JP2008088280A - プリプレグ、回路基板および半導体装置 - Google Patents

プリプレグ、回路基板および半導体装置 Download PDF

Info

Publication number
JP2008088280A
JP2008088280A JP2006270301A JP2006270301A JP2008088280A JP 2008088280 A JP2008088280 A JP 2008088280A JP 2006270301 A JP2006270301 A JP 2006270301A JP 2006270301 A JP2006270301 A JP 2006270301A JP 2008088280 A JP2008088280 A JP 2008088280A
Authority
JP
Japan
Prior art keywords
resin
prepreg
weight
layer
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006270301A
Other languages
English (en)
Other versions
JP4983190B2 (ja
Inventor
Tadasuke Endo
忠相 遠藤
Takeshi Hozumi
猛 八月朔日
Madoka Yuasa
円 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006270301A priority Critical patent/JP4983190B2/ja
Publication of JP2008088280A publication Critical patent/JP2008088280A/ja
Application granted granted Critical
Publication of JP4983190B2 publication Critical patent/JP4983190B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

【課題】 本発明の目的は、薄膜化に対応することが可能であり、かつプリプレグの両面に異なる弾性率を付与することができるプリプレグを提供することにある。また、本発明の目的は、上記プリプレグを有する回路基板および半導体装置を提供することにある。
【解決手段】 本発明のプリプレグは、シート状基材のコア層と、前記コア層の一方面側に形成される第1樹脂層および他方面側に形成される第2樹脂層をと有し、第1樹脂層上に導体層を形成して使用されるプリプレグであって、前記第1樹脂層を構成する第1樹脂組成物と、前記第2樹脂層を構成する第2樹脂組成物が異なっており、前記第1樹脂層の熱硬化後の弾性率が20℃において4GPa以上であることを特徴とする。本発明の回路基板は、上記に記載のプリプレグを積層して得られることを特徴とする。また、本発明の半導体装置は、上記に記載の回路基板を有することを特徴とする。
【選択図】図1

Description

本発明は、プリプレグ、回路基板および半導体装置に関する。
回路基板は、一般にガラス繊維基材等に熱硬化性樹脂を含浸して得られるプリプレグを複数枚積層して加熱、加圧することにより形成されている。そしてプリプレグは、厚さ50〜200μm程度のガラス繊維基材等を熱硬化性樹脂組成物のワニスに浸漬する方法等によって得られる(例えば、特許文献1参照)。
プリプレグを形成する熱硬化性樹脂は、実装信頼性を高めるために高弾性率であることが望まれる一方で、回路配線との応力を緩和するために低弾性率であることが要求される場合があった。しかし、ガラス繊維基材等に熱硬化性樹脂組成物のワニスを含浸する従来の方法で得られるプリプレグは、同じ熱硬化性樹脂組成物で形成されるものであり、両方の要求を満足することは困難であった。
しかし、近年の電子部品・電子機器等の小型化・薄膜化等に伴って、それに用いられる回路基板等にもさらなる小型化・薄膜化が要求されている。このような要求に対応するために、回路基板を構成するプリプレグの薄膜化も検討されているが、プリプレグを薄膜化した場合には、より一層、一方の面を高弾性率、他方の面を低弾性率にすることが困難であった。
特開2004−216784号公報
本発明の目的は、薄膜化に対応することが可能であり、かつプリプレグの両面に異なる用途、機能、性能または特性等を付与することができるプリプレグを提供することにある。
また、本発明の目的は、上記プリプレグを有する回路基板および半導体装置を提供することにある。
このような目的は、下記(1)〜(12)に記載の本発明により達成される。
(1) シート状基材のコア層と、前記コア層の一方面側に形成される第1樹脂層および他方面側に形成される第2樹脂層とを有するプリプレグであって、
前記第1樹脂層を構成する第1樹脂組成物と、前記第2樹脂層を構成する第2樹脂組成物とが異なっており、前記第1樹脂層の積層後の弾性率が20℃において、4GPa以上であることを特徴するプリプレグ。
(2)前記第1樹脂層の厚さが、1〜15μmである(1)に記載のプリプレグ。
(3)前記第1樹脂組成物は、熱硬化性樹脂を含むものである(1)〜(2)に記載のプリプレグ。
(4)前記熱硬化性樹脂は、シアネート樹脂を含むものである(3)に記載のプリプレグ。
(5)前記シアネート樹脂は、ノボラック型シアネート樹脂を含むものである上記(4)に記載のプリプレグ。
(6)前記第1樹脂組成物は、さらに硬化剤を含むものである(1)〜(5)のいずれかに記載のプリプレグ。
(7)前記硬化剤が、イミダゾール系化合物を含むものである(6)に記載のプリプレグ。
(8)前記第1樹脂組成物は、さらに前記熱硬化性樹脂と種類の異なる第2樹脂を含むものである上記(1)〜(7)のいずれかに記載のプリプレグ。
(9)前記第2樹脂は、フェノキシ系樹脂を含むものである(8)に記載のプリプレグ。
(10)前記第1樹脂層の厚さは、前記第2樹脂層の厚さよりも薄いものである(1)〜(9)のいずれかに記載のプリプレグ。
(11)前記(1)〜(10)のいずれかに記載のプリプレグを積層して得られることを特徴とする回路基板。
(12)前記(11)に記載の回路基板を有することを特徴とする半導体装置。
本発明により、熱硬化性樹脂組成物のガラス繊維機材等への含浸性プルプレグの厚み精度に優れるとともに、実装信頼性に優れるキャリア付きプリプレグを簡易に製造することができる。本発明のキャリア付きプリプレグは、高密度化、薄型化を要求される多層プリント配線板の製造に好適に用いられるものである。
以下、本発明のプリプレグ、回路基板および半導体装置について説明する。
本発明のプリプレグは、シート状基材のコア層と、前記コア層の一方面側に形成される第1樹脂層および他方面側に形成される第2樹脂層とを有するプリプレグであって、前記第1樹脂層を構成する第1樹脂組成物と、前記第2樹脂層を構成する第2樹脂組成物が異なっており、前記第1樹脂層の熱硬化後の弾性率が20℃において4GPa以上であることを特徴とする。
また、本発明の回路基板は、上記に記載のプリプレグを積層して得られることを特徴とする。
また、本発明の半導体装置は、上記に記載の回路基板を有することを特徴とする。
まず、プリプレグの好適な実施形態について図面に基づいて説明する。
図1は、本発明のプリプレグの一例を示す断面図である。
プリプレグ10は、シート状基材1のコア層11と、コア層11の一方面側に形成される第1樹脂層2および他方の面側に形成される第2樹脂層3と有し、第1樹脂層2を構成する第1樹脂組成物と、第2樹脂層3を構成する第2樹脂組成物が異なっており、前記第1樹脂層の熱硬化後の弾性率が20℃において4GPa以上であることを特徴とする。
これにより各層に要求される特性を維持した状態でプリプレグ全体の厚さを薄くすることもできる。図1で例示されるプリプレグ10では、例えば、第1樹脂層2上に(図1上側)に導体層を形成し、回路基板の表層部分ではさらにワイヤ接続や半田バンプ実装がされる。そのため、実装が行われるような回路基板の表層部分に用いられるプリプレグにおいては高弾性率の絶縁樹脂層が要求されることから、第1樹脂層2を用いることで実装信頼性に優れるように設計される。また、第2樹脂層3は、第1樹脂層2と異なる特性等が要求されるために、それを満足するように設計される。以下、各層について説明する。
(コア層)
コア層11は、主としてシート状基材1で構成されている。コア層11は、プリプレグ10の強度を向上する機能を有している。
このコア層11は、シート状基材1単独で構成されていても良いし、シート状基材1に上記の第1樹脂層2および第2樹脂層3の一部が含浸していても良い。
このようなシート状基材1としては、ガラス織布、ガラス不織布等のガラス繊維基材、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維等を主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙基材等の有機繊維基材等の繊維基材、ポリエステル、ポリイミド等の樹脂フィルム等が挙げられる。これらの中でもガラス繊維基材が好ましい。これにより、プリプレグ10の弾性率を高くすることができる。また、プリプレグ10の熱膨張係数を小さくすることができる。
このようなガラス繊維基材を構成するガラスとしては、例えばEガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、Hガラス等が挙げられる。これらの中でもEガラス、Sガラス、または、Tガラスが好ましい。これにより、ガラス繊維基材の高弾性化を達成することができ、熱膨張係数も小さくすることができる。
シート状基材(繊維基材)の厚さは、特に限定されないが、薄いプリプレグを得る場合には30μm以下が好ましく、特に25μm以下が好ましく、最も10〜20μmが好ましい。シート状基材1の厚さが前記範囲内であると、後述する回路基板の薄膜化と強度とのバランスに優れる。さらには層間接続の加工性や信頼性にも優れる。
(第1樹脂層)
図1に例示すように第1樹脂層2は、コア層11の一方面側(図1上側)に形成されている。
第1樹脂層2は、第1樹脂組成物で構成されており、バンプを実装するためのパッドの位置精度確保や、半導体素子実装において生じるバンプへの応力ひずみの低減など、実装信頼性を確保することが必要とされる。この実装信頼性のために、第1樹脂層の樹脂組成物が高弾性率であることが好ましい。具体的には、弾性率としては20℃において4GPaが好ましく、さらに実装中に高温にさらされるためと推察されるが、250℃において400MPa以上の高弾性率であることが好ましい。
このような実装温度において高弾性率である第1樹脂組成物は、例えば熱硬化性樹脂、硬化剤、無機充填材等を含んでいる。
実装温度領域で高弾性率である樹脂組成物にするには、高架橋密度硬化物を形成するような熱硬化性樹脂を用いる方法、無機充填物を高割合で充填する方法、無機充填物として弾性率の高い無機充填物を用いる方法等が挙げられる。
弾性率の高い熱硬化性樹脂としては、例えばユリア(尿素)樹脂、メラミン樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ベンゾオキサジン環を有する樹脂、シアネート樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂およびビスフェノールSとビスフェノールFとの共重合エポキシ樹脂等が挙げられる。これらの中でも、特に、シアネート樹脂(シアネート樹脂のプレポリマーを含む)、が好ましい。これにより、プリプレグ10の熱膨張係数を小さくすることができる。さらに、プリプレグ10の電気特性(低誘電率、低誘電正接)等にも優れる。
前記シアネート樹脂は、例えばハロゲン化シアン化合物とフェノール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。具体的には、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂等を挙げることができる。これらの中でもノボラック型シアネート樹脂が好ましい。これにより、架橋密度増加による弾性率向上と、第1樹脂組成物等の難燃性を向上することができる。ノボラック型シアネート樹脂は、硬化反応後にトリアジン環を形成するからである。さらに、ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。さらに、プリプレグ10を薄膜化(厚さ35μm以下)した場合であってもプリプレグ10に優れた剛性を付与することができる。特に加熱時における剛性に優れるので、半導体素子実装時の信頼性にも特に優れる。
前記ノボラック型シアネート樹脂としては、例えば式(I)で示されるものを使用することができる。
Figure 2008088280
前記式(I)で示されるノボラック型シアネート樹脂の平均繰り返し単位nは、特に限定されないが、1〜10が好ましく、特に2〜7が好ましい。平均繰り返し単位nが前記下限値未満であるとノボラック型シアネート樹脂は結晶化しやすくなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合がある。また、プリプレグ10を作製した場合にタック性が生じ、プリプレグ10同士が接触したとき互いに付着したり、樹脂の転写が生じたりする場合がある。平均繰り返し単位nが前記上限値を超えると溶融粘度が高くなりすぎ、プリプレグの成形性が低下する場合がある。
前記シアネート樹脂等の重量平均分子量は、例えばGPCで測定することができる。
なお、前記シアネート樹脂としては、これをプレポリマー化したものも用いることができる。すなわち、前記シアネート樹脂を単独で用いてもよいし、重量平均分子量の異なるシアネート樹脂を併用したり、前記シアネート樹脂とそのプレポリマーとを併用したりすることもできる。
前記プレポリマーとは、通常、前記シアネート樹脂を加熱反応などにより、例えば3量化することで得られるものであり、樹脂組成物の成形性、流動性を調整するために好ましく使用されるものである。
前記プレポリマーとしては、特に限定されないが、例えば3量化率が20〜50重量%であるものを用いることができる。この3量化率は、例えば赤外分光分析装置を用いて求めることができる。
また、硬化剤を併用する場合には、上述の高弾性率である熱硬化性樹脂以外に、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂、ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等のエポキシ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂等を用いることができる。
好ましくはフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂で、さらに好ましくは、フェノールノボラック樹脂、クレゾールノボラック樹脂である。前記フェノール樹脂はシアネートの硬化促進作用を有するため、硬化時間の短縮につながる。またビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等のエポキシ樹脂はシアネート樹脂と反応し、密着性、耐熱性、低吸湿性等優れた性能を発揮する場合がある。
前記熱硬化性樹脂の含有量は、特に限定されないが、前記第1樹脂組成物全体の5〜50重量%が好ましく、特に10〜40重量%が好ましい。含有量が前記下限値未満であるとプリプレグ10を形成するのが困難となる場合があり、前記上限値を超えるとプリプレグ10の強度が低下する場合がある。
硬化剤としては、例えばトリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2−エチル−4−エチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドルキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕−エチル−s−トリアジン、2,4−ジアミノ−6−(2’−ウンデシルイミダゾリル)−エチル−s−トリアジン、2,4−ジアミノ−6−〔2’−エチル−4−メチルイミダゾリル−(1’)〕−エチル−s−トリアジン、1−ベンジル−2−フェニルイミダゾール等のイミダゾール系化合物が挙げられる。これらの中でも、脂肪族炭化水素基、芳香族炭化水素基、ヒドロキシアルキル基およびシアノアルキル基の中から選ばれる官能基を2個以上有しているイミダゾール系化合物が好ましく、特に2−フェニル−4,5−ジヒドロキシメチルイミダゾールが好ましい。このようなイミダゾール系化合物の使用により、樹脂組成物の耐熱性を向上させることができると共に、この樹脂組成物で形成される樹脂層に低熱膨張性、低吸水性を付与することができる。
また、前述の熱硬化性樹脂を用いる場合は、上述の硬化剤以外に、例えばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸等を用いることができる。
前記硬化剤の含有量は、特に限定されないが、前記第1樹脂組成物全体の0.01〜3重量%が好ましく、特に0.1〜1重量%が好ましい。含有量が前記下限値未満であると硬化を促進する効果が現れない場合があり、前記上限値を超えるとプリプレグ10の保存性が低下する場合がある。
なお、高弾性率である前記熱硬化性樹脂と、前記硬化剤を併用することが、実装信頼性を向上する効果により優れる点で好ましい。
また、前記第1樹脂組成物は、無機充填材を含むことが好ましい。これにより、プリプレグ10を高弾性率化することができる。さらに、プリプレグの低熱膨張化を向上することもできる。
前記無機充填材としては、例えばタルク、アルミナ、ガラス、シリカ、マイカ、水酸化アルミニウム、水酸化マグネシウム等を挙げることができる。これらの中でもシリカが好ましく、溶融シリカ(特に球状溶融シリカ)が高弾性、低熱膨張性に優れる点で好ましい。その形状は破砕状、球状があるが、繊維基材1への含浸性を確保するために樹脂組成物の溶融粘度を下げるには球状シリカを使う等、その目的にあわせた使用方法が採用される。
前記無機充填材の平均粒子径は、特に限定されないが、0.01〜5.0μmが好ましく、特に0.2〜2.0μmが好ましい。無機充填材の粒径が前記下限値未満であるとワニスの粘度が高くなるため、プリプレグ10作製時の作業性に影響を与える場合がある。また、前記上限値を超えると、ワニス中で無機充填剤の沈降等の現象が起こる場合がある。無機充填材の平均粒径を前記範囲内とすることで、無機充填材の使用による効果は、両者のバランスに優れるものとなる。
この平均粒子径は、例えば粒度分布計(HORIBA製、LA−500)により測定することができる。
更に平均粒子径5.0μm以下の球状シリカ(特に球状溶融シリカ)が好ましく、特に平均粒子径0.01〜2.0μm、最も0.1〜0.5μmの球状溶融シリカが好ましい。これにより、無機充填剤の充填性を向上させることができる。さらに、緻密な粗化状態とすることができ、高密度回路形成が容易となる。また、さらに高速信号の伝送に適した回路形成を可能とすることができる。
前記第1樹脂組成物に用いる無機充填材は、特に限定されないが、後述する第2樹脂組成物に用いる無機充填材よりも平均粒子径が小さいほうが好ましい。これにより、緻密な粗化状態を形成するのが容易となる。
前記無機充填材の含有量は、特に限定されないが、前記第1樹脂組成物全体の20〜80重量%が好ましく、特に40〜70重量%が好ましい。無機充填材の含有量が前記下限値未満であると、無機充填材による高弾性、低熱膨脹性、低吸水性を付与する効果が低下する場合がある。また、前記上限値を超えると、樹脂組成物の流動性の低下により成形性が低下する場合がある。前記無機充填材の含有量を前記範囲内とすることで、無機充填材の使用による効果は、両者のバランスに優れるものとなる。
前記熱硬化性樹脂としてシアネート樹脂(特にノボラック型シアネート樹脂)を用いる場合は、エポキシ樹脂(実質的にハロゲン原子を含まない)を用いることが好ましい。前記エポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アリールアルキレン型エポキシ樹脂等が挙げられる。これらの中でもアリールアルキレン型エポキシ樹脂が好ましい。これにより、吸湿半田耐熱性および難燃性を向上させることができる。
前記アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂等が挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂が好ましい。ビフェニルジメチレン型エポキシ樹脂は、例えば式(II)で示すことができる。
Figure 2008088280
前記式(II)で示されるビフェニルジメチレン型エポキシ樹脂の平均繰り返し単位nは、特に限定されないが、1〜10が好ましく、特に2〜5が好ましい。平均繰り返し単位nが前記下限値未満であるとビフェニルジメチレン型エポキシ樹脂は結晶化しやすくなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合がある。また、平均繰り返し単位nが前記上限値を超えると樹脂の流動性が低下し、成形不良等の原因となる場合がある。
前記エポキシ樹脂の含有量は、特に限定されないが、前記第1樹脂組成物全体の1〜55重量%が好ましく、特に2〜40重量%が好ましい。含有量が前記下限値未満であるとシアネート樹脂の反応性が低下したり、得られる製品の耐湿性が低下したりする場合があり、前記上限値を超えると耐熱性が低下する場合がある。
前記エポキシ樹脂の重量平均分子量は、特に限定されないが、重量平均分子量500〜20,000が好ましく、特に800〜15,000が好ましい。重量平均分子量が前記下限値未満であるとプリプレグ10にタック性が生じる場合が有り、前記上限値を超えるとプリプレグ10作製時、基材への含浸性が低下し、均一な製品が得られない場合がある。
前記エポキシ樹脂の重量平均分子量は、例えばGPCで測定することができる。
また、前記第1樹脂組成物に導体層との密着性が向上するような成分(樹脂等を含む)を添加しても良い。例えば、フェノキシ樹脂、ポリビニルアルコール系樹脂、導体層を構成する金属との密着性を向上させるカップリング剤等が挙げられる。
前記フェノキシ樹脂としては、例えばビスフェノール骨格を有するフェノキシ樹脂、ノボラック骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。また、これらの骨格を複数種類有した構造のフェノキシ樹脂を用いることもできる。
これらの中でも、ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂を用いることができる。これにより、ビフェニル骨格が有する剛直性によりガラス転移温度を高くすることができると共に、ビスフェノールS骨格により、多層プリント配線板を製造する際のメッキ金属の付着性を向上させることができる。
また、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂を用いることもできる。これにより、多層プリント配線板の製造時に内層回路基板への密着性をさらに向上させることができる。
さらに、前記ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂と、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂とを、併用することが好ましい。これにより、これらの特性をバランスよく発現させることができる。
前記ビスフェノールA骨格およびビスフェノールF骨格とを有するフェノキシ樹脂(1)と、前記ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂(2)とを併用する場合、その併用比率(重量)としては特に限定されないが、例えば、(1):(2)=2:8〜9:1とすることができる。
前記フェノキシ樹脂の分子量、特に限定されないが、重量平均分子量が5,000〜70,000であることが好ましく、特に10,000〜60,000が好ましい。前記フェノキシ樹脂の重量平均分子量が前記下限値未満であると、製膜性を向上させる効果が充分でない場合がある。一方、前記上限値を超えると、フェノキシ樹脂の溶解性が低下する場合がある。前記フェノキシ樹脂の重量平均分子量を上記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
フェノキシ樹脂の含有量は、特に限定されないが、前記樹脂組成物全体の1〜40重量%であることが好ましく、特に5〜30重量%が好ましい。前記フェノキシ樹脂の含有量が前記下限値未満であると、製膜性を向上させる効果が充分でないことがある。一方、前記上限値を超えると、相対的にシアネート樹脂の含有量が少なくなるため、低熱膨張性を付与する効果が低下することがある。フェノキシ樹脂の含有量を前記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
前記第1樹脂組成物は、特に限定されないが、カップリング剤を用いることが好ましい。前記カップリング剤は、前記熱硬化性樹脂と、前記無機充填材との界面の濡れ性を向上させることにより、シート状基材1に対して熱硬化性樹脂および無機充填材を均一に定着させ、耐熱性、特に吸湿後の半田耐熱性を改良することができる。
前記カップリング剤としては、例えばエポキシシランカップリング剤、チタネート系カップリング剤、アミノシランカップリング剤、及び、シリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用すること好ましい。これにより、樹脂と無機充填材との界面の濡れ性を特に高めることができ、耐熱性をより向上させることができる。
前記カップリング剤の含有量は、特に限定されないが、前記無機充填材100重量部に対して0.05〜3重量部であることが好ましく、特に0.1〜2重量部が好ましい。含有量が前記下限値未満であると無機充填材を十分に被覆できないため耐熱性を向上する効果が低下する場合があり、前記上限値を超えると反応に影響を与え、曲げ強度等が低下する場合がある。カップリング剤の含有量を前記範囲内とすることで、カップリング剤の使用による効果は両者のバランスに優れる。
また、前記第1樹脂組成物は、以上に説明した成分のほか、必要に応じて消泡剤、レベリング剤、顔料、酸化防止剤等の添加剤を含有することができる。
このような第1樹脂組成物で構成されている第1樹脂層2の厚さは、特に限定されないが、1〜15μmが好ましく、特に2〜10μmが好ましい。厚さが前記範囲内であると、特にプリプレグ全体の厚さを薄くすることができる。これにより回路基板の薄型化、半導体装置の小型化を行うことができ、また、メカニカルドリル、レーザドリル加工性や電気特性にも優れた基板特性を発現することができる。
このような第1樹脂層2に上に形成される導体層としては、例えば銅箔、アルミ箔等の金属箔、メッキ銅等が挙げられる。これらの中でもメッキ銅が好ましい。これにより、微細な回路を容易に形成することができる。
(第2樹脂層)
図1に示すように第2樹脂層3は、コア層11の他方面側(図1下側)に形成されている。このような第2樹脂層3は、前記第1樹脂組成物と異なる第2樹脂組成物で構成されており、第1樹脂層2と異なる特性(例えば回路埋め込み性等)等を有するように設計されている、ここで、異なる樹脂組成物とは、それぞれの樹脂組成物を構成する樹脂、充填材等の種類、樹脂、充填材等の含有量、樹脂の分子量等の少なくとも1つが異なるものであれば良い。第2樹脂層3では、埋め込みを行う層の導体部との応力を緩和し、回路基板の反りを抑制するために、低弾性率を有する樹脂組成物であることが望ましく、特に、実装時において導体部との応力を緩和する必要性があるため、実装温度である250℃において0.1MPa以下であることが望ましい。前記弾性率以上であると埋め込みを行う層の胴体部との応力を緩和し、反りを抑制する効果が十分でなくなる。第2樹脂層を前記弾性率範囲とすることにより、バランス良く回路基板の特性を発現することができる。
第2樹脂組成物は、例えば熱可塑性樹脂、熱硬化性樹脂、無機充填剤、硬化促進剤等を含んでいる。
前記熱可塑性樹脂としては、フェノキシ樹脂、ポリビニルアルコール系樹脂等があげられる。フェノキシ樹脂としては、例えばビスフェノール骨格を有するフェノキシ樹脂、ノボラック骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂等が挙げられる。また、これらの骨格を複数種類有した構造のフェノキシ樹脂を用いることもできる。これらフェノキシ樹脂を用いることにより、低弾性率化を図ることができる。
これらのフェノキシ樹脂の中でも、ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂を用いることができる。これにより、ビフェニル骨格が有する剛直性によりガラス転移温度を高くすることができると共に、ビスフェノールS骨格により、多層プリント配線板を製造する際のメッキ金属の付着性を向上させることができる。
また、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂を用いることもできる。これにより、多層プリント配線板の製造時に内層回路基板への密着性をさらに向上させることができる。
さらに、前記ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂と、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂とを、併用することが好ましい。これにより、これらの特性をバランスよく発現させることができる。
前記ビスフェノールA骨格およびビスフェノールF骨格とを有するフェノキシ樹脂(1)と、前記ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂(2)とを併用する場合、その併用比率(重量)としては特に限定されないが、例えば、(1):(2)=2:8〜9:1とすることができる。
前記フェノキシ樹脂の分子量、特に限定されないが、重量平均分子量が5,000〜70,000であることが好ましく、特に10,000〜60,000が好ましい。前記フェノキシ樹脂の重量平均分子量が前記下限値未満であると、製膜性を向上させる効果が充分でない場合がある。一方、前記上限値を超えると、フェノキシ樹脂の溶解性が低下する場合がある。前記フェノキシ樹脂の重量平均分子量を上記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
フェノキシ樹脂の含有量は、特に限定されないが、前記樹脂組成物全体の1〜60重量%であることが好ましく、特に5〜50重量%が好ましい。前記フェノキシ樹脂の含有量が前記下限値未満であると、製膜性を向上させる効果が充分でないことがある。一方、前記上限値を超えると、相対的に熱硬化性樹脂の含有量が少なくなるため、低熱膨張性を付与する効果が低下することがある。フェノキシ樹脂の含有量を前記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。
前記熱硬化性樹脂としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、アリールアルキレン型ノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂、ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等のアリールアルキレン型エポキシ樹脂、ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂等が挙げられる。
これらの中でもアリールアルキレン型エポキシ樹脂が好ましい。これにより、吸湿半田耐熱性および難燃性を向上させることができる。
前記アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂等が挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂が好ましい。ビフェニルジメチレン型エポキシ樹脂は、例えば式(II)で示すことができる。
Figure 2008088280
前記式(II)で示されるビフェニルジメチレン型エポキシ樹脂の平均繰り返し単位nは、特に限定されないが、1〜10が好ましく、特に2〜5が好ましい。平均繰り返し単位nが前記下限値未満であるとビフェニルジメチレン型エポキシ樹脂は結晶化しやすくなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合がある。また、平均繰り返し単位nが前記上限値を超えると樹脂の流動性が低下し、成形不良等の原因となる場合がある。
前記エポキシ樹脂の含有量は、特に限定されないが、前記第2樹脂組成物全体の1〜60重量%が好ましく、特に2〜50重量%が好ましい。含有量が前記下限値未満であると相対的に熱可塑性樹脂成分が多くなるため成形性が悪化する場合があり、前記上限値を超えると耐熱性が低下する場合がある。
前記エポキシ樹脂の重量平均分子量は、特に限定されないが、重量平均分子量500〜20,000が好ましく、特に800〜15,000が好ましい。重量平均分子量が前記下限値未満であるとプリプレグ10にタック性が生じる場合が有り、前記上限値を超えるとプリプレグ10作製時、基材への含浸性が低下し、均一な製品が得られない場合がある。
前記エポキシ樹脂の重量平均分子量は、例えばGPCで測定することができる。
前記第2樹脂組成物は、特に限定されないが、無機充填剤を用いてもよい。これにより、プリプレグ10を薄膜化(厚さ35μm以下)にしても強度に優れることができる。
前記無機充填材としては、例えばタルク、アルミナ、ガラス、シリカ、マイカ、水酸化アルミニウム、水酸化マグネシウム等を挙げることができる。これらの中でもシリカが好ましく、溶融シリカ(特に球状溶融シリカ)が低熱膨張性に優れる点で好ましい。その形状は破砕状、球状があるが、繊維基材1への含浸性を確保するために樹脂組成物の溶融粘度を下げるには球状シリカを使う等、その目的にあわせた使用方法が採用される。
前記第2樹脂組成物は、特に限定されないが、カップリング剤を用いてもよい。前記カップリング剤は、前記熱硬化性樹脂と、前記無機充填材との界面の濡れ性を向上させることにより、シート状基材1に対して熱硬化性樹脂および無機充填材を均一に定着させ、耐熱性、特に吸湿後の半田耐熱性を改良することができる。
前記カップリング剤としては、通常用いられるものなら何でも使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。これにより、無機充填材の界面との濡れ性を高くすることができ、それによって耐熱性をより向上させることできる。
前記カップリング剤の添加量は、前記無機充填材の表面積に依存するので特に限定されないが、無機充填材100重量部に対して0.05〜3重量部が好ましく、特に0.1〜2重量部が好ましい。含有量が前記下限値未満であると無機充填材を十分に被覆できないため耐熱性を向上する効果が低下する場合があり、前記上限値を超えると反応に影響を与え、曲げ強度等が低下する場合がある。
前記第2樹脂組成物には、必要に応じて硬化促進剤を用いても良い。前記硬化促進剤としては公知の物を用いることが出来る。例えばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2−フェニル−4−メチルイミダゾール、2−エチル−4−エチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシイミダゾール、2−フェニル−4,5−ジヒドロキシイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸等、またはこの混合物が挙げられる。
前記硬化促進剤の含有量は、特に限定されないが、前記第2樹脂組成物全体の0.05〜5重量%が好ましく、特に0.1〜2重量%が好ましい。含有量が前記下限値未満であると硬化を促進する効果が現れない場合があり、前記上限値を超えるとプリプレグ10の保存性が低下する場合がある。
このような第2樹脂層3の厚さは、接合される内層回路の厚さに依存するために特に限定されないが、図2及び下記式1)で示されるt2の厚さが0.1〜10μmとなることが好ましく、特に1〜8μmとなることが好ましい。厚さが前記範囲内であると、特に内層回路の埋め込み性に優れ、かつ全体の厚さを薄くすることができる。
式1) B=t1×(1−S/100)+t2
ここで、第2樹脂層3の厚さをB[μm]とし、内層回路4の厚さをt1[μm]およびその残銅率をSとし、図2の内層回路4の上端部41から第2樹脂層3の上端部31までの厚さをt2とする。
次に、このようなプリプレグ10は、例えば第1樹脂組成物をキャリアフィルムに塗布したキャリア材料2aおよび第2樹脂組成物をキャリアフィルムに塗布したキャリア材料3aを製造し、これらのキャリア材料2a、3aをシート状基材1にラミネートした後、キャリアフィルムを剥離する方法により、プリプレグ10の両面で各樹脂層を構成する樹脂組成物が異なるプリプレグ10を得ることができる。
ここで、予め樹脂組成物がキャリアフィルムに塗布されたキャリア材料2a、3aを製造し、このキャリア材料2a、3aをシート状基材1にラミネートした後、キャリアフィルムを剥離する方法について、図3を用いて具体的に説明する。図3は、本発明のプリプレグを製造する工程の一例を示す工程図である。
まず、上述したような第1樹脂組成物で構成された第1樹脂層2を有するキャリア材料2aおよび上述したような第2樹脂組成物で構成された第2樹脂層3を有するキャリア材料3aを用意する。
キャリア材料2a、3aは、例えばキャリアフィルムに第1樹脂組成物、第2樹脂組成物のワニスを塗工する方法等により得ることができる。
次に、真空ラミネート装置8を用いて、減圧下でシート状基材1の両面からキャリア材料2aおよび3aを重ね合わせてラミネートロール81で接合する。減圧下で接合することにより、シート状基材1の内部または各キャリア材料2a、3aとシート状基材1との接合部位に非充填部分が存在しても、これを減圧ボイドあるいは実質的な真空ボイドとすることができる。ゆえに、最終的に得られるプリプレグ10に発生するボイドを低減することができる。なぜなら、減圧ボイドまたは真空ボイドは、後述する加熱処理で消し去ることができるからである。このような減圧下でシート状基材1とキャリア材料2a、3aとを接合する他の装置としては、例えば真空ボックス装置等を用いることができる。
次に、シート状基材1と各キャリア材料2a、3aとを接合した後、熱風乾燥装置9で各キャリア材料2a、3aを構成する樹脂組成物の溶融温度以上の温度で加熱処理する。これにより、前記減圧下での接合工程で発生していた減圧ボイド等をほぼ消し去ることができる。
前記加熱処理する他の方法は、例えば赤外線加熱装置、加熱ロール装置、平板状の熱盤プレス装置等を用いて実施することができる。
上述の方法によると、厚さ25μm以下のシート状基材1を用いてもプリプレグ10を容易に得ることができるようになる。従来のプリプレグの製造方法(例えば通常の塗工装置を用いて、シート状基材を樹脂ワニスに浸漬含浸・乾燥させる方法)では、厚さが30μm以下のシート状基材に樹脂材料を担持してプリプレグを得るのが困難であった。すなわち、厚さが薄いシート状基材を熱硬化性樹脂に浸漬して多数の搬送ロールを通したり、シート状基材に含浸させる樹脂材料の量を調整したりする際に、シート状基材に応力が作用し、シート状基材の目が開いてしまったり(拡大してしまったり)、引き取る際にシート状基材が切断してしまったりする場合があった。
これに対して、上述の方法では、厚さが25μm以下のシート状基材1に対してもキャリア材料2a、3aを担持することができ、それによって通常の厚さのプリプレグ10に加えて、厚さが35μm以下のプリプレグ10を容易に得ることができるものである。また、回路基板を成形した後のプリプレグ10の厚さが導体回路層間で35μm以下にもできるものである。導体回路層間の厚さを35μm以下にできると、最終的に得られる回路基板の厚さを薄くすることができる。
また、このようなプリプレグ10を得る他の方法としては、例えばシート状基材1の片面に粘度の低い樹脂ワニスに浸漬し、乾燥して第1樹脂層2を形成し、さらに、他の樹脂ワニスに浸漬して第2樹脂層3を形成することにより、プリプレグ10を得ることもできる。
このようにして得られるプリプレグ10は、図2に示すように、シート状基材1がプリプレグ10の厚さ方向に対して偏在していても良い。これにより、回路パターンに応じて樹脂量を調整することができる。
ここで、主としてシート状基材1で構成されるコア層11が、プリプレグ10の厚さ方向に対して偏在している状態を図4に基づいて説明する。図4(a)、(b)は、コア層11がプリプレグ10に対して偏在している状態を模式的に示す断面図である。図4(a)、(b)に示すように、プリプレグ10の厚さ方向の中心線A−Aに対して、コア層11(シート状基材1)の中心がずれて配置されていることを意味する。図4(a)では、コア層11(シート状基材1)の下側(図4中下側)の面が、プリプレグ10の下側(図4中下側)の面とほぼ一致するようになっている。図4(b)では、コア層11が中心線A−Aと、プリプレグ10の下側(図4中下側)の面との間に配置されている。なお、コア層11が中心線A−Aに一部重なるようになっていても良い。
このようなプリプレグ10の面方向の熱膨張係数は、特に限定されないが、16ppm以下であることが好ましく、特に5〜14ppmであることが好ましい。熱膨張係数が前記範囲内であると、繰り返しの熱衝撃に対する耐クラック性を向上することができる。
前記面方向の熱膨張係数は、例えばTMA装置(TAインスツルメント社製)を用いて、10℃/分で昇温して評価することができる。
また、このようなプリプレグ10の厚さは、特に限定されないが、20〜80μmであることが好ましく、特に30〜60μmであることが好ましい。厚さが前記範囲内であると、最終的に得られる回路基板の厚さを特に薄くすることができる。
次に、回路基板および半導体装置について説明する。
図5に示すように、回路基板100は、コア基板101と、コア回路基板101の上側(図5中の上側)に設けられた3層のプリプレグ(10a、10b、10c)と、コア回路基板101の下側(図5中の下側)に設けられた3層のプリプレグ(10d、10e、10f)と、で構成されている。コア基板101とプリプレグ10aおよび10bとの間、各プリプレグ間(10aと10b、10bと10c、10dと10eおよび10eと10f)には、所定の回路配線部42が形成されている。また、プリプレグ10cおよび10fの表面には、パッド部5が設けられている。このようなプリプレグ10a〜10fの少なくとも10a、10f(好ましくは全部)に上述した厚さ35μm以下のプリプレグ10を用いることが好ましい。これにより、回路基板100の厚さを薄くすることができる。
各回路配線部42は、各プリプレグ10a〜10fを貫通して設けられたフィルドビア部6を介して電気的に接続されている。
回路基板100を構成する各プリプレグ10a〜10fは、回路配線部42(導体層)が形成される側(各プリプレグ10a〜10cの図5中上側と、10d〜10fの図5中下側)の第1樹脂層2を構成する第1樹脂組成物と、反対側の第2樹脂層3を構成する第2樹脂組成物が異なっている。第1樹脂層2を構成する第1樹脂組成物は、高弾性率な樹脂組成になっている。また、第2樹脂層3を構成する第2樹脂組成物は、回路配線部42の埋め込み性を向上し、埋め込みを行う回路の導体との応力を緩和するような組成になっている。さらに第2樹脂層3により、低熱膨張化が図れるような組成になっている。
さらに、第1樹脂層2の厚さを導体層との密着性を得るために必要最低限な厚さとし、第2樹脂層3の厚さを回路配線部の埋め込みに必要最低限な厚さとなるように調整することにより、回路基板100の厚さを薄くすることもできるようになっている。
また、図5に示すような回路基板100に、半導体素子7のバンプ71と回路基板100のパッド部5とを接続して半導体素子7を搭載することにより半導体装置200を得ることができる(図6)。このような半導体装置7は、回路基板100を構成する各プリプレグ10a〜10fを構成する第1樹脂層2および第2樹脂層3の厚さを最適な厚さに調整できるので、プリプレグ10全体の厚さを最適なものとすることができ、要求される特性に必要な最低限の厚さの半導体装置200を得ることができる。
図5および図6では、6層の回路基板について説明したが、本発明の回路基板はこれに限定されず、3層、4層、5層等、または7層、8層等の多層回路基板にも好適に用いることができる。
また、本発明の回路基板100では、上述したような第1樹脂層2を構成する第1樹脂組成物と第2樹脂層3を構成する第2樹脂組成物とが異なるプリプレグ10と、従来から用いられていたプリプレグとを併用しても構わない。
以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。まず、プリプレグの実施例について説明する。
(実施例1)
1.第1樹脂層のワニスの調製
シアネート樹脂(ロンザジャパン社製、プリマセット PT−30、重量平均分子量約2,600)24重量%、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC−3000、エポキシ当量275)24重量%、フェノキシ樹脂としてビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との共重合体であり、末端部はエポキシ基を有しているフェノキシ樹脂(ジャパンエポキシレジン社製・「エピコート4275」、重量平均分子量60000)重量平均分子量40000)12重量%、硬化触媒としてイミダゾール系化合物(四国化成工業社製・商品名2PHZ「2−フェニル−4,5−ジヒドロキシメチルイミダゾール」)0.4重量%をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)40重量%とカップリング剤としてエポキシシラン型カップリング剤(日本ユニカー社製、A−187)0.2重量%を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
2.第2樹脂層のワニスの調製
熱硬化性樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC−3000、エポキシ当量275)40重量%、フェノキシ樹脂としてビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との共重合体であり、末端部はエポキシ基を有しているフェノキシ樹脂(ジャパンエポキシレジン社製・「エピコート4275」、重量平均分子量60000)30重量%、硬化触媒としてイミダゾール系化合物(四国化成工業社製・商品名2PHZ「2−フェニル−4,5−ジヒドロキシメチルイミダゾール」)0.5重量%をメチルエチルケトンに溶解、分散させた。さらに、カップリング剤としてエポキシシラン型カップリング剤(日本ユニカー社製、A−187)を、0.2重量%をメチルエチルケトンに常温で溶解し、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)30重量%を添加し、高速攪拌機を用いて10分間攪拌して第2樹脂層のワニスを調製した。
2.キャリア材料の製造
キャリアフィルムとしてポリエチレンテレフタレートフィルム(三菱化学ポリエステル社製、SFB−38、厚さ38μmm、幅480mm)を用い、上述の第1樹脂層のワニスをコンマコーター装置で塗工し、170℃の乾燥装置で3分間乾燥させ、厚さ8μm、幅410mmの樹脂層が、キャリアフィルムの幅方向の中心に位置するように形成してキャリア材料2a(最終的に第1樹脂層を形成)を得た。
また、同様の方法で塗工する第2樹脂層のワニスの量を調整して、厚さ15μm、幅360mmの樹脂層が、キャリアフィルムの幅方向の中心に位置するように形成してキャリア材料3a(最終的に第2樹脂層を形成)を得た。
3.プリプレグの製造
繊維基材としてガラス織布(クロスタイプ♯1015、幅360mm、厚さ15μm、坪量17g/m2)を用い、図3に示す真空ラミネート装置および熱風乾燥装置によりプリプレグを製造した。
具体的には、ガラス織布の両面に前記キャリア材料2aおよびキャリア材料3aがガラス織布の幅方向の中心に位置するように、それぞれ重ね合わせ、1330Paの減圧条件下で、80℃のラミネートロールを用いて接合した。
ここで、ガラス織布の幅方向寸法の内側領域においては、キャリア材料2aおよびキャリア材料3aの樹脂層を繊維布の両面側にそれぞれ接合するとともに、ガラス織布の幅方向寸法の外側領域においては、キャリア材料2aおよびキャリア材料3aの樹脂層同士を接合した。
次いで、上記接合したものを、120℃に設定した横搬送型の熱風乾燥装置内を2分間通すことによって、圧力を作用させることなく加熱処理して、厚さ30μm(第1樹脂層:4μm、繊維基材:15μm、第2樹脂層:11μm)のプリプレグを得た。
(実施例2)
第1樹脂層のワニスとして以下のものを用いた以外は、実施例1と同様にした。
シアネート樹脂(ロンザジャパン社製、プリマセット PT−30、重量平均分子量約2,600)28重量%、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC−3000、エポキシ当量275)28重量%、フェノキシ樹脂としてビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との共重合体であり、末端部はエポキシ基を有しているフェノキシ樹脂(ジャパンエポキシレジン社製・「エピコート4275」、重量平均分子量60000)14重量%、硬化触媒としてイミダゾール系化合物(四国化成工業社製・商品名2PHZ「2−フェニル−4,5−ジヒドロキシメチルイミダゾール」)0.3重量%をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)30重量%とカップリング剤としてエポキシシラン型カップリング剤(日本ユニカー社製、A−187)0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
(実施例3)
第1樹脂層のワニスとして以下のものを用いた以外は、実施例1と同様にした。
シアネート樹脂(ロンザジャパン社製、プリマセット PT−30、重量平均分子量約2,600)12重量%、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC−3000、エポキシ当量275)12重量%、フェノキシ樹脂としてビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との共重合体であり、末端部はエポキシ基を有しているフェノキシ樹脂(ジャパンエポキシレジン社製・「エピコート4275」、重量平均分子量60000)6重量%、硬化触媒としてイミダゾール系化合物(四国化成工業社製・商品名2PHZ「2−フェニル−4,5−ジヒドロキシメチル」)0.2重量%をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)70重量%とカップリング剤としてエポキシシラン型カップリング剤(日本ユニカー社製、A−187)0.4重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
(実施例4)
第1樹脂層のワニスとして以下のものを用いた以外は、実施例1と同様にした。
シアネート樹脂(ロンザジャパン社製、プリマセット PT−30、重量平均分子量約2,600)5重量%、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC−3000、エポキシ当量275)25重量%、硬化触媒としてイミダゾール系化合物(四国化成工業社製・商品名2PHZ「2−フェニル−4,5−ジヒドロキシメチルイミダゾール」)0.5重量%をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)70重量%とカップリング剤としてエポキシシラン型カップリング剤(日本ユニカー社製、A−187)0.4重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
(実施例5)
第1樹脂層のワニスとして以下のものを用いた以外は、実施例1と同様にした。
シアネート樹脂(ロンザジャパン社製、プリマセット PT−30、重量平均分子量約2,600)50重量%、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC−3000、エポキシ当量275)20重量%、フェノキシ樹脂としてビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との共重合体であり、末端部はエポキシ基を有しているフェノキシ樹脂(ジャパンエポキシレジン社製・「エピコート4275」、重量平均分子量60000)10重量%、硬化触媒としてイミダゾール系化合物(四国化成工業社製・商品名2PHZ「2−フェニル−4,5−ジヒドロキシメチルイミダゾール」)0.3重量%をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)20重量%とカップリング剤としてエポキシシラン型カップリング剤(日本ユニカー社製、A−187)0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
(実施例6)
第1樹脂層のワニスとして以下のものを用いた以外は、実施例1と同様にした。
エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC−3000、エポキシ当量275)11重量%、ビフェニルジメチレン型フェノール樹脂(日本化薬社製、GPH−103、水酸基当量230)9重量部、硬化触媒としてイミダゾール系化合物(四国化成工業社製・商品名2PHZ「2−フェニル−4,5−ジヒドロキシメチルイミダゾール」)0.2重量%をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)80重量%とカップリング剤0.4重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
(比較例1)
第1樹脂層のワニスとして以下のものを用いた以外は、実施例1と同様にした。
エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC−3000、エポキシ当量275)40重量%、フェノキシ樹脂としてビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との共重合体であり、末端部はエポキシ基を有しているフェノキシ樹脂(ジャパンエポキシレジン社製・「エピコート4275」、重量平均分子量60000)30重量%、硬化触媒としてイミダゾール系化合物(四国化成工業社製・商品名2PHZ「2−フェニル−4,5−ジヒドロキシメチルイミダゾール」)0.5重量%をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)30重量%とカップリング剤としてエポキシシラン型カップリング剤(日本ユニカー社製、A−187)0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
(比較例2)
第2樹脂層のワニスとして以下のものを用いた以外は、比較例1と同様にした。
シアネート樹脂(ロンザジャパン社製、プリマセット PT−30、重量平均分子量約2,600)6重量%、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬社製、NC−3000、エポキシ当量275)6重量%、フェノキシ樹脂としてビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との共重合体であり、末端部はエポキシ基を有しているフェノキシ樹脂(ジャパンエポキシレジン社製・「エピコート4275」、重量平均分子量60000)48重量%、硬化触媒としてイミダゾール系化合物(四国化成工業社製・商品名2PHZ「2−フェニル−4,5−ジヒドロキシメチルイミダゾール」)0.4重量%をメチルエチルケトンに溶解、分散させた。さらに、無機充填材として球状溶融シリカ(アドマテックス社製・「SO−25R」、平均粒径0.5μm)40重量%とカップリング剤としてエポキシシラン型カップリング剤(日本ユニカー社製、A−187)0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
(比較例3)
第1樹脂層を実施例1の第2樹脂層、第2樹脂層を実施例1の第1樹脂層にした以外は実施例1と同様にした。
各実施例および比較例で得られた第1および、第2樹脂組成物、およびプリプレグについて、以下の評価を行なった。評価内容を項目と共に示す。得られた結果を表1に示す。
1.第1樹脂層の熱膨張係数
プリプレグの面方向の熱膨張係数は、TMA装置(TAインスツルメント社製)を用いて、10℃/分で昇温して測定した。
2.第1樹脂層、第2樹脂層の弾性率
各樹脂層の樹脂組成物を硬化させてレジン板を作製し、DMA(TAインスツルメント社製 DMA983)の共鳴周波数ズリモードを用いて、昇温速度5℃/分の条件で測定した。
3.実装信頼性
300個のバンプを介して半導体素子と回路基板を接続するデイジーチェーン型の評価用半導体装置を10個作製した。その際の、接続部不良の有無を評価した。
4.接続信頼性(温度サイクル(TC)試験)
上述の評価用半導体装置の導通を確認後、−50℃で10分、125℃で10分を1サイクルとする温度サイクル(TC)試験を実施した。TC試験1000サイクル後の断線不良有無を評価した。
Figure 2008088280
表1の結果のとおり、実施例1〜6は実装信頼性、接続信頼性共に良好であったが、第一樹脂層の20℃における弾性率が低い比較例1は、実装信頼性が劣る結果となり、第二樹脂層の250℃における弾性率が高い比較例2は、接続信頼性が劣る結果となった。また第一樹脂層の20℃における弾性率が低く、第二樹脂層の250℃における弾性率が高い比較例3は、実装信頼性と接続信頼性において、共に不良が発生した。
本発明のプリプレグ、該プリプレグを用いた積層板、該積層板よりなる半導体装置に好適に用いることができるため、さまざまな半導体装置に組み込むことができる。
図1は、本発明のプリプレグの一例を模式的に示す断面図である。 図2は、本発明のプリプレグの一例を模式的に示す断面図である。 図3は、本発明のプリプレグを製造する工程の一例を示す工程図である。 図4は、繊維基材がプリプレグの厚さ方向に偏在している状態を模式的に示す断面図である。 図5は、本発明の回路基板の一例を示す断面図である。 図6は、本発明の半導体装置の一例を示す断面図である。
符号の説明
1 シート状基材
11 コア層
2 第1樹脂層
2a キャリア材料
3 第2樹脂層
3a キャリア材料
31 第2樹脂層の上端部
4 内層回路
41 内層回路の上端部
42 回路配線部
5 パッド部
6 フィルドビア部
7 半導体素子
71 バンプ
8 真空ラミネート装置
81 ラミネートロール
9 熱風乾燥装置
10 プリプレグ
10a プリプレグ
10b プリプレグ
10c プリプレグ
10d プリプレグ
10e プリプレグ
10f プリプレグ
100 回路基板
101 コア基板
200 半導体装置

Claims (12)

  1. シート状基材のコア層と、前記コア層の一方面側に形成される第1樹脂層および他方面側に形成される第2樹脂層とを有するプリプレグであって、
    前記第1樹脂層を構成する第1樹脂組成物と、前記第2樹脂層を構成する第2樹脂組成物とが異なっており、前記第1樹脂層の熱硬化後の弾性率が20℃において4GPa以上であることを特徴とするプリプレグ。
  2. 前記第1樹脂層の厚さが、1〜15μmである請求項1に記載のプリプレグ。
  3. 前記第1樹脂組成物は、熱硬化性樹脂を含むものである請求項1または2に記載のプリプレグ。
  4. 前記熱硬化性樹脂は、シアネート樹脂を含むものである請求項3に記載のプリプレグ。
  5. 前記シアネート樹脂は、ノボラック型シアネート樹脂を含むものである請求項4に記載のプリプレグ。
  6. 前記第1樹脂組成物は、さらに硬化剤を含むものである請求項1〜5のいずれかに記載のプリプレグ。
  7. 前記硬化剤が、イミダゾール系化合物である請求項6に記載のプリプレグ。
  8. 前記第1樹脂組成物は、さらに前記熱硬化性樹脂と種類の異なる第2樹脂を含むものである請求項1〜7のいずれかに記載のプリプレグ。
  9. 前記第2樹脂は、フェノキシ系樹脂を含むものである請求項8に記載のプリプレグ。
  10. 前記第1樹脂層の厚さは、前記第2樹脂層の厚さよりも薄いものである請求項1〜9のいずれかに記載のプリプレグ。
  11. 請求項1〜10のいずれかに記載のプリプレグを積層して得られることを特徴とする回路基板。
  12. 請求項11に記載の回路基板を有することを特徴とする半導体装置。
JP2006270301A 2006-10-02 2006-10-02 プリプレグ、回路基板および半導体装置 Expired - Fee Related JP4983190B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270301A JP4983190B2 (ja) 2006-10-02 2006-10-02 プリプレグ、回路基板および半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270301A JP4983190B2 (ja) 2006-10-02 2006-10-02 プリプレグ、回路基板および半導体装置

Publications (2)

Publication Number Publication Date
JP2008088280A true JP2008088280A (ja) 2008-04-17
JP4983190B2 JP4983190B2 (ja) 2012-07-25

Family

ID=39372761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270301A Expired - Fee Related JP4983190B2 (ja) 2006-10-02 2006-10-02 プリプレグ、回路基板および半導体装置

Country Status (1)

Country Link
JP (1) JP4983190B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054666A (ja) * 2009-08-31 2011-03-17 Cmk Corp 多層プリント配線板及び両面プリント配線板
JP2011171719A (ja) * 2010-01-22 2011-09-01 Sumitomo Bakelite Co Ltd プリプレグの積層方法、プリント配線板の製造方法およびプリプレグのロール
CN102311614A (zh) * 2011-04-03 2012-01-11 广东生益科技股份有限公司 树脂组合物及使用其制作的半固化片
JP2016219848A (ja) * 2011-06-17 2016-12-22 住友ベークライト株式会社 プリント配線板および製造方法
KR20170039118A (ko) 2014-07-29 2017-04-10 다이요 홀딩스 가부시키가이샤 수지 함유 시트, 및 그것을 사용한 구조체 및 배선판
KR20170082569A (ko) 2014-11-04 2017-07-14 다이요 홀딩스 가부시키가이샤 수지 함유 시트, 및 그것을 사용한 구조체 및 배선판
JP2018166207A (ja) * 2012-06-22 2018-10-25 株式会社ニコン 基板、撮像ユニットおよび撮像装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139531A (ja) * 1989-10-24 1991-06-13 Sumitomo Chem Co Ltd 着色プリプレグシート
JPH08258162A (ja) * 1995-03-17 1996-10-08 Mitsubishi Rayon Co Ltd 複雑構造体の一体成形法
JP2003313324A (ja) * 2002-04-24 2003-11-06 Mitsubishi Gas Chem Co Inc 基材入りbステージ樹脂組成物シートの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139531A (ja) * 1989-10-24 1991-06-13 Sumitomo Chem Co Ltd 着色プリプレグシート
JPH08258162A (ja) * 1995-03-17 1996-10-08 Mitsubishi Rayon Co Ltd 複雑構造体の一体成形法
JP2003313324A (ja) * 2002-04-24 2003-11-06 Mitsubishi Gas Chem Co Inc 基材入りbステージ樹脂組成物シートの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054666A (ja) * 2009-08-31 2011-03-17 Cmk Corp 多層プリント配線板及び両面プリント配線板
JP2011171719A (ja) * 2010-01-22 2011-09-01 Sumitomo Bakelite Co Ltd プリプレグの積層方法、プリント配線板の製造方法およびプリプレグのロール
CN102311614A (zh) * 2011-04-03 2012-01-11 广东生益科技股份有限公司 树脂组合物及使用其制作的半固化片
JP2016219848A (ja) * 2011-06-17 2016-12-22 住友ベークライト株式会社 プリント配線板および製造方法
JP2018166207A (ja) * 2012-06-22 2018-10-25 株式会社ニコン 基板、撮像ユニットおよび撮像装置
KR20170039118A (ko) 2014-07-29 2017-04-10 다이요 홀딩스 가부시키가이샤 수지 함유 시트, 및 그것을 사용한 구조체 및 배선판
KR20170082569A (ko) 2014-11-04 2017-07-14 다이요 홀딩스 가부시키가이샤 수지 함유 시트, 및 그것을 사용한 구조체 및 배선판
US10047202B2 (en) 2014-11-04 2018-08-14 Asahi Kasei Kabushiki Kaisha Resin-containing sheet, and structure and wiring board using same

Also Published As

Publication number Publication date
JP4983190B2 (ja) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5141753B2 (ja) プリプレグの製造方法
JP5243715B2 (ja) プリプレグ、基板および半導体装置
US8110444B2 (en) Prepreg, method for manufacturing prepreg, substrate, and semiconductor device
US20110120754A1 (en) Multilayer wiring board and semiconductor device
JPWO2008093579A1 (ja) 積層体、基板の製造方法、基板および半導体装置
JP5533657B2 (ja) 積層板、回路板および半導体装置
JPWO2012002434A1 (ja) プリプレグ、配線板および半導体装置
KR20100134017A (ko) 다층 회로 기판, 절연 시트 및 다층 회로 기판을 이용한 반도체 패키지
JP5200405B2 (ja) 多層配線板及び半導体パッケージ
JP5157103B2 (ja) プリプレグ、基板および半導体装置
JP4983190B2 (ja) プリプレグ、回路基板および半導体装置
JP2008244189A (ja) 回路基板および半導体装置
JPWO2009051120A1 (ja) 半導体素子搭載基板
JP2004277671A (ja) プリプレグおよびそれを用いたプリント配線板
JP2013057065A (ja) プリプレグ、基板および半導体装置
JP5292847B2 (ja) 半導体素子搭載基板
JP5476772B2 (ja) プリプレグおよび積層板
JP2010080609A (ja) 半導体装置
JP2012051988A (ja) プリプレグ、基板および半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4983190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees