JP2008086938A - Catalyst for producing ethylene oxide and production method of ethylene oxide using the same catalyst - Google Patents

Catalyst for producing ethylene oxide and production method of ethylene oxide using the same catalyst Download PDF

Info

Publication number
JP2008086938A
JP2008086938A JP2006272311A JP2006272311A JP2008086938A JP 2008086938 A JP2008086938 A JP 2008086938A JP 2006272311 A JP2006272311 A JP 2006272311A JP 2006272311 A JP2006272311 A JP 2006272311A JP 2008086938 A JP2008086938 A JP 2008086938A
Authority
JP
Japan
Prior art keywords
catalyst
ethylene oxide
carrier
infrared absorption
absorption spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006272311A
Other languages
Japanese (ja)
Other versions
JP4747066B2 (en
Inventor
Hiromi Yunoki
弘己 柚木
Hiroyuki Hirota
博之 廣田
Masatsugu Mikawa
雅嗣 三河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006272311A priority Critical patent/JP4747066B2/en
Publication of JP2008086938A publication Critical patent/JP2008086938A/en
Application granted granted Critical
Publication of JP4747066B2 publication Critical patent/JP4747066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which can produce ethylene oxide with high activity and selectivity and to provide a production method of ethylene oxide by gas-phase oxidation of ethylene by a gas containing a molecular oxygen employing the same catalyst. <P>SOLUTION: The catalyst for producing ethylene oxide is obtained by making a carrier support as a main component of α-Al<SB>2</SB>O<SB>3</SB>, wherein an intensity of the infrared adsorption spectrum in the range of wave number of 3,150 to 3,800 cm<SP>-1</SP>is substantially zero in the infrared adsorption spectrum measured by the KBr tablet method. The production method of ethylene oxide is provided which employs the same catalyst. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸化エチレン製造用触媒および該触媒を用いた酸化エチレンの製造方法に関し、詳しくは、触媒活性および選択性に優れた酸化エチレン製造用触媒、ならびに該触媒の存在下にエチレンを分子状酸素により気相接触酸化して酸化エチレンを製造する方法に関する。   The present invention relates to a catalyst for producing ethylene oxide and a method for producing ethylene oxide using the catalyst, and more specifically, a catalyst for producing ethylene oxide excellent in catalytic activity and selectivity, and molecular ethylene in the presence of the catalyst. The present invention relates to a method for producing ethylene oxide by gas phase catalytic oxidation with oxygen.

エチレンを分子状酸素含有ガスにより気相接触酸化して酸化エチレンを製造する際に用いる酸化エチレン製造用触媒については、従来から数多くの文献が紹介されている。   Numerous documents have been introduced in the past regarding ethylene oxide production catalysts used when ethylene oxide is produced by vapor-phase catalytic oxidation of ethylene with a molecular oxygen-containing gas.

例えば、α−アルミナ担体の外表面上および気孔の表面上に非晶質シリカの被覆層を設けた担体に銀を担持した触媒が開示されている(特許文献1)。また、元素周期律表のIIIa−VIIaおよびIIIb−Vb族の第4、5および6周期の元素(例えばチタン、スズ、ハウニウムなど)からなる群より選ばれた1種あるいは2種以上の化合物を含むα−アルミナ担体に、銀を担持した触媒も開示されている(特許文献2)。さらに、高純度α−アルミナ、アルカリ土類金属酸化物、ケイ素酸化物および酸化ジルコニウムを含む担体を用いた触媒が開示されている(特許文献3)。
特開平2−194839号公報 特開平4−363139号公報 特開平6−47278号公報
For example, a catalyst is disclosed in which silver is supported on a support in which a coating layer of amorphous silica is provided on the outer surface of an α-alumina support and on the surface of pores (Patent Document 1). In addition, one or two or more compounds selected from the group consisting of elements in groups IIIa-VIIa and IIIb-Vb in the periodic table of the fourth, fifth and sixth periods (for example, titanium, tin, haunium, etc.) A catalyst in which silver is supported on an α-alumina support is also disclosed (Patent Document 2). Furthermore, a catalyst using a carrier containing high purity α-alumina, alkaline earth metal oxide, silicon oxide and zirconium oxide is disclosed (Patent Document 3).
Japanese Patent Laid-Open No. 2-194939 JP-A-4-363139 JP-A-6-47278

上記特許文献1〜3に記載の触媒は、触媒性能に優れ、工業的に十分満足し得るものである。しかしながら、酸化エチレンの生産規模は非常に大きく、選択率が僅かに向上するだけでも、原料であるエチレンを著しく節約できるので、その経済的効果が高いとの事情から、より優れた触媒性能を有する酸化エチレン製造用触媒の開発が望まれている。   The catalysts described in Patent Documents 1 to 3 are excellent in catalyst performance and can be sufficiently satisfied industrially. However, the production scale of ethylene oxide is very large, and even if the selectivity is slightly improved, ethylene as a raw material can be remarkably saved, so it has better catalytic performance due to its high economic effect. Development of a catalyst for producing ethylene oxide is desired.

したがって、本発明の目的は、高い活性および高い選択性で酸化エチレンを製造し得る酸化エチレン製造用触媒を提供することにある。   Accordingly, an object of the present invention is to provide a catalyst for producing ethylene oxide, which can produce ethylene oxide with high activity and high selectivity.

本発明の他の目的は、触媒の存在下にエチレンを分子状酸素により気相接触酸化して、高い収率で酸化エチレンを製造する方法を提供することにある。   Another object of the present invention is to provide a process for producing ethylene oxide in a high yield by subjecting ethylene to gas phase catalytic oxidation with molecular oxygen in the presence of a catalyst.

本発明者らは、酸化エチレン製造用触媒および該触媒に用いる担体について鋭意検討した結果、KBr錠剤法で測定された赤外吸収スペクトルにおいて、波数3,150〜3,800cm−1の領域における赤外吸収ピークが実質ゼロであるα−アルミナを主成分とする担体を用いて調製された酸化エチレン製造用触媒は、上記波数領域の赤外吸収スペクトルにおいて実質的に赤外吸収ピークが認められるα−アルミナを主成分とする担体を用いて調製された酸化エチレン製造用触媒に比べて、エチレンに対する活性が高くかつ酸化エチレンの選択率が高いことを見いだし、この知見に基づいて本発明を完成するに至った。 As a result of intensive studies on a catalyst for producing ethylene oxide and a carrier used for the catalyst, the present inventors have found that in the infrared absorption spectrum measured by the KBr tablet method, red in the region of wave numbers of 3,150 to 3,800 cm −1. The catalyst for ethylene oxide production prepared using a carrier mainly composed of α-alumina having an outer absorption peak of substantially zero has a substantially infrared absorption peak in the infrared absorption spectrum in the wave number region. -It has been found that it has higher activity against ethylene and higher ethylene oxide selectivity than a catalyst for producing ethylene oxide prepared using a carrier mainly composed of alumina, and the present invention is completed based on this finding. It came to.

したがって、上記諸目的は、下記(1)〜(4)により達成される。   Therefore, the above objects are achieved by the following (1) to (4).

(1) KBr錠剤法で測定された赤外吸収スペクトルにおいて、波数3,150〜3,800cm−1の領域における赤外吸収スペクトルが実質的にゼロであるα−アルミナを主成分とする担体に銀を担持してなる酸化エチレン製造用触媒。 (1) In an infrared absorption spectrum measured by the KBr tablet method, a carrier mainly composed of α-alumina, whose infrared absorption spectrum in the region of wave numbers 3,150 to 3,800 cm −1 is substantially zero. A catalyst for producing ethylene oxide which carries silver.

(2) 該担体の波数3,150〜3,800cm−1の領域における赤外吸収スペクトルのピーク高さが0.1以下である前記(1)に記載の触媒。 (2) The catalyst according to (1), wherein the peak height of the infrared absorption spectrum in the region of wave number 3,150 to 3,800 cm −1 of the carrier is 0.1 or less.

(3) 該担体のSiO含有率が0.1〜2質量%である前記(1)または(2)に記載の触媒。 (3) The catalyst according to (1) or (2), wherein the support has a SiO 2 content of 0.1 to 2 % by mass.

(4) 前記(1)〜(3)のいずれか一つに記載の触媒の存在下にエチレンを分子状酸素含有ガスにより気相酸化することを特徴とする酸化エチレンの製造方法。   (4) A method for producing ethylene oxide, characterized in that ethylene is vapor-phase oxidized with a molecular oxygen-containing gas in the presence of the catalyst according to any one of (1) to (3).

本発明によれば、上記触媒用担体を用いることで、高活性かつ高選択性の触媒を得ることができる。また、本発明の酸化エチレン製造用触媒を用いて気相接触酸化反応を行うことで、高い収率で酸化エチレンを製造することができる。   According to the present invention, a highly active and highly selective catalyst can be obtained by using the catalyst carrier. Moreover, ethylene oxide can be manufactured with a high yield by performing a gaseous-phase catalytic oxidation reaction using the catalyst for ethylene oxide manufacture of this invention.

本発明による酸化エチレン製造用触媒は、KBr錠剤法で測定された赤外吸収スペクトルにおいて、波数3,150〜3,800cm−1の領域における赤外吸収ピークが実質ゼロであるα−アルミナ担体を用いることを特徴とする。具体的には、赤外吸収スペクトルが実質的に図1に示される赤外吸収スペクトルを示す担体を用いることを特徴とする。 The catalyst for producing ethylene oxide according to the present invention comprises an α-alumina carrier having an infrared absorption peak substantially zero in the region of wave numbers of 3,150 to 3,800 cm −1 in the infrared absorption spectrum measured by the KBr tablet method. It is characterized by using. Specifically, a carrier having an infrared absorption spectrum substantially having an infrared absorption spectrum shown in FIG. 1 is used.

本発明において、波数3,150〜3,800cm−1の領域における赤外吸収ピークが実質ゼロである担体とは、KBr錠剤法で測定された担体の赤外吸収スペクトルにおいて、波数3,150〜3,800cm−1の領域において赤外吸収ピークを実質的に認めることができないこと、すなわち、当該スペクトル領域において明確な赤外吸収ピークが存在しないことを意味する。詳しくは、当該スペクトル領域における吸光度のピーク面積が実質上ゼロであることを意味する。更に詳しくは、測定された赤外吸収スペクトルにおいて、波数3,150cm−1の吸光度と3,800cm−1の吸光度を直線で結んだ場合の当該直線と、波数3,150〜3,800cm−1の領域の赤外吸収スペクトルの線が実質的に重なることを意味する。 In the present invention, a carrier having an infrared absorption peak substantially zero in the region of wave numbers 3,150 to 3,800 cm −1 is an infrared absorption spectrum of the carrier measured by the KBr tablet method. This means that an infrared absorption peak cannot be substantially observed in the region of 3,800 cm −1 , that is, there is no clear infrared absorption peak in the spectral region. Specifically, it means that the peak area of absorbance in the spectral region is substantially zero. More specifically, in the measured infrared absorption spectrum, the straight line when the absorbance at wave number 3,150 cm −1 and the absorbance at 3,800 cm −1 are connected by a straight line, and the wave number 3,150-3,800 cm −1. This means that the lines of the infrared absorption spectrum in the region of are substantially overlapped.

本発明における担体の赤外吸収スペクトルは、従来公知のKBr錠剤法で測定される。具体的には、触媒用担体を磨り潰して粉末状にし、該担体1質量部とKBr75質量部を均−に混合した後、プレスしたものについて赤外吸収スペクトルを測定する。   The infrared absorption spectrum of the carrier in the present invention is measured by a conventionally known KBr tablet method. Specifically, the catalyst carrier is ground and powdered, 1 part by mass of the carrier and 75 parts by mass of KBr are mixed uniformly, and then the infrared absorption spectrum of the pressed product is measured.

前記担体の波数3,150〜3,800cm−1の領域の赤外ピークが何に由来するかは正確には不明であるが、SiOHに由来するものと推定している。 It is unclear exactly what the infrared peak in the region of wave numbers 3,150 to 3,800 cm −1 of the carrier is derived from, but it is presumed to be derived from SiOH.

本発明において赤外吸収ピークが「実質ゼロ」とは、上記赤外吸収ピークの高さが0.1以下、より好ましくは0.05以下、さらに好ましくは0.03以下のことをいう。   In the present invention, the phrase “substantially zero” as the infrared absorption peak means that the height of the infrared absorption peak is 0.1 or less, more preferably 0.05 or less, and still more preferably 0.03 or less.

ここで、ピーク高さの求め方は、つぎのとおりである。   Here, how to obtain the peak height is as follows.

図1に示すグラフにおいて、赤外吸収スペクトル(図中、太い実線)において、波数3,150cm−1の時の吸光度をX、波数3,800cm−1の時の吸光度をYとし、XとYを直線(図中、破線)で結ぶ。 In the graph shown in FIG. 1, infrared absorption spectrum (in the figure, the thick solid line) in the absorbance at a wave number 3,150cm -1 X, the absorbance when the wave number 3,800Cm -1 and Y, X and Y Are connected by a straight line (broken line in the figure).

波数3,150〜3,800cm−1の吸収スペクトルのうち、最も吸光度の高い部分をAとし、Aからの垂線(図中、細い実線)を下ろして上記の直線と交差する点をBとする。 Of the absorption spectrum of wave numbers 3,150-3,800 cm −1, the portion with the highest absorbance is designated as A, and the perpendicular line from A (the thin solid line in the figure) is taken down and the point intersecting with the straight line is designated as B. .

A−Bを本発明におけるピーク高さとする(すなわち、点Aの吸光度−点Bの吸光度=ピーク高さ)。   AB is the peak height in the present invention (that is, absorbance at point A−absorbance at point B = peak height).

ピーク高さを求める際、吸収スペクトルのバックグラウンド補正はしない。   When calculating the peak height, the background of the absorption spectrum is not corrected.

本発明の酸化エチレン製造用触媒に用いるα−アルミナを主成分とする担体については、KBr錠剤法で測定された赤外吸収スペクトルにおいて、波数3,150〜3,800cm−1の領域の赤外吸収ピークが実質ゼロであることを除けば、特段の制限はないが、特に以下の組成および物性を有する担体が好ましい。 About the support | carrier which has (alpha) -alumina as a main component used for the catalyst for ethylene oxide manufacture of this invention, in the infrared absorption spectrum measured by the KBr tablet method, the infrared of the area | region of a wave number of 3,150-3,800cm < -1 > was used. There is no particular limitation except that the absorption peak is substantially zero, but a carrier having the following composition and physical properties is particularly preferable.

本発明で用いるα−アルミナを主成分とする担体の成分の一例としては、α−アルミナは90質量%以上、好ましくは95質量%以上、より好ましくは98質量%以上であり、アルカリ金属および/またはアルカリ土類金属(いずれも酸化物換算)0〜5質量%、好ましくは0.01〜4質量%および遷移金属酸化物を0〜5質量%、好ましくは0〜3質量%からなるものを挙げることができる。   As an example of the component of the carrier mainly composed of α-alumina used in the present invention, α-alumina is 90% by mass or more, preferably 95% by mass or more, more preferably 98% by mass or more. Or alkaline earth metal (both oxide conversion) 0 to 5% by mass, preferably 0.01 to 4% by mass and transition metal oxide 0 to 5% by mass, preferably 0 to 3% by mass Can be mentioned.

前記担体中のSiOの含有量は0.1〜2質量%、特に0.3〜1.5質量%が好ましい。 The content of SiO 2 in the carrier is preferably 0.1 to 2 % by mass, particularly preferably 0.3 to 1.5% by mass.

なお、上述した担体の組成や各成分の含有量は、蛍光X線分析法を用いて決定されうる。   The composition of the carrier and the content of each component described above can be determined using a fluorescent X-ray analysis method.

本発明で使用する担体の形状については特に制限はなく、リング状、球状、円柱状など、任意の形状を選択することができる。また、その大きさ(平均相当直径)は、通常、3〜20mmであり、好ましくは5〜10mmである。   There is no restriction | limiting in particular about the shape of the support | carrier used by this invention, Arbitrary shapes, such as a ring shape, spherical shape, and cylindrical shape, can be selected. Moreover, the magnitude | size (average equivalent diameter) is 3-20 mm normally, Preferably it is 5-10 mm.

本発明で使用する担体のBET(Brunauer−Emmet−Teller)比表面積は、0.03〜10m/g、好ましくは0.5〜5m/g、より好ましくは1.0〜2.5m/gの範囲にあるものがよい。比表面積が低すぎると触媒成分の高分散担持が困難となる。逆に、比表面積が高すぎると、担体の微小細孔が多くなり、該担体を用いて調製した触媒において、生成物である酸化エチレンの逐次酸化が促進される。 The carrier used in the present invention has a BET (Brunauer-Emmet-Teller) specific surface area of 0.03 to 10 m 2 / g, preferably 0.5 to 5 m 2 / g, more preferably 1.0 to 2.5 m 2. Those in the range of / g are preferable. If the specific surface area is too low, it becomes difficult to carry the catalyst component in a highly dispersed state. On the other hand, if the specific surface area is too high, the number of micropores of the support increases, and in the catalyst prepared using the support, sequential oxidation of the product ethylene oxide is promoted.

本発明で使用する担体の細孔容積は、0.25〜0.55cc/g、好ましくは0.3〜0.5cc/g、より好ましくは0.35〜0.45cc/gにあるのがよい。   The pore volume of the carrier used in the present invention is 0.25 to 0.55 cc / g, preferably 0.3 to 0.5 cc / g, more preferably 0.35 to 0.45 cc / g. Good.

本発明で使用する担体の平均細孔径は、0.1〜5μm、好ましくは0.2〜3μm、より好ましくは0.3〜1.5μmの範囲にあるのがよい。平均細孔径が大きすぎると、実用的な担体の強度が得られない。逆に、平均細孔径が小さすぎると、生成ガスの滞留により生成物である酸化エチレンの逐次酸化が促進されるおそれがある。   The average pore diameter of the carrier used in the present invention is 0.1 to 5 μm, preferably 0.2 to 3 μm, more preferably 0.3 to 1.5 μm. If the average pore diameter is too large, practical carrier strength cannot be obtained. Conversely, if the average pore diameter is too small, the sequential oxidation of ethylene oxide, which is a product, may be promoted due to the residence of the product gas.

本発明で使用する担体の吸水率は、10〜70質量%、好ましくは20〜60質量%、より好ましくは30〜50質量%の範囲にあるのがよい。吸水率が上記範囲より低すぎると触媒成分の担持が困難になり、逆に、吸水率が上記範囲より高すぎると実用上十分な強度が得られない。   The carrier used in the present invention has a water absorption rate of 10 to 70% by mass, preferably 20 to 60% by mass, more preferably 30 to 50% by mass. If the water absorption is lower than the above range, it is difficult to support the catalyst component. Conversely, if the water absorption is higher than the above range, a practically sufficient strength cannot be obtained.

本発明の酸化エチレン製造用触媒は、担体として上記赤外吸収スペクトルを示す担体を用いる点を除けば、酸化エチレン製造用触媒の調製において一般に採用されている方法にしたがって調製することができる。   The ethylene oxide production catalyst of the present invention can be prepared according to a method generally employed in the preparation of an ethylene oxide production catalyst, except that the carrier showing the infrared absorption spectrum is used as the carrier.

例えば、銀を形成させるための銀化合物単独、または銀化合物および銀錯体を形成するための錯化剤、もしくは更に必要に応じて用いる反応促進剤を含む水溶液を調製し、これに担体を含浸させた後、乾燥し、焼成する。この乾燥は空気、酸素ガス、または窒素などの不活性ガス雰囲気中で80〜120℃の温度で行うのが好ましい。焼成は、空気、酸素ガス、または窒素などの不活性ガス雰囲気中で150〜700℃、特に200〜600℃の温度で行うのが好ましい。なお、この焼成は、1段階または2段階以上で行ってもよい。中でも、好ましくは、1段階目を空気雰囲気中で150〜250℃で0.1〜10時間、2段階目を空気雰囲気中で250〜450℃で0.1〜10時間処理したものが好適である。さらに好ましくは、3段階目を窒素、ヘリウム、アルゴンなどから選択される不活性ガス雰囲気中で450〜700℃で0.1〜10時間で処理したものが好ましい。   For example, an aqueous solution containing a silver compound alone for forming silver, a complexing agent for forming a silver compound and a silver complex, or a reaction accelerator used as necessary is prepared, and this is impregnated with a carrier. Then, it is dried and fired. This drying is preferably performed at a temperature of 80 to 120 ° C. in an inert gas atmosphere such as air, oxygen gas, or nitrogen. Baking is preferably performed at a temperature of 150 to 700 ° C., particularly 200 to 600 ° C. in an inert gas atmosphere such as air, oxygen gas, or nitrogen. In addition, you may perform this baking by 1 step | paragraph or 2 steps | paragraphs or more. Among these, preferably, the first stage is treated at 150 to 250 ° C. for 0.1 to 10 hours in an air atmosphere and the second stage is treated at 250 to 450 ° C. for 0.1 to 10 hours in an air atmosphere. is there. More preferably, the third stage is treated at 450 to 700 ° C. for 0.1 to 10 hours in an inert gas atmosphere selected from nitrogen, helium, argon and the like.

上記銀化合物の代表例としては、硝酸銀、炭酸銀、シュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、ク工ン酸銀、ネオデカン酸銀などを挙げることができる。鎖化剤の代表例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、プロピレンジアミンなどを挙げることができる。   Typical examples of the silver compound include silver nitrate, silver carbonate, silver oxalate, silver acetate, silver propionate, silver lactate, silver succinate, and silver neodecanoate. Representative examples of the chaining agent include monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and propylenediamine.

反応促進剤の代表例としては、リチウム、ナトリウム、カリウム、ルビジウムおよびセシウムのアルカリ金属、タリウム、硫黄、クロム、モリブデン、タングステンなどを挙げることができる。これらは単独でも、2種以上を組み合わせて使用することもできる。反応促進剤は、担体に水溶液を含浸させる前段階で、銀アンミン錯体水溶液に溶解させて同時に含浸させても、あるいは銀を担持後に担持させてもよい。   Typical examples of the reaction accelerator include lithium, sodium, potassium, rubidium and cesium alkali metals, thallium, sulfur, chromium, molybdenum, tungsten and the like. These can be used alone or in combination of two or more. The reaction accelerator may be dissolved in the silver ammine complex aqueous solution and impregnated at the same time before the support is impregnated with the aqueous solution, or may be supported after the silver is supported.

本発明の酸化エチレン製造用触媒としては、触媒成分としての銀とセシウムなどの反応促進剤とを担持したものが好ましい。銀および反応促進剤の担持量については特に制限はなく、酸化エチレンの製造に有効な量を担持すればよい。例えば銀の場合、その担持量は触媒の質量基準で1〜30質量%であり、好ましくは5〜20質量%である。また、反応促進剤の担持量は、触媒の質量基準で、通常、0.001〜2質量%、好ましくは0.01〜1質量%、より好ましくは0.01〜0.7質量%である。   As the catalyst for producing ethylene oxide of the present invention, a catalyst carrying silver as a catalyst component and a reaction accelerator such as cesium is preferable. There is no restriction | limiting in particular about the load of silver and reaction accelerator, What is necessary is just to carry | support the amount effective for manufacture of ethylene oxide. For example, in the case of silver, the supported amount is 1 to 30% by mass, preferably 5 to 20% by mass, based on the mass of the catalyst. The amount of the reaction accelerator supported is usually 0.001 to 2% by mass, preferably 0.01 to 1% by mass, more preferably 0.01 to 0.7% by mass, based on the mass of the catalyst. .

本発明における酸化エチレンの製造方法は、触媒として本発明の酸化エチレン製造用触媒を使用する点を除けば、従来から一般に用いられている方法によって行うことができる。   The method for producing ethylene oxide in the present invention can be carried out by a conventionally used method except that the catalyst for producing ethylene oxide of the present invention is used as a catalyst.

具体的には、例えば、エチレン0.5〜40容量%、好ましくは5〜30容量%、分子状酸素3〜10容量%、好ましくは4〜9容量%、炭酸ガス1〜30容量%、好ましくは1〜20容量%、残部が窒素、アルゴン、水蒸気などの不活性ガス、メタン、エタンなどの低級炭化水素類からなり、さらに反応抑制剤としての二塩化エチレン、塩化ジフェニルなどのハロゲン化物を0.1〜10ppm(容量)、好ましくは0.5〜5ppm(容量)含む原料ガスを1,000〜30,000hr−1(STP)、好ましくは3,000〜8,000hr−1(STP)の空間速度、2〜40kg/cmG、好ましくは10〜30kg/cmGの圧力、150〜300℃、好ましくは180〜280℃の温度で上記の酸化エチレン製造用触媒に接触させればよい。 Specifically, for example, ethylene 0.5 to 40% by volume, preferably 5 to 30% by volume, molecular oxygen 3 to 10% by volume, preferably 4 to 9% by volume, carbon dioxide gas 1 to 30% by volume, preferably Consists of 1 to 20% by volume, the balance being an inert gas such as nitrogen, argon or water vapor, and lower hydrocarbons such as methane or ethane, and further containing 0 halides such as ethylene dichloride and diphenyl chloride as reaction inhibitors. .1~10Ppm (volume), preferably 1,000~30,000hr a raw material gas containing 0.5~5Ppm (capacity) -1 (STP), preferably 3,000~8,000Hr -1 of (STP) space velocity, 2~40kg / cm 2 G, the pressure of preferably 10~30kg / cm 2 G, 150~300 ℃ , preferably above the production of ethylene oxide at a temperature of 180 to 280 ° C. It may be contacted with the catalyst.

本発明において使用される分子状酸素含有ガスとしては空気、酸素および富化空気が挙げられる。   The molecular oxygen-containing gas used in the present invention includes air, oxygen and enriched air.

以下、実施例および比較例を挙げて本発明を、さらに具体的に説明する。また、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。さらに、本実施例において、各種パラメータの測定は以下の手法により行われた。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Further, the technical scope of the present invention is not limited only to the following examples. Furthermore, in this example, various parameters were measured by the following method.

<担体の細孔分布スペクトル/細孔容積/平均細孔直径の測定>
水銀圧入法により測定した。具体的には、200℃にて少なくとも30分間脱気した担体をサンプルとし、測定装置としてオートポアIII9420W(株式会社島津製作所製)を用い、1.0〜60,000psiaの圧力範囲及び60個の測定ポイントで細孔分布スペクトル、細孔容積、および平均細孔直径を得た。
<Measurement of carrier pore distribution spectrum / pore volume / average pore diameter>
Measured by mercury intrusion method. Specifically, a carrier deaerated at 200 ° C. for at least 30 minutes is used as a sample, and Autopore III 9420W (manufactured by Shimadzu Corporation) is used as a measuring device, and a pressure range of 1.0 to 60,000 psia and 60 measurements are performed. The pore distribution spectrum, pore volume, and average pore diameter were obtained at points.

<担体中のシリカ含有量の測定>
蛍光X線分析法により測定した。
<Measurement of silica content in carrier>
Measured by fluorescent X-ray analysis.

<担体の比表面積の測定>
担体を粉砕した後、0.85〜1.2mmの粒径に分級したもの約0.2gを正確に秤量した。秤量したサンプルを200℃にて少なくとも30分間脱気し、BET(Brunauer−Emmet−Teller)法により測定した。
<Measurement of specific surface area of carrier>
After pulverizing the carrier, about 0.2 g classified to a particle size of 0.85 to 1.2 mm was accurately weighed. The weighed sample was deaerated at 200 ° C. for at least 30 minutes and measured by the BET (Brunauer-Emmet-Teller) method.

<担体の吸水率の測定>
日本工業規格(JIS R 2205(1998年度))に記載の方法に準拠して、以下の手法により測定した。
<Measurement of water absorption rate of carrier>
In accordance with the method described in Japanese Industrial Standard (JIS R 2205 (1998)), the measurement was performed by the following method.

a)破砕前の担体を、120℃に保温した乾燥機中に入れ、恒量に達した際の質量を秤量した(乾燥質量:W1(g))。   a) The carrier before crushing was placed in a drier kept at 120 ° C., and the mass when reaching a constant weight was weighed (dry mass: W1 (g)).

b)上記a)で秤量した担体を水中に沈めて30分間以上煮沸した後、室温の水中にて冷却し、飽水サンプルとした。   b) The carrier weighed in a) above was submerged in water and boiled for 30 minutes or more, and then cooled in room temperature water to obtain a saturated sample.

c)上記b)で得た飽水サンプルを水中から取り出し、湿布ですばやく表面を拭い、水滴を除去した後に秤量した(飽水サンプル質量:W2(g))。   c) The saturated sample obtained in the above b) was taken out from the water, and the surface was quickly wiped with a compress, and after removing water droplets, weighed (saturated sample mass: W2 (g)).

d)上記で得られたW1およびW2を用い、下記数式1に従って、吸水率を算出した。   d) The water absorption was calculated according to the following formula 1 using W1 and W2 obtained above.

Figure 2008086938
Figure 2008086938

なお、実施例および比較例に記載する転化率および選択率は、下記数式2および数式3により算出されたものである。   The conversion ratios and selectivities described in the examples and comparative examples are calculated by the following mathematical formulas 2 and 3.

Figure 2008086938
Figure 2008086938

なお、本実施例においては、以下の条件にて担体の赤外吸収スペクトルを測定した。   In this example, the infrared absorption spectrum of the carrier was measured under the following conditions.

<赤外吸収スペクトル測定条件>
(1) KBr300mg、測定する担体4mgをメノウ乳鉢で粉砕しながら十分に混合する。
<Infrared absorption spectrum measurement conditions>
(1) KBr (300 mg) and the carrier to be measured (4 mg) are mixed thoroughly while being crushed in an agate mortar.

(2) 混合粉体120mgを秤量し、錠剤成型機にセットし、真空ポンプで3分間脱気する。   (2) 120 mg of the mixed powder is weighed, set in a tablet molding machine, and degassed with a vacuum pump for 3 minutes.

(3) ついで、600kg/cmGの圧力をかけながら3分間脱気する(出来上がったサンプルは、直径10mmの円盤状)。 (3) Next, deaeration is performed for 3 minutes while applying a pressure of 600 kg / cm 2 G (the finished sample is a disk having a diameter of 10 mm).

(4) 円盤状のサンプルを赤外吸収スペクトル測定装置にセットし、110℃で1時間加熱する。   (4) A disk-shaped sample is set in an infrared absorption spectrum measuring apparatus and heated at 110 ° C. for 1 hour.

(5) サンプルを室温に戻してから積算回数100回、分解能4カイザーでサンプルの赤外吸収スペクトルを測定する(使用した赤外吸収スペクトル測定装置:VARIAN社製EXCALIBUR Series)。   (5) After the sample is returned to room temperature, the infrared absorption spectrum of the sample is measured 100 times with a resolution of 4 Kaiser (infrared absorption spectrum measurement apparatus used: EXCALIBUR Series manufactured by VARIAN).

実施例1
外径8mm、内径4mm、長さ8mmのα−アルミナを主成分とする担体(a)(SiO0.5質量%)1リットルに蒸留水1リットルを加え、常圧下に30分間煮沸洗浄した後、洗浄液を除去し、蒸留水で洗浄した。さらに、この煮沸洗浄を2回繰り返した後、120℃で3時間乾燥した。
Example 1
1 liter of distilled water was added to 1 liter of carrier (a) (SiO 2 0.5% by mass) of α-alumina having an outer diameter of 8 mm, an inner diameter of 4 mm, and a length of 8 mm as a main component, followed by boiling and washing for 30 minutes under normal pressure. Thereafter, the washing solution was removed and washed with distilled water. Furthermore, after this boiling washing was repeated twice, it was dried at 120 ° C. for 3 hours.

シュウ酸銀52.0g、硝酸セシウム0.37gおよび蒸留水100mlを均一に混合してスラリーを調製し、これを水浴中で冷却しながらエチレンジアミン25mlを加え、銀含有溶液を調製した。沸騰した水浴上に設置した蒸発皿に、予め100℃に加熱した担体(a)を200g投入し、ついで銀含有溶液を加えて撹拌しながら蒸発乾固した。ついで、熱風乾燥機を用いて空気気流中で400℃で20分加熱処理を行なった。さらに、これを窒素雰囲気中にて550℃で3時間加熱処理し、触媒(A)を得た。触媒中の銀含有率は15質量%であった。   A slurry was prepared by uniformly mixing 52.0 g of silver oxalate, 0.37 g of cesium nitrate and 100 ml of distilled water, and 25 ml of ethylenediamine was added while cooling this in a water bath to prepare a silver-containing solution. 200 g of carrier (a) previously heated to 100 ° C. was put into an evaporating dish placed on a boiling water bath, and then the silver-containing solution was added and evaporated to dryness while stirring. Next, heat treatment was performed at 400 ° C. for 20 minutes in an air stream using a hot air dryer. Furthermore, this was heat-processed at 550 degreeC for 3 hours in nitrogen atmosphere, and the catalyst (A) was obtained. The silver content in the catalyst was 15% by mass.

使用した担体(a)について、赤外吸収スペクトルを測定したところ、波数3,150〜3,800cm−1の範囲には赤外吸収スペクトルは認められなかった。担体(a)の赤外吸収スペクトルを図2に示した。また、担体(a)の物性を表1にまとめた。 When the infrared absorption spectrum of the carrier (a) used was measured, no infrared absorption spectrum was observed in the range of wave numbers of 3,150 to 3,800 cm −1 . The infrared absorption spectrum of the carrier (a) is shown in FIG. The physical properties of the carrier (a) are summarized in Table 1.

実施例2〜4
実施例1において、担体(a)の代わりに、担体(b)、担体(c)および担体(d)をそれぞれ用い、硝酸セシウムの添加量をそれぞれ0.43g、0.40gおよび0.67gとした以外は、実施例1と同様にして触媒(B)、触媒(C)および触媒(D)を得た。触媒(B)に使用した担体(b)、触媒(C)に使用した担体(c)および触媒(D)に使用した担体(d)の物性を表1にまとめた。
Examples 2-4
In Example 1, instead of the carrier (a), the carrier (b), the carrier (c) and the carrier (d) were used, respectively, and the addition amounts of cesium nitrate were 0.43 g, 0.40 g and 0.67 g, respectively. A catalyst (B), a catalyst (C) and a catalyst (D) were obtained in the same manner as in Example 1 except that. Table 1 summarizes the physical properties of the carrier (b) used for the catalyst (B), the carrier (c) used for the catalyst (C), and the carrier (d) used for the catalyst (D).

比較例1
実施例1において、担体(a)の代わりに、担体(e)を用いた以外は、実施例1と同様にして触媒(E)を得た。使用した担体(e)についての赤外吸収スペクトルを測定したところ、波数3,150〜3,800cm−1の範囲に赤外吸収ピークを認めた。担体(e)の赤外吸収スペクトルを図3に示した。また、担体(e)の物性を表1にまとめた。
Comparative Example 1
In Example 1, catalyst (E) was obtained in the same manner as in Example 1 except that support (e) was used instead of support (a). When an infrared absorption spectrum of the carrier (e) used was measured, an infrared absorption peak was observed in the wave number range of 3,150 to 3,800 cm −1 . The infrared absorption spectrum of the carrier (e) is shown in FIG. The physical properties of the carrier (e) are summarized in Table 1.

比較例2〜4
実施例2〜4において、担体(b)の代わりに担体(f)、担体(c)の代わりに担体(g)および担体(d)の代わりに担体(h)をそれぞれ用いた以外は、実施例2、実施例3および実施例4と同様にして触媒(F)、触媒(G)および触媒(H)を得た。触媒(F)に使用した担体(f)、触媒(G)に使用した担体(g)および触媒(H)に使用した担体(h)の物性を表1にまとめた。
Comparative Examples 2-4
Examples 2 to 4 were carried out except that the carrier (f) was used instead of the carrier (b), the carrier (g) was used instead of the carrier (c), and the carrier (h) was used instead of the carrier (d). Catalyst (F), catalyst (G) and catalyst (H) were obtained in the same manner as in Example 2, Example 3 and Example 4. Table 1 summarizes the physical properties of the carrier (f) used for the catalyst (F), the carrier (g) used for the catalyst (G), and the carrier (h) used for the catalyst (H).

実施例5〜6
実施例1において、担体(a)の代わりに、担体(i)および担体(j)をそれぞれ用い、硝酸セシウムの添加量をそれぞれ0.25gおよび0.20gとした以外は、実施例1と同様にして触媒(I)および触媒(J)を得た。触媒(I)に使用した担体(i)および触媒(J)に使用した担体(j)の物性を表1にまとめた。
Examples 5-6
In Example 1, instead of the carrier (a), the carrier (i) and the carrier (j) were used, respectively, and the addition amount of cesium nitrate was changed to 0.25 g and 0.20 g, respectively, as in Example 1. Thus, catalyst (I) and catalyst (J) were obtained. Table 1 summarizes the physical properties of the support (i) used for the catalyst (I) and the support (j) used for the catalyst (J).

実施例7
実施例1〜6および比較例1〜4にて得られた(A)〜(J)をそれぞれ粉砕し、600〜850メッシュに篩い分け、その1.2gを内径3mm、管長600mmのステンレス銅製の反応管に充填し、下記条件下にてエチレンの気相酸化反応をそれぞれ行なった。エチレン転化率が10%のときの選択率および反応温度を表2に示した。
Example 7
(A) to (J) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 were pulverized and sieved to 600 to 850 mesh, 1.2 g of which was made of stainless copper having an inner diameter of 3 mm and a tube length of 600 mm. The reaction tube was filled, and ethylene gas phase oxidation reaction was performed under the following conditions. Table 2 shows the selectivity and reaction temperature when the ethylene conversion was 10%.

<エチレンの気相酸化反応条件>
空間速度:6,000hr−1
反応圧力:20kg/cm
原料ガス:エチレン23容量%、酸素7.8容量%、二酸化炭素7容量%、
エチレンジクロリド2.0ppmおよび残余(メタン、窒素、
アルゴンおよびエタン)。
<Gas oxidation reaction conditions for ethylene>
Space velocity: 6,000 hr −1 ,
Reaction pressure: 20 kg / cm 2
Raw material gas: ethylene 23% by volume, oxygen 7.8% by volume, carbon dioxide 7% by volume,
2.0 ppm ethylene dichloride and the balance (methane, nitrogen,
Argon and ethane).

Figure 2008086938
Figure 2008086938

Figure 2008086938
Figure 2008086938

本発明で使用されるα−アルミナを主成分とする担体の赤外吸収ピーク高さの求め方に用いられるグラフである。It is a graph used for the method of calculating | requiring the infrared absorption peak height of the support | carrier which has (alpha) -alumina as a main component used by this invention. 実施例1で酸化エチレン製造用触媒(A)に使用した担体(a)の赤外吸収スペクトルを示すグラフである。2 is a graph showing an infrared absorption spectrum of a carrier (a) used for an ethylene oxide production catalyst (A) in Example 1. FIG. 比較例1で酸化エチレン製造用触媒(E)に使用した担体(e)の赤外吸収スペクトルを示すグラフである。2 is a graph showing an infrared absorption spectrum of a carrier (e) used for a catalyst (E) for ethylene oxide production in Comparative Example 1. FIG.

Claims (4)

KBr錠剤法で測定された赤外吸収スペクトルにおいて、波数3,150〜3,800cm−1の領域における赤外吸収スペクトルが実質的にゼロであるα−アルミナを主成分とする担体に銀を担持してなる酸化エチレン製造用触媒。 In the infrared absorption spectrum measured by the KBr tablet method, silver is supported on a carrier mainly composed of α-alumina whose infrared absorption spectrum in the region of wave numbers 3,150 to 3,800 cm −1 is substantially zero. A catalyst for producing ethylene oxide. 該担体の波数3,150〜3,800cm−1の領域における赤外吸収スペクトルのピークの高さが0.1以下である請求項1に記載の触媒。 2. The catalyst according to claim 1, wherein the peak height of the infrared absorption spectrum in the region of wave number 3,150 to 3,800 cm −1 of the carrier is 0.1 or less. 該担体のSiO含有率が0.1〜2質量%である請求項1または2に記載の触媒。 The catalyst according to claim 1 or 2, wherein the support has a SiO2 content of 0.1 to 2 mass%. 請求項1〜3のいずれか一つに記載の触媒の存在下にエチレンを分子状酸素含有ガスにより気相酸化することを特徴とする酸化エチレンの製造方法。   A method for producing ethylene oxide, comprising subjecting ethylene to gas phase oxidation with a molecular oxygen-containing gas in the presence of the catalyst according to any one of claims 1 to 3.
JP2006272311A 2006-10-03 2006-10-03 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst Expired - Fee Related JP4747066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272311A JP4747066B2 (en) 2006-10-03 2006-10-03 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272311A JP4747066B2 (en) 2006-10-03 2006-10-03 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Publications (2)

Publication Number Publication Date
JP2008086938A true JP2008086938A (en) 2008-04-17
JP4747066B2 JP4747066B2 (en) 2011-08-10

Family

ID=39371645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272311A Expired - Fee Related JP4747066B2 (en) 2006-10-03 2006-10-03 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Country Status (1)

Country Link
JP (1) JP4747066B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898144A (en) * 1981-12-08 1983-06-10 Mitsubishi Petrochem Co Ltd Silver catalyst for preparing ethylene oxide
JPH11314034A (en) * 1998-02-20 1999-11-16 Nippon Shokubai Co Ltd Silver catalyst for manufacturing ethyleneoxide, manufacture thereof and manufacture of ethylene oxide
JP2005000781A (en) * 2003-06-11 2005-01-06 Nippon Shokubai Co Ltd Catalyst for epoxide production, manufacturing method therefor and method for producing epoxide
JP2005052839A (en) * 1998-02-20 2005-03-03 Nippon Shokubai Co Ltd Production method of ethylene oxide
JP2005518927A (en) * 2002-03-01 2005-06-30 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Preparation of ethylene oxide catalyst support
JP2008086877A (en) * 2006-09-29 2008-04-17 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide and manufacturing method of ethylene oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898144A (en) * 1981-12-08 1983-06-10 Mitsubishi Petrochem Co Ltd Silver catalyst for preparing ethylene oxide
JPH11314034A (en) * 1998-02-20 1999-11-16 Nippon Shokubai Co Ltd Silver catalyst for manufacturing ethyleneoxide, manufacture thereof and manufacture of ethylene oxide
JP2005052839A (en) * 1998-02-20 2005-03-03 Nippon Shokubai Co Ltd Production method of ethylene oxide
JP2005518927A (en) * 2002-03-01 2005-06-30 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Preparation of ethylene oxide catalyst support
JP2005000781A (en) * 2003-06-11 2005-01-06 Nippon Shokubai Co Ltd Catalyst for epoxide production, manufacturing method therefor and method for producing epoxide
JP2008086877A (en) * 2006-09-29 2008-04-17 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide and manufacturing method of ethylene oxide

Also Published As

Publication number Publication date
JP4747066B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4267015B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP4172827B2 (en) Method for producing ethylene oxide catalyst
US11400437B2 (en) Catalyst for the oxidation of ethylene to ethylene oxide
JPS5929293B2 (en) Method for producing silver-supported catalyst for producing ethylene oxide
KR102203848B1 (en) Method for the production of ethylene oxide
JP5576607B2 (en) Catalyst for producing alkylene oxide, method for producing the same, and method for producing alkylene oxide using the catalyst
JP5566881B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP4747066B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP5570277B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2009241003A (en) Manufacturing method of catalyst for producing ethylene oxide
JP4726349B2 (en) Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide using the catalyst
WO2022161924A1 (en) Epoxidation catalyst
JP5033522B2 (en) Catalyst for producing epoxide and method for producing epoxide
TW200613056A (en) A process for preparing a silver catalyst, the catalyst, and a use of the catalyst for olefin oxidation
JP4001429B2 (en) Silver catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide
JP4354060B2 (en) Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide
JP6033124B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5165441B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP5581058B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5606255B2 (en) Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP5388925B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
CN112439399B (en) Alpha-alumina carrier, preparation method, silver catalyst and application
JP2005052839A (en) Production method of ethylene oxide
JP5328452B2 (en) Catalyst support for ethylene oxide production, catalyst for ethylene oxide production, and method for producing ethylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees