JP2008065916A - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
JP2008065916A
JP2008065916A JP2006243492A JP2006243492A JP2008065916A JP 2008065916 A JP2008065916 A JP 2008065916A JP 2006243492 A JP2006243492 A JP 2006243492A JP 2006243492 A JP2006243492 A JP 2006243492A JP 2008065916 A JP2008065916 A JP 2008065916A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
nonmagnetic support
growth portion
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006243492A
Other languages
English (en)
Inventor
Masao Nakayama
正雄 中山
Hiromichi Kanazawa
弘道 金沢
Shigeji Watase
茂治 渡瀬
Takahiro Hayashi
隆博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006243492A priority Critical patent/JP2008065916A/ja
Priority to US11/851,469 priority patent/US20080254323A1/en
Publication of JP2008065916A publication Critical patent/JP2008065916A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/716Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by two or more magnetic layers

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

【課題】双方向記録再生が可能で、しかも記録データの正常な再生が可能な磁気記録媒体を提供する。
【解決手段】非磁性支持体の上に金属薄膜磁性層(磁性層)が形成され、非磁性支持体の平面方向と磁力線Lmとの交差角度が60°(交差角度θ3a)の磁界を印加した状態において測定される保磁力と、平面方向と磁力線Lmとの交差角度が120°(交差角度θ3b)の磁界を印加した状態において測定される保磁力とがいずれも160kA/m以上となるように金属薄膜磁性層が形成されている。
【選択図】図9

Description

本発明は、非磁性支持体の上に金属薄膜磁性層が形成された磁気記録媒体に関するものである。
記録データのサイズアップに伴い、今日の情報媒体では、高密度記録化が重要な課題となっている。この場合、バックアップメディアとして市場に流通している磁気テープの多くは、いわゆる塗布型の磁気記録媒体であって、磁性粉を結合するためのバインダー(樹脂材料)が磁性層中に含まれている分だけ飽和磁化量が小さくなっている。また、バインダーを含んでいる分だけ、磁性層を薄厚とするのが困難であるため、磁気テープの厚みが厚くなり、その巻き径が大きくなっている。したがって、塗布型の磁気記録媒体では、一層の高密度記録化を図るのが困難であると共に、カートリッジケース内の限られた収容空間内に長尺の磁気記録媒体を収容するのが困難となっている。
一方、磁性層を薄く形成可能な磁気記録媒体として、非磁性高分子基体(非磁性支持体)の上に強磁性金属材料を真空蒸着させた強磁性金属薄膜(磁性層)が形成された蒸着型の磁気記録媒体(一例として、特開昭59−201221号公報など)が知られている。この蒸着型の磁気記録媒体では、磁性層中にバインダーが含まれていない分だけ、磁性層を薄く形成したとしても飽和磁化量を塗布型の磁気記録媒体よりも大きくすることが可能となっている。したがって、塗布型の磁気記録媒体よりも全体としての厚みを薄く形成することが可能となり、その巻き径を小さくすることが可能となっている。これにより、蒸着型の磁気記録媒体では、塗布型の磁気記録媒体よりも高密度記録化を図ることが可能となり、しかも、カートリッジケース内の限られた収容空間内に長尺の磁気記録媒体を収容することが可能となっている。
特開昭59−201221号公報
ところが、従来の蒸着型の磁気記録媒体には、以下の解決すべき課題がある。すなわち、この種の蒸着型の磁気記録媒体では、磁性層を構成するカラム(強磁性金属材料の結晶粒の集合体)が非磁性支持体に対して傾いて成長することに起因して、磁性層の磁化容易軸が磁気記録媒体における主面の長手方向(非磁性支持体の平面方向)に対して所定の角度で傾斜している。したがって、蒸着型の磁気記録媒体では、テープ走行方向の相違によって磁化特性が相違し、これに起因して、順方向でテープ走行させたときに得られる出力信号(以下、「順方向の出力信号」ともいう)の信号レベルと、逆方向でテープ走行させたときに得られる出力信号(以下、「逆方向の出力信号」ともいう)の信号レベルとが大きく相違する事態が生じる。一方、今日の磁気記録媒体には、記録データの高速な記録再生を可能とするために、双方向記録再生が可能な構成を採用する必要が生じている。したがって、上記のようなテープ走行方向の相違による出力信号の信号レベルの差異を小さく抑える必要がある。
この場合、例えば、特開平11−328645号公報には、非磁性支持体の一方の面に第1の磁性層および第2の磁性層がこの順で形成されたテープ状の磁気記録媒体が開示されている。この磁気記録媒体では、非磁性支持体に対して金属材料を斜めから蒸着させて(非磁性支持体に対してカラムを斜めに成長させて)両磁性層を形成することにより、第1の磁性層の磁化容易軸が磁気記録媒体における主面の長手方向の一方に所定の角度で傾斜すると共に、第2の磁性層の磁化容易軸が磁気記録媒体における主面の長手方向の他方に所定の角度で傾斜するように形成されている。したがって、この磁気記録媒体では、両磁性層の磁化容易軸が相反する方向に傾いた状態となる結果、テープ走行方向の相違による磁化特性の相違や出力信号の信号レベルの差異が生じ難くなっている。
ところが、磁化容易軸の傾斜方向が相反する2つの磁性層を形成した場合、単一の磁性層を有する磁気記録媒体よりも保磁力が低下する事態が生じることがある。具体的には、出願人は、磁気記録媒体に磁界を印加した状態において、非磁性支持体の平面方向と磁力線との交差角度を変化させ、その都度、各交差角度毎に保磁力を測定したところ、単一の磁性層を有する磁気記録媒体では、上記の交差角度が120°程度のときに測定される保磁力がそれ以外の交差角度範囲において測定される保磁力よりも大きく低下しているのを見出した。これに対して、2つの磁性層を有する磁気記録媒体では、上記の交差角度が120°程度のときに測定される保磁力がそれ以外の交差角度範囲において測定される保磁力よりも大きく低下する事態は回避されているものの、それ以外の交差角度範囲内において測定される保磁力が単一の磁性層を有する磁気記録媒体よりも全体的に低下するケースが多く、特に、上記の交差角度が60°程度のときに測定される保磁力が大きく低下するケースが多いことを見出した。このため、2つの磁性層を有する磁気記録媒体では、高密度記録化のためにデータ記録トラックの幅を狭くしたり、データ記録トラック上における1ビット長を短くしたりしたときに、保磁力が低いことに起因して記録データの読み出しが可能な程度に磁化状態を維持するのが困難となるおそれがある。
また、単一の磁性層を有する磁気記録媒体では、前述したように、順方向の出力信号の信号レベルに対して、逆方向の出力信号の信号レベルが大きく低下するものの、順方向の出力信号の信号レベルは、片方向記録再生型の磁気記録媒体としての使用に問題のないレベルとなっている。これに対して、2つの磁性層を有する磁気記録媒体では、順方向の出力信号の信号レベルと逆方向の出力信号の信号レベルとが同程度で大きな差異は存在しないものの、両方向における出力信号の信号レベルが、単一の磁性層を有する磁気記録媒体における順方向の出力信号の信号レベルよりも大きく低下している。このため、十分なS/Nを得ることができず、これに起因して、エラーレートが悪化する(ドライブ設計時におけるエラーレートに関するマージンが小さくなる)ため、磁化容易軸の傾斜方向が相反する2つの磁性層を有する磁気記録媒体には、順方向および逆方向の両方向における出力信号の信号レベルを大きくする必要がある。このように、2つの磁性層を有する磁気記録媒体には、双方向記録時における記録データの正常な再生が困難であるという課題が存在する。
本発明は、かかる課題に鑑みてなされたものであり、双方向記録再生が可能で、しかも記録データの正常な再生が可能な磁気記録媒体を提供することを主目的とする。
上記目的を達成すべく、本発明に係る磁気記録媒体は、非磁性支持体の上に金属薄膜磁性層が形成され、前記非磁性支持体の平面方向と磁力線との交差角度が60°の磁界を印加した状態において測定される保磁力と、当該平面方向と磁力線との交差角度が120°の磁界を印加した状態において測定される保磁力とがいずれも160kA/m以上となるように前記金属薄膜磁性層が形成されている。なお、本明細書における「非磁性支持体の平面方向と磁力線との交差角度」は、非磁性支持体の長手方向に沿った向きの磁気記録媒体の断面における非磁性支持体の表面と磁力線とが交差する交差角度を意味する。また、本明細書における「交差角度が60°の磁界」および「交差角度が120°の磁界」とは、非磁性支持体の法線方向からそれぞれ30°だけ磁力線が傾斜した角度で非磁性支持体の表面と交差する磁界を意味する。この場合、本明細書では、法線方向からの傾斜角度が30°の上記の両交差角度のうち、金属薄膜磁性層における磁化容易軸の傾斜角度に近い方の交差角度を「交差角度が60°」とする。また、少なくとも2つの金属薄膜磁性層が非磁性支持体の上に形成されている磁気記録媒体においては、上記の両交差角度のうち、最も表面側の金属薄膜磁性層における磁化容易軸の傾斜角度に近い方の交差角度を「交差角度が60°」とする。
また、本発明に係る磁気記録媒体は、前記交差角度が60°の磁界を印加した状態において測定される前記保磁力よりも前記交差角度が120°の磁界を印加した状態において測定される前記保磁力の方が高くなるように前記金属薄膜磁性層が形成されている。
本発明に係る磁気記録媒体によれば、非磁性支持体の平面方向と磁力線との交差角度が60°の磁界を印加した状態において測定される保磁力と、上記の交差角度が120°の磁界を印加した状態において測定される保磁力とがいずれも160kA/m以上となるように金属薄膜磁性層を形成したことにより、双方向記録再生時における順方向走行時および逆方向走行時の双方において、磁気ヘッドからの出力信号の信号レベルをほぼ同レベルとし、しかも、非磁性支持体の平面方向と磁力線とがどのような交差角度で交差するときにおいても、その保磁力を十分に高い値とすることができる。したがって、順方向走行時および逆方向走行時における記録・再生条件を大きく異ならせることなく記録データの再生が可能となる分だけ記録・再生制御が容易となり、記録再生装置の製造コストを十分に低減することができる。また、高密度記録化のためにデータ記録トラックの幅を狭くしたり、データ記録トラック上における1ビット長を短くしたりした場合(トラック幅方向、トラック長方向における隣接ビットの影響が顕著となる状態)であっても記録データの正常な読み出しが可能な程度に磁化状態を十分に維持することができる。これにより、十分なS/Nを得ることができる結果、エラーレートの良好な磁気記録媒体を提供することができる。
また、本発明に係る磁気記録媒体によれば、上記の交差角度が60°の磁界を印加した状態において測定される保磁力よりも上記の交差角度が120°の磁界を印加した状態において測定される保磁力の方が高くなるように金属薄膜磁性層を形成したことにより、順方向走行時における出力信号の信号レベルと、逆方向走行時における出力信号の信号レベルとの差異を一層小さく抑えることができる。したがって、順方向走行時および逆方向走行時における記録・再生条件をほぼ同様に規定することができる。
以下、添付図面を参照して、本発明に係る磁気記録媒体の最良の形態について説明する。
最初に、本発明における磁気記録媒体の一例である磁気テープ1の構成について、図面を参照して説明する。
図1に示す磁気テープ1は、第1磁性層3、第2磁性層4および保護層6が非磁性支持体2の一方の面(同図における上面)にこの順で形成されると共に、バックコート層8が非磁性支持体2の他方の面(同図における下面)に形成されている。また、保護層6の表面には潤滑剤7が塗布されている。非磁性支持体2は、後述する両磁性層3,4の形成処理時や保護層6の形成処理時に加わる熱に耐え得る非磁性材料(一例として、高分子材料)でフィルム状に形成されている。具体的には、一例として、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリアミド、ポリアミドイミドおよびポリイミド等の各種高分子材料で形成されている。この場合、この磁気テープ1では、一例として、厚み4.7μmのポリエチレン−2,6−ナフタレート(PEN)フィルムで非磁性支持体2が構成されている。
第1磁性層3は、本発明における金属薄膜磁性層の一例であって、後述するように、非磁性支持体2の一方の面に真空中において強磁性金属材料9(図2参照)を斜め蒸着法によって蒸着させることで複数のカラム5が形成されて構成されている。この場合、強磁性金属材料9は、良好な磁気的特性が得られると共に材料原価が比較的安価であり、しかも無害であることから、一例として、Co(コバルト)、または、Coを主成分として含有するCo含有合金が使用されている。なお、記録データの記録再生に適した磁気的特性を有する磁性層を形成するためには、強磁性金属材料9内に含まれるすべての金属元素を基準としたCoの割合(含有率)が、60原子%以上であるのが好ましく、さらには80原子%以上、特に90原子%以上であるのが好ましい。この場合、強磁性金属材料9としてCo含有合金を使用するときには、CoおよびNiを主成分とする合金、または、Co、NiおよびCrを主成分とする合金を使用するのが好ましく、これらの合金におけるCo以外の各元素の含有率については、磁性層に要求される磁気的特性や耐食性に応じて適宜選択することができる。
また、第1磁性層3は、上記の各カラム5における基端部側(非磁性支持体2側)のそれぞれの一部で構成された初期成長部3aと、各カラム5における先端部側(保護層6側)のそれぞれの他の一部で構成された後期成長部3bとが非磁性支持体2側からこの順で連続的に形成されて構成されている。この場合、初期成長部3aは、後述するように第1磁性層3の平坦性を向上させる効果(第1磁性層3の平坦性が悪化するのを回避する効果)を有する下地層としても機能する部位であって、非磁性支持体2に対する強磁性金属材料9の蒸着工程(第1磁性層3の形成工程)における初期段階において、非磁性支持体2の厚み方向(略垂直方向)にカラム5を直線状に成長させた部位で構成されている。なお、上記の「厚み方向(略垂直方向)」には、非磁性支持体2の法線に対する傾斜角度が0°〜10°程度までの方向、すなわち、非磁性支持体2の表面に対する傾斜角度θ1が90°〜80°程度までの方向がこれに含まれる。この場合、出願人は、非磁性支持体2の表面に対する傾斜角度θ1が80°を下回ると、第1磁性層3の平坦性が悪化するのを確認している。
この場合、この種の磁気記録媒体に使用される非磁性支持体2における磁性層3,4の形成面には、テープ走行時における摺動抵抗を軽減し得る程度の大きさの凹凸をテープ表面(磁性層3,4や、その上の保護層6の表面)に形成するために、極く小さな凹凸が形成されている。また、非磁性支持体2としては、両磁性層3,4が形成される面とは反対側の面(バックコート層8の形成面)に、例えばフィラーを混入させた樹脂材料の層が形成されて、磁気記録媒体の製造時における非磁性支持体2の走行性(バックコート層の形成が完了するまでの間の磁気記録媒体の走行性)を向上させるための凹凸が形成されているものがある。このような非磁性支持体2を硬巻きしたときには、バックコート層8の形成面に形成されている凹凸の凸部が磁性層3,4の形成面に転写されて凹凸が生じることがある。このように、磁性層3,4の形成面に凹凸が生じた状態の非磁性支持体2に対して従来の製造方法に従って金属材料を斜めから蒸着した場合には、非磁性支持体2の凹凸における凹部の一部(金属材料の蒸着時における凹部の下流側の斜面:凸部の上流側の斜面)に金属材料が付着し難くなることに起因して、カラムの成長過程において非磁性支持体2の凹部よりも深い凹部、および非磁性支持体2の凸部よりも高い凸部が第1磁性層に形成されることとなる。
また、カラムの成長過程において凹凸が生じた部位に金属材料が斜めから蒸着され続ける結果、第1磁性層の表面には、さらに深い凹部およびさらに高い凸部が形成される。このため、第1磁性層の表面に大きな凹凸が生じた状態となる。したがって、このような状態の第1磁性層の上に従来の製造方法に従って金属材料を斜めから蒸着して第2磁性層(図示せず)を形成したときには、第1磁性層の表面に形成された凹部よりも一層深い凹部、および第1磁性層の表面に形成された凸部よりも一層高い凸部が第2磁性層に形成されて、第2磁性層の表面に大きな凹凸が生じた状態となる。したがって、2つの磁性層を有する従来の磁気記録媒体では、第2磁性層の表面に大きな凹凸が生じることに起因して、記録データの記録再生時において、記録再生用磁気ヘッドと第2磁性層の表面との間に大きなスペーシングロスが生じる。このため、従来の磁気記録媒体には、両磁性層の磁化特性が悪化すると共に、磁気的信号の読み取り時における出力信号の信号レベルが大きく低下するものと考えられる。
これに対して、この磁気テープ1では、第1磁性層3の形成時に非磁性支持体2の上に初期成長部3aを形成することで、後述するようにして、非磁性支持体2の表面に凹凸が存在するときであっても、その凹凸が一層大きくなって第1磁性層3の表面に現れる事態を回避して、非磁性支持体2の凹凸と同程度の大きさの凹凸を第1磁性層3の表面に形成することが可能となっている。この初期成長部3aは、第1磁性層3の形成処理時において、非磁性支持体2に対して強磁性金属材料9を蒸着させる蒸着領域A(図2参照)における蒸着開始点Psの近傍に設けられた開始点側酸素供給部18から酸素ガスを供給することで、蒸発した強磁性金属材料9と酸素ガスとが蒸着開始点Psにおいて十分に混合された状態で非磁性支持体2の表面に付着するため、カラム5が非磁性支持体2の厚み方向(略垂直方向)に対して直線状に成長するようにして形成される。また、初期成長部3aは、酸素供給管20aから供給された酸素ガスと強磁性金属材料9とが混合されて付着することで、Co−Oを主体として形成される。この場合、初期成長部3aにおける酸素含有量は、50〜60原子%程度であるのが好ましい。
また、初期成長部3aの厚みは、3nm以上50nm以下の範囲内であるのが好ましい。この場合、3nm以上50nm以下の範囲内の厚みであれば、カラム5の基端部側(初期成長部3aを構成する部位)を十分に細かく、かつ均一に成長させることができる。したがって、初期成長部3aに続いて成長するカラム5の先端部側(後期成長部3bを構成する部位)についても十分に細かくかつ均一に成長させることができる。さらに、初期成長部3aの厚みを3nm以上50nm以下の範囲内とすることで、この初期成長部3aに続いて形成される後期成長部3bにおいて、結晶磁気異方性の発現の元となるCo(六方晶)におけるc軸方向がカラム5内で揃い易くなる。これにより、後期成長部3bが十分に高い保磁力と十分に高い残留磁化を有することとなり、結果として、十分に高いC/Nを得ることが可能となる。また、初期成長部3aの厚みを3nm以上50nm以下の範囲内とすることで、非磁性支持体2の表面に凹凸が存在する場合であっても、第1磁性層3の平坦性を悪化させることなく、非磁性支持体2の凹凸と同程度の大きさの凹凸を第1磁性層3の表面に形成することができる。
これに対して、初期成長部3aの厚みを3nm未満とした場合には、カラム5の基端部側を均一で細かく成長させるのが困難となる。したがって、初期成長部3aに続いて成長するカラム5の先端部側についても均一で細かく成長させるのが困難となるおそれがある。さらに、初期成長部3aの厚みを3nm未満とした場合には、後期成長部3bにおいて、結晶磁気異方性の発現の元となるCo(六方晶)におけるc軸方向がカラム5内において不揃いとなるおそれがある。したがって、後期成長部3bが有する保磁力と残留磁化とが低下する結果、高いC/Nを得るのが困難となるおそれがある。また、初期成長部3aの厚みを3nm未満とした場合には、非磁性支持体2の表面に凹凸が存在する場合において、その凹凸よりも大きな凹凸が第1磁性層3の表面に形成されるおそれがある。
一方、初期成長部3aの厚みを50nmを超える厚みとした場合には、第1磁性層3の平面方向および厚み方向の両方向に向かってカラム5が大きく成長し過ぎて初期成長部3aと後期成長部3bとの境界部位が大きく凹凸するおそれがあり、結果として、後期成長部3bの表面、すなわち、第1磁性層3の表面に大きな凹凸が生じるおそれがある。また、初期成長部3aの厚みを50nmを超える厚みとした場合には、第1磁性層3の厚みが厚くなり過ぎることに起因して磁気テープ1の巻き径が太くなり過ぎるおそれがある。なお、この磁気テープ1では、一例として、第1磁性層3における初期成長部3aの厚みが5nmであるものとする。
後期成長部3bは、非磁性支持体2に対する強磁性金属材料9の蒸着工程(第1磁性層3の形成工程)において初期成長部3aに対して連続的にカラム5を成長させることで形成される部位、すなわち、各カラム5の先端部側のそれぞれの一部で構成されている。具体的には、強磁性金属材料9の蒸着工程における初期段階で非磁性支持体2上に成長したカラム5(初期成長部3aを構成する部位)を非磁性支持体2の長手方向に沿って傾斜させつつ側面視円弧状となるように成長させた部位で構成されている。なお、2つの磁性層を有する従来の磁気記録媒体における非磁性支持体側の磁性層は、この後期成長部3bのみで形成されているのと同様の構成となっている。
この場合、この磁気テープ1では、後述するように、非磁性支持体2を回転冷却ドラム15(図2参照)の周面に沿わせて走行させつつ強磁性金属材料9を蒸着させることで第1磁性層3が形成されている。したがって、非磁性支持体2に対して強磁性金属材料9を蒸着させる蒸着領域Aの蒸着開始点Psよりも蒸着終了点Pe側において形成される部位(カラム5における後期成長部3bを構成する部位における基端部側)の傾斜角度θ2aが10°〜60°程度となると共に、蒸着領域Aの蒸着終了点Pe側において形成される部位(カラム5における後期成長部3bを構成する部位における先端部側)の傾斜角度θ2bが30°〜90°程度となり、カラム5における後期成長部3bを構成する部位が側面視円弧状となる。
この後期成長部3bは、Coを主体として形成され、前述した初期成長部3aと比較して酸素含有量が少なくなっている。この場合、後期成長部3bにおける酸素含有量は、20〜50原子%程度であるのが好ましい。また、後期成長部3bの厚みは、10nm以上300nm以下の範囲内であるのが好ましい。この範囲内の厚みであれば、カラム5における初期成長部3aを構成する部位(基端部側)に続いて後期成長部3bを構成する部位(先端部側)についても十分に細かく、かつ均一に成長させることができると共に、後期成長部3bの表面(すなわち、第1磁性層3の表面)の平坦性を十分に向上させることができる。これにより、記録再生時における磁気ヘッドとの間のスペーシングロスを低減することができ、結果として、十分に高いC/Nを得ることが可能となる。
これに対して、後期成長部3bの厚みを10nm未満とした場合には、後期成長部3bの保磁力および残留磁化を十分なレベルとするのが困難となるおそれがある。一方、後期成長部3bの厚みを300nmを超える厚みとした場合には、カラム5における後期成長部3bを構成する部位(先端部側)が第1磁性層3の平面方向および厚み方向の両方向に向かって大きく成長し過ぎる結果、後期成長部3bの平坦性が悪化して記録再生時に生じるスペーシングロスが増大するため、結果として、高いC/Nを得るのが困難となるおそれがある。なお、この磁気テープ1では、一例として、第1磁性層3における後期成長部3bの厚みが38nmであるものとする。
このように、第1磁性層3内に初期成長部3aを形成した構成を採用する場合においては、初期成長部3aの形成による上記の各種効果を得られる十分な厚みと、後期成長部3bの形成による上記の各種効果を得られる十分な厚みとの組み合わせを考慮して、後期成長部3bの厚みを初期成長部3aの厚みよりも厚くするのが好ましい。具体的には、後期成長部3bの厚みに対する初期成長部3aの厚みの比が0.08以上0.15以下の範囲内(この例では、0.13)となるように初期成長部3aおよび後期成長部3bの厚みを規定して形成するのが好ましい。
第2磁性層4は、本発明における金属薄膜磁性層の他の一例であって、図1に示すように、非磁性支持体2上に形成された第1磁性層3上に真空中において強磁性金属材料9(図2参照)を斜め蒸着法によって蒸着させることで複数のカラム5が形成されて構成されている。なお、第2磁性層4を形成するのに使用する強磁性金属材料9については、上記の第1磁性層3を形成するのに使用する強磁性金属材料9と同様であるため、その説明を省略する。
また、第2磁性層4は、上記の各カラム5における基端部側(非磁性支持体2側)のそれぞれの一部で構成された初期成長部4aと、各カラム5における先端部側(保護層6側)のそれぞれの他の一部で構成された後期成長部4bとが非磁性支持体2側から第1磁性層3の上にこの順で連続的に形成されて構成されている。この場合、初期成長部4aは、前述した第1磁性層3における初期成長部3aと同様にして、後述するように第2磁性層4の平坦性を向上させる効果(第2磁性層4の平坦性が悪化するのを回避する効果)を有する下地層としても機能する部位であって、この磁気テープ1では、第2磁性層4の形成時に第1磁性層3の上に初期成長部4aを形成することで、後述するようにして、第1磁性層3の表面に凹凸が存在する場合であっても、その凹凸が一層大きくなって第2磁性層4の表面に現れる事態を回避して、第1磁性層3の凹凸、すなわち、非磁性支持体2の凹凸と同程度の大きさの凹凸を第2磁性層4の表面に形成することが可能となっている。この初期成長部4aは、強磁性金属材料9の蒸着工程(第2磁性層4の形成工程)における初期段階において、非磁性支持体2の厚み方向(略垂直方向)にカラム5を直線状に成長させた部位で構成されている。
なお、上記の「厚み方向(略垂直方向)」には、非磁性支持体2の法線に対する傾斜角度が0°〜10°程度までの方向、すなわち、非磁性支持体2の表面に対する傾斜角度θ1が90°〜80°程度までの方向がこれに含まれる。この場合、出願人は、非磁性支持体2の表面に対する傾斜角度θが80°を下回ると、第2磁性層4の平坦性が悪化するのを確認している。
この初期成長部4aは、前述した第1磁性層3の初期成長部3aと同様にして、強磁性金属材料9を蒸着させる蒸着領域Aにおける蒸着開始点Ps(図2参照)の近傍に設けられた開始点側酸素供給部18から酸素ガスを供給することで、蒸発した強磁性金属材料9と酸素ガスとが蒸着開始点Psにおいて十分に混合された状態で第1磁性層3の表面に付着するため、カラム5が非磁性支持体2の厚み方向(略垂直方向)に対して直線状に成長するようにして形成される。また、初期成長部4aは、酸素供給管20aから供給された酸素ガスと強磁性金属材料9とが混合された状態で付着することで、Co−Oを主体として形成される。この場合、初期成長部4aにおける酸素含有量は、50〜60原子%程度であるのが好ましい。また、初期成長部4aの厚みは、前述した初期成長部3aの厚みと同様の理由により、3nm以上50nm以下の範囲内であるのが好ましい。なお、この磁気テープ1では、一例として、第2磁性層4における初期成長部4aの厚みが5nmであるものとする。
後期成長部4bは、第1磁性層3における後期成長部3bと同様にして、強磁性金属材料9の蒸着工程(第2磁性層4の形成工程)において初期成長部4aに対して連続的にカラム5を成長させることで形成される部位、すなわち、各カラム5の先端部側のそれぞれの一部で構成されている。具体的には、強磁性金属材料9の蒸着工程における初期段階で第1磁性層3上に成長したカラム5(初期成長部4aを構成する部位)を非磁性支持体2の長手方向に沿って傾斜させつつ側面視円弧状となるように成長させた部位で構成されている。なお、この後期成長部4bについても、後期成長部3bと同様にして、カラム5の基端部側の傾斜角度θ2aが10°〜60°程度となり、カラム5の先端部側の傾斜角度θ2bが30°〜90°程度となると共に、カラム5における後期成長部4bを構成する部位が側面視円弧状となる。なお、2つの磁性層を有する従来の磁気記録媒体における表面側の磁性層や、単一の磁性層を有する従来の磁気記録媒体の磁性層は、この後期成長部4bのみで形成されているのと同様の構成となっている。
この後期成長部4bは、Coを主体として形成され、前述した初期成長部4aと比較して酸素含有量が少なくなっている。この場合、後期成長部4bにおける酸素含有量は、20〜50原子%程度であるのが好ましい。また、後期成長部4bの厚みは、前述した第1磁性層3における後期成長部3bの厚みと同様の理由により、10nm以上300nm以下の範囲内であるのが好ましい。なお、この磁気テープ1では、一例として、第2磁性層4における後期成長部4bの厚みが35nmであるものとする。
このように、第2磁性層4内に初期成長部4aを形成した構成を採用する場合においては、初期成長部4aの形成による上記の各種効果を得られる十分な厚みと、後期成長部4bの形成による上記の各種効果を得られる十分な厚みとの組み合わせを考慮して、後期成長部4bの厚みを初期成長部4aの厚みよりも厚くするのが好ましい。具体的には、後期成長部4bの厚みに対する初期成長部4aの厚みの比が0.08以上0.15以下の範囲内(この例では、0.14)となるように初期成長部4aおよび後期成長部4bの厚みを規定して形成するのが好ましい。
この磁気テープ1では、図1に示すように、第1磁性層3における各カラム5の後期成長部3bを構成している部位と、第2磁性層4における各カラム5の後期成長部4bを構成している部位とが非磁性支持体2の厚み方向(法線方向)に対して相反する方向に傾くように第1磁性層3および第2磁性層4が形成されている。したがって、この磁気テープ1では、第1磁性層3の磁化容易軸の方向(同図に矢印A1で示す方向)と、第2磁性層4の磁化容易軸の方向(同図に矢印A2で示す方向)とが相反する方向に傾いており、後述するように、磁気テープ1に対する双方向記録時における磁化特性の相違や出力信号の信号レベルの差異が生じ難くなっている。また、この磁気テープ1では、第2磁性層4の厚みに対するの第1磁性層3の厚みの比が0.60以上2.10以下の範囲内(この例では、1.08)となるように第1磁性層3および第2磁性層4が形成されている。これにより、磁気テープ1に対する双方向記録時における出力信号の信号レベルの差異が十分に小さくなっている。
さらに、この磁気テープ1では、非磁性支持体2の平面方向と磁力線との交差角度が60°の磁界を印加した状態において測定される保磁力Hcが174kA/m程度で、非磁性支持体2の平面方向と磁力線との交差角度が120°の磁界を印加した状態において測定される保磁力が183kA/m程度となっている。この場合、出願人は、上記の交差角度が60°の磁界を印加した状態において測定される保磁力Hcと、上記の交差角度が120°の磁界を印加した状態において測定される保磁力Hcとの双方が160kA/m以上となるように第1磁性層3の厚みおよび第2磁性層4の厚みや、初期成長部3a,4aの厚みおよび後期成長部3b,4bの厚みを規定することで、順方向走行時における出力信号の信号レベルと、逆方向走行時における出力信号の信号レベルとをそれぞれ向上させることができると共に、テープ走行方向の相違による出力信号の信号レベルの差異を十分に小さくできるのを見出した。なお、保磁力Hcの態様と、出力信号の信号レベルおよびテープ走行方向の相違による差異との関係については、後に詳細に説明する。
保護層6は、上記の両磁性層3,4の酸化を防止すると共に両磁性層3,4の摩耗を阻止するための薄膜であって、一例として、DLC(Diamond Like Carbon )で形成されている。潤滑剤7としては、一例として、フッ素を含む潤滑剤、炭化水素系のエステル、または、これらの混合物が使用される。バックコート層8は、結合剤樹脂(バインダ)と無機化合物および/またはカーボンブラックとを有機溶媒に混合分散させたバックコート層用塗料を塗布して硬化させることにより、厚みが0.1μm〜0.7μm程度となるように形成されている。この場合、結合剤樹脂としては、塩化ビニル系共重合体、ポリウレタン樹脂、アクリル樹脂、エポキシ樹脂、フェノキシ樹脂およびポリエステル樹脂を単独または混合して用いることができる。カーボンブラックとしては、ファーネスカーボンブラック、サーマルカーボンブラック等を用いることができ、無機化合物としては、炭酸カルシウム、アルミナ、α−酸化鉄等を用いることができる。さらに、有機溶剤としては、ケトン系や芳香族炭化水素系の溶剤(例えば、メチルエチルケトン、トルエンおよびシクロヘキサノンなど)を用いることができる。
次に、上記の磁気テープ1を製造可能に構成された磁気テープ製造装置10の構成、および磁気テープ1の製造方法について、図面を参照して説明する。
図2に示す磁気テープ製造装置(以下、「製造装置」ともいう)10は、繰り出しロール13、巻き取りロール14、回転冷却ドラム15、るつぼ16、電子銃17、開始点側酸素供給部18および終了点側酸素供給部19が真空槽11内に収容されて上記の両磁性層3,4を形成可能に構成されている。また、真空槽11には、内部空間Sの気体を排気して真空状態を維持するための真空ポンプ12が取り付けられている。
繰り出しロール13は、第1磁性層3または第2磁性層4が形成される非磁性支持体2を巻回したロールを回転させることで非磁性支持体2を回転冷却ドラム15側に向けて繰り出す。巻き取りロール14は、第1磁性層3または第2磁性層4が形成された非磁性支持体2をロール状に巻き取る。回転冷却ドラム15は、繰り出しロール13から繰り出された非磁性支持体2をその周面に添わせて走行させつつ冷却する。なお、実際には、繰り出しロール13と回転冷却ドラム15との間や回転冷却ドラム15と巻き取りロール14との間にガイドローラ等が存在するが、本発明についての理解を容易とするために、これらについての図示および説明を省略する。
るつぼ16は、一例として、MgO等で形成され、図示しない材料供給装置によって定期的に供給される強磁性金属材料9(この例では、Co)を収容する。このるつぼ16は、電子銃17から出力される電子ビーム17aの照射により蒸発した強磁性金属材料9を回転冷却ドラム15の周面に添って走行している非磁性支持体2の表面に斜めから蒸着させるように定置されている。電子銃17は、るつぼ16内の強磁性金属材料9を蒸発させるための電子ビーム17aを出力する。
開始点側酸素供給部18は、酸素混合チャンバ18a、マスク18bおよび酸素供給管20aを備えて非磁性支持体2の走行方向における上流側に配設されている。酸素混合チャンバ18aは、回転冷却ドラム15の周面に沿って走行させられている非磁性支持体2の幅方向(図2の紙面の奥行き方向)における長さが非磁性支持体2の幅よりも僅かに長い箱体に形成されて、その開口面を回転冷却ドラム15の周面(すなわち、非磁性支持体2の表面)に向けて配設されている。また、酸素混合チャンバ18aの幅(非磁性支持体2の走行方向に沿った開口長)は、第1磁性層3や第2磁性層4に形成すべき初期成長部3a,4aの厚み、回転冷却ドラム15の直径、および非磁性支持体2の走行速度等の諸条件に応じて規定されている。
また、酸素混合チャンバ18a内に配設されている酸素供給管20aは、蒸着領域Aの蒸着開始点Ps側に酸素ガスを供給する。酸素供給管20aは、非磁性支持体2の幅方向に沿って複数の酸素ガス供給口(一例として、円形孔やスリット)が形成されて構成されている。この場合、出願人は、蒸着開始点Psの近傍に酸素混合チャンバ18aを配設し、るつぼ16から蒸発した強磁性金属材料9と酸素供給管20aから供給される酸素ガスとを酸素混合チャンバ18a内において混合して強磁性金属材料9の蒸発成分を酸素ガス中に散乱させることにより、非磁性支持体2の上に成長するカラム5が非磁性支持体2に対してその厚み方向(法線方向:略垂直方向)に対して直線状に成長して上記の初期成長部3a,4aが形成されるのを見い出した。
マスク18bは、るつぼ16から蒸発した強磁性金属材料9の非磁性支持体2に対する付着を阻止することで(非磁性支持体2を覆うことで)蒸着領域Aの蒸着開始点Psを規定する。また、マスク18bは、回転冷却ドラム15に対する配設位置を調整されることで、非磁性支持体2に対して強磁性金属材料9を付着させる角度(非磁性支持体2の法線方向とるつぼ16が存在する方向とのなす角度)の最大角度を規定する。
終了点側酸素供給部19は、マスク19aおよび酸素供給管20bを備えて非磁性支持体2の走行方向における下流側に配設されている。マスク19aは、るつぼ16から蒸発した強磁性金属材料9の非磁性支持体2に対する付着を阻止することで(非磁性支持体2を覆うことで)蒸着領域Aの蒸着終了点Peを規定する。このマスク19aは、回転冷却ドラム15に対する配設位置を調整されることで、非磁性支持体2に対して強磁性金属材料9を付着させる角度(非磁性支持体2の法線方向とるつぼ16が存在する方向とのなす角度)の最小角度を規定する。
酸素供給管20bは、マスク19aと回転冷却ドラム15との間に配設されて、上記の蒸着領域Aにおける蒸着終了点Pe側に配設されている。また、酸素供給管20bは、非磁性支持体2の幅方向に沿って複数の酸素ガス供給口(一例として、円形孔やスリット)が形成されて構成されている。この場合、終了点側酸素供給部19において供給する酸素ガスは、形成する第1磁性層3や第2磁性層4の飽和磁束密度、保磁力および電磁変換特性の向上を図る目的で導入されている。
一方、磁気テープ1の製造に際しては、製造装置10を用いて、図3に示すように、非磁性支持体2の上に第1磁性層3を形成した後に、図4に示すように、形成した第1磁性層3の上に第2磁性層4を形成する。つまり、非磁性支持体2の上に強磁性金属材料9を蒸着させる蒸着処理を2回に亘って実行することで、第1磁性層3および第2磁性層4を非磁性支持体2の上にこの順で形成する。
具体的には、まず、第1磁性層3を形成する非磁性支持体2を巻回した原反を繰り出しロール13にセットして回転冷却ドラム15の周面に沿わせると共に、先端部を巻き取りロール14に固定する。次いで、真空ポンプ12を作動させて真空槽11内を10−3Pa程度の圧力となるように真空引きした後に、繰り出しロール13、巻き取りロール14および回転冷却ドラム15を回転させて回転冷却ドラム15の周面に沿って非磁性支持体2を走行させる。続いて、るつぼ16内の強磁性金属材料9に向けて電子銃17から電子ビーム17aを照射することで強磁性金属材料9を蒸発させると共に、酸素供給管20a,20bからの酸素ガスの供給を開始する。この際に、電子銃17は、非磁性支持体2の幅方向に沿って電子ビーム17aを所定のピッチで走査(往復動)させる。これにより、るつぼ16内において強磁性金属材料9が加熱されて蒸発する。
この際に、るつぼ16から蒸発した強磁性金属材料9のうちの蒸着開始点Ps付近に飛来した強磁性金属材料9の多くは、酸素供給管20aから供給された酸素ガスと酸素混合チャンバ18a内において混合される。この際に、酸素ガスと混合された強磁性金属材料9は、酸素ガスと衝突することで、その移動方向が様々に変化させられる結果、回転冷却ドラム15の周面を走行している非磁性支持体2の上に降り積もるようにして付着する。これにより、第1磁性層3を構成する各カラム5の基端部側が非磁性支持体2上に成長し、第1磁性層3における初期成長部3aの形成が進行する。
この場合、従来の一般的な斜め蒸着法によって強磁性金属材料9を非磁性支持体2に付着させたときには、非磁性支持体2の表面に極く小さな凹凸が存在するときに、その凸部における非磁性支持体2の走行方向の上流側に強磁性金属材料9が付着し難く、凸部における走行方向の下流側にのみ強磁性金属材料9が付着する。したがって、従来の斜め蒸着法では、前述したように、非磁性支持体2に極く小さな凹凸が存在する場合において、その凸部の大きさが誇張(巨大化)されて第1磁性層3の表面に現れることとなり、結果として、第1磁性層3の平坦性が悪化する傾向がある。
これに対して、蒸着開始点Psの近傍において酸素ガスと混合した状態で非磁性支持体2に強磁性金属材料9を付着させるこの製造装置10では、るつぼ16から飛来した強磁性金属材料9が酸素混合チャンバ18a内において酸素ガスと混合されることでるつぼ16からの飛来方向とは無関係な向きで非磁性支持体2に付着することとなる。したがって、強磁性金属材料9が非磁性支持体2の厚み方向(法線方向:略垂直方向)に付着し、カラム5の基端部側が直線状に成長して非磁性支持体2上に初期成長部3aが形成される。したがって、非磁性支持体2の表面に極く小さな凹凸が存在したとしても、その凸部における非磁性支持体2の走行方向の上流側および下流側の双方に対して強磁性金属材料9が同様に付着する結果、初期成長部3aの形成過程において非磁性支持体2の凹凸よりも大きな凹凸が形成される事態が回避され、非磁性支持体2の凹凸と同程度の大きさの凹凸が第1磁性層3の表面に形成される。
なお、本明細書における蒸着開始点Psとは、るつぼ16の位置と回転冷却ドラム15の位置との関係に基づいて規定される幾何学的な意味での蒸着開始点であり、実際には、酸素混合チャンバ18aの大きさ、酸素供給管20aから送り出される酸素ガスの量、および強磁性金属材料9の蒸発量などに応じて図2に示す蒸着開始点Psよりも上流側から非磁性支持体2に対する強磁性金属材料9の蒸着が始まることもある。
一方、開始点側酸素供給部18の部位で初期成長部3aが形成された非磁性支持体2は、回転冷却ドラム15の周面に沿って走行してマスク18b,19aの間に移動する。この際に、るつぼ16から蒸発して飛来した強磁性金属材料9が上記の初期成長部3a(カラム5の基端部)の上に付着する結果、非磁性支持体2が蒸着終了点Peまで移動するまでの間においてカラム5が基端部側(初期成長部3aを構成する部位)に続いて連続して成長して初期成長部3aの上に後期成長部3bが形成される。この場合、非磁性支持体2がマスク18bから露出した直後からマスク19aによって覆われるまでの間において非磁性支持体2に対するるつぼ16の相対的な存在方向(強磁性金属材料9が飛来する方向)が逐次変化する結果、図3に示すように、カラム5の先端部側(後期成長部3bを構成する部位)が非磁性支持体2の走行方向に対して下流側に傾斜しつつ側面視円弧状に成長する。なお、同図では、非磁性支持体2が矢印R1の向きに走行している状態を表している。
また、非磁性支持体2上に初期成長部3aを形成することで、非磁性支持体2の表面に凹凸が存在する場合であっても、初期成長部3aの形成過程において、強磁性金属材料9およびその酸化物で凹凸が覆われて凹凸の度合い(大きさ)が十分に小さくなる。したがって、この初期成長部3aの上に形成される後期成長部3bの形成時において非磁性支持体2の表面に存在する凹凸よりも大きな凹凸が形成される事態が回避され、結果として、非磁性支持体2の表面に存在する凹凸と同程度の大きさの凹凸が後期成長部3bの表面、すなわち、第1磁性層3の表面に形成される。これにより、所望の平坦性を有する第1磁性層3が非磁性支持体2の上に形成される。この後期成長部3bの厚みは、マスク19aの位置、非磁性支持体2の走行速度、強磁性金属材料9の蒸発量を適宜調整することで所望の厚みとすることができる。
なお、上記の蒸着終了点Peは、前述した蒸着開始点Psと同様に幾何学的な意味での蒸着終了点であり、実際には、非磁性支持体2のテープ走行速度および強磁性金属材料9の蒸発量やマスク19aの裏側に強磁性金属材料9が回り込むことに起因して、図2に示す蒸着終了点Peよりも下流側まで非磁性支持体2に対する強磁性金属材料9の蒸着が続くこともある。
この後、初期成長部3aおよび後期成長部3bの形成が完了した(第1磁性層3の形成が完了した)非磁性支持体2は、回転冷却ドラム15の周面から離脱して巻き取りロール14に巻き取られる。これにより、2回の蒸着処理のうちの1回目が完了する。
続いて、第1磁性層3の形成が完了した非磁性支持体2が巻回された原反を繰り出しロール13にセットして回転冷却ドラム15の周面に沿わせると共に、先端部を巻き取りロール14に固定する。次いで、真空ポンプ12を作動させて真空槽11内を真空状態とした後に、繰り出しロール13、巻き取りロール14および回転冷却ドラム15を回転させて回転冷却ドラム15の周面に沿って非磁性支持体2を走行させる。この際には、前述した第1磁性層3の形成処理時とは逆方向に非磁性支持体2が走行させられる。続いて、るつぼ16内の強磁性金属材料9に向けて電子銃17から電子ビーム17aを照射することで強磁性金属材料9を蒸発させると共に、酸素供給管20a,20bからの酸素ガスの供給を開始する。
この際には、前述した初期成長部3aおよび後期成長部3bの形成プロセスと同様にして、図4に示すように、第1磁性層3の上に初期成長部4aおよび後期成長部4bが形成される。なお、同図では、非磁性支持体2が矢印R2の向きに走行している状態を表している。この際に、前述した初期成長部3aと同様にして、第2磁性層4の形成処理における初期段階(酸素混合チャンバ18aの近傍)において第1磁性層3の上に初期成長部4aを形成することで、第1磁性層3の表面に凹凸が存在する場合であっても、初期成長部4aの形成過程において、強磁性金属材料9およびその酸化物で凹凸が覆われて凹凸の度合い(大きさ)が十分に小さくなる。したがって、この初期成長部4aの上に形成される後期成長部4bの形成時において第1磁性層3の凹凸よりも大きな凹凸が形成される事態が回避され、結果として、第1磁性層3の凹凸と同程度の大きさの凹凸が後期成長部4bの表面、すなわち、第2磁性層4の表面に形成される。これにより、所望の平坦性を有する第2磁性層4が第1磁性層3の上に形成される。この後、初期成長部4aおよび後期成長部4bの形成が完了した(第2磁性層4の形成が完了した)非磁性支持体2は、回転冷却ドラム15の周面から離脱して巻き取りロール14に巻き取られる。これにより、2回の蒸着処理のうちの2回目が完了する。
この後、図5に示すように、保護層形成装置(図示せず)を用いて第2磁性層4の表面にDLCを付着させることで保護層6を形成する。次いで、非磁性支持体2の裏面側にバックコート層用塗料を塗布して乾燥させることによってバックコート層8を形成すると共に、保護層6の表面に潤滑剤7を塗布する。以上により、磁気テープ1の一連の製造工程が完了し、図1に示すように、磁気テープ1が完成する。なお、テープカートリッジに収容される最終製品物としての磁気テープは、潤滑剤7の塗布が完了した非磁性支持体2を所定のテープ幅に裁断することで製造されるが、本発明についての理解を容易とするために、これらの工程についての図示および説明を省略する。
次いで、磁力線の交差角度が相違する各種磁界を印加した状態において測定される保磁力Hcと、再生時における再生ヘッドからの出力信号の信号レベルとの関係について、実施例および比較例を参照して具体的に説明する。
まず、上記の製造装置10を用いて、図6に示す実施例1〜5の磁気テープTと比較例1〜6の磁気テープTとをそれぞれ製造した。この場合、各磁気テープTの製造方法については、基本的には上記の磁気テープ1と同様とした。
[実施例1]
第1磁性層における初期成長部の厚みが5nmで、第1磁性層における後期成長部の厚みが47nmで、第2磁性層における初期成長部の厚みが4nmで、第2磁性層における後期成長部の厚みが29nmとなるように非磁性支持体2の上に第1磁性層および第2磁性層をこの順で形成した。この結果、第1磁性層の厚みが52nmとなり、第2磁性層の厚みが33nmとなった。
[実施例2](前述した磁気テープ1)
第1磁性層における初期成長部の厚みが5nmで、第1磁性層における後期成長部の厚みが38nmで、第2磁性層における初期成長部の厚みが5nmで、第2磁性層における後期成長部の厚みが35nmとなるように非磁性支持体2の上に第1磁性層および第2磁性層をこの順で形成した。この結果、第1磁性層の厚みが43nmとなり、第2磁性層の厚みが40nmとなった。
[実施例3]
第1磁性層における初期成長部の厚みが4nmで、第1磁性層における後期成長部の厚みが31nmで、第2磁性層における初期成長部の厚みが3nmで、第2磁性層における後期成長部の厚みが21nmとなるように非磁性支持体2の上に第1磁性層および第2磁性層をこの順で形成した。この結果、第1磁性層の厚みが35nmとなり、第2磁性層の厚みが24nmとなった。
[実施例4]
第1磁性層における初期成長部の厚みが4nmで、第1磁性層における後期成長部の厚みが31nmで、第2磁性層における初期成長部の厚みが5nmで、第2磁性層における後期成長部の厚みが42nmとなるように非磁性支持体2の上に第1磁性層および第2磁性層をこの順で形成した。この結果、第1磁性層の厚みが35nmとなり、第2磁性層の厚みが47nmとなった。
[実施例5]
第1磁性層における初期成長部の厚みが10nmで、第1磁性層における後期成長部の厚みが100nmで、第2磁性層における初期成長部の厚みが5nmで、第2磁性層における後期成長部の厚みが36nmとなるように非磁性支持体2の上に第1磁性層および第2磁性層をこの順で形成した。この結果、第1磁性層の厚みが110nmとなり、第2磁性層の厚みが41nmとなった。
[比較例1](2つの磁性層を有する従来の磁気記録媒体)
第1磁性層に初期成長部を形成することなく、厚み53nmの後期成長部のみで第1磁性層を形成すると共に、第2磁性層に初期成長部を形成することなく、厚み33nmの後期成長部のみで第2磁性層を形成した。
[比較例2]
第1磁性層に初期成長部を形成することなく、厚み50nmの後期成長部のみで第1磁性層を形成すると共に、厚み4nmの初期成長部の上に厚み31nmの後期成長部を形成することで厚み35nmの第2磁性層を形成した。
[比較例3]
厚み5nmの初期成長部の上に厚み48nmの後期成長部を形成することで厚み53nmの第1磁性層を形成すると共に、第2磁性層に初期成長部を形成することなく、厚み32nmの後期成長部のみで第2磁性層を形成した。
[比較例4](単一の磁性層を有する従来の磁気記録媒体)
厚み7nmの初期成長部の上に厚み74nmの後期成長部を形成することで厚み81nmの単一の磁性層(第1磁性層のみ)を形成した。
[比較例5]
第1磁性層における初期成長部の厚みが4nmで、第1磁性層における後期成長部の厚みが31nmで、第2磁性層における初期成長部の厚みが9nmで、第2磁性層における後期成長部の厚みが96nmとなるように非磁性支持体2の上に第1磁性層および第2磁性層をこの順で形成した。この結果、第1磁性層の厚みが35nmとなり、第2磁性層の厚みが105nmとなった。
[比較例6]
第1磁性層における初期成長部の厚みが10nmで、第1磁性層における後期成長部の厚みが99nmで、第2磁性層における初期成長部の厚みが4nmで、第2磁性層における後期成長部の厚みが34nmとなるように非磁性支持体2の上に第1磁性層および第2磁性層をこの順で形成した。この結果、第1磁性層の厚みが109nmとなり、第2磁性層の厚みが38nmとなった。
(保磁力の測定)
図7に示すように、製造した各磁気テープTを裁断して試料Tzを製作すると共に、製作した各試料Tzについて、図8に示す振動試料型磁力計(VSM:Vibrating Sample Magnetometer )50を用いて各種磁界を印加した状態において保磁力Hcを測定した。その測定結果を図6,10,11に示す。この場合、図8に示すように、振動試料型磁力計50は、電磁石51および図示しない制御部(測定部)を備え、試料取付部52に上記の試料Tzを取り付けた状態において電磁石51によって磁界を発生して試料Tzに印加することができるように構成されている。また、試料取付部52は、図示しない発振器を備えて試料Tzを例えば80Hz程度の周期で振動させると共に、取り付けられた試料Tzの保磁力Hc(A/m)を測定可能に構成されている。この振動試料型磁力計50は、試料取付部52に対して電磁石51を回動させることで、試料Tzにおける非磁性支持体2の平面方向と磁力線Lmとの交差角度θ3a,θ3b(図9参照)を変化させることができるように構成されている。
この場合、この明細書では、第2磁性層(表面側の磁性層)の形成処理時、または単一の磁性層の形成処理時において非磁性支持体を走行させた方向に向かって記録再生ヘッドが相対的に走査する方向を順方向とし、第1磁性層(非磁性支持体2側の磁性層)の形成処理時において非磁性支持体を走行させた方向に向かって記録再生ヘッドが相対的に走査する方向を逆方向とする。また、図9に示すように、非磁性支持体2の法線方向(厚み方向)に対して順方向側に30°傾斜した角度を「非磁性支持体の平面方向と磁力線との交差角度θ3aが60°」であるものとする。また、非磁性支持体2の法線方向に対して逆方向側に30°傾斜した角度を「非磁性支持体の平面方向と磁力線との交差角度θ3bが120°(逆側から見て60°)」であるものとする。この場合、この例では、振動試料型磁力計50を用いて上記の交差角度を一例として5°ずつ変化させ、その都度、保磁力Hcを測定した。
(出力の測定)
上記の各磁気テープTについて、順方向へのテープ走行時における出力信号の信号レベルと逆方向へのテープ走行時における出力信号の信号レベルとを測定した。具体的には、0.16μmギャップ長インダクティブヘッドを搭載したドラムテスタを用いて0.4μmの記録波長で記録を行うと共に、AMRヘッドを用いて再生し、その際の出力信号の信号レベル(dB)を測定した。その測定結果を図6に示す。なお、順方向出力(dB)および逆方向出力(dB)については、比較例4の順方向出力(dB)を0dBとして表している。また、出力差(dB)については、順方向走行時において測定された出力(dB)と逆方向走行時において測定された出力(dB)との差分の絶対値を表している。
図6に示すように、第2磁性層4を形成せずに、単一の第1磁性層3のみを非磁性支持体2の上に形成した比較例4の磁気テープTでは、順方向走行時における出力信号の信号レベルに対して逆方向走行時における出力信号の信号レベル(dB)が6.4dBも小さくなっている。このため、この比較例4の磁気テープTに対する双方向記録再生は非常に困難であると考えられる。
この場合、この比較例4の磁気テープTでは、図11に実線L4bで示すように、非磁性支持体2の平面方向と磁力線Lmとの交差角度θが120°程度の磁界を印加した状態において測定される保磁力Hcが、それ以外の交差角度範囲において測定される保磁力Hcよりも大きく低下している。具体的には、比較例4の磁気テープTでは、交差角度θが120°程度において測定される保磁力Hcが160kA/mを大きく下回っているのに対し、それ以外の交差角度範囲において測定される保磁力Hcは、概ね160kA/m以上となっている。
一方、磁化容易軸の傾斜方向が相反する2つの磁性層を形成した比較例1の磁気テープTでは、順方向走行時における出力信号の信号レベル(dB)と、逆方向走行時における出力信号の信号レベル(dB)との差異が0.8dBとなっている。しかしながら、この比較例1の磁気テープTでは、順方向走行時および逆方向走行時の双方における出力信号の信号レベル(dB)が、上記の比較例4の磁気テープTにおける順方向走行時における出力信号の信号レベル(dB)よりも3.2dB以上小さな値となっている。このため、この比較例1の磁気テープTでは、十分なS/Nを得ることができず、これに起因してエラーレートが悪化するおそれがある。
この場合、この比較例1の磁気テープTでは、図11に実線L1bで示すように、非磁性支持体2の平面方向と磁力線Lmとの交差角度θが120°程度(上記の比較例4の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが140kA/mとなっている。その一方で、この比較例1の磁気テープTでは、磁力線Lmの交差角度θが60°程度の磁界を印加した状態において測定される保磁力Hcが130kA/m台まで大きく低下している。
また、第1磁性層3および第2磁性層4のいずれか一方に初期成長部を形成した比較例2,3の磁気テープTでは、順方向走行時における出力信号の信号レベル(dB)と、逆方向走行時における出力信号の信号レベル(dB)との差異がそれぞれ0.7dB、1.1dBとなっている。しかしながら、この比較例1の磁気テープTでは、順方向走行時および逆方向走行時の双方における出力信号の信号レベル(dB)が、上記の比較例4の磁気テープTにおける順方向走行時における出力信号の信号レベル(dB)よりも2.4dB以上小さな値となっている。このため、この比較例2,3の磁気テープTでは、上記の比較例1の磁気テープTと同様にして、十分なS/Nを得ることができず、これに起因してエラーレートが悪化するおそれがある。
この場合、この比較例2,3の磁気テープTでは、図11に一点鎖線L2bおよび二点鎖線L3bで示すように、非磁性支持体2の平面方向と磁力線Lmとの交差角度θが120°程度(上記の比較例4の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが比較例1の磁気テープTと同様にしてある程度高い値となっている。その一方で、この比較例2,3の磁気テープTでは、磁力線Lmの交差角度θが60°程度の磁界を印加した状態において測定される保磁力Hcが比較例1の磁気テープTと同様にして大きく低下している。
さらに、第1磁性層3および第2磁性層4の双方に初期成長部を形成した比較例5,6の磁気テープTでは、第1磁性層3の厚みと第2磁性層4の厚みとの差異が大きいことに起因して、順方向走行時における出力信号の信号レベル(dB)と、逆方向走行時における出力信号の信号レベル(dB)との差異がそれぞれ4.7dB、2.2dBと非常に大きくなっている。このため、上記の比較例4の磁気テープTと同様にして、この比較例5,6の磁気テープTに対する双方向記録再生は非常に困難であると考えられる。
この場合、この比較例5の磁気テープTでは、図11に破線L5bで示すように、非磁性支持体2の平面方向と磁力線Lmとの交差角度θが60°程度(上記の比較例1〜3の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが比較例4の磁気テープTと同様にしてある程度高い値となっている。その一方で、この比較例5の磁気テープTでは、交差角度θが120°程度(上記の比較例4の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが比較例4の磁気テープTと同様にして大きく低下している。また、この比較例6の磁気テープTでは、図11に破線L6bで示すように、交差角度θが120°程度(上記の比較例4の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが160kA/mを超えて十分に高い値となっている。その一方で、この比較例6の磁気テープTでは、交差角度θが60°程度(上記の比較例1〜3の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが他の交差角度θ範囲において測定される保磁力よりも大きく低下している。
一方、第1磁性層3および第2磁性層4の双方に初期成長部を形成し、かつ、第1磁性層3の厚みと第2磁性層4の厚みとが同程度の実施例1〜3の磁気テープTでは、順方向走行時における出力信号の信号レベル(dB)と、逆方向走行時における出力信号の信号レベル(dB)との差異がそれぞれ0.7dB、0.1dB、および0.4dBと小さくなっている。また、この実施例1〜3の磁気テープTでは、順方向走行時および逆方向走行時の双方における出力信号の信号レベル(dB)が、上記の比較例4の磁気テープTにおける順方向走行時における出力信号の信号レベル(dB)よりも僅かに低い程度で、出力値が最も低い実施例3の磁気テープTにおいても、比較例4の磁気テープTにおける順方向走行時における出力信号の信号レベル(dB)に対して順方向で−1.6dBだけの低下に止まり、いずれも非常に高い値の出力信号が得られている。
この場合、この実施例1〜3の磁気テープTでは、図10に実線L1a、一点鎖線L2aおよび二点鎖線L3aで示すように、非磁性支持体2の平面方向と磁力線Lmとの交差角度θが60°程度(上記の比較例1〜3の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcと、交差角度θが120°程度(上記の比較例4の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcとの双方がいずれも170kA/mを超える大きな値となっており、それ以外の交差角度θにおいて測定される保磁力Hcについても、いずれも160kA/m以上の値となっている。
また、第1磁性層3および第2磁性層4の双方に初期成長部を形成した実施例4,5の磁気テープTでは、上記の実施例1〜3の磁気テープTと同様にして、順方向走行時における出力信号の信号レベル(dB)と、逆方向走行時における出力信号の信号レベル(dB)との差異がそれぞれ0.9dB、0.4dBと十分に小さくなっている。さらに、この実施例4,5の磁気テープTでは、順方向走行時および逆方向走行時の双方における出力信号の信号レベル(dB)が、上記の比較例4の磁気テープTにおける順方向走行時における出力信号の信号レベル(dB)よりも僅かに低い程度で、非常に高い値の出力信号が得られている。
この場合、この実施例4の磁気テープTでは、図10に破線L4aで示すように、非磁性支持体2の平面方向と磁力線Lmとの交差角度θが120°程度(上記の比較例4の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが165kA/m程度とやや低いものの、交差角度θが60°程度(上記の比較例1〜3の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが190kA/mと非常に大きな値となっており、それ以外の交差角度θにおいて測定される保磁力Hcについても、いずれも160kA/m以上の値となっている。
また、実施例5の磁気テープTでは、図10に破線L5aで示すように、非磁性支持体2の平面方向と磁力線Lmとの交差角度θが60°程度(上記の比較例1〜3の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが160kA/mとやや低いものの、交差角度θが120°程度(上記の比較例4の磁気テープTにおいて保磁力Hcの大きな低下が生じていた交差角度θ)の磁界を印加した状態において測定される保磁力Hcが176kA/m程度と大きな値となっており、それ以外の交差角度θにおいて測定される保磁力Hcについても、いずれも160kA/m以上の値となっている。
このように、非磁性支持体2に平面方向と磁力線Lmとの交差角度θが60°のときに測定される保磁力Hcと、交差角度θが120°のときに測定される保磁力Hcとのいずれか一方、または双方が160kA/m未満となっている比較例3〜6の磁気テープTでは、順方向走行時における出力信号の信号レベル(dB)と、逆方向走行時における出力信号の信号レベル(dB)との差異が1.1dB以上と大きくなっている。これに対して、非磁性支持体2に平面方向と磁力線Lmとの交差角度θが60°のときに測定される保磁力Hcと、交差角度θが120°のときに測定される保磁力Hcとの双方が160kA/m以上となっている実施例1〜5の磁気テープTでは、順方向走行時における出力信号の信号レベル(dB)と、逆方向走行時における出力信号の信号レベル(dB)との差異が1.0dB以下(この例では、0.9dB以下)と十分に小さくなっている。
したがって、交差角度θが60°のときに測定される保磁力Hcと、交差角度θが120°のときに測定される保磁力Hcとの双方が160kA/m以上となるように第1磁性層3および第2磁性層4を形成することで、順方向走行時および逆方向走行時における出力信号の信号レベルの差異を十分に小さく抑えることができる結果、双方向記録時に適した磁気テープを製造することができるのが理解できる。この場合、比較例1,2の磁気テープTでは、順方向走行時および逆方向走行時における出力信号の信号レベルの差異が1.0dB以下(この例では、0.8dB以下)と小さくなっているものの、順方向走行時および逆方向走行時の双方において、出力信号の信号レベルが低くなっている。このため、エラーレートの悪化を招くおそれがある。また、比較例1,2の磁気テープTでは、その保磁力Hcが交差角度θ=90°程度のときにやや高くなるものの、それ以外の交差角度θ範囲においては、保磁力Hcが軒並み160kA/m以下と非常に小さくなっている。
この場合、非磁性支持体2の平面方向と磁力線Lmとの交差角度θが60°のときに測定される保磁力Hcよりも、交差角度θが120°のときに測定される保磁力Hcの方が高くなっている実施例1〜3,5の磁気テープTでは、順方向走行時における出力信号の信号レベル(dB)と、逆方向走行時における出力信号の信号レベル(dB)との差異が0.7dB以下と非常に小さくなっている。これに対して、交差角度θが60°のときに測定される保磁力Hcよりも、交差角度θが120°のときに測定される保磁力Hcの方が低くなっている実施例4の磁気テープTでは、順方向走行時における出力信号の信号レベル(dB)と、逆方向走行時における出力信号の信号レベル(dB)との差異が0.9dBとやや大きくなっている。したがって、交差角度θが60°のときに測定される保磁力Hcよりも、交差角度θが120°のときに測定される保磁力Hcの方が高くなるように第1磁性層3おおび第2磁性層4を形成することで、順方向走行時および逆方向走行時における出力信号の信号レベルの差異を一層小さく抑えることができるのが理解できる。
このように、この磁気テープ1によれば、非磁性支持体2の平面方向と磁力線Lmとの交差角度が60°の磁界を印加した状態において測定される保磁力と、上記の交差角度が120°の磁界を印加した状態において測定される保磁力とがいずれも160kA/m以上となるように第1磁性層3および第2磁性層4(金属薄膜磁性層)を形成したことにより、双方向記録再生時における順方向走行時および逆方向走行時の双方において、磁気ヘッドからの出力信号の信号レベルをほぼ同レベルとし、しかも、非磁性支持体2の平面方向と磁力線Lmとがどのような交差角度で交差するときにおいても、その保磁力を十分に高い値(この例では、160kA/m以上)とすることができる。したがって、順方向走行時および逆方向走行時における記録・再生条件を大きく異ならせることなく記録データの再生が可能となる分だけ記録・再生制御が容易となり、記録再生装置の製造コストを十分に低減することができる。また、高密度記録化のためにデータ記録トラックの幅を狭くしたり、データ記録トラック上における1ビット長を短くしたりした場合(トラック幅方向、トラック長方向における隣接ビットの影響が顕著となる状態)であっても記録データの正常な読み出しが可能な程度に磁化状態を維持することができる。これにより、十分なS/Nを得ることができる結果、エラーレートの良好な磁気テープ1を提供することができる。
また、この磁気テープ1によれば、上記の交差角度が60°の磁界を印加した状態において測定される保磁力よりも上記の交差角度が120°の磁界を印加した状態において測定される保磁力の方が高くなるように第1磁性層3および第2磁性層4(金属薄膜磁性層)を形成したことにより、順方向走行時における出力信号の信号レベルと、逆方向走行時における出力信号の信号レベルとの差異を一層小さく抑えることができる。したがって、順方向走行時および逆方向走行時における記録・再生条件をほぼ同様に規定することができる。
磁気テープ1の断面図である。 製造装置10の構成を示す構成図である。 第1磁性層3が形成された状態の非磁性支持体2の断面図である。 図3における第1磁性層3の上に第2磁性層4が形成された状態の非磁性支持体2の断面図である。 図4における第2磁性層4の上に保護層6が形成された状態の非磁性支持体2の断面図である。 実施例1〜5および比較例1〜6の各磁気テープTにおける磁性層の厚み、保磁力Hc、および順方向出力と逆方向出力との出力差(絶対値)について説明するための説明図である。 実施例1〜5および比較例1〜6の磁気テープTから製作した試料Tzの平面図である。 振動試料型磁力計50の構成を示す外観図である。 磁気テープT(試料Tz)と非磁性支持体2の平面方向と磁力線Lmとの交差角度θ3a,θ3bとの関係について説明するための断面図である。 実施例1〜5の各磁気テープT(試料Tz)についての保磁力Hcの測定結果を示す測定結果図である。 比較例1〜6の各磁気テープT(試料Tz)についての保磁力Hcの測定結果を示す測定結果図である。
符号の説明
1,T 磁気テープ
2 非磁性支持体
3 第1磁性層
3a,4a 初期成長部
3b,4b 後期成長部
4 第2磁性層
θ3a,θ3b 交差角度
Lm 磁力線
R1,R2 矢印(テープ走行方向)
Tz 試料

Claims (2)

  1. 非磁性支持体の上に金属薄膜磁性層が形成され、前記非磁性支持体の平面方向と磁力線との交差角度が60°の磁界を印加した状態において測定される保磁力と、当該平面方向と磁力線との交差角度が120°の磁界を印加した状態において測定される保磁力とがいずれも160kA/m以上となるように前記金属薄膜磁性層が形成されている磁気記録媒体。
  2. 前記交差角度が60°の磁界を印加した状態において測定される前記保磁力よりも前記交差角度が120°の磁界を印加した状態において測定される前記保磁力の方が高くなるように前記金属薄膜磁性層が形成されている請求項1記載の磁気記録媒体。
JP2006243492A 2006-09-08 2006-09-08 磁気記録媒体 Withdrawn JP2008065916A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006243492A JP2008065916A (ja) 2006-09-08 2006-09-08 磁気記録媒体
US11/851,469 US20080254323A1 (en) 2006-09-08 2007-09-07 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243492A JP2008065916A (ja) 2006-09-08 2006-09-08 磁気記録媒体

Publications (1)

Publication Number Publication Date
JP2008065916A true JP2008065916A (ja) 2008-03-21

Family

ID=39288506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243492A Withdrawn JP2008065916A (ja) 2006-09-08 2006-09-08 磁気記録媒体

Country Status (2)

Country Link
US (1) US20080254323A1 (ja)
JP (1) JP2008065916A (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763071A (en) * 1996-03-11 1998-06-09 Seagate Technology, Inc. High areal density magnetic recording medium with dual magnetic layers
DE60308300T2 (de) * 2002-12-25 2007-08-30 Sony Corp. Magnetisches Aufzeichnungsmittel
JP2004253060A (ja) * 2003-02-20 2004-09-09 Sony Corp 磁気テープ
JP2005078683A (ja) * 2003-08-29 2005-03-24 Sony Corp 蒸着型磁気記録媒体および磁気記録再生装置
JP2007100162A (ja) * 2005-10-04 2007-04-19 Tdk Corp 薄膜形成方法、磁気記録媒体製造方法および薄膜形成装置

Also Published As

Publication number Publication date
US20080254323A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP2008065917A (ja) 磁気記録媒体、磁気記録媒体製造装置および磁気記録媒体製造方法
JP4385235B2 (ja) 磁気記録媒体及び磁気記録再生システム
JP2008065916A (ja) 磁気記録媒体
US20050266273A1 (en) Magnetic recording medium
JP4042103B2 (ja) 磁気記録媒体
JPH11328645A (ja) 磁気記録媒体の再生方法
JP2002373410A (ja) 磁気記録媒体、磁気記録媒体の記録再生方法、および磁気記録媒体の製造方法
JP2006048840A (ja) 磁気記録媒体およびその製造方法、ならびに磁気記録媒体の記録再生方法
JP4371881B2 (ja) 磁気記録媒体の製造装置及び製造方法
KR100263020B1 (ko) 비트래킹 데이터 재생시스템용 자기테이프
JP2005216348A (ja) 磁気テープの記録方法及び磁気記録再生装置
JP2004326888A (ja) 磁気記録媒体
JP2006185538A (ja) 磁気記録媒体
JP2004334989A (ja) 磁気記録媒体及びそれを用いた磁気記録再生装置
JP2006079673A (ja) 磁気テープの記録方法及びリニアテープシステム
JP2001143236A (ja) 磁気記録媒体及びその製造方法
JP2004039078A (ja) 磁気記録媒体
JP2005071578A (ja) 磁気記録媒体およびその製造方法
JP2005222639A (ja) 磁気記録媒体および磁気記録媒体の製造方法
JP2005063508A (ja) 磁気記録媒体及びその製造方法
JP2002216332A (ja) 磁気記録媒体および磁気記録方法
JP2008047210A (ja) 磁気テープの記録再生方法及び磁気記録再生装置
JP2005149688A (ja) 磁気記録媒体およびその製造方法
JP2006146995A (ja) 磁気記録媒体及びその製造方法
JP2004334925A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体の再生方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100128