JP2008076386A - Method for diagnosing deterioration of concrete structure - Google Patents

Method for diagnosing deterioration of concrete structure Download PDF

Info

Publication number
JP2008076386A
JP2008076386A JP2007213603A JP2007213603A JP2008076386A JP 2008076386 A JP2008076386 A JP 2008076386A JP 2007213603 A JP2007213603 A JP 2007213603A JP 2007213603 A JP2007213603 A JP 2007213603A JP 2008076386 A JP2008076386 A JP 2008076386A
Authority
JP
Japan
Prior art keywords
concrete
value
wave
electromagnetic wave
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007213603A
Other languages
Japanese (ja)
Other versions
JP4936387B2 (en
Inventor
Yoshihiro Yamashita
善弘 山下
Satoshi Maekawa
聡 前川
Keimei Ozawa
啓明 小澤
Shuichi Okamoto
修一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Oyo Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Taisei Corp
Tokyo Electric Power Co Inc
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Tokyo Electric Power Co Inc, Oyo Corp filed Critical Taisei Corp
Priority to JP2007213603A priority Critical patent/JP4936387B2/en
Publication of JP2008076386A publication Critical patent/JP2008076386A/en
Application granted granted Critical
Publication of JP4936387B2 publication Critical patent/JP4936387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To grasp deterioration states, such as being made muddy and being made porous, of a surface and an inside of a concrete structure facially and objectively. <P>SOLUTION: Reflected wave data corresponding to locations in the flat surface coordinates is recorded by scanning an electromagnetic wave radar which transmits electromagnetic waves from a transmitting antenna and also receives reflected waves along a number of measuring lines which are set facially on the surface of the concrete structure; for each reflected data, (1) surface analysis for two-dimensionally grasping surface degradation places with each great attenuation factor in electromagnetic wave amplitude is carried out by extracting direct waves in the close proximity to the concrete surface to determine a maximum amplitude value and then preparing the plane distribution chart and (2) internal analysis for two-dimensionally grasping surface degradation places with each great degree of scattered waves is carried out by determining the RMS value of each amplitude value of scattered waves from the inside of the concrete and then preparing the plane distribution chart; and, thus, with the combination of the results of the analyses (1) and (2) above, the degradation states of the surface and the inside of the concrete is diagnosed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電磁波レーダを用いるコンクリート構造物の劣化診断方法に関し、更に詳しく述べると、反射波形の解析により表面及び内部の劣化状況を同時に且つ面的に把握できるようにしたコンクリート構造物の劣化診断方法に関するものである。この技術は、例えば経年変化が進んだ導水路トンネルなどの覆工コンクリートの劣化診断に有用である。   The present invention relates to a method for diagnosing deterioration of a concrete structure using an electromagnetic wave radar. More specifically, the deterioration diagnosis of a concrete structure which enables the surface and internal deterioration conditions to be grasped simultaneously and planely by analyzing reflected waveforms. It is about the method. This technique is useful, for example, for diagnosing deterioration of lining concrete such as a waterway tunnel that has changed over time.

導水路トンネルなどでは、通常、覆工にコンクリートが用いられている。長期間にわたり使用が続くと、経年変化が著しい箇所においては変質・劣化が生じてくる。即ち、覆工コンクリート表面での泥濘化、覆工内部におけるポーラス化などである。このような変質・劣化は強度不足の大きな要因となる。劣化箇所を的確に把握できれば、営繕工事を進める上で極めて有利であり、維持管理計画に貢献できる可能性が高い。   Concrete is usually used for lining in conduit tunnels. If the product is used for a long period of time, it will be altered and deteriorated in places where the secular change is remarkable. That is, mudification on the surface of the lining concrete, porous formation inside the lining, and the like. Such alteration / deterioration is a major cause of insufficient strength. If the deterioration location can be accurately grasped, it is extremely advantageous in proceeding with the repair work, and is likely to contribute to the maintenance management plan.

従来、このようなコンクリート劣化状況の調査では、表面の変色部や変状部を目視観察し、その変色部や変状部の分布を面的に把握する方法が採用されている。また、コンクリート内部の劣化については、打音法や赤外線法による検査が行われることが多い。しかし通常行われている打音法は、測定者が音を聞き分けて判定するため、打音検査の判定結果に客観性が乏しい場合があり、測定が非効率であるばかりでなく、記録が残らないという問題がある。また赤外線法は、加熱源が必要になり測定装置が大掛かりになる他、深度10cm〜20cm以深では検出困難である。   Conventionally, in the investigation of the concrete deterioration state, a method of visually observing a discolored portion and a deformed portion on the surface and grasping the distribution of the discolored portion and the deformed portion in a plane is adopted. In addition, the deterioration inside the concrete is often inspected by a sounding method or an infrared method. However, in the conventional sounding method, since the measurer listens to the sound and makes a judgment, the judgment result of the sounding test may be less objective, and the measurement is not only inefficient, but also a record remains. There is no problem. The infrared method requires a heating source and requires a large measuring device, and is difficult to detect at a depth of 10 cm to 20 cm or deeper.

ところで周知のように、地下構造を調査する機器として電磁波レーダ(地中レーダ)がある。この電磁波レーダは、測線沿いの連続測定を効率的に行うことが可能なため、構造物全体を検査するのに適しており、しかも探査可能深度も深く、定量的な解析が可能なため、地中探査のみならず、コンクリート構造物の調査にも応用されている。しかし従来の使用方法は、単一測線での測定データを用いてトンネル覆工厚・背面空洞及び鉄筋のかぶりと位置、あるいは支保工の深度と位置などを求める場合がほとんどである。   As is well known, there is an electromagnetic wave radar (underground radar) as a device for investigating an underground structure. This electromagnetic wave radar can perform continuous measurement along the survey line efficiently, so it is suitable for inspecting the entire structure, and has a deep exploration depth and enables quantitative analysis. It is applied not only to medium exploration but also to investigation of concrete structures. However, most of the conventional methods of use are to determine the tunnel lining thickness, the back cavity and the cover and position of the reinforcing bar, or the depth and position of the support work using the measurement data on a single line.

ところが最近、電磁波の振幅・反射率からコンクリートの内部欠陥を検出することが試みられている(特許文献1参照)。これは、内部欠陥の性状の相違により、その内部欠陥の境界(健全部と欠陥部との境界)での反射率が異なり、結果として反射波振幅の減衰度合いが異なることを利用するものである。内部欠陥の境界からの反射波に関する時間−振幅関係からコンクリート内部に隠れている空洞、ジャンカ、低強度コンクリートのような欠陥の種別と深さ又は厚みなどを判定する。   Recently, however, attempts have been made to detect internal defects in concrete from the amplitude and reflectance of electromagnetic waves (see Patent Document 1). This utilizes the fact that the reflectance at the boundary of the internal defect (boundary between the healthy part and the defective part) differs depending on the difference in the properties of the internal defect, and as a result, the degree of attenuation of the reflected wave amplitude is different. . From the time-amplitude relationship with respect to the reflected wave from the boundary of the internal defect, the type and depth or thickness of the defect such as a cavity, jumper or low-strength concrete hidden inside the concrete is determined.

しかし、この技術は、健全部と内部欠陥との境界での反射波の振幅と位置を検出する方法であるから、内部欠陥の境界が明確でないと検出が難しい。また内部欠陥の分布状況を2次元的あるいは3次元的に捉えようとするものではない。
特開2005−43197号公報
However, since this technique is a method of detecting the amplitude and position of the reflected wave at the boundary between the healthy part and the internal defect, detection is difficult unless the boundary of the internal defect is clear. Also, it does not attempt to capture the distribution of internal defects in a two-dimensional or three-dimensional manner.
JP 2005-43197 A

本発明が解決しようとする課題は、コンクリート構造物の表面及び内部における泥濘化やポーラス化などの劣化状況を面的に客観的に把握できるようにすることである。本発明が解決しようとする他の課題は、一般に暗く狭い環境での作業になるトンネル覆工コンクリートなどの劣化状況の調査を効率よく実施できるようにすることである。   The problem to be solved by the present invention is to make it possible to objectively grasp the state of deterioration such as mud and porous on the surface and inside of a concrete structure. Another problem to be solved by the present invention is to enable efficient investigation of deterioration conditions of tunnel lining concrete or the like which is generally performed in a dark and narrow environment.

本発明は、送信アンテナから電磁波を放射すると共に反射波を受信アンテナで受信する電磁波レーダを、コンクリート構造物の表面上で面的に設定した多数本の測線に沿って走査して平面座標位置に対応した反射波データを記録し、各反射波データについて、
(1)コンクリート表面近傍からの直接波を抽出して振幅最大値を求め、その平面分布図を作成することで電磁波振幅の減衰度が大きい表面劣化箇所を2次元的に把握する表面解析、
(2)コンクリート内部からの散乱波の振幅値のRMS値を求め、その平面分布図を作成することで電磁波散乱度の大きい内部劣化箇所を2次元的に把握する内部解析、
を行い、上記(1)及び(2)の結果を組み合わせて、表面及び内部のコンクリートの劣化状況を面的に把握可能としたことを特徴とするコンクリート構造物の劣化診断方法である。なお、RMSは振幅の2乗和の平均の平方根であり、一種の波形エネルギーを表している。これは、受振波形の数が多いほど、あるいは振幅が大きいほど、大きな値になる。
The present invention scans an electromagnetic wave radar that radiates an electromagnetic wave from a transmitting antenna and receives a reflected wave by a receiving antenna along a plurality of measurement lines set in a plane on the surface of a concrete structure to a plane coordinate position. Record the corresponding reflected wave data, and for each reflected wave data,
(1) Surface analysis to obtain two-dimensional surface degradation points where the attenuation of electromagnetic wave amplitude is large by extracting the direct wave from the concrete surface and obtaining the maximum amplitude value and creating a plane distribution map
(2) Internal analysis to obtain the two-dimensional internal degradation point where the degree of electromagnetic wave scattering is large by obtaining the RMS value of the amplitude value of the scattered wave from inside the concrete and creating a plane distribution map
This is a method for diagnosing deterioration of a concrete structure characterized in that the results of (1) and (2) above are combined to make it possible to grasp the deterioration state of concrete on the surface and inside. Note that RMS is an average square root of the sum of squared amplitudes, and represents a kind of waveform energy. This value increases as the number of received waveforms increases or the amplitude increases.

表面解析では、反射波データで、コンクリート表面から直接波が終了する深度までの範囲の時間窓を設定し、その時間窓に含まれる波形振幅値の絶対値の最大値を求め、その最大値をその波形の直接波減衰度の代表値とする。また内部解析では、反射波データで散乱波を含むように時間軸に沿って時間窓を設定し、その時間窓に含まれる波形振幅値のRMS値を求め、そのRMS値をその波形の電磁波散乱度の代表値とするのがよい。ここで内部解析において、反射波データで散乱波を含むと考えられる範囲内で、時間軸に沿って時間窓を複数設定し、各時間窓に含まれる波形振幅値のRMS値を求め、そのRMS値を、その時間窓での電磁波散乱度の代表値とすると、深度方向にも連続した3次元データを作成することができる。   In the surface analysis, a time window in the range from the concrete surface to the depth at which the direct wave ends is set with the reflected wave data, the maximum value of the absolute value of the waveform amplitude value included in the time window is obtained, and the maximum value is calculated. The representative value of the direct wave attenuation of the waveform is used. In the internal analysis, a time window is set along the time axis so as to include the scattered wave in the reflected wave data, the RMS value of the waveform amplitude value included in the time window is obtained, and the RMS value is used as the electromagnetic wave scattering of the waveform. It is recommended to use a representative value. Here, in the internal analysis, a plurality of time windows are set along the time axis within a range in which the reflected wave data is considered to include the scattered wave, and the RMS value of the waveform amplitude value included in each time window is obtained. When the value is a representative value of the electromagnetic wave scattering degree in the time window, three-dimensional data continuous in the depth direction can be created.

本発明による劣化診断方法が有効なコンクリート構造物として、代表的な例にはトンネル覆工がある。その場合、内部解析では、反射波データで、直接波が終了する深度から覆工背面深度まで、もしくは直接波が終了する深度から電磁波周波数により決まる最大探査深度まで、のいずれか狭い範囲を計算範囲に設定し、その計算範囲に含まれる波形振幅値のRMS値を求め、そのRMS値をその波形の電磁波散乱度の代表値とするのがよい。   A typical example of a concrete structure in which the deterioration diagnosis method according to the present invention is effective is a tunnel lining. In that case, in the internal analysis, in the reflected wave data, the calculation range is the narrowest range from the depth at which the direct wave ends to the lining back depth, or from the depth at which the direct wave ends to the maximum exploration depth determined by the electromagnetic wave frequency. The RMS value of the waveform amplitude value included in the calculation range is obtained, and the RMS value is preferably used as the representative value of the electromagnetic wave scattering degree of the waveform.

本発明では、中心周波数の異なる電磁波を送受する送信アンテナと受信アンテナの対を複数並設した複合アンテナ・システムを、コンクリート構造物の表面上で面的に設定した多数本の測線に沿って走査して、中心周波数の異なる電磁波の平面座標位置に対応した反射波データを同時に記録するように構成するのが好ましい。具体的には、例えば中心周波数が数百MHz〜千数百MHzの範囲内で異なる高低2種類のアンテナを並設したデュアル・アンテナ・システムを使用し、中心周波数が低い方の(典型的には400MHz用)アンテナの反射データから覆工厚を読み取り、中心周波数が高い方の(典型的には900MHz用又は1500MHz用)アンテナで覆工内部のRMS値を求める。これによって覆工コンクリート内部の劣化を診断することができる。更に、上記の覆工厚と、中心周波数が低い方の(典型的には400MHz用)アンテナで求めた覆工背面のRMS値を加味し総合的に判断することでトンネルの健全度を評価することができる。   In the present invention, a complex antenna system in which a plurality of pairs of transmitting antennas and receiving antennas that transmit and receive electromagnetic waves having different center frequencies are arranged in parallel along a plurality of survey lines set in a plane on the surface of a concrete structure. Thus, it is preferable that the reflected wave data corresponding to the plane coordinate positions of the electromagnetic waves having different center frequencies are recorded simultaneously. Specifically, for example, a dual antenna system in which two types of high and low antennas having different center frequencies in the range of several hundred MHz to several hundreds of MHz are used side by side is used. Reads the lining thickness from the reflection data of the antenna, and obtains the RMS value inside the lining with the antenna having the higher center frequency (typically for 900 MHz or 1500 MHz). As a result, deterioration inside the lining concrete can be diagnosed. Further, the soundness of the tunnel is evaluated by comprehensively judging the above lining thickness and the RMS value of the lining back surface obtained with the antenna having a lower center frequency (typically for 400 MHz). be able to.

本発明に係るコンクリート構造物の劣化診断方法は、電磁波の反射波データのうち、直接波の振幅最大値を求め平面分布図を作成して、電磁波振幅の減衰度が大きい箇所を2次元的に把握することで表面劣化の解析ができ、また散乱波の振幅値のRMS値を求め平面分布図を作成して、電磁波散乱度の大きい箇所を2次元的に把握することで内部劣化の解析ができる。これらによって、コンクリート構造物の表面及び内部の泥濘化やポーラス化などによる劣化状況を同時に客観的に把握することができ、それら劣化状況の面的な分布を取得することができる。   The method for diagnosing deterioration of a concrete structure according to the present invention obtains a maximum amplitude value of a direct wave from reflected wave data of an electromagnetic wave, creates a plane distribution map, and two-dimensionally identifies a portion where the attenuation degree of the electromagnetic wave amplitude is large. By grasping it, surface degradation can be analyzed, and by calculating the RMS value of the amplitude of the scattered wave, creating a plane distribution map, and analyzing the internal degradation by two-dimensionally grasping the part where the electromagnetic wave scattering degree is large it can. As a result, it is possible to simultaneously objectively grasp the deterioration state of the concrete structure due to mud and porous, and to obtain a surface distribution of the deterioration state.

特にトンネル覆工の場合、一般に暗く狭い環境での作業になるが、デュアル・アンテナ・システムを備えている小型の電磁波レーダを走査するだけで実施できる本発明方法は、覆工厚や支保部材の配置などの大まかな状況と詳細な内部劣化状況の両方を、同時に同一測線上で把握できるため、極めて有効である。   In particular, in the case of tunnel lining, the work is generally performed in a dark and narrow environment, but the method of the present invention, which can be carried out only by scanning a small electromagnetic wave radar equipped with a dual antenna system, is suitable for lining thickness and supporting members. It is extremely effective because it can grasp both the rough situation such as arrangement and detailed internal deterioration situation on the same line at the same time.

本発明方法をトンネル覆工コンクリートの劣化診断に適用した場合を例にとって、図1により説明する。図1のAに示すように、トンネル覆工のコンクリート壁面10の表面上で上下方向の測線12(点線矢印で示す)を多数本、所定の間隔で平行に設定する。ここでは測線を上下方向に設定しているが、現場状況によっては水平方向に設定してもよいことは言うまでもない。そして、電磁波レーダ14を、面的に設定した前記測線12に沿って白抜き矢印方向に移動し順次走査する。送信アンテナTと受信アンテナRを測線に沿って配置して、送信アンテナTから電磁波を放射すると共に反射波を受信アンテナRで受信し、受信した反射波データ(往復伝播時間に対する反射波振幅)を、その測定点での平面座標位置と共に記録する。これを繰り返すことによって、調査が必要なコンクリート壁面全体にわたって、平面座標位置と反射波データの組を多数取得する面的な測定を行う。   An example in which the method of the present invention is applied to deterioration diagnosis of tunnel lining concrete will be described with reference to FIG. As shown in FIG. 1A, a number of vertical measurement lines 12 (indicated by dotted arrows) are set in parallel at predetermined intervals on the surface of the concrete wall 10 of the tunnel lining. Here, the survey line is set in the vertical direction, but it goes without saying that it may be set in the horizontal direction depending on the field situation. Then, the electromagnetic wave radar 14 is moved in the direction of the white arrow along the measurement line 12 set in a plane and sequentially scanned. The transmitting antenna T and the receiving antenna R are arranged along the measuring line, the electromagnetic wave is radiated from the transmitting antenna T and the reflected wave is received by the receiving antenna R, and the received reflected wave data (the reflected wave amplitude with respect to the round trip propagation time) is received. , And record with the plane coordinate position at the measurement point. By repeating this, planar measurement is performed to acquire a large number of sets of plane coordinate positions and reflected wave data over the entire concrete wall surface to be investigated.

取得した各反射波データについて、(1)表面解析を行う。まず、反射波データのなかからコンクリート表面近傍からの直接波を抽出する。そして、抽出した直接波の振幅最大値を求める。この作業を、面的に測定した全ての反射波データについて行う。平面座標位置と対応させることで、抽出した振幅最大値の平面分布図を作成し、図1のBに示すように、平面的に見た状態での直接波振幅の小さい箇所(電磁波振幅の減衰度が大きい箇所)を抽出する。減衰度が小さい領域が健全部20であり、減衰度が大きい領域が表面劣化部22となる。   For each acquired reflected wave data, (1) surface analysis is performed. First, direct waves from the vicinity of the concrete surface are extracted from the reflected wave data. Then, the maximum amplitude value of the extracted direct wave is obtained. This operation is performed for all reflected wave data measured in a plane. A plane distribution map of the extracted maximum amplitude value is created by making it correspond to the plane coordinate position, and as shown in FIG. 1B, a portion where the direct wave amplitude is small (attenuation of electromagnetic wave amplitude when viewed in a plane) Extract a location with a large degree). A region where the degree of attenuation is small is the healthy part 20, and a region where the degree of attenuation is large becomes the surface deteriorated part 22.

また各反射波データについて、(2)内部解析を行う。まず、反射波データのなかからコンクリート内部からの散乱波を抽出する。そして、それらのRMS値を求める。この作業を、面的に測定した全ての反射波データについて行う。平面座標位置と対応させることで、RMS値の平面分布図を作成し、図1のCに示すように、平面的に透視した状態での散乱波RMS値の大きい箇所(電磁波散乱度の大きい箇所)を抽出する。散乱度が小さい領域が健全部20であり、散乱度が大きい領域が内部劣化部24となる。   For each reflected wave data, (2) internal analysis is performed. First, the scattered wave from the inside of the concrete is extracted from the reflected wave data. Then, the RMS value is obtained. This operation is performed for all reflected wave data measured in a plane. A plane distribution map of the RMS value is created by making it correspond to the plane coordinate position, and as shown in C of FIG. 1, a portion having a large scattered wave RMS value in a state seen through in a plane (a portion having a high degree of electromagnetic wave scattering) ). A region having a small scattering degree is the healthy part 20, and a region having a large scattering degree is the internal degradation part 24.

そこで、上記(1)の表面解析及び(2)の内部解析の結果を組み合わせることで、図1のDに示すように、平面的に透視した状態でコンクリートの表面及び内部における劣化状況が面的に把握可能となる。これによって、健全部20、表面劣化部22、内部劣化部24、表面及び内部劣化部26の面的な領域を特定することができる。   Therefore, by combining the results of the surface analysis of (1) and the internal analysis of (2), as shown in FIG. It becomes possible to grasp. As a result, the planar areas of the healthy part 20, the surface deteriorated part 22, the internal deteriorated part 24, the surface and the internal deteriorated part 26 can be specified.

なお、上記の(1)及び(2)は便宜上付した符号であり、処理の順序を示すものではない。(1)の表面解析を先に行ってもよいし、(2)の内部解析を先に行ってもよい。勿論、(1)と(2)の解析を同時並行して処理してもよい。   In addition, said (1) and (2) are the code | symbol attached | subjected for convenience, and do not show the order of a process. The surface analysis of (1) may be performed first, or the internal analysis of (2) may be performed first. Of course, the analyzes of (1) and (2) may be processed in parallel.

次に、測定点での電磁波反射の挙動の例を図2により説明する。送信アンテナからコンクリート壁面10に向けて電磁波が放射される。そして放射された電磁波は、一部が表面近傍を送信アンテナから受信アンテナへと伝播し、直接波として受信される。図2のAに示すように、コンクリート表面近傍が健全であれば、表面近傍を伝播する直接波の振幅は大きい。また放射電磁波は、透過波として覆工コンクリート内を進む。透過波は、覆工コンクリート内での状況に応じて反射・散乱を生じ、それらも受信アンテナで受信される。覆工コンクリートの内部も健全であれば、内部での散乱は少ない。   Next, an example of the behavior of electromagnetic wave reflection at the measurement point will be described with reference to FIG. An electromagnetic wave is radiated from the transmitting antenna toward the concrete wall surface 10. A part of the radiated electromagnetic wave propagates in the vicinity of the surface from the transmitting antenna to the receiving antenna and is received as a direct wave. As shown in FIG. 2A, if the vicinity of the concrete surface is healthy, the amplitude of the direct wave propagating near the surface is large. The radiated electromagnetic wave travels through the lining concrete as a transmitted wave. The transmitted wave is reflected and scattered depending on the situation in the lining concrete, and these are also received by the receiving antenna. If the inside of the lining concrete is also healthy, there will be little scattering inside.

図2のBに示すように、もしコンクリート壁面に泥濘化などによる表面劣化部22があれば、表面劣化部の導電率が比較的大きくなり、電磁波の吸収が大きくなるために、直接波の振幅が小さくなる(減衰度が大きくなる)。直接波の減衰度によって、目視などに頼ることなく表面劣化部22の検知を行うことができる。また、図2のCに示すように、コンクリートにポーラス化などによる内部劣化部24があれば、ある幅をもって反射面が多数存在していることになるから、内部劣化部24を通った波は乱反射する。コンクリート内部で乱反射した反射波(散乱波)の振幅値のRMS値で代表させることで、内部劣化部24の検知を行うことができる。   As shown in FIG. 2B, if the concrete wall has a surface deteriorated portion 22 due to mudification, the conductivity of the surface deteriorated portion becomes relatively large and the absorption of electromagnetic waves increases, so that the amplitude of the direct wave Becomes smaller (the degree of attenuation becomes larger). The surface degradation portion 22 can be detected without depending on visual observation or the like due to the attenuation of the direct wave. Further, as shown in FIG. 2C, if the concrete has an internally deteriorated portion 24 due to porous or the like, a large number of reflecting surfaces exist with a certain width. Diffuse reflection. By representing the RMS value of the amplitude value of the reflected wave (scattered wave) diffusely reflected inside the concrete, the internal deterioration portion 24 can be detected.

図3は、反射波データの一例を示している。これは往復伝播時間に対する振幅の変化を表す波形イメージである。直接波は、表面近傍(例えば表面〜5cm程度の深さまで)での反射であり、往復伝播時間の短い領域で生じることから、その往復伝播時間の範囲を規定することで特定できる。この直接波の減衰度(振幅最大値の減衰の度合い)は、表面部の情報を含んでいる。散乱波は、内部(例えば表面下5cm〜覆工厚内)で生じることから、往復伝播時間がある程度長い領域で生じる。電磁波の伝播速度は既知であるし、覆工厚が分かっていれば、散乱波が生じていると考えられる範囲は往復伝播時間の範囲として特定できる。その散乱波振幅のRMS値を散乱度とすると、その散乱度は内部情報を含んでいる。   FIG. 3 shows an example of reflected wave data. This is a waveform image representing a change in amplitude with respect to the round-trip propagation time. A direct wave is a reflection in the vicinity of the surface (for example, to a depth of about 5 cm from the surface) and occurs in a region where the round-trip propagation time is short. Therefore, the direct wave can be specified by defining the range of the round-trip propagation time. The degree of attenuation of the direct wave (the degree of attenuation of the maximum amplitude value) includes information on the surface portion. Since the scattered wave is generated inside (for example, 5 cm below the surface to within the covering thickness), it occurs in a region where the round-trip propagation time is somewhat long. If the propagation speed of the electromagnetic wave is known and the lining thickness is known, the range where the scattered wave is considered to be generated can be specified as the range of the round-trip propagation time. If the RMS value of the scattered wave amplitude is the scattering degree, the scattering degree includes internal information.

図4は、劣化部が存在する場合の電磁波レーダによる反射波形イメージを示している。Aは表面が劣化している場合の例である。破線は、表面及び内部共に健全な場合であり、減衰度は小さく、散乱度も小さい。それに対して実線は、表面のみ劣化し内部は健全な場合であり、減衰度は大きく、散乱度は小さい。直接波で比較すると、泥濘化などの表面劣化要因で、劣化部での振幅最大値は健全な場合の振幅最大値よりも小さくなる(減衰度が大きくなる)。減衰度が大きいほど、表面劣化が進んでいることを表している。Bは内部のみ劣化している場合の例である。破線は、表面及び内部共に健全な場合であり、減衰度は小さく、散乱度も小さい。それに対して実線は、表面は健全で内部のみが劣化している場合であり、減衰度は小さいが、散乱度は大きい。散乱波は、ポーラス化(多孔質化)などの内部劣化要因で、振幅値が全体的に大きくなる(散乱度が大きくなる)。散乱度が大きいほど、内部劣化が進んでいることを表している。   FIG. 4 shows a reflected waveform image by the electromagnetic wave radar in the presence of a deteriorated portion. A is an example when the surface is deteriorated. A broken line is a case where both the surface and the inside are healthy, and the degree of attenuation is small and the degree of scattering is also small. On the other hand, the solid line shows a case where only the surface is deteriorated and the inside is sound, the attenuation is large, and the scattering is small. When compared with the direct wave, the maximum amplitude value in the deteriorated part is smaller than the maximum amplitude value in the case of sound due to surface deterioration factors such as mudification (attenuation degree increases). The greater the attenuation, the more advanced the surface degradation. B is an example when only the inside is deteriorated. A broken line is a case where both the surface and the inside are healthy, and the degree of attenuation is small and the degree of scattering is also small. On the other hand, the solid line shows a case where the surface is healthy and only the inside is deteriorated, and the degree of attenuation is small, but the degree of scattering is large. Scattered waves have an overall amplitude value (the degree of scattering increases) due to internal deterioration factors such as porous (porosity). It shows that internal degradation is progressing, so that a scattering degree is large.

このようなことから、直接波の減衰度と散乱波の散乱度を平面座標位置に対応させることで、図1のDに示すように、劣化部を面的に診断・評価することができる。なお、健全と劣化の判定の閾値をどのレベルに設定するかは、電磁波測定の結果と壁面の目視観察結果(変色部や変状部)、穿孔によるサンプル採取の調査結果などとの対比に基づき決定すればよい。図1のDでは、健全か劣化かというように2値的な判定を行っているが、減衰度・散乱度によって劣化を複数の度合で判定し、コンターマップを描かせることも可能である。   For this reason, as shown in FIG. 1D, the deteriorated portion can be diagnosed and evaluated in a plane by matching the attenuation degree of the direct wave and the scattering degree of the scattered wave to the plane coordinate position. Note that the threshold level for determining the soundness and deterioration is set based on the comparison between the electromagnetic wave measurement results, the visual observation results (discolored and deformed portions) of the wall surface, the sample collection survey results by drilling, etc. Just decide. In FIG. 1D, binary determination is performed such as whether the sound is healthy or deteriorated, but it is also possible to determine deterioration by a plurality of degrees based on the degree of attenuation / scattering and draw a contour map.

実際の電磁波レーダによる反射波の測定データは、時間軸に関して連続的な振幅測定値ではなく、微小時間間隔毎にサンプリングした離散的な振幅測定値である。微小時間間隔毎にサンプリングしたN個の測定時点(測定順序:i=1〜N)での振幅測定値Xi が、メモリに記憶される。従って、それらの離散的な振幅測定値をプロットして順次結ぶと、図5に示すような反射波形が得られる。 The actual measurement data of the reflected wave by the electromagnetic wave radar is not a continuous amplitude measurement value with respect to the time axis but a discrete amplitude measurement value sampled at every minute time interval. Amplitude measurement values X i at N measurement points (measurement order: i = 1 to N) sampled every minute time interval are stored in the memory. Therefore, when these discrete amplitude measurement values are plotted and sequentially connected, a reflected waveform as shown in FIG. 5 is obtained.

表面解析(直接波振幅解析)では、電磁波レーダの測定波形データより、コンクリート表面から直接波が終了する深度までの範囲の時間窓を設定し、その時間窓に含まれる波形振幅値の絶対値の最大値を、その波形の直接波減衰度の代表値とする。各々の波形には平面座標位置が設定されており、これらの代表値の平面分布図を作成することでコンクリート表面からの反射波(直接波)振幅の減衰度が大きい領域を検出する。   In surface analysis (direct wave amplitude analysis), a time window is set from the measured waveform data of the electromagnetic wave radar to the depth at which the direct wave ends from the concrete surface, and the absolute value of the waveform amplitude value included in the time window is set. The maximum value is a representative value of the direct wave attenuation of the waveform. A plane coordinate position is set for each waveform, and by creating a plane distribution map of these representative values, a region where the attenuation of the reflected wave (direct wave) amplitude from the concrete surface is large is detected.

具体的には次のようにする。離散値である電磁波レーダ波形記録による振幅測定値Xi (i=1,2,…,N)から、直接波のみを含む範囲と考えられる時間窓WD を、測定順序iにより次のように設定する。
D :nd1≦i≦nd2
そして、ある測定波形における直接波の減衰度を示す代表値Aを次のように求める。
A=max|Xi
但し、i∈WD
各々の波形についてAの値を求め、各波形の平面座標位置と合わせることで、減衰度Aの平面分布図を作成する。
Specifically: Discrete amplitude value measured by the electromagnetic wave radar waveform record is X i (i = 1,2, ... , N) from the time window W D believed to range including only the direct wave, by the measurement order i as follows Set.
W D : n d1 ≦ i ≦ n d2
Then, a representative value A indicating the degree of attenuation of the direct wave in a certain measurement waveform is obtained as follows.
A = max | X i |
However, i∈W D
A value of A is obtained for each waveform and combined with the plane coordinate position of each waveform to create a plane distribution map of the degree of attenuation A.

内部解析(散乱波振幅解析)では、電磁波レーダの測定波形データより反射波データで散乱波を含むように時間軸に沿って時間窓を設定し、その時間窓に含まれる波形振幅値のRMS値を求め、そのRMS値をその波形の電磁波散乱度の代表値とする。各々の波形には平面座標位置が設定されており、これらの代表値の平面分布図を作成することでコンクリート内部での電磁波の散乱度が大きい領域を検出する。   In the internal analysis (scattered wave amplitude analysis), the time window is set along the time axis so that the reflected wave data includes the scattered wave from the measured waveform data of the electromagnetic wave radar, and the RMS value of the waveform amplitude value included in the time window is set. The RMS value is used as a representative value of the electromagnetic wave scattering degree of the waveform. A plane coordinate position is set for each waveform, and by creating a plane distribution map of these representative values, an area where the degree of scattering of electromagnetic waves in the concrete is large is detected.

具体的には次のようにする。離散値である電磁波レーダ波形記録による振幅測定値Xi (i=1,2,…,N)から、散乱波を含む範囲と考えられる時間窓WS を、測定順序iにより次のように設定する。
S :ns1≦i≦ns2
そして、ある測定波形における電磁波の散乱度を示す代表値Sを次のように求める。
S=(Σ(Xi 2)/ND 1/2
但し、i∈WS
D =ns2−ns1+1
各々の波形についてSの値を求め、各波形の平面座標位置と合わせることで、散乱度Sの平面分布図を作成する。
Specifically: Discrete amplitude value measured by the electromagnetic wave radar waveform record is X i (i = 1,2, ... , N) set from the time window W S believed to range including the scattered waves by measuring order i as follows To do.
W S : n s1 ≦ i ≦ n s2
Then, a representative value S indicating the degree of electromagnetic wave scattering in a certain measurement waveform is obtained as follows.
S = (Σ (X i 2 ) / N D ) 1/2
However, i∈W S
N D = n s2 −n s1 +1
A value of S is obtained for each waveform, and a plane distribution map of the scattering degree S is created by matching with the plane coordinate position of each waveform.

このようにして、減衰度A及び散乱度Sの平面分布図を作成し、それらを総合することによって、表面劣化部及び内部劣化部を特定することができる。本発明方法により特定した劣化部は、コンクリート表面の変色部や変状部とよく対応していることが確認された。   In this way, by creating a plane distribution map of the attenuation degree A and the scattering degree S and combining them, it is possible to specify the surface deteriorated part and the internal deteriorated part. It was confirmed that the deteriorated part specified by the method of the present invention corresponds well with the discolored part or deformed part on the concrete surface.

なお、上記の説明では、散乱波振幅解析において時間窓WS を1箇所のみ設定しているが、時間窓を時間軸にとって複数設定することもできる。つまり、反射波データで散乱波を含むと考えられる範囲内で、時間軸に沿って時間窓を複数設定し、各時間窓に含まれる波形振幅値のRMS値を求め、そのRMS値を、その時間窓での電磁波散乱度の代表値とする。このようにすると、深度方向で連続した3次元データの作成・図示も可能となる。 In the above description, although the set time window W S only one place in the scattered wave amplitude analysis, it is also possible to set a plurality of time windows for the time axis. That is, a plurality of time windows are set along the time axis within the range that the reflected wave data is considered to include the scattered wave, the RMS value of the waveform amplitude value included in each time window is obtained, and the RMS value is The representative value of the degree of electromagnetic wave scattering in the time window. In this way, it is also possible to create / show three-dimensional data continuous in the depth direction.

図6は、本発明方法による導水路トンネルの覆工コンクリートの劣化調査状況を示す説明図である。導水路トンネル30内で電磁波レーダ32を走行させる。電磁波レーダ32には、中心周波数の異なる2種類のアンテナ34a、34bを並設したデュアル・アンテナ・システムが搭載されている。両方のアンテナ34a、34bは、それぞれ送信アンテナと受信アンテナの対からなる。アンテナ34a、34bを、覆工面に(例えばアーチ部を対象に50cm程度の間隔で)設定した多数本の探査測線(点線で示す)に沿って、覆工面に密着させながら走査し、その走査を繰り返して覆工コンクリートのほぼ全面にわたって、周波数の異なる電磁波の平面座標位置に対応した反射波データを同時に記録するような調査を行う。特に、導水路トンネルの場合は、暗く狭いことの他、長期間にわたる流水の侵食などにより床面が平坦ではなくなっていることが多いので、中心周波数の異なる複数のアンテナを別々に走査したのでは、同じ測線上の測定データを得ることは困難であるが、デュアル・アンテナ・システムにすると、測定作業が半減するばかりでなく、異なるアンテナを同じ測線上で走査させ、同じ測線上での測定データを得ることができる利点がある。   FIG. 6 is an explanatory diagram showing the state of investigation of deterioration of lining concrete in a waterway tunnel according to the method of the present invention. The electromagnetic wave radar 32 is caused to travel in the water conduit tunnel 30. The electromagnetic wave radar 32 is equipped with a dual antenna system in which two types of antennas 34a and 34b having different center frequencies are arranged in parallel. Both antennas 34a and 34b are each composed of a pair of a transmission antenna and a reception antenna. The antennas 34a and 34b are scanned along a large number of survey survey lines (indicated by dotted lines) set on the lining surface (for example, at an interval of about 50 cm for the arch portion) while closely contacting the lining surface. Repeatedly, the survey is performed to record the reflected wave data corresponding to the plane coordinate position of the electromagnetic wave with different frequency over almost the entire surface of the lining concrete. In particular, in the case of a headrace tunnel, the floor is often not flat due to long-term erosion of running water in addition to being dark and narrow, so it was not possible to scan multiple antennas with different center frequencies separately. Although it is difficult to obtain measurement data on the same line, the dual antenna system not only halves the measurement work, but also scans different antennas on the same line, and the measurement data on the same line. There are advantages that you can get.

導水路トンネルの場合には、施工年代が古いこともあり、地山の掘削状況により覆工厚が数cmから60cm程度まで大きく変化することが予想される。電磁波レーダの周波数と探査深度と分解能は、おおよそ次のようである。
・周波数400MHzでは、探査深度は80〜100cm以内、分解能は10cm程度
・周波数900MHzでは、探査深度は50cm以内、分解能は5cm程度
・周波数1500MHzでは、探査深度は30cm以内、分解能は2〜3cm程度
つまり、周波数が高い方が分解能に優れており、覆工コンクリート内部の電磁波散乱の様子の把握には適している。逆に周波数が低い方は電磁波がより深くまで透過するので、覆工厚の把握には適している。従って、覆工厚が大きく変化する場合には、単一のアンテナでは対応できない場合が生じる。また、支保工の深度(即ち覆工厚)と間隔によっては、それらにより電磁波が反射されて、より深部の記録が得られない場合がある。周波数の高いアンテナほど影響を受け難い。これらに対応するためには、複数の周波数のアンテナで同時測定を行うことが有効である。使用する電磁波の周波数は任意であってよいが、デュアル・アンテナ・システムとしては、例えば通常の地中レーダで用いられている400MHz用と1500MHz用の2種類とするのがよい。
In the case of a headrace tunnel, the construction age may be old, and the lining thickness is expected to vary greatly from several centimeters to about 60 centimeters depending on the excavation situation of the natural ground. The frequency, exploration depth, and resolution of the electromagnetic wave radar are roughly as follows.
・ At a frequency of 400 MHz, the exploration depth is within 80 to 100 cm and the resolution is about 10 cm. ・ At a frequency of 900 MHz, the exploration depth is within 50 cm and the resolution is about 5 cm. The higher the frequency, the better the resolution, and it is suitable for grasping the state of electromagnetic wave scattering inside the lining concrete. On the contrary, the lower frequency is suitable for grasping the lining thickness because the electromagnetic wave penetrates deeper. Therefore, when the lining thickness changes greatly, a single antenna may not be able to cope with it. Further, depending on the depth of the support work (that is, the lining thickness) and the interval, the electromagnetic waves are reflected by them and there is a case where a deeper recording cannot be obtained. Higher frequency antennas are less affected. In order to cope with these, it is effective to perform simultaneous measurement with a plurality of frequency antennas. The frequency of the electromagnetic wave to be used may be arbitrary, but as the dual antenna system, for example, two types for 400 MHz and 1500 MHz used in a normal ground penetrating radar may be used.

上記のように、特に古い導水路トンネルでは覆工厚に大きなばらつきがあるので、それらに対応できるようにするための内部解析におけるRMS値の計算範囲の設定の仕方を図7及び図8に示す。図7のA〜Cは、1500MHz用アンテナでの覆工中のRMS値の計算範囲を示し、図8のA〜Bは、400MHz用アンテナでの覆工背面中のRMS値の計算範囲を示している。前者では、反射波データで、直接波が終了する深度から覆工背面深度まで、もしくは直接波が終了する深度から電磁波周波数により決まる最大探査深度まで、のいずれか狭い範囲を計算範囲に設定し、その計算範囲に含まれる波形振幅値のRMS値を求め、そのRMS値をその波形の電磁波散乱度の代表値とする。具体的には、例えば1500MHz用アンテナの最大探査深度を25cmとすると、覆工厚が25cmを超える場合には直接波が終了する深度から25cmまでを計算範囲として覆工厚中のRMS値を計算する。後者では、反射波データで覆工背面反射波が終了する深度から電磁波周波数により決まる最大探査深度までを計算範囲に設定し、その計算範囲に含まれる波形振幅値のRMS値を求める。具体的には、400MHz用アンテナの最大探査深度を80cmとすると、覆工背面反射波が終了する深度から80cmまでを計算範囲として覆工背面のRMS値を計算する。   As described above, since there is a large variation in the lining thickness especially in the old waterway tunnel, how to set the calculation range of the RMS value in the internal analysis to be able to cope with them is shown in FIG. 7 and FIG. . 7A to 7C show the calculation range of the RMS value during lining with the 1500 MHz antenna, and FIGS. 8A to 8B show the calculation range of the RMS value during the lining back of the 400 MHz antenna. ing. In the former, in the reflected wave data, set a narrow range from the depth at which the direct wave ends to the depth of the lining back to the maximum exploration depth determined by the electromagnetic wave frequency from the depth at which the direct wave ends to the calculation range, The RMS value of the waveform amplitude value included in the calculation range is obtained, and the RMS value is set as a representative value of the electromagnetic wave scattering degree of the waveform. Specifically, for example, if the maximum exploration depth of an antenna for 1500 MHz is 25 cm, when the lining thickness exceeds 25 cm, the RMS value in the lining thickness is calculated with the calculation range from the depth at which the direct wave ends to 25 cm. To do. In the latter, the calculation range is set from the depth at which the lining back reflection wave ends in the reflected wave data to the maximum exploration depth determined by the electromagnetic wave frequency, and the RMS value of the waveform amplitude value included in the calculation range is obtained. Specifically, assuming that the maximum exploration depth of the 400 MHz antenna is 80 cm, the RMS value of the back surface of the lining is calculated from the depth at which the back surface reflected wave ends to 80 cm.

このようにして、400MHz用アンテナの反射データから覆工厚を読み取り、1500MHz用アンテナで覆工内部のRMS値を求め、400MHz用アンテナで覆工背面のRMS値を求めることで導水路トンネルの健全度を評価することができる。覆工コンクリートが劣化した場合、電磁波レーダの記録上には次のような現れ方をする。
・コンクリートが泥濘化すると、この部分の導電率が大きくなることから、電磁波の減衰が大きくなる。従って、記録上は振幅が小さくなる。
・コンクリート部分のセメント分が抜けてポーラスな状態になると、この部分での電磁波の散乱が生じるので、反射波が乱れた部分となる。
いずれの場合にも、送信アンテナと受信アンテナの間を伝播する直接波部分や散乱波部分の振幅が周囲に対し変化するものと考えられるので、測線沿いの反射波データを連続的に把握することにより、コンクリートの劣化状況を評価することができることになる。
Thus, the lining thickness is read from the reflection data of the antenna for 400 MHz, the RMS value inside the lining is obtained with the antenna for 1500 MHz, and the RMS value on the back surface of the lining is obtained with the antenna for 400 MHz. The degree can be evaluated. When the lining concrete deteriorates, it appears as follows on the electromagnetic radar record.
・ When concrete mud, the electrical conductivity of this part increases, so the attenuation of electromagnetic waves increases. Therefore, the amplitude is reduced on recording.
-When the cement part of the concrete part is removed and becomes a porous state, electromagnetic waves are scattered in this part, so that the reflected wave is disturbed.
In any case, it is considered that the amplitude of the direct wave part and scattered wave part propagating between the transmitting antenna and the receiving antenna changes with respect to the surroundings, so it is necessary to continuously grasp the reflected wave data along the survey line. Thus, the deterioration state of the concrete can be evaluated.

1500MHzの電磁波レーダで測定した覆工コンクリートについて、複数の箇所でボーリングコアを採取し、一軸圧縮試験を行った。その結果を図9に示す。コンクリート中の平均RMS値に対する一軸圧縮強度は、RMS値が低いほど圧縮強度が高く、逆にRMS値が高いほど圧縮強度が低くなる傾向があり、ほぼリニアの関係となっていることが分かる。因みに、周波数1500MHzにおける関係式は、図中に示したようになる。このことから、RMS値によってコンクリートの劣化を評価しようとする本発明方法は、十分な技術的裏付けがあることが分かる。   About the lining concrete measured with 1500 MHz electromagnetic wave radar, the boring core was extract | collected in several places and the uniaxial compression test was done. The result is shown in FIG. It can be seen that the uniaxial compressive strength relative to the average RMS value in the concrete tends to be higher as the RMS value is lower, and conversely, the compressive strength tends to be lower as the RMS value is higher. Incidentally, the relational expression at a frequency of 1500 MHz is as shown in the figure. From this, it can be seen that the method of the present invention which attempts to evaluate concrete deterioration based on the RMS value has sufficient technical support.

400MHzの電磁波レーダで測定した覆工背面について、複数の箇所でボーリングコアを採取し、コアの性状を観察した。その結果を図10に示す。覆工背面の性状は、RMS値が低いと柱状であるのに対して、RMS値が高いと土砂状または空隙が多い状況となっている。その境界は、RMS値で約24程度である。このことから、RMS値によって覆工背面の状況も評価できることが分かる。   With respect to the back of the lining measured with a 400 MHz electromagnetic wave radar, boring cores were collected at a plurality of locations and the properties of the cores were observed. The result is shown in FIG. The property of the back surface of the lining is columnar when the RMS value is low, whereas it is in a state where there are many sands or voids when the RMS value is high. The boundary is about 24 in RMS value. From this, it can be seen that the situation on the back of the lining can also be evaluated by the RMS value.

実際の測定結果の一例を図11に示す。これらの測定データは、縦方向については導水路トンネルの一方の側壁部からアーチ部、他方の側壁部に至るように展開し、横方向については導水路トンネルの長手方向に向かって、覆工内部のRMS値の分布、覆工背面のRMS値の分布、及び覆工厚の分布をコンターマップで示したものである。まず、覆工内部のRMS値の分布から、コンクリート内部の劣化の程度を評価することができる。これは一軸圧縮強度の分布と見なすこともできる。また、覆工背面のRMS値の分布から、覆工背面が土砂状あるいは空隙の多い状況になっているか否かがわかる。更には、覆工厚の分布も把握できる。従って、これらの情報を総合することで、トンネルの健全性を全範囲にわたり評価することができる。   An example of actual measurement results is shown in FIG. These measurement data are developed from one side wall part of the waterway tunnel to the arch part and the other side wall part in the vertical direction, and in the lateral direction toward the longitudinal direction of the waterway tunnel. The distribution of the RMS value, the distribution of the RMS value on the back surface of the lining, and the distribution of the lining thickness are shown in a contour map. First, the degree of deterioration inside the concrete can be evaluated from the RMS value distribution inside the lining. This can also be regarded as a distribution of uniaxial compressive strength. Moreover, it can be seen from the RMS value distribution on the back surface of the lining whether or not the back surface of the lining is in a state of earth or sand or a lot of voids. Furthermore, the distribution of the lining thickness can also be grasped. Therefore, by combining these pieces of information, the soundness of the tunnel can be evaluated over the entire range.

なお、上記の例では、アンテナ周波数として400MHzと1500MHzを用いているが、状況によっては、例えば400MHzと900MHzのアンテナを用いることも可能である。   In the above example, 400 MHz and 1500 MHz are used as antenna frequencies. However, depending on the situation, it is possible to use antennas of 400 MHz and 900 MHz, for example.

本発明に係るトンネル覆工コンクリートの劣化診断方法を示す説明図。Explanatory drawing which shows the deterioration diagnostic method of the tunnel lining concrete which concerns on this invention. 電磁波反射の挙動の例を示す説明図。Explanatory drawing which shows the example of the behavior of electromagnetic wave reflection. 反射波データによる波形イメージを示す説明図。Explanatory drawing which shows the waveform image by reflected wave data. 劣化部が存在する場合の電磁波レーダによる反射波形イメージ。Reflected waveform image by electromagnetic wave radar when there is a degraded part. 解析のための反射波形データの説明図。Explanatory drawing of the reflected waveform data for analysis. 本発明方法による導水路トンネルの覆工コンクリートの劣化調査状況を示す説明図。Explanatory drawing which shows the deterioration investigation condition of the lining concrete of a waterway tunnel by this invention method. 1500MHz用アンテナでの覆工中RMS値の計算範囲を示す説明図。Explanatory drawing which shows the calculation range of the RMS value during lining with the antenna for 1500 MHz. 400MHz用アンテナでの覆工中RMS値の計算範囲を示す説明図。Explanatory drawing which shows the calculation range of the RMS value during lining with the antenna for 400 MHz. コンクリート中の平均RMS値と一軸圧縮強度の関係を示すグラフ。The graph which shows the relationship between the average RMS value in concrete, and uniaxial compressive strength. 覆工背面の状況と平均RMS値の関係を示すグラフ。The graph which shows the relationship between the condition of a lining back surface, and an average RMS value. 実際の測定結果の一例を示すコンターマップ。A contour map showing an example of actual measurement results.

符号の説明Explanation of symbols

10 コンクリート壁面
12 測線
14 電磁波レーダ
20 健全部
22 表面劣化部
24 内部劣化部
26 表面及び内部劣化部
30 導水路トンネル
32 電磁波レーダ
34a、34b アンテナ
DESCRIPTION OF SYMBOLS 10 Concrete wall surface 12 Survey line 14 Electromagnetic wave radar 20 Sound part 22 Surface degradation part 24 Internal degradation part 26 Surface and internal degradation part 30 Waterway tunnel 32 Electromagnetic wave radar 34a, 34b Antenna

Claims (7)

送信アンテナから電磁波を放射すると共に反射波を受信アンテナで受信する電磁波レーダを、コンクリート構造物の表面上で面的に設定した多数本の測線に沿って走査して平面座標位置に対応した反射波データを記録し、各反射波データについて、
(1)コンクリート表面近傍からの直接波を抽出して振幅最大値を求め、その平面分布図を作成することで電磁波振幅の減衰度が大きい表面劣化箇所を2次元的に把握する表面解析、
(2)コンクリート内部からの散乱波の振幅値のRMS値を求め、その平面分布図を作成することで電磁波散乱度の大きい内部劣化箇所を2次元的に把握する内部解析、
を行い、上記(1)及び(2)の結果を組み合わせて、表面及び内部のコンクリートの劣化状況を面的に把握可能としたことを特徴とするコンクリート構造物の劣化診断方法。
A reflected wave corresponding to a plane coordinate position by scanning an electromagnetic wave radar that radiates an electromagnetic wave from a transmitting antenna and receives a reflected wave by a receiving antenna along a number of lines set on the surface of the concrete structure. Record the data, and for each reflected wave data,
(1) A surface analysis that two-dimensionally grasps the surface degradation point where the attenuation of electromagnetic wave amplitude is large by extracting the direct wave from the vicinity of the concrete surface, obtaining the maximum amplitude value, and creating the plane distribution map,
(2) Internal analysis to obtain the two-dimensional internal degradation location where the electromagnetic wave scattering degree is large by obtaining the RMS value of the amplitude value of the scattered wave from the inside of the concrete and creating the plane distribution map.
A method for diagnosing deterioration of a concrete structure, characterized in that, by combining the results of (1) and (2) above, it is possible to grasp the deterioration state of concrete on the surface and inside.
表面解析では、反射波データで、コンクリート表面から直接波が終了する深度までの範囲の時間窓を設定し、その時間窓に含まれる波形振幅値の絶対値の最大値を求め、その最大値をその波形の直接波減衰度の代表値とする請求項1記載のコンクリート構造物の劣化診断方法。   In the surface analysis, a time window in the range from the concrete surface to the depth at which the direct wave ends is set with the reflected wave data, the maximum value of the absolute value of the waveform amplitude value included in the time window is obtained, and the maximum value is calculated. The method for diagnosing deterioration of a concrete structure according to claim 1, wherein the deterioration value is a representative value of the direct wave attenuation of the waveform. 内部解析では、反射波データで散乱波を含むように時間軸に沿って時間窓を設定し、その時間窓に含まれる波形振幅値のRMS値を求め、そのRMS値をその波形の電磁波散乱度の代表値とする請求項1又は2記載のコンクリート構造物の劣化診断方法。   In the internal analysis, a time window is set along the time axis so as to include the scattered wave in the reflected wave data, the RMS value of the waveform amplitude value included in the time window is obtained, and the RMS value is used as the electromagnetic wave scattering degree of the waveform. The deterioration diagnosis method for concrete structures according to claim 1 or 2, wherein 内部解析では、反射波データで散乱波を含むと考えられる範囲内で、時間軸に沿って時間窓を複数設定し、各時間窓に含まれる波形振幅値のRMS値を求め、そのRMS値を、その時間窓での電磁波散乱度の代表値とすることで、深度方向にも連続した3次元データを作成する請求項1又は2記載のコンクリート構造物の劣化診断方法。   In the internal analysis, a plurality of time windows are set along the time axis within the range that the reflected wave data is considered to include the scattered wave, and the RMS value of the waveform amplitude value included in each time window is obtained, and the RMS value is calculated. The deterioration diagnosis method for a concrete structure according to claim 1 or 2, wherein three-dimensional data continuous in the depth direction is created by using a representative value of the degree of electromagnetic wave scattering in the time window. コンクリート構造物がトンネル覆工であって、内部解析では、反射波データで、直接波が終了する深度から覆工背面深度まで、もしくは直接波が終了する深度から電磁波周波数により決まる最大探査深度まで、のいずれか狭い範囲を計算範囲に設定し、その計算範囲に含まれる波形振幅値のRMS値を求め、そのRMS値をその波形の電磁波散乱度の代表値とする請求項1又は2記載のコンクリート構造物の劣化診断方法。   The concrete structure is a tunnel lining, and in the internal analysis, in the reflected wave data, from the depth at which the direct wave ends to the depth behind the lining, or from the depth at which the direct wave ends to the maximum exploration depth determined by the electromagnetic wave frequency, 3. The concrete according to claim 1, wherein a narrow range is set as a calculation range, an RMS value of a waveform amplitude value included in the calculation range is obtained, and the RMS value is used as a representative value of the electromagnetic wave scattering degree of the waveform. Deterioration diagnosis method for structures. 中心周波数の異なる電磁波を送受する送信アンテナと受信アンテナの対を複数並設した複合アンテナ・システムを、コンクリート構造物の表面上で面的に設定した多数本の測線に沿って走査して、中心周波数の異なる電磁波の平面座標位置に対応した反射波データを同時に記録する請求項5記載のコンクリート構造物の劣化診断方法。   A complex antenna system with multiple pairs of transmitting and receiving antennas that transmit and receive electromagnetic waves with different center frequencies is scanned along a number of lines that are set on the surface of the concrete structure. 6. The method for diagnosing deterioration of a concrete structure according to claim 5, wherein reflected wave data corresponding to plane coordinate positions of electromagnetic waves having different frequencies are simultaneously recorded. コンクリート構造物がトンネル覆工であって、中心周波数が異なる高低2種類のアンテナを並設したデュアル・アンテナ・システムを使用し、中心周波数が低い方のアンテナの反射データから覆工厚を読み取り、中心周波数が高い方のアンテナで覆工内部のRMS値を求める請求項6記載のコンクリート構造物の劣化診断方法。   Using a dual antenna system where the concrete structure is a tunnel lining and two high and low antennas with different center frequencies are arranged in parallel, the lining thickness is read from the reflection data of the antenna with the lower center frequency, The method for diagnosing deterioration of a concrete structure according to claim 6, wherein the RMS value inside the lining is obtained with an antenna having a higher center frequency.
JP2007213603A 2006-08-22 2007-08-20 Deterioration diagnosis method for concrete structures Expired - Fee Related JP4936387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213603A JP4936387B2 (en) 2006-08-22 2007-08-20 Deterioration diagnosis method for concrete structures

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006225258 2006-08-22
JP2006225258 2006-08-22
JP2007213603A JP4936387B2 (en) 2006-08-22 2007-08-20 Deterioration diagnosis method for concrete structures

Publications (2)

Publication Number Publication Date
JP2008076386A true JP2008076386A (en) 2008-04-03
JP4936387B2 JP4936387B2 (en) 2012-05-23

Family

ID=39348586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213603A Expired - Fee Related JP4936387B2 (en) 2006-08-22 2007-08-20 Deterioration diagnosis method for concrete structures

Country Status (1)

Country Link
JP (1) JP4936387B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107259A (en) * 2008-10-28 2010-05-13 Geo Search Co Ltd Method and device for nondestructively evaluating soundness of reinforced concrete block
JP2018132424A (en) * 2017-02-15 2018-08-23 日本信号株式会社 Underground radar device
US10083767B2 (en) 2012-11-02 2018-09-25 EPSCO, Ltd. Method and apparatus for inspection of cooling towers
CN110687533A (en) * 2019-09-02 2020-01-14 山东大学 Geological radar auxiliary device and method suitable for tunnel lining quality detection
US10794990B2 (en) 2016-03-16 2020-10-06 Kabushiki Kaisha Toshiba Structure evaluation apparatus, structure evaluation system, and structure evaluation method
CN112666554A (en) * 2020-12-17 2021-04-16 江苏中路工程技术研究院有限公司 Method for identifying radar amplitude characteristic crack width of asphalt pavement
CN116840806A (en) * 2023-08-31 2023-10-03 深圳市洪发建筑工程有限公司 Concrete structure aging degree detection method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102281290B1 (en) * 2020-11-03 2021-07-23 주식회사 토탈페이브시스템 Measuring method for degradation of concrete pavement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121577A (en) * 1998-10-15 2000-04-28 Hilti Ag Measuring method for relative permittivity of concrete
JP2001165870A (en) * 1999-12-08 2001-06-22 Oyo Corp Method and system of detecting condition of concrete structure by using electromagnetic wave signal
JP2002257744A (en) * 2001-03-02 2002-09-11 Takenaka Komuten Co Ltd Method and device for inspecting defect of concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121577A (en) * 1998-10-15 2000-04-28 Hilti Ag Measuring method for relative permittivity of concrete
JP2001165870A (en) * 1999-12-08 2001-06-22 Oyo Corp Method and system of detecting condition of concrete structure by using electromagnetic wave signal
JP2002257744A (en) * 2001-03-02 2002-09-11 Takenaka Komuten Co Ltd Method and device for inspecting defect of concrete

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107259A (en) * 2008-10-28 2010-05-13 Geo Search Co Ltd Method and device for nondestructively evaluating soundness of reinforced concrete block
US10083767B2 (en) 2012-11-02 2018-09-25 EPSCO, Ltd. Method and apparatus for inspection of cooling towers
US10794990B2 (en) 2016-03-16 2020-10-06 Kabushiki Kaisha Toshiba Structure evaluation apparatus, structure evaluation system, and structure evaluation method
JP2018132424A (en) * 2017-02-15 2018-08-23 日本信号株式会社 Underground radar device
CN110687533A (en) * 2019-09-02 2020-01-14 山东大学 Geological radar auxiliary device and method suitable for tunnel lining quality detection
CN110687533B (en) * 2019-09-02 2022-03-04 山东大学 Geological radar auxiliary device and method suitable for tunnel lining quality detection
CN112666554A (en) * 2020-12-17 2021-04-16 江苏中路工程技术研究院有限公司 Method for identifying radar amplitude characteristic crack width of asphalt pavement
CN116840806A (en) * 2023-08-31 2023-10-03 深圳市洪发建筑工程有限公司 Concrete structure aging degree detection method and device
CN116840806B (en) * 2023-08-31 2023-11-07 深圳市洪发建筑工程有限公司 Concrete structure aging degree detection method and device

Also Published As

Publication number Publication date
JP4936387B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4936387B2 (en) Deterioration diagnosis method for concrete structures
Tarussov et al. Condition assessment of concrete structures using a new analysis method: Ground-penetrating radar computer-assisted visual interpretation
Dinh et al. Understanding depth-amplitude effects in assessment of GPR data from concrete bridge decks
Dinh et al. Automated visualization of concrete bridge deck condition from GPR data
Scott et al. A comparison of nondestructive evaluation methods for bridge deck assessment
Iyer et al. Evaluation of ultrasonic inspection and imaging systems for concrete pipes
CN102680575B (en) A kind of impact mapping method of Complicate soil medium and system
CN111044569B (en) Tunnel concrete structure defect detection method
US6496136B1 (en) Ground penetrating radar system for non-invasive inspection of trees for internal decay
Muldoon et al. Identifying voids in plastic ducts in post-tensioning prestressed concrete members by resonant frequency of impact–echo, SIBIE and tomography
Bishko et al. Ultrasonic echo-pulse tomography of concrete using shear waves low-frequency phased antenna arrays
KR101936849B1 (en) System and method for detecting cavity to non-contact type
Eisenmann et al. Ground penetrating radar applied to rebar corrosion inspection
Riggio et al. Structural health assessment of historical timber structures combining non‐destructive techniques: The roof of Giotto's bell tower in Florence
Iyer et al. Ultrasonic C‐scan imaging of post‐tensioned concrete bridge structures for detection of corrosion and voids
JP3299221B2 (en) Buried object exploration processing method and apparatus, and recording medium recording embedded object exploration processing program
Hoegh Ultrasonic linear array evaluation of concrete pavements
Navacerrada et al. Application of acoustic impedance gun to non-destructively monitor stone damage
Cheng et al. Corrosion damage detection in reinforced concrete using Rayleigh wave-based method
JP2005331404A (en) Method and apparatus for diagnosing reinforced concrete structure
Kuchipudi et al. Imaging of vertical surface-breaking cracks in concrete members using ultrasonic shear wave tomography
Takahashi et al. GPR measurements for diagnosing tree trunk
JP6869601B2 (en) Ground penetrating method, ground penetrating device, ground penetrating program, and ground penetrating data display method
Robison et al. Evaluating concrete damage in bridge decks with and without overlays using nondestructive testing procedures
CN110823926B (en) Method for detecting quality of complex steel plate shear wall node based on ground penetrating radar scanning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees