JP2008088633A - Burying type form made of polymer cement mortar - Google Patents

Burying type form made of polymer cement mortar Download PDF

Info

Publication number
JP2008088633A
JP2008088633A JP2006267070A JP2006267070A JP2008088633A JP 2008088633 A JP2008088633 A JP 2008088633A JP 2006267070 A JP2006267070 A JP 2006267070A JP 2006267070 A JP2006267070 A JP 2006267070A JP 2008088633 A JP2008088633 A JP 2008088633A
Authority
JP
Japan
Prior art keywords
monomer
cement mortar
carboxylic acid
polymer cement
unsaturated carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006267070A
Other languages
Japanese (ja)
Inventor
Yasuaki Fukuda
Shisho Hayashi
Yuji Mitani
Seisuke Nagashio
Keiji Omori
裕二 三谷
啓至 大森
志翔 林
康昭 福田
靖祐 長塩
Original Assignee
Taiheiyo Cement Corp
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, 太平洋セメント株式会社 filed Critical Taiheiyo Cement Corp
Priority to JP2006267070A priority Critical patent/JP2008088633A/en
Publication of JP2008088633A publication Critical patent/JP2008088633A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a burying type form made of polymer cement mortar of excellent efficiency of production, capable of being released with material age of one day same as a usual concrete manufacture.
SOLUTION: This burying type form made of polymer cement mortar is a water-based resin dispersing element obtained by emulsification and polymerization in two stages or more of a monomer compound containing one kind of monomer or more selected from among ethylene unsaturated carboxylic acid monomer and aromatic vinyl monomer and/or (meta)acrylic acid ester monomer, and composed of the aggregate made of only the water-based resin dispersing element having a mass ratio (a-final)/(a-1) of 4-8 of the ethylene unsaturated carboxylic acid monomer (a-1) used at the first stage to the ethylene unsaturated carboxylic acid monomer (a-final) used at the final stage, early-strength Portland cement, and fine aggregate, high-performance water reducing agent, and defoaming agent.
COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コンクリート打設時には型枠として用い、コンクリート打設後はコンクリートが型枠と一体化して強固な合成構造となる埋設型枠に関するものである。 The present invention, in the concrete after casting used as a formwork, concrete after casting relates buried type frame comprising a firm composite structure integral with the concrete formwork.

従来、壁、床、柱、梁等の構築において、現場におけるコンクリート打設時には型枠として用い、コンクリート打設後は型枠を解体することなく現場打ちコンクリートと型枠が一体化して強固な合成構造を形成するために用いられる型枠は、所謂、埋設型枠、埋込型枠、永久型枠等と称され、コンクリートの現場打ち工法と比較して、現場工事の省力化、工期短縮、品質向上等を図ることが可能であり、建築分野に限らず、橋げたやダム等の土木構造物にも適用範囲が広がりつつある。 Conventionally, walls, floors, columns, in the construction of the beam or the like, used as formwork for concrete after casting in situ, concrete after casting is strong synthetic integrated the poured concrete and formwork without disassembling the formwork mold used to form the structure is a so-called buried type frame, implantable frame, referred to as permanent formwork, etc., as compared to the cast-in-place method of concrete, laborsaving site construction, shortening the construction period, it is possible to improve the quality or the like, not limited to the building sector, it is becoming even wider range of application in civil engineering structures, such as bridge girders and dams. このような型枠部材としては、主としてコンクリート又は鋼材が利用されており、コンクリート製埋設型枠は、鋼製型枠と比べて、耐久性や、防錆のための維持修繕費、美観性に優れる。 Such frame members are mainly utilized concrete or steel material, concrete buried formwork, as compared to steel mold, durability and, maintenance and repair costs for rust, the aesthetic appearance excellent. 一方、通常強度のコンクリートは、その材料特性から部材厚さが大きくなり、型枠の重量が大となり、運搬等において大きな機械力を使用しなければならない欠点を持っている。 On the other hand, concrete normally strength member thickness increases from its material properties, has the disadvantage that the weight of the mold must use the large mechanical forces in a large, and the transportation and the like. 一方、補強材として立体トラス筋を使用したり、プレストレストの導入により、ある程度の小断面で充分な強度を持たせることを可能としているが、これらにおいても、市販型枠のコンクリート圧縮強度は60〜80MPa、曲げ強度は6〜10MPa程度であり、さらに断面厚さを低減し、広幅で長尺型枠とするには部材寸法に限界がある。 On the other hand, or using a three-dimensional truss muscle as a reinforcing material, the introduction of prestressed, but it is made possible to provide sufficient strength in some small section, even in these, the concrete compressive strength of the commercially available formwork 60 80 MPa, flexural strength is about 6~10MPa, further reducing the cross-sectional thickness, there is a limit to the scantling to the long mold with wide. また、コンクリートが耐久性に優れているとはいえ、腐食作用、凍結融解作用、あるいは化学作用が厳しい環境におけるコンクリート構造物の型枠として使用するためには、例えば、海水による侵食、摩耗、凍結融解による剥離の発生等の課題が残る。 Further, although the concrete has excellent durability, corrosion, for use as a mold for freeze-thaw effects, or concrete structures in chemistry severe environment, for example, attack by sea water, abrasion, frozen problems such as generation of peeling due melting remains.

これらの課題を解決するためセメントに水性樹脂分散体を配合したモルタル組成物、いわゆるポリマーセメント組成物が、一般のセメントモルタルに比較して、強度や耐凍害性に優れているため用いられている。 Mortar composition containing an aqueous resin dispersion in cement order to solve these problems, so-called polymer cement composition, as compared to the general cement mortar, have been used because of its excellent strength and frost resistance . 特許文献1にはセメント100重量部と少なくとも2段階以上の乳化重合で作られた水性エマルジョンであって、最外層の樹脂が少なくとも1種のエチレンオキシド基を有する不飽和単量体と少なくとも1種のエチレン性不飽和単量体の共重合体であることを特徴とする多段階樹脂エマルジョンを樹脂固形分で3〜40重量部とからなるポリマーセメント組成物が提案されている(特許文献1)。 Patent Document 1 An aqueous emulsion made of at least two or more stages of emulsion polymerization and 100 parts by weight of cement, the outermost layer of the resin is at least one unsaturated monomer having an ethylene oxide group and at least one polymer cement composition comprising a multi-stage resin emulsion, which is a copolymer of an ethylenically unsaturated monomer and 3 to 40 parts by weight resin solids has been proposed (Patent Document 1). このポリマーセメント組成物によれば、セメントモルタルの耐水性、曲げ、圧縮強さに対する改良が記載されているが、28日間養生後の結果であり、またその後の7日間の水中浸漬により曲げ強度、圧縮強度とも大幅に低下している。 According to the polymer cement composition, water resistance of the cement mortar, bending, but improvements to compressive strength are described, the result after curing for 28 days, also bent by immersion in water subsequent 7 days strength, both compressive strength has been greatly reduced.

特開平8−217513号公報 JP-8-217513 discloses

コンクリート製品では、型枠を早く外し、製品の出荷を早めるために従来より促進養生、特に、蒸気養生がよく行われている。 The concrete products, removed quickly formwork, accelerated curing conventionally to accelerate the delivery of the product, in particular, have been made frequently steam curing. 工場の設備の中で型枠費の占める割合が大きいので、硬化促進によって型枠の回転を早くして量産化方式をとると、それだけ経済的に有利になる。 Since the ratio of the formwork costs in plant facilities is high, taking the mass-production method by quickly rotating the mold by curing accelerator, it becomes the more economically advantageous. 特に、肉厚の薄い埋設型枠の場合、部材厚が薄ければ薄いほど、部材寸法が大きければ大きいほど、脱型時に高い曲げ強度が必要である。 In particular, for thin buried formwork wall thickness, the thinner if member thickness is thin, the larger the scantlings, which require high bending strength during demolding. しかし、従来のポリマーセメントモルタルは、材齢1日で所要の曲げ強度が得られず、通常のコンクリート製品ように型枠に打設後一日で脱型することは困難であった。 However, conventional polymer cement mortar, the age required bending strength can not be obtained in a day, it has been difficult to demolding by after casting day formwork ordinary concrete products so. 特に埋設型枠のように薄さを要求されるものでは十分な曲げ強度が必要とされる。 Particularly sufficient bending strength than those required thinness as buried formwork is required. したがって、本発明は、このような課題を解決することを目的とし、通常のコンクリート製品の製造のように蒸気養生が可能であり、材齢1日(脱型直後)で優れた高曲げ強度、高圧縮強度特性を有し、通常のコンクリート製品同様材齢1日で脱型可能である生産効率に優れたポリマーセメントモルタル製埋設型枠を提供することを目的とする。 Accordingly, the present invention aims to solve such a problem, but may be steam curing as the production of conventional concrete products, high flexural strength and excellent in age of 1 day (immediately after demolding), has a high compressive strength properties, and to provide an excellent polymer cement mortar made buried mold demolding possible that production efficiency in a conventional concrete products similar ages 1 day. また、海水による侵食、酸に対する耐久性に優れたポリマーセメントモルタル製埋設型枠を提供することを目的とする。 Another object is to provide erosion by seawater, the polymer cement mortar made buried mold having excellent durability against acids.

本発明者らは、上記課題を解決するために鋭意検討した結果、特殊な水性樹脂分散体、早強ポルトランドセメント、細骨材のみからなる骨材、高性能減水剤、消泡剤及び水とからなるポリマーセメントモルタルが、蒸気養生により材齢1日で脱型可能な所要の曲げ強度を得ることができるので通常のコンクリート製品と同様に効率的に生産できることを見出し、本発明を完成した。 The present inventors have made intensive studies in order to solve the above problems, a special water-based resin dispersion, high-early-strength portland cement, aggregate consisting of fine aggregate alone, superplasticizer, a defoaming agent and a water polymer cement mortar made of it, it is possible to obtain a demolded possible the required bending strength in a day the age by steam curing found that it produced efficiently like a normal concrete products, and have completed the present invention. すなわち、エチレン性不飽和カルボン酸単量体、芳香族ビニル単量体及び/又は(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体を含む単量体組成物を乳化重合して得られる水性樹脂分散体であり、該水性樹脂分散体が2段階以上の乳化重合で得られるものであって、1段目に使用するエチレン性不飽和カルボン酸単量体(a−1)と最終段に使用するエチレン性不飽和カルボン酸単量体(a−最終)との質量比(a−最終)/(a−1)が4〜8である水性樹脂分散体と早強ポルトランドセメント、細骨材のみからなる骨材、高性能減水剤、および消泡剤とからなることを特徴とするポリマーセメントモルタル製埋設型枠(請求項1)である。 That is, ethylenically unsaturated carboxylic acid monomers, emulsion polymerization of an aromatic vinyl monomer and / or (meth) monomer composition comprising one or more monomers selected from acrylic acid ester monomers an aqueous resin dispersion obtained by, be those aqueous resin dispersion is obtained by emulsion polymerization of two or more stages, ethylenically unsaturated carboxylic acid monomer used in the first stage (a-1 ) an ethylenically unsaturated carboxylic acid monomer used in the final stage (a- final) and the mass ratio of (a- final) / (a-1) an aqueous resin dispersion and high-early-strength Portland is 4-8 cement is a bone material composed of fine aggregate alone, superplasticizer, and polymer cement mortar made buried mold, characterized in that it consists of a defoaming agent (claim 1).

そして、前記水性樹脂分散体(固形分)とセメントの質量比が5〜22%以下であることを特徴とする請求項1記載のポリマーセメントモルタル製埋設型枠である(請求項2)。 Then, the aqueous resin dispersion is a polymer cement mortar made buried mold according to claim 1, wherein the weight ratio of (solid) and cement is not more than 5 to 22% (claim 2).

本発明によれば、通常のコンクリート製品同様一日で脱型可能であり、効率的に生産できる。 According to the present invention, it is in possible demolding ordinary concrete products similar day, can be efficiently produced. また、曲げ強度に優れ、通常のコンクリート製埋設型枠よりも薄くでき、したがって軽量な埋設型枠を提供できる。 Further, bending excellent strength, normal can be thinner than the concrete buried mold, thus providing a lightweight buried formwork. さらに、耐久性に優れる埋設型枠を提供できる。 Furthermore, it is possible to provide a buried type frame which is excellent in durability.

以下、本発明のポリマーセメントモルタル製埋設型枠およびその製造方法について説明する。 Hereinafter, polymer cement mortar made buried mold of the present invention and its manufacturing method will be described.

本発明において用いられる結合材は、早強ポルトランドセメントが特に好ましい。 Binding material used in the present invention, high-early-strength Portland cement is particularly preferred. 早強ポルトランドセメントを用いることにより、蒸気養生によって一日で脱型可能な、優れた曲げ強度特性を得ることができる。 By using the early-strength Portland cement, demolding can be in a single day by steam curing, it is possible to obtain an excellent flexural strength properties.

本発明に用いられる骨材は、細骨材のみである。 Aggregate used in the present invention, fine aggregate only. 該細骨材は、特に限定されるものではなく、通常コンクリート製品に使用される細骨材であれば良い。 Said sub aggregate, but the present invention is not particularly limited, may be a fine aggregate, which is normally used for concrete products. 例えば、静岡県小笠産陸砂(表乾密度2.60g/cm )が例示される。 For example, Shizuoka Ogasa produced Rikusuna (density in saturated surface-dry 2.60 g / cm 3) can be exemplified.

本発明に用いられる水性樹脂分散体は、エチレン性不飽和カルボン酸単量体としては例えば、アクリル酸、メタクリル酸、マレイン酸のモノエステル、フマル酸のモノエステル、イタコン酸のモノエステルなどのエチレン性不飽和モノカルボン酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和ジカルボン酸が挙げられる。 Aqueous resin dispersion used in the present invention include ethylene, such as ethylenically as unsaturated carboxylic acid monomers such as acrylic acid, methacrylic acid, monoesters of maleic acid, monoesters of fumaric acid, monoesters of itaconic acid sex unsaturated monocarboxylic acids, itaconic acid, fumaric acid, ethylenically unsaturated dicarboxylic acids such as maleic acid. 好ましくはアクリル酸、メタクリル酸、イタコン酸から選ばれる1種以上のエチレン性不飽和カルボン酸である。 Preferably acrylic acid, methacrylic acid, one or more ethylenically unsaturated carboxylic acid selected from itaconic acid.
本発明の水性樹脂分散体で用いられる芳香族ビニル単量体としては、例えばスチレン、ビニルトルエン、α-メチルスチレンなどが挙げられる。 Examples of the aromatic vinyl monomer used in the aqueous resin dispersion of the present invention, such as styrene, vinyl toluene, α- methyl styrene. 好ましくはスチレンである。 Preferably styrene.

また、(メタ)アクリル酸エステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、ブチルアクリレート、イソブチルアクリレート、n-ヘキシルアクリレート、シクロヘキシルアクリレート、2-エチルヘキシルアクリレート、ラウリルアクリレート、ベンジルアクリレート、フェニルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルアクリレート、ブチルメタクリレート、イソブチルメタクリレート、n-ヘキシルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート等が挙げられる。 As the (meth) acrylic acid ester monomer, for example, methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, n- hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, benzyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl acrylate, butyl methacrylate, isobutyl methacrylate, n- hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, benzyl methacrylate, phenyl methacrylate, and the like. 好ましくは、ブチルアクリレート、2-エチルヘキシルアクリレート、メチルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレートである。 Preferably, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, butyl methacrylate, cyclohexyl methacrylate.

本発明に使用される水性樹脂分散体は通常の乳化重合法によって得られる。 Aqueous resin dispersion used in the present invention is obtained by conventional emulsion polymerization method. 乳化重合の方法に関しては特に制限はなく、従来公知の方法を用いることができる。 There is no particular restriction as to the method of emulsion polymerization, it may be a conventionally known method. すなわち、水性媒体中で単量体組成物、界面活性剤、ラジカル重合開始剤および必要に応じて用いられる連鎖移動剤等の他の添加剤成分などを基本組成成分とする分散系において、単量体組成物を重合する方法である。 That is, the monomer composition in an aqueous medium, a surfactant, a further additive components of a chain transfer agent optionally used and a radical polymerization initiator in the dispersion system to a basic composition components, monomer a method for polymerizing the body composition. 乳化重合に際しては、供給する単量体組成物の組成を二段階以上とすることが好ましい。 In emulsion polymerization, it is preferable to set the composition of the supplied monomer composition with two stages or more. 二段階以上にすることにより、セメントモルタル硬化物の曲げ・圧縮強さが改善される。 By the two steps above, the bending and compression strength of the cement mortar cured product is improved. ここでいう単量体組成物の組成を二段階以上の供給とは、単量体組成物の1段目を重合した後、次いでさらに単量体組成物を供給し2段目の重合するものであり、これを繰り返すものである。 Here, the composition of two or more stages of the supply of the monomer composition mentioned, after polymerizing the first stage monomer composition is then further intended to polymerization of the supplied second stage monomer composition , and the one in which repeating this. 本発明での単量体組成物の供給は、2または3段階が好ましく、さらに好ましくは2段階である。 Supply of the monomer composition of the present invention, 2 or 3 steps are preferred, more preferably two stages.

本発明に使用される水性樹脂分散体の好ましい粒子径は50〜400nmであり、さらに好ましくは100〜200nmである。 The preferred particle diameter of the aqueous resin dispersion used in the present invention is 50 to 400 nm, more preferably from 100 to 200 nm. 粒子径が400nm以上になると、セメント粒子間の充填効果やボールベアリング効果が低減されるため、本発明の目的である高強度ポリマーセメントモルタルをつくる観点から適用されない。 When particle sizes are above 400 nm, the filling effect and ball bearing effect between the cement particles are reduced, it does not apply in terms of making high-strength polymer cement mortar that is the object of the present invention.

また、本発明に使用される水性樹脂分散体の固形分としては、30〜70質量%であることが好ましく、さらに好ましくは45〜70質量%である。 As the solids content of the aqueous resin dispersion used in the present invention, preferably from 30 to 70 wt%, more preferably from 45 to 70 wt%. 固形分が30質量%より小さいと、水性樹脂分散体に含まれる水量と細骨材に付着する表面水量だけで、ポリマーセメントモルタルの単位水量を上回る恐れがあるため、現実的ではない。 And solid matter is less than 30 wt%, only the surface water that adheres to the amount of water and fine aggregate contained in the aqueous resin dispersion, because it may exceed the unit water of polymer cement mortar, not realistic.

水性樹脂分散体の配合量は、セメント100質量部に対して固形分換算で5〜22質量部が好ましく、8〜14質量部がより好ましい。 The amount of the aqueous resin dispersion is preferably 5 to 22 parts by weight in terms of solid content with respect to 100 parts by weight of cement, 8-14 parts by mass is more preferable. 水性樹脂分散体の配合量がセメント100質量部に対して固形分換算で5質量部未満では、流動性が低下し、曲げ強度が低下するので、好ましくない。 Since the amount of the aqueous resin dispersion is less than 5 parts by mass in terms of solid content relative to 100 parts by mass of cement, fluidity decreases, the bending strength decreases, unfavorably. 一方、水性樹脂分散体の配合量がセメント100質量部に対して固形分換算で22質量部を超えると、水性樹脂分散体の補強効果による曲げ強度の増加分よりも、セメント硬化体の占める量の減少による曲げ強度の低下分のほうが大きくなるため、ポリマーセメントモルタル複合体としての曲げ強度が低下し始める。 On the other hand, the amount the amount of the aqueous resin dispersion is more than 22 parts by mass in terms of solid content with respect to 100 parts by weight of cement, than the increase in bending strength by the reinforcing effect of the aqueous resin dispersion, occupied by the hardened cement paste because increases towards the reduction caused by the bending strength decreased, the bending strength of the polymer cement mortar complex begins to decrease.

本発明に使用される高性能減水剤としては、通常コンクリートに用いられるAEでない高性能減水剤であれば何でもよいが、減水効果の高いものが望ましい。 As a high performance water reducing agent used in the present invention include, but may be any superplasticizer not AE usually used in concrete, having a high water-reducing effect is desired. 例えば、ポリカルボン酸エーテル系高性能減水剤が例示される。 For example, a polycarboxylic acid ether superplasticizers are exemplified.

本発明に使用される消泡剤としては、シリコーン系エマルジョンや特殊非イオン界面活性剤が例示される。 As the antifoaming agent used in the present invention, silicone-based emulsion or special nonionic surfactants are exemplified. 一般に、セメントモルタル中にセメント混和用ポリマーエマルジョンを混入して攪拌すると著しく発泡し、必要以上の空気連行を伴うため、緻密な高強度ポリマーセメントモルタル硬化体をつくるには、適当な消泡剤を添加する必要がある。 In general, by mixing a cement admixture for the polymer emulsion to the significantly expanded stirred in the cement mortar, to accompany excessive air entrainment and creates a dense high-strength polymer cement mortar hardened body, a suitable defoamer there is a need to be added. 消泡剤の添加方法としては、予めポリマーエマルジョンの製造時に添加してもよく、ポリマーエマルジョンの製造時に添加せずポリマーセメントモルタル練り混ぜ時に添加してもよく、また、ポリマーエマルジョンの製造時に一部添加し、ポリマーセメントモルタル練り混ぜ時にさらに添加することもできる。 The method of adding the defoaming agent may be added in advance the polymer emulsion may be added at the time of manufacture, when kneaded polymer cement mortar without the addition during preparation of the polymer emulsion, also part during the production of the polymer emulsion was added, it may be further added during kneading polymer cement mortar.

消泡剤の配合量は、セメント100質量部に対して0.2〜2質量部が好ましい。 The amount of the antifoaming agent is 0.2 to 2 parts by weight per 100 parts by weight cement is preferred. 消泡剤の配合量がセメント100質量部に対して0.2質量部未満では、ポリマーセメントモルタルの連行気泡を十分に消すことができず、その結果、曲げ強度が低下するので、好ましくない。 If the amount is less than 0.2 part by weight amount of defoamer per 100 parts by mass of cement, it is impossible to extinguish the entrained bubbles of polymer cement mortar sufficiently. As a result, since the bending strength decreases, unfavorably. 一方、消泡剤の配合量がセメント100質量部に対して2質量部以上になると、連行気泡の大部分がすでに消されているため、あまり効果がなく、不経済になる。 On the other hand, the amount of the defoaming agent becomes more than 2 parts by weight per 100 parts by weight cement, since most of the entrained air bubbles is already erased, not very effective, uneconomical.

次に、製造方法について説明する。 Next, the manufacturing method will be described.
製造方法は、特に限定されるものではなく、通常のコンクリート製埋設型枠を製造する方法に準ずれば良い。 Production process is not limited in particular, it may be determined according to the method of manufacturing the conventional concrete buried formwork.
すなわち、各材料を計量し、先ずセメントと細骨材とをミキサーに投入・攪拌(空練り)し、更に水性樹脂分散体、水、減水剤、消泡剤を加えて練り混ぜる。 That is, it weighed each material, first the cement and fine aggregate were charged, stirred in a mixer (empty kneading), further an aqueous resin dispersion, water, water reducing agent, mixed kneaded by adding a defoaming agent. そして該混練物を鉄筋を配置した所定の型枠に充填し、該混練物のフレッシュ性状によって無振動締固め、振動締固めの何れかを行い、蒸気養生後、脱型してポリマーセメントモルタル製埋設型枠を製造する。 Then the kneaded product was filled in a predetermined mold of arranging the reinforcing bars, compacted vibration-free clamping the fresh properties of the kneaded product, do one of the vibration compaction, after steam curing, demolding to made of a polymer cement mortar to produce a buried type frame.
蒸気養生の方法としては、通常の一般的方法に従えば良く、例えば、前置2時間、昇温速度20℃/時、65℃で3時間保持、その後自然放冷する方法が例示される。 As a method for steam curing may according to conventional general methods, for example, pre 2 hours, rate of temperature 20 ° C. / time temperature, maintained for 3 hours at 65 ° C., a method of subsequent natural cooling is exemplified.
尚、本発明のポリマーセメントモルタル製埋設型枠の養生方法としては、蒸気養生以外の養生方法でも製造できるが、材令1日で脱型可能な曲げ強度を得るためには蒸気養生が良い。 As regimen polymer cement mortar made buried mold of the present invention can be produced in curing methods other than steam curing, good steam curing in order to obtain a demolding can flexural strength wood age 1 day.

(試験1) (Test 1)
本発明の実施例として本発明に係るポリマーセメントモルタルを用いる供試体を以下の材料を使用し、表1の割合で配合して以下のように製造した。 It specimens using a polymer cement mortar according to the present invention as an embodiment of the present invention using the following materials were prepared as follows in proportions shown in Table 1.
セメント:早強ポルトランドセメント 細骨材:静岡県小笠郡浜岡町産陸砂(表乾密度2.60g/cm 、FM2.75) Cement: early-strength portland cement Fine aggregate: Shizuoka Prefecture Ogasa District Hamaoka cho Rikusuna (Table dry density of 2.60g / cm 3, FM2.75)
本発明の水性樹脂分散体:(固形分50%) Aqueous resin dispersion :( 50% solids of the present invention)
高性能減水剤:ポリカルボン酸エーテル系高性能減水剤 消泡剤:特殊非イオン界面活性剤 水:水道水 Superplasticizer: polycarboxylic acid ether superplasticizer defoamer: Special nonionic surfactant Water: Tap water

表1の割合で配合したポリマーセメントモルタルを容量2立方メートルの2軸ミキサーを使用して練り混ぜ量1立方メートルで練り混ぜを行い、型枠に充填後、型枠振動機で微振動締固めを行い成型した。 Table The polymer cement mortar in proportions of 1 performs kneading at kneading amount 1 m3 using a biaxial mixer having a volume 2 cu.m., After filling in a mold, to fine-vibration compaction in the mold vibrator molding was. その後、一次養生として蒸気養生を行い、その条件は20℃で前置き2時間とし、20℃/時で昇温させ、65℃で3時間保持し、その後自然放冷させ、24時間で脱型した。 Thereafter, steam curing as a primary curing, the conditions and 2 hours prelude at 20 ° C., 20 ° C. / warmed when, and held for 3 hours at 65 ° C., was then naturally cooled and demolded at 24 hours . その後、二次養生として20℃相対湿度80%の気中養生を所定材齢まで行った(実施例1)。 This was followed by 20 ° C. and 80% relative humidity of the air curing as a secondary curing to a predetermined ages (Example 1). また、実施例2は二次養生として所定材齢まで水中養生を行った。 Further, Example 2 was cured in water to a predetermined ages as a secondary curing.

また、比較例として表1に記載の配合及び前述の養生方法で製造した各供試体を用いて曲げ強度試験(JIS A 1171-2000)、圧縮強度試験(JIS A Further, bending with each specimen prepared in formulation and the aforementioned curing methods described in Table 1 as Comparative Example Strength Test (JIS A 1171-2000), compressive strength test (JIS A
1108-1999)を行った。 1108-1999) was carried out. その各種試験結果を表1に示す。 It shows the various test results in Table 1.

表1の結果より、本発明に係るポリマーセメントモルタル製供試体(実施例1及び2)は、蒸気養生によって材齢1日で曲げ強度13N/mm 以上であるのに対し、市販されている代表的なポリマー、ポリアクリル酸エステルエマルション(比較例1)、エチレン酢酸ビニルエマルション(比較例2)、スチレンブタジジェンゴムラテックス(比較例3)を使用し、蒸気養生したものは10N/mm 以下の曲げ強度しか得られなかった。 From the results of Table 1, polymer cement mortar made specimens according to the present invention (Examples 1 and 2), whereas it is in flexural strength 13N / mm 2 or more wood-old day by steam curing, are available commercially representative polymers, polyacrylic acid ester emulsion (Comparative example 1), ethylene-vinyl acetate emulsion (Comparative example 2), a styrene butadienyl Gen using rubber latex (Comparative example 3), those steam curing is 10 N / mm 2 It had only following the bending strength. また、本発明に使用する水性樹脂分散体と普通ポルトランドセメントを使用し、蒸気養生を行った比較例4では、材齢1日の曲げ強度が8.5N/mm しか得られず、コンクリートを型枠に打設後1日で脱型するのは困難である。 Also, using an aqueous resin dispersion and ordinary Portland cement for use in the present invention, in Comparative Example 4 was subjected to steam curing, the bending strength of 1 day age of the 8.5 N / mm 2 only to obtain a concrete it is difficult to demold in after casting day into a mold. さらに、蒸気養生ではなく、通常の常温で養生した場合には(比較例5)、材齢1日では十分な強度が得られず測定不可能だった。 Further, instead of steam curing, if it is cured at normal room temperature (Comparative Example 5), a sufficient strength was not measurable not be obtained in one day the age. 実施例2については、一次養生後、二次養生として水中養生をおこなった。 For Example 2, after the primary curing was carried out underwater curing as a secondary curing. 表1の結果から、本発明に係るポリマーセメントモルタル製のものは水中で劣化せず、耐水性に優れることがわかった。 The results in Table 1, made of a polymer cement mortar according to the present invention is not deteriorated in water, was found to be excellent in water resistance.

(試験2) (Test 2)
前記実施例1及び比較例6で製造した各供試体を用いて耐酸性試験を行った。 Been acid resistance test using the specimens prepared in Examples 1 and Comparative Example 6. 耐酸性試験は、浸漬する供試体容積の3倍で濃度5%、20℃塩酸溶液に、供試体相互の間隔及び試験槽の底から距離を3cm以上あけるようにして供試体を28日間完全に浸漬した。 Acid resistance test, three times with 5% strength specimen volume of immersion, 20 ℃ hydrochloric acid solution, specimen mutual spacing and in to specimen as drilling distance 3cm above the bottom of the test chamber 28 days fully soaked. その後、試験液から取り出し、水道水で洗浄し、清潔な湿布で拭い、速やかに圧縮強度試験(JIS A 1108−1999)を行った。 Then removed from the test solution, washed with tap water, wiped with a clean compress were compressive strength test immediately (JIS A 1108-1999). なお、試験液は、1週間ごとに完全に交換するものとした。 Incidentally, the test solution was assumed to be completely replaced once a week. その結果を表2に示す。 The results are shown in Table 2.

表2から濃度5%の塩酸中に28日間浸漬した供試体の圧縮強度残存率は、本発明のポリマーセメントモルタルを用いる供試体(実施例1)が73.3%であるのに対し、普通コンクリート製供試体(比較例6)が36.8%である。 Compressive strength residual ratio of the specimen was immersed for 28 days in 5% hydrochloric acid concentration from Table 2, specimens using a polymer cement mortar of the present invention (Example 1) whereas 73.3% Average concrete specimen (Comparative example 6) is 36.8%. 本発明のポリマーセメントモルタル製埋設型枠は、普通コンクリート製品より極めて優れた耐酸性を有することがわかる。 Polymer cement mortar made buried mold of the present invention is found to have a very good acid resistance than ordinary concrete products.

以上詳細に説明したように、本発明のポリマーセメントモルタル製埋設型枠は、水硬性結合材として早強ポルトランドセメントを使用した場合、大部分のコンクリート製品と同様に蒸気養生によってコンクリート打設後1日で高い曲げ強度が得られるので脱型が可能であり、効率的に生産でき、また、耐水性、耐酸性等の耐久性に優れる。 As described above in detail, the polymer cement mortar made buried mold of the present invention, when using a high-early-strength Portland cement as hydraulic binder, concrete after casting Like most concrete products by the steam curing 1 since high flexural strength in Japan can be obtained are possible demolding can be efficiently produced, also, water resistance, excellent durability of the acid resistance and the like.



Claims (2)

  1. エチレン性不飽和カルボン酸単量体、芳香族ビニル単量体及び/又は(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体を含む単量体組成物を乳化重合して得られる水性樹脂分散体であり、該水性樹脂分散体が2段階以上の乳化重合で得られるものであって、1段目に使用するエチレン性不飽和カルボン酸単量体(a−1)と最終段に使用するエチレン性不飽和カルボン酸単量体(a−最終)との質量比(a−最終)/(a−1)が4〜8である水性樹脂分散体と早強ポルトランドセメント、細骨材のみからなる骨材、高性能減水剤、および消泡剤とからなることを特徴とするポリマーセメントモルタル製埋設型枠。 Ethylenically unsaturated carboxylic acid monomer, by emulsion polymerizing a monomer composition comprising an aromatic vinyl monomer and / or (meth) one or more monomers selected from acrylic acid ester monomers an aqueous resin dispersion obtained, be those aqueous resin dispersion is obtained by emulsion polymerization of two or more stages, ethylenically unsaturated carboxylic acid monomer used in the first stage and (a-1) ethylenically unsaturated carboxylic acid monomer used in the final stage (a- final) and the mass ratio of (a- final) / (a-1) an aqueous resin dispersion and high-early-strength Portland cement 4 to 8, fine aggregate aggregate consisting only, superplasticizer, and polymer cement mortar made buried mold, characterized in that it consists of a defoaming agent.
  2. 前記水性樹脂分散体(固形分)とセメントの質量比が5〜22%であることを特徴とする請求項1記載のポリマーセメントモルタル製埋設型枠。 The aqueous resin dispersion (solid content) and polymer cement mortar made buried mold according to claim 1, wherein the mass ratio of the cement is 5 to 22%.
JP2006267070A 2006-09-29 2006-09-29 Burying type form made of polymer cement mortar Pending JP2008088633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267070A JP2008088633A (en) 2006-09-29 2006-09-29 Burying type form made of polymer cement mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267070A JP2008088633A (en) 2006-09-29 2006-09-29 Burying type form made of polymer cement mortar

Publications (1)

Publication Number Publication Date
JP2008088633A true JP2008088633A (en) 2008-04-17

Family

ID=39373069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267070A Pending JP2008088633A (en) 2006-09-29 2006-09-29 Burying type form made of polymer cement mortar

Country Status (1)

Country Link
JP (1) JP2008088633A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669232B2 (en) 2006-04-24 2010-02-23 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US8605697B2 (en) 2005-12-01 2013-12-10 Ruckus Wireless, Inc. On-demand services by wireless base station virtualization
US8619662B2 (en) 2004-11-05 2013-12-31 Ruckus Wireless, Inc. Unicast to multicast conversion
US8638708B2 (en) 2004-11-05 2014-01-28 Ruckus Wireless, Inc. MAC based mapping in IP based communications
US8836606B2 (en) 2005-06-24 2014-09-16 Ruckus Wireless, Inc. Coverage antenna apparatus with selectable horizontal and vertical polarization elements
US8860629B2 (en) 2004-08-18 2014-10-14 Ruckus Wireless, Inc. Dual band dual polarization antenna array
US9019165B2 (en) 2004-08-18 2015-04-28 Ruckus Wireless, Inc. Antenna with selectable elements for use in wireless communications
US9066152B2 (en) 2004-11-05 2015-06-23 Ruckus Wireless, Inc. Distributed access point for IP based communications
US9071583B2 (en) 2006-04-24 2015-06-30 Ruckus Wireless, Inc. Provisioned configuration for automatic wireless connection
US9077071B2 (en) 2004-08-18 2015-07-07 Ruckus Wireless, Inc. Antenna with polarization diversity
US9092610B2 (en) 2012-04-04 2015-07-28 Ruckus Wireless, Inc. Key assignment for a brand
US9153876B2 (en) 2004-08-18 2015-10-06 Ruckus Wireless, Inc. Transmission and reception parameter control
US9226146B2 (en) 2012-02-09 2015-12-29 Ruckus Wireless, Inc. Dynamic PSK for hotspots
US9240868B2 (en) 2004-11-05 2016-01-19 Ruckus Wireless, Inc. Increasing reliable data throughput in a wireless network
US9271327B2 (en) 2007-07-28 2016-02-23 Ruckus Wireless, Inc. Wireless network throughput enhancement through channel aware scheduling
US9270029B2 (en) 2005-01-21 2016-02-23 Ruckus Wireless, Inc. Pattern shaping of RF emission patterns
US9344161B2 (en) 2004-12-09 2016-05-17 Ruckus Wireless, Inc. Coverage enhancement using dynamic antennas and virtual access points
US9379456B2 (en) 2004-11-22 2016-06-28 Ruckus Wireless, Inc. Antenna array
US9407012B2 (en) 2010-09-21 2016-08-02 Ruckus Wireless, Inc. Antenna with dual polarization and mountable antenna elements
US9419344B2 (en) 2009-05-12 2016-08-16 Ruckus Wireless, Inc. Mountable antenna elements for dual band antenna
US9570799B2 (en) 2012-09-07 2017-02-14 Ruckus Wireless, Inc. Multiband monopole antenna apparatus with ground plane aperture
US9577346B2 (en) 2005-06-24 2017-02-21 Ruckus Wireless, Inc. Vertical multiple-input multiple-output wireless antennas
US9634403B2 (en) 2012-02-14 2017-04-25 Ruckus Wireless, Inc. Radio frequency emission pattern shaping
US9769655B2 (en) 2006-04-24 2017-09-19 Ruckus Wireless, Inc. Sharing security keys with headless devices
US9780813B2 (en) 2006-08-18 2017-10-03 Ruckus Wireless, Inc. Closed-loop automatic channel selection
US9792188B2 (en) 2011-05-01 2017-10-17 Ruckus Wireless, Inc. Remote cable access point reset
US9979626B2 (en) 2009-11-16 2018-05-22 Ruckus Wireless, Inc. Establishing a mesh network with wired and wireless links
US9999087B2 (en) 2009-11-16 2018-06-12 Ruckus Wireless, Inc. Determining role assignment in a hybrid mesh network
US10186750B2 (en) 2012-02-14 2019-01-22 Arris Enterprises Llc Radio frequency antenna array with spacing element
US10230161B2 (en) 2013-03-15 2019-03-12 Arris Enterprises Llc Low-band reflector for dual band directional antenna

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860629B2 (en) 2004-08-18 2014-10-14 Ruckus Wireless, Inc. Dual band dual polarization antenna array
US10181655B2 (en) 2004-08-18 2019-01-15 Arris Enterprises Llc Antenna with polarization diversity
US9837711B2 (en) 2004-08-18 2017-12-05 Ruckus Wireless, Inc. Antenna with selectable elements for use in wireless communications
US9484638B2 (en) 2004-08-18 2016-11-01 Ruckus Wireless, Inc. Transmission and reception parameter control
US9019165B2 (en) 2004-08-18 2015-04-28 Ruckus Wireless, Inc. Antenna with selectable elements for use in wireless communications
US9153876B2 (en) 2004-08-18 2015-10-06 Ruckus Wireless, Inc. Transmission and reception parameter control
US9077071B2 (en) 2004-08-18 2015-07-07 Ruckus Wireless, Inc. Antenna with polarization diversity
US9066152B2 (en) 2004-11-05 2015-06-23 Ruckus Wireless, Inc. Distributed access point for IP based communications
US9019886B2 (en) 2004-11-05 2015-04-28 Ruckus Wireless, Inc. Unicast to multicast conversion
US8638708B2 (en) 2004-11-05 2014-01-28 Ruckus Wireless, Inc. MAC based mapping in IP based communications
US9661475B2 (en) 2004-11-05 2017-05-23 Ruckus Wireless, Inc. Distributed access point for IP based communications
US9071942B2 (en) 2004-11-05 2015-06-30 Ruckus Wireless, Inc. MAC based mapping in IP based communications
US8619662B2 (en) 2004-11-05 2013-12-31 Ruckus Wireless, Inc. Unicast to multicast conversion
US9794758B2 (en) 2004-11-05 2017-10-17 Ruckus Wireless, Inc. Increasing reliable data throughput in a wireless network
US9240868B2 (en) 2004-11-05 2016-01-19 Ruckus Wireless, Inc. Increasing reliable data throughput in a wireless network
US9379456B2 (en) 2004-11-22 2016-06-28 Ruckus Wireless, Inc. Antenna array
US9344161B2 (en) 2004-12-09 2016-05-17 Ruckus Wireless, Inc. Coverage enhancement using dynamic antennas and virtual access points
US9093758B2 (en) 2004-12-09 2015-07-28 Ruckus Wireless, Inc. Coverage antenna apparatus with selectable horizontal and vertical polarization elements
US9270029B2 (en) 2005-01-21 2016-02-23 Ruckus Wireless, Inc. Pattern shaping of RF emission patterns
US9577346B2 (en) 2005-06-24 2017-02-21 Ruckus Wireless, Inc. Vertical multiple-input multiple-output wireless antennas
US8836606B2 (en) 2005-06-24 2014-09-16 Ruckus Wireless, Inc. Coverage antenna apparatus with selectable horizontal and vertical polarization elements
US9313798B2 (en) 2005-12-01 2016-04-12 Ruckus Wireless, Inc. On-demand services by wireless base station virtualization
US8605697B2 (en) 2005-12-01 2013-12-10 Ruckus Wireless, Inc. On-demand services by wireless base station virtualization
US8923265B2 (en) 2005-12-01 2014-12-30 Ruckus Wireless, Inc. On-demand services by wireless base station virtualization
US8272036B2 (en) 2006-04-24 2012-09-18 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US9131378B2 (en) 2006-04-24 2015-09-08 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US7669232B2 (en) 2006-04-24 2010-02-23 Ruckus Wireless, Inc. Dynamic authentication in secured wireless networks
US9769655B2 (en) 2006-04-24 2017-09-19 Ruckus Wireless, Inc. Sharing security keys with headless devices
US9071583B2 (en) 2006-04-24 2015-06-30 Ruckus Wireless, Inc. Provisioned configuration for automatic wireless connection
US9780813B2 (en) 2006-08-18 2017-10-03 Ruckus Wireless, Inc. Closed-loop automatic channel selection
US9271327B2 (en) 2007-07-28 2016-02-23 Ruckus Wireless, Inc. Wireless network throughput enhancement through channel aware scheduling
US9419344B2 (en) 2009-05-12 2016-08-16 Ruckus Wireless, Inc. Mountable antenna elements for dual band antenna
US10224621B2 (en) 2009-05-12 2019-03-05 Arris Enterprises Llc Mountable antenna elements for dual band antenna
US9979626B2 (en) 2009-11-16 2018-05-22 Ruckus Wireless, Inc. Establishing a mesh network with wired and wireless links
US9999087B2 (en) 2009-11-16 2018-06-12 Ruckus Wireless, Inc. Determining role assignment in a hybrid mesh network
US9407012B2 (en) 2010-09-21 2016-08-02 Ruckus Wireless, Inc. Antenna with dual polarization and mountable antenna elements
US9792188B2 (en) 2011-05-01 2017-10-17 Ruckus Wireless, Inc. Remote cable access point reset
US9226146B2 (en) 2012-02-09 2015-12-29 Ruckus Wireless, Inc. Dynamic PSK for hotspots
US9596605B2 (en) 2012-02-09 2017-03-14 Ruckus Wireless, Inc. Dynamic PSK for hotspots
US10186750B2 (en) 2012-02-14 2019-01-22 Arris Enterprises Llc Radio frequency antenna array with spacing element
US9634403B2 (en) 2012-02-14 2017-04-25 Ruckus Wireless, Inc. Radio frequency emission pattern shaping
US9092610B2 (en) 2012-04-04 2015-07-28 Ruckus Wireless, Inc. Key assignment for a brand
US10182350B2 (en) 2012-04-04 2019-01-15 Arris Enterprises Llc Key assignment for a brand
US9570799B2 (en) 2012-09-07 2017-02-14 Ruckus Wireless, Inc. Multiband monopole antenna apparatus with ground plane aperture
US10230161B2 (en) 2013-03-15 2019-03-12 Arris Enterprises Llc Low-band reflector for dual band directional antenna

Similar Documents

Publication Publication Date Title
KR101204872B1 (en) Ultra-high-performance self-compacting concrete, preparation method thereof and use of same
EP0042935B2 (en) Shaped article and composite material and method for producing same
Topçu et al. Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete
EP1368283B1 (en) Composite material and shaped article with thermal conductivity and specific gravity on demand
JP2506365B2 (en) Cement mortar or concrete - DOO compositions using reinforcing fibers and the fibers
JP5505756B2 (en) Hydraulic composition, a method for manufacturing a flexible article, and flexible article
US6809131B2 (en) Self-compacting engineered cementitious composite
Madandoust et al. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene
JP4558569B2 (en) Ultra high strength fiber-reinforced cement composition, ultra high strength fiber reinforced mortar or concrete, as well as ultra high strength cement admixture
CN101560082A (en) Ultrahigh-strength active powder concrete and preparation method thereof
JPH11501278A (en) Cement composition
US5691050A (en) Concrete molding with improved acid resistance
US4902347A (en) Polyamide fibers, microsilica and Portland cement composites and method for production
JP5479478B2 (en) Dynamic copolymers for workability retention cementitious composition
Felekoğlu et al. Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars
US5180430A (en) Concrete surface air void reduction admixture
US7494543B2 (en) Concrete compositions
CN101337827A (en) Light aggregate foam concrete building blocks and method for manufacturing same
Rashid et al. Considerations in producing high strength concrete
Markovich et al. Single fiber pullout from hybrid fiber reinforced concrete
JP2005067945A (en) Super-high strength high toughness mortar
Özbay et al. Dual effectiveness of freezing–thawing and sulfate attack on high-volume slag-incorporated ECC
Delvasto et al. An appropriate vacuum technology for manufacture of corrugated fique fiber reinforced cementitious sheets
NZ584348A (en) Methods of minimizing concrete cracking and shrinkage
JP3699254B2 (en) Mortar composition, a method of manufacturing a mortar composition, pc board and a method of manufacturing using the same