
図4は、他の実施例になるステータ構造を、周方向に延在する円筒面で破断し、その一部を展開して示す周方向展開図である。本実施例のうち、上述した実施例と共通する一部材については、同一符号を付して説明を省略し、異なる部分については新たに符号を付して説明する。
Next, another embodiment of the present invention will be described.
FIG. 4 is a developed circumferential view showing a stator structure according to another embodiment, with a cylindrical surface extending in the circumferential direction broken and a part thereof developed. In the present embodiment, the same members as those in the above-described embodiments will be denoted by the same reference numerals and the description thereof will be omitted, and different portions will be newly described by adding reference numerals.

図4に示す実施例では、フィン9に、周方向に延在する高強度樹脂部材13を結合したものである。高強度樹脂部材13は、高強度・高耐熱のポリアミノアミド樹脂またはPPS(Polyphenylene Sulfide)樹脂からなる。高強度樹脂部材13は軸方向からみると扇形状であって、軸方向に厚みをもつ板状である。フィン9と結合した高強度樹脂部材13の根元部からみて、高強度樹脂部材13の周方向先端部13sは、コア1の端部8とインシュレータ3との間に介在し、コア1を支持する。あるいは、先端部13sがコア1に接触しないものの、図4に示すようにコア1近傍まで高強度樹脂部材13を延在させて、高強度樹脂部材13を端部8とインシュレータ3との間に充分深く挿入される。
そして、フィン9の軸方向両端部にそれぞれ、高強度樹脂部材13を結合する。
In the embodiment shown in FIG. 4, a high-strength resin member 13 extending in the circumferential direction is coupled to the fin 9. The high strength resin member 13 is made of polyaminoamide resin or PPS (Polyphenylene Sulfide) resin having high strength and high heat resistance. The high-strength resin member 13 has a fan shape when viewed from the axial direction, and has a plate shape having a thickness in the axial direction. When viewed from the root of the high-strength resin member 13 coupled to the fins 9, the circumferential tip 13 s of the high-strength resin member 13 is interposed between the end 8 of the core 1 and the insulator 3 to support the core 1. . Or although the front-end | tip part 13s does not contact the core 1, as shown in FIG. 4, the high-strength resin member 13 is extended to the core 1 vicinity, and the high-strength resin member 13 is interposed between the edge part 8 and the insulator 3. As shown in FIG. It is inserted deep enough.
And the high strength resin member 13 is couple | bonded with the axial direction both ends of the fin 9, respectively.

高強度樹脂部材13の根元部について好適な実施例としては、図5に示すようにフィン9に複数の孔14を設けておき、図6に示すように、フィン9の両面に高強度樹脂部材13の根元部13nを取り付ける。ここで、根元部13の軸方向厚みを孔14の直径よりも大きくし、高強度樹脂部材13を孔14に貫通させてフィン9に充分に接合する。そして、高強度樹脂部材13の先端部の軸方向厚みを、根元部13nよりも小さくする。   As a preferred embodiment of the root portion of the high-strength resin member 13, a plurality of holes 14 are provided in the fin 9 as shown in FIG. 5, and the high-strength resin member is provided on both surfaces of the fin 9 as shown in FIG. 13 root portions 13n are attached. Here, the axial thickness of the root portion 13 is made larger than the diameter of the hole 14, and the high-strength resin member 13 is penetrated through the hole 14 to be sufficiently joined to the fin 9. And the axial direction thickness of the front-end | tip part of the high intensity | strength resin member 13 is made smaller than the root part 13n.

このような本発明の他の実施例によれば、高強度樹脂部材13は金属製ではないため、うず電流が発生しないという利点がある。また、モールドされたステータ12の剛性を一層高くすることができる。   According to such another embodiment of the present invention, since the high-strength resin member 13 is not made of metal, there is an advantage that no eddy current is generated. Further, the rigidity of the molded stator 12 can be further increased.

なお図には示さなかったが、複数の孔14に代替して、いわゆるディンプル形状といった凹凸をフィン9に設けてもよい。これによっても、高強度樹脂部材13をフィン9に充分に接合することができる。   Although not shown in the drawing, the fins 9 may be provided with irregularities such as a so-called dimple shape instead of the plurality of holes 14. Also by this, the high-strength resin member 13 can be sufficiently bonded to the fins 9.

次に本発明のさらに他の実施例について説明する。
図7は、さらに他の実施例になるステータ構造を、周方向に延在する円筒面で破断し、その一部を展開して示す周方向展開図である。また図8は、同図におけるフィンおよび高強度樹脂部材を拡大して示す説明図である。本実施例のうち、上述した各実施例と共通する一部材については、同一符号を付して説明を省略し、異なる部分については新たに符号を付して説明する。
Next, still another embodiment of the present invention will be described.
FIG. 7 is a circumferential development view in which a stator structure according to still another embodiment is broken by a cylindrical surface extending in the circumferential direction and a part thereof is developed. Moreover, FIG. 8 is explanatory drawing which expands and shows the fin and high-strength resin member in the same figure. In the present embodiment, the same members as those in the above-described embodiments will be denoted by the same reference numerals and the description thereof will be omitted, and different portions will be newly described by adding reference numerals.

図7,図8に示す実施例では、高強度樹脂部材13の根元部13nの厚みを段階的に変化するよう形成したものである。このように形成することにより、コア1および電機子コイル2から金属製のフィン9まで、高強度樹脂部材13の表面に沿って測定した距離(以下、沿面距離という)を確保することが可能となり、電機子コイル2からフィン9を確実に絶縁することができる。   7 and 8, the thickness of the base portion 13n of the high-strength resin member 13 is formed so as to change stepwise. By forming in this way, it is possible to ensure a distance (hereinafter referred to as creepage distance) measured along the surface of the high-strength resin member 13 from the core 1 and the armature coil 2 to the metal fin 9. The fin 9 can be reliably insulated from the armature coil 2.

また、高強度13の厚みを段階的に変化するよう形成して根元部13nにフィン9と平行な表面15を設けたことから、図7に示すように電機子コイル2を表面15に着座させて、フィン9を電機子コイル2から周方向に距離Cをもって離間させることが可能になる。したがって、電機子コイル2からフィン9を確実に絶縁することができる。   Further, since the thickness of the high strength 13 is formed so as to change stepwise and the surface 15 parallel to the fins 9 is provided at the root portion 13n, the armature coil 2 is seated on the surface 15 as shown in FIG. Thus, the fin 9 can be separated from the armature coil 2 by a distance C in the circumferential direction. Therefore, the fin 9 can be reliably insulated from the armature coil 2.

なお、図7,8中、フィンの一方の面のみに高強度樹脂部材13を表し、他方の面については高強度樹脂部材13を図略した。また、一層の絶縁性能を得るためフィン9の両面をインシュレータ16で被覆してもよい。   7 and 8, the high-strength resin member 13 is shown only on one surface of the fin, and the high-strength resin member 13 is omitted on the other surface. Further, in order to obtain a further insulating performance, both surfaces of the fin 9 may be covered with the insulator 16.

ところで、上記した各実施例によれば、回転電機のステータ12にコア1を周方向に複数配置し、周方向で隣り合うコア1,1同士の間には、板状の高強度金属部材であるフィン9を、ステータ12の内径側端部から外径側端部に亘って、軸方向および径方向に平行となり周方向に直角となるよう配置し、これらコア1およびフィン9を樹脂5でモールドして構成したことから、
フィン9にうず電流が発生することを防止して、コア1に作用する軸方向反力や、周方向トルク反力や、曲げモーメントMに対する剛性を高めることができる。
By the way, according to each embodiment described above, a plurality of cores 1 are arranged in the circumferential direction on the stator 12 of the rotating electrical machine, and a plate-like high-strength metal member is interposed between the cores 1 and 1 adjacent in the circumferential direction. A certain fin 9 is arranged from the inner diameter side end portion of the stator 12 to the outer diameter side end portion so as to be parallel to the axial direction and the radial direction and perpendicular to the circumferential direction, and the core 1 and the fin 9 are made of resin 5. Because it was molded and configured,
It is possible to prevent the eddy current from being generated in the fin 9 and increase the axial reaction force acting on the core 1, the circumferential torque reaction force, and the rigidity against the bending moment M.

また上記した他の実施例によれば、フィン9には、周方向に延在する高強度樹脂部材13を一体に結合し、高強度樹脂部材13の周方向先端13sがコア1を支持ないしコア近傍まで延在することから、
うず電流が発生することなく、モールドされたステータ12の剛性を一層高くすることができる。
Further, according to the other embodiment described above, the fin 9 is integrally connected with the high-strength resin member 13 extending in the circumferential direction, and the circumferential tip 13s of the high-strength resin member 13 supports the core 1 or the core. Because it extends to the vicinity,
The rigidity of the molded stator 12 can be further increased without generating eddy current.

また図7,図8に示すように、高強度樹脂部材13の軸方向厚みを、高強度樹脂部材13の先端部13sから、フィン9と結合する高強度樹脂部材13の根元部13nに向かって、段階的に大きくしたことから、
根元部13nの沿面距離を確保することが可能となり、電機子コイル2からフィン9を確実に絶縁することが可能になる。そして、電機子コイル2から周方向に距離Cをもって離間させて、電機子コイル2からフィン9を確実に絶縁することができる。
As shown in FIGS. 7 and 8, the axial thickness of the high-strength resin member 13 is changed from the front end portion 13 s of the high-strength resin member 13 toward the root portion 13 n of the high-strength resin member 13 coupled to the fin 9. , Because it was increased step by step,
It becomes possible to ensure the creepage distance of the root portion 13n, and to reliably insulate the fin 9 from the armature coil 2. Then, the fins 9 can be reliably insulated from the armature coil 2 by being separated from the armature coil 2 by a distance C in the circumferential direction.

なお、上述したのはあくまでも本発明の一実施例であり、本発明はその主旨に逸脱しない範囲において種々変更が加えられうるものである。   The above description is merely an example of the present invention, and the present invention can be variously modified without departing from the spirit of the present invention.

本発明の一実施例になるステータ構造の一部を取り出して模式的に示す斜視図である。1 is a perspective view schematically showing a part of a stator structure according to an embodiment of the present invention. 同実施例のステータを、周方向に延在する円筒面で破断し、その一部を展開して示す周方向展開図である。It is the circumferential direction expanded view which fractures | ruptures the stator of the Example in the cylindrical surface extended in the circumferential direction, and expands and shows the part. 同実施例のステータに、曲げモーメントが作用する様子を示す説明図である。It is explanatory drawing which shows a mode that a bending moment acts on the stator of the Example. 本発明の他の実施例になるステータ構造を、周方向に延在する円筒面で破断し、その一部を展開して示す周方向展開図である。It is the circumferential direction expansion | deployment figure which fractures | ruptures the stator structure which becomes the other Example of this invention by the cylindrical surface extended in the circumferential direction, and expands and shows a part. 同実施例のフィンを一部取り出して示す斜視図である。It is a perspective view which extracts and shows a part of fin of the Example. 同実施例のフィンおよび高強度樹脂部材との結合箇所を模式的に示す斜視図である。It is a perspective view which shows typically the coupling | bond location with the fin and high-strength resin member of the Example. 本発明のさらに他の実施例になるステータ構造を、周方向に延在する円筒面で破断し、その一部を展開して示す周方向展開図である。It is the circumferential direction expansion | deployment figure which fractures | ruptures the stator structure which becomes further another Example of this invention by the cylindrical surface extended in the circumferential direction, and expand | deploys one part. 同実施例におけるフィンおよび高強度樹脂部材を一部拡大して示す説明図である。It is explanatory drawing which expands and partially shows the fin and high-strength resin member in the Example. 従来例になるモールドしたステータを、軸方向を含む面で破断して示す縦断面図である。It is a longitudinal cross-sectional view which fractures | ruptures and shows the molded stator which becomes a prior art example in the surface containing an axial direction. 同図に表された1個のコアにつき電機子コイルを巻回した状態を示す斜視図である。It is a perspective view which shows the state which wound the armature coil per one core represented to the figure. 従来のステータ構造を、回転軸Oを含む面で破断してみた状態を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which fractured | ruptured the conventional stator structure in the surface containing the rotating shaft O typically. 従来のステータ構造の一部を示す斜視図である。It is a perspective view which shows a part of conventional stator structure. 従来のステータ構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional stator structure typically. 従来のステータ構造を回転軸方向から見た状態を一部示す正面図である。It is a front view which shows a part of state which looked at the conventional stator structure from the rotating shaft direction.

符号の説明Explanation of symbols

1 コア
2 電機子コイル
3 インシュレータ
5 樹脂部材
6 油圧ブースタ
9 フィン(高強度金属部材)
10 配管
11 ステータ支持部材
12 ステータ
13 高強度樹脂部材
16 インシュレータ
1 Core 2 Armature Coil 3 Insulator 5 Resin Member 6 Hydraulic Booster 9 Fin (High Strength Metal Member)
DESCRIPTION OF SYMBOLS 10 Piping 11 Stator support member 12 Stator 13 High-strength resin member 16 Insulator

Claims (3)

回転電機のステータにコアを周方向に複数配置し、該ステータに、回転自在に軸支したロータを、軸方向に対向するようを配置したアキシャルギャップ型の回転電機において、
周方向で隣り合う前記コア同士の間には、板状の高強度金属部材を、ステータの内径側端部から外径側端部に亘って、軸方向および径方向となり、周方向に直角となるよう配置し、これらコアおよび高強度金属部材を樹脂でモールドして構成したことを特徴とするアキシャルギャップ型回転電機のステータ構造。
In an axial gap type rotating electric machine in which a plurality of cores are arranged in a circumferential direction on a stator of a rotating electric machine, and a rotor rotatably supported on the stator is arranged so as to face the axial direction.
Between the cores adjacent in the circumferential direction, a plate-shaped high-strength metal member is formed in the axial direction and the radial direction from the inner diameter side end portion to the outer diameter side end portion of the stator, and is perpendicular to the circumferential direction. A stator structure for an axial gap type rotating electrical machine, wherein the core and the high-strength metal member are molded with resin.
請求項1に記載のアキシャルギャップ型回転電機のステータ構造において、
前記高強度金属部材には、周方向に延在する高強度樹脂部材を一体に結合し、該高強度樹脂部材の周方向先端が前記コアを支持ないし前記コア近傍まで延在することを特徴とするアキシャルギャップ型回転電機のステータ構造。
In the stator structure of the axial gap type rotating electrical machine according to claim 1,
The high-strength metal member is integrally bonded with a high-strength resin member extending in the circumferential direction, and the distal end in the circumferential direction of the high-strength resin member supports the core or extends to the vicinity of the core. A stator structure of an axial gap type rotating electrical machine.
請求項2に記載のアキシャルギャップ型回転電機のステータ構造において、
前記高強度樹脂部材の軸方向厚みを、前記周方向先端から、前記高強度金属部材と結合する高強度樹脂部材の根元部に向かって、段階的に大きくしたことを特徴とするアキシャルギャップ型回転電機のステータ構造。
In the stator structure of the axial gap type rotating electrical machine according to claim 2,
An axial gap type rotation characterized in that the axial thickness of the high-strength resin member is increased stepwise from the circumferential tip toward the root of the high-strength resin member coupled to the high-strength metal member. Electric stator structure.
JP2006273067A 2006-10-04 2006-10-04 Stator structure of axial gap type rotating electrical machine Expired - Fee Related JP4935285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273067A JP4935285B2 (en) 2006-10-04 2006-10-04 Stator structure of axial gap type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273067A JP4935285B2 (en) 2006-10-04 2006-10-04 Stator structure of axial gap type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2008092735A true JP2008092735A (en) 2008-04-17
JP4935285B2 JP4935285B2 (en) 2012-05-23

Family

ID=39376283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273067A Expired - Fee Related JP4935285B2 (en) 2006-10-04 2006-10-04 Stator structure of axial gap type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP4935285B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086115A (en) * 2006-09-27 2008-04-10 Daikin Ind Ltd Core, armature, axial-gap motor, compressor, manufacturing method for the core, and manufacturing method for the armature
WO2010082705A1 (en) * 2009-01-19 2010-07-22 뉴모텍(주) Axial motor
US10566876B2 (en) 2016-02-25 2020-02-18 Hitachi, Ltd. Axial gap rotary electric machine
US11205935B2 (en) 2017-03-14 2021-12-21 Hitachi, Ltd. Axial gap dynamo-electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447739A (en) * 1990-06-14 1992-02-17 Sharp Corp Level conversion circuit
JP2000253635A (en) * 1998-12-28 2000-09-14 Shibaura Densan Kk Axial gap motor
JP2003088032A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Stator supporting structure for rotating electric machine
JP2006025573A (en) * 2004-07-09 2006-01-26 Nissan Motor Co Ltd Structure of stator of disk type rotary electric machine
JP2006094664A (en) * 2004-09-27 2006-04-06 Nissan Motor Co Ltd Stator structure for axial-gap type rotating electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447739A (en) * 1990-06-14 1992-02-17 Sharp Corp Level conversion circuit
JP2000253635A (en) * 1998-12-28 2000-09-14 Shibaura Densan Kk Axial gap motor
JP2003088032A (en) * 2001-09-07 2003-03-20 Nissan Motor Co Ltd Stator supporting structure for rotating electric machine
JP2006025573A (en) * 2004-07-09 2006-01-26 Nissan Motor Co Ltd Structure of stator of disk type rotary electric machine
JP2006094664A (en) * 2004-09-27 2006-04-06 Nissan Motor Co Ltd Stator structure for axial-gap type rotating electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086115A (en) * 2006-09-27 2008-04-10 Daikin Ind Ltd Core, armature, axial-gap motor, compressor, manufacturing method for the core, and manufacturing method for the armature
WO2010082705A1 (en) * 2009-01-19 2010-07-22 뉴모텍(주) Axial motor
KR100989684B1 (en) 2009-01-19 2010-10-26 뉴모텍(주) Axial type motor
US7906886B2 (en) 2009-01-19 2011-03-15 New Motech Co., Ltd. Axial motor
US10566876B2 (en) 2016-02-25 2020-02-18 Hitachi, Ltd. Axial gap rotary electric machine
US11205935B2 (en) 2017-03-14 2021-12-21 Hitachi, Ltd. Axial gap dynamo-electric machine

Also Published As

Publication number Publication date
JP4935285B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4823585B2 (en) Magnet generator
JP5156223B2 (en) Rotating electric machine
JP5714116B2 (en) Electric motor
JP4457785B2 (en) Stator structure of disk type rotating electrical machine
JP2006254662A (en) Rotor and motor
JP2010178598A (en) Rotary electric machine
JP4935285B2 (en) Stator structure of axial gap type rotating electrical machine
JP5569289B2 (en) Rotating electric machine stator
JP5972502B1 (en) Electric motor
JP2009260011A (en) Reactor
JPWO2017085860A1 (en) Electric motor
JP4468856B2 (en) Rotating electric machine stator
KR20110069047A (en) Stator structure for electric machine
JP6352788B2 (en) Rotating electrical machine rotor
JP2007104878A (en) Stator core and rotary electric machine using same
JP2009136090A (en) Rotor plate
US10848022B2 (en) Rotor for electric motor
US10886825B2 (en) Rotor for an electric machine, the rotor has short circuit bars, short circuit ring, and support disc of different materials
JP6123716B2 (en) Rotor
JPH08298752A (en) Motor for electric vehicle
JP2003299328A (en) Cooling structure for rotating electric machine
JP2007221925A (en) Concentrated winding motor
JP5172199B2 (en) Stator
JP6572860B2 (en) Rotor
JP2008306794A (en) Split stator and its manufacturing method, and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4935285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120323

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20120724

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

LAPS Cancellation because of no payment of annual fees