JP2008050235A - Clay thin film, its manufacturing method and clay thin film laminate - Google Patents

Clay thin film, its manufacturing method and clay thin film laminate Download PDF

Info

Publication number
JP2008050235A
JP2008050235A JP2006230670A JP2006230670A JP2008050235A JP 2008050235 A JP2008050235 A JP 2008050235A JP 2006230670 A JP2006230670 A JP 2006230670A JP 2006230670 A JP2006230670 A JP 2006230670A JP 2008050235 A JP2008050235 A JP 2008050235A
Authority
JP
Japan
Prior art keywords
clay
thin film
clay thin
film according
cationic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006230670A
Other languages
Japanese (ja)
Other versions
JP4930917B2 (en
Inventor
Osamu Tsuda
統 津田
Katsumi Mogi
克己 茂木
Tomohito Inoue
智仁 井上
Takeo Ebina
武雄 蛯名
Fujio Mizukami
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tomoegawa Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Tomoegawa Paper Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006230670A priority Critical patent/JP4930917B2/en
Publication of JP2008050235A publication Critical patent/JP2008050235A/en
Application granted granted Critical
Publication of JP4930917B2 publication Critical patent/JP4930917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clay thin film which has a very low coefficient of linear expansion in a high temperature range and is excellent in heat resistance, dimensional stability, water resistance, transparency and gas barrier property, and to provide a method for manufacturing the clay thin film, and a clay thin film laminate. <P>SOLUTION: The clay thin film consists of a combined material of clay consisting of clay particles, in each of which a hydrophobic cationic substance is introduced into the space between layers, with an epoxy resin having bisaryl fluorene as a basic skeleton. Each of the clay particles is oriented and has a layered structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐熱性を有する粘土薄膜フィルム、その製造方法および粘土薄膜積層体に関するものである。特に特定の陽イオン物質を導入した粘土粒子を高度に配向し、幾層にも積層した構造を有し、高温環境下での寸法安定性および、高温高湿下でのガスバリア性に優れ、かつ柔軟性を有している粘土薄膜フィルム、その製造方法および粘土薄膜積層体に関するものである。   The present invention relates to a heat-resistant clay thin film, a method for producing the same, and a clay thin film laminate. In particular, clay particles introduced with a specific cationic substance are highly oriented and have a structure in which many layers are laminated. Excellent in dimensional stability under high temperature environment and gas barrier property under high temperature and high humidity. The present invention relates to a clay thin film having flexibility, a method for producing the same, and a clay thin film laminate.

ディスプレイは、モバイル性や省スペースの面より、従来のブラウン管方式から液晶方式(LCD)に急激に変わりつつある。更に次世代ディスプレイとして、自発光デバイスが開発され、明るさ、鮮やかさ、消費電力の点でも優れた有機EL方式のものが生産され始めている。これらのものは、従来のブラウン管方式のものと比べてモバイル性や省スペースの面で格段に優れているが、基板としてガラスが使用されているために、比較的重量があり、また、割れるという欠点も有している。   The display is rapidly changing from a conventional cathode ray tube system to a liquid crystal system (LCD) in terms of mobility and space saving. In addition, self-luminous devices have been developed as next-generation displays, and organic EL devices that are excellent in terms of brightness, vividness, and power consumption have begun to be produced. These are much better in terms of mobility and space saving than conventional cathode ray tube systems, but they are relatively heavy and break because glass is used as the substrate. It also has drawbacks.

これらの問題点を解決するため、一部の液晶方式のものではフィルム基板(プラセルと呼ばれている)が使用されている。しかしながら、現在主流となっている動画対応可能なTFT駆動方式のものについて、使用できるフィルム基板は未だ存在していない。その理由は、TFT駆動方式のものに置いては、TFT回路を形成するための温度に耐えることができ、且つ高透明なフィルム基板が要求されるからである。   In order to solve these problems, a film substrate (referred to as a “placel”) is used in some liquid crystal type devices. However, there is no film substrate that can be used for the TFT driving method that can handle moving images, which is currently mainstream. The reason is that, in the case of the TFT driving type, a film substrate that can withstand the temperature for forming the TFT circuit and is highly transparent is required.

粘土薄膜は、優れたフレキシビリティーを有し、粘土粒子が層状に緻密に配向した構造を有しているので、気体バリア性に優れ、かつ、耐熱性や難燃性にも優れた材料である(特許文献1参照)。しかしながら、耐水性、透明性に問題がある。
特開2005−104133号公報
The clay thin film has excellent flexibility and has a structure in which clay particles are densely oriented in layers, so it is a material with excellent gas barrier properties, and excellent heat resistance and flame resistance. Yes (see Patent Document 1). However, there are problems with water resistance and transparency.
JP 2005-104133 A

上記したように、液晶や有機ELディスプレイ用のフィルム基板として利用するためには、耐水性、透明性とともに、耐熱性、寸法安定性に優れたフィルムが必要である。したがって、本発明の目的は、耐熱性、寸法安定性に優れ、耐水性、透明性、ガスバリア性に優れた粘土薄膜フィルムおよびその製造方法を提供することにある。本発明の他の目的は、液晶や有機ELディスプレイ等種々の製品のフィルム基板として利用できる粘土薄膜フィルムおよび粘土薄膜積層体を提供することにある。   As described above, in order to use as a film substrate for liquid crystal or organic EL display, a film excellent in heat resistance and dimensional stability as well as water resistance and transparency is required. Accordingly, an object of the present invention is to provide a clay thin film excellent in heat resistance, dimensional stability, water resistance, transparency and gas barrier properties, and a method for producing the same. Another object of the present invention is to provide a clay thin film and a clay thin film laminate that can be used as film substrates for various products such as liquid crystals and organic EL displays.

本発明者等は、上記課題を解決すべく鋭意検討した結果、疎水性を有する陽イオン物質で有機化された粘土と、ビスアリールフルオレンを基本骨格となすエポキシ樹脂を用いることによって、従来のプラスチックフィルムでは不可能であった高温での低寸法変化率が実現でき、耐熱性、寸法安定性、耐水性、透明性、ガスバリア性に優れた粘土薄膜フィルムを得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that conventional plastics can be obtained by using clay organized with a hydrophobic cationic substance and an epoxy resin having bisarylfluorene as a basic skeleton. It was found that a low dimensional change rate at a high temperature, which was impossible with a film, can be realized, and a clay thin film excellent in heat resistance, dimensional stability, water resistance, transparency and gas barrier properties can be obtained. It came to be completed.

すなわち、本発明の粘土薄膜フィルムは、層間に疎水性を有する陽イオン物質を導入した粘土粒子よりなる粘土とビスアリールフルオレンを基本骨格とするエポキシ樹脂との複合物からなり、該粘土粒子が配向し、積層された構造を有することを特徴とする。本発明において、前記粘土とエポキシ樹脂の配合比率は、50:50〜99:1であることが好ましい。また、前記エポキシ樹脂の硬化剤として、酸無水物系硬化剤を用いることが好ましい。   That is, the clay thin film of the present invention comprises a composite of clay composed of clay particles introduced with a cationic substance having hydrophobicity between layers and an epoxy resin having bisarylfluorene as a basic skeleton, and the clay particles are oriented. And having a laminated structure. In the present invention, the blending ratio of the clay and the epoxy resin is preferably 50:50 to 99: 1. Further, it is preferable to use an acid anhydride curing agent as the curing agent for the epoxy resin.

本発明の上記粘土薄膜フィルムにおいて、疎水性を有する陽イオン物質は、炭素数1〜18の直鎖状又は分岐状のアルキル基を含有している4級ホスホニウム、ピリジニウム、イミダゾリウムのうち少なくとも1つを含んでいるのが好ましい。また、この陽イオン物質は、フェニル基を含有していることが好ましい。   In the clay thin film of the present invention, the cationic substance having hydrophobicity is at least one of quaternary phosphonium, pyridinium, and imidazolium containing a linear or branched alkyl group having 1 to 18 carbon atoms. Preferably. The cationic substance preferably contains a phenyl group.

また、粘土としては、合成粘土が好ましい。   As the clay, synthetic clay is preferable.

本発明の粘土薄膜フィルムは、150〜350℃の範囲における線膨張係数が40×10-6/℃以下であり、柔軟性を有している。また、本発明においては、粘土薄膜フィルムは、全光線透過率が85%以上であり、ヘイズが2.5%以下であり、ガスバリア性能を有し、40℃/90%での酸素透過度が30cc/m・day・atm以下であり、40℃/90%での水蒸気透過度が5.0g/m・day以下であることが好ましい。 The clay thin film of the present invention has a linear expansion coefficient in the range of 150 to 350 ° C. of 40 × 10 −6 / ° C. or less and has flexibility. In the present invention, the clay thin film has a total light transmittance of 85% or more, a haze of 2.5% or less, gas barrier performance, and oxygen permeability at 40 ° C./90%. It is preferably 30 cc / m 2 · day · atm or less, and the water vapor permeability at 40 ° C./90% is preferably 5.0 g / m 2 · day or less.

本発明の粘土薄膜積層体は、上記本発明の粘土薄膜フィルムの片面又は両面に、無機薄膜または有機薄膜の少なくとも一方を、単層または複数層の状態で積層したことを特徴とする。   The clay thin film laminate of the present invention is characterized in that at least one of an inorganic thin film or an organic thin film is laminated in a single layer or a plurality of layers on one side or both sides of the clay thin film of the present invention.

本発明の粘土薄膜フィルムの製造方法は、上記の粘土薄膜フィルムを製造するものであって、粘土粒子層間に疎水性を有する陽イオン物質を導入した粘土粒子よりなる粘土と樹脂とを溶媒中に分散させて得た粘土塗料を、基材に塗布し、乾燥し、基材から剥離することを特徴とする。   The method for producing a clay thin film according to the present invention is a method for producing the above clay thin film, wherein a clay and a resin comprising clay particles into which a cationic substance having hydrophobicity is introduced between clay particle layers are contained in a solvent. The clay paint obtained by dispersing is applied to a substrate, dried, and peeled from the substrate.

次に、本発明の粘土薄膜フィルムについて詳記する。本発明の粘土薄膜フィルムは、層間に疎水性を有する陽イオン物質を導入した粘土粒子よりなる粘土(有機化粘土)と、ビスアリールフルオレンを基本骨格とするエポキシ樹脂との複合物から構成される。本発明において、粘土とは、単位結晶層が互いに積み重なった層状構造を有する粘土鉱物を言い、溶媒に膨潤・へき開するものが好ましく用いられる。本発明において、粘土としては、天然粘土、合成粘土のいずれの粘土を使用することもできる。本発明においては、高透明性が得られることから合成粘土を用いるのがより好ましい。溶媒に膨潤・へき開する粘土鉱物としては、具体的には、モンモリロナイト、ヘクトライト、スティブンサイト、サポナイト、バイデライト等のスメクタイト、あるいは、カオリナイト、ディッカイト、ナクライト、ハロサイトアンチゴライト、クリソタイル、白雲母、タルク、バーミキュライト、金雲母等をあげることができる。これらの中でも、好ましくは、分散性、膨潤性の点で、スメクタイト、カオリナイト、サポナイト、雲母があげられる。   Next, the clay thin film of the present invention will be described in detail. The clay thin film of the present invention is composed of a composite of clay (organized clay) composed of clay particles into which a cationic substance having hydrophobicity is introduced between layers, and an epoxy resin having bisarylfluorene as a basic skeleton. . In the present invention, clay refers to a clay mineral having a layered structure in which unit crystal layers are stacked on each other, and those that swell and cleave in a solvent are preferably used. In the present invention, natural clay or synthetic clay can be used as clay. In the present invention, it is more preferable to use synthetic clay because high transparency is obtained. Specific examples of clay minerals that swell and cleave in solvents include smectites such as montmorillonite, hectorite, stevensite, saponite, and beidellite, or kaolinite, dickite, nacrite, halosite antigolite, chrysotile, and white cloud. Mother, talc, vermiculite, phlogopite, etc. can be mentioned. Among these, smectite, kaolinite, saponite, and mica are preferable in terms of dispersibility and swelling.

粘土粒子の形状は鱗片状であって、代表的にはスメクタイトにおいて、粘土粒子1つが、厚さ約1nmでアスペクト比が20〜数百ないし数千の鱗片状をしているものである。本発明の粘土薄膜フィルムにおいては、そのような鱗片状の粘土粒子が幾数層にも重なることにより、ガスの通る経路が長くなり、結果的にガスバリア性が向上することになる。   The shape of the clay particles is scaly. Typically, in a smectite, one clay particle has a scaly shape having a thickness of about 1 nm and an aspect ratio of 20 to several hundred to several thousand. In the clay thin film of the present invention, such scaly clay particles are overlapped in several layers, whereby the gas passage route becomes longer, and as a result, the gas barrier property is improved.

これらの粘土は、粘土粒子の層間に疎水性を有する陽イオン物質が導入される(有機化処理)が、疎水性を有する陽イオン物質としては、炭素数1〜18の直鎖状又は分岐状のアルキル基を含有する4級ホスホニウム、ピリジニウム、イミダゾリウムのうち少なくとも1つを含んでいるものが好ましい。より好ましくは、炭素数が10〜18、更に好ましくは12〜16の直鎖状又は分岐状のアルキル基を有するものである。アルキル基の炭素数が大きいほど、陽イオン物質が導入された粘土は、溶媒の中で膨潤、分散しやすくなる。ただし、アルキル基の炭素数が大きくなるほど、耐熱性が劣る原因となるので、上記の範囲のアルキル基を有するものが好ましい。   In these clays, a cationic substance having hydrophobicity is introduced between the layers of the clay particles (organization treatment). As the cationic substance having hydrophobicity, a linear or branched chain having 1 to 18 carbon atoms is used. Those containing at least one of quaternary phosphonium, pyridinium and imidazolium containing the above alkyl group are preferred. More preferably, it has a linear or branched alkyl group having 10 to 18 carbon atoms, more preferably 12 to 16 carbon atoms. The greater the number of carbon atoms in the alkyl group, the easier the clay into which the cationic material has been introduced will swell and disperse in the solvent. However, the larger the number of carbon atoms in the alkyl group, the lower the heat resistance. Therefore, those having an alkyl group in the above range are preferred.

また、耐熱性の観点からは、フェニル基を含有しているものが好ましい。フェニル基を含有することにより、フェニル基を含有していないものよりも熱に対する分解が抑制され、耐熱性が向上する。ただし、粘土の膨潤性、分散性の点から、アルキル基を有するものとの併用が好ましい。   From the viewpoint of heat resistance, those containing a phenyl group are preferred. By containing a phenyl group, the decomposition | disassembly with respect to a heat | fever is suppressed rather than the thing which does not contain a phenyl group, and heat resistance improves. However, combined use with an alkyl group is preferred from the viewpoint of the swelling and dispersibility of the clay.

本発明においては、上記有機化粘土にビスアリールフルオレン骨格を有するエポキシ樹脂が添加されて複合物を形成している。ビスアリールフルオレン骨格を有するエポキシ樹脂は、透明性、耐熱性、機械的強度に優れ、さらに加熱による着色も生じない硬化物を得ることができる。また、必要に応じてビスアリールフルオレン骨格を有さないエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フッ素樹脂、ポリイミド樹脂、フェノール樹脂等の他の樹脂を含有させてもよい。   In the present invention, an epoxy resin having a bisarylfluorene skeleton is added to the organized clay to form a composite. An epoxy resin having a bisarylfluorene skeleton can provide a cured product that is excellent in transparency, heat resistance, and mechanical strength, and that is not colored by heating. Moreover, you may contain other resins, such as an epoxy resin which does not have a bisaryl fluorene skeleton, an acrylic resin, a silicone resin, a fluororesin, a polyimide resin, and a phenol resin as needed.

樹脂として、エポキシ樹脂を用いる場合、エポキシ樹脂の硬化物を得るための添加剤としては、硬化剤、硬化促進剤、カップリング剤、反応性希釈剤、酸化防止剤などのその他の材料があげられる。   When an epoxy resin is used as the resin, examples of the additive for obtaining a cured product of the epoxy resin include other materials such as a curing agent, a curing accelerator, a coupling agent, a reactive diluent, and an antioxidant. .

硬化剤としては、アミン系硬化剤、フェノール樹脂系硬化剤、ケチミン系硬化剤、イミダゾール系硬化剤、酸無水物系硬化剤等があげられる。本発明においては、耐熱性の観点から酸無水物系硬化剤を用いることが好ましい。酸無水物系硬化剤としては、酸無水物構造を有する化合物であればよく、特に限定されるものではない。このような酸無水物系硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水トリメリット酸、無水ベンゾフェノンテトラカルボン酸などがあげられる。これらの酸無水物系硬化剤は、種々の必要特性に応じて適宜選択すればよい。例えば、硬化物に透明性が必要な場合は、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、水素化メチルナジック酸無水物等の脂環骨格中の二重結合を水素化したタイプのものを選択すればよい。   Examples of the curing agent include an amine curing agent, a phenol resin curing agent, a ketimine curing agent, an imidazole curing agent, and an acid anhydride curing agent. In the present invention, it is preferable to use an acid anhydride curing agent from the viewpoint of heat resistance. The acid anhydride curing agent is not particularly limited as long as it is a compound having an acid anhydride structure. Examples of such acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trimellitic anhydride, benzophenone tetracarboxylic anhydride, etc. Can be given. These acid anhydride curing agents may be appropriately selected according to various necessary characteristics. For example, if the cured product requires transparency, use a hydrogenated double bond in the alicyclic skeleton such as methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, hydrogenated methylnadic anhydride, etc. Just choose.

硬化促進剤としては、特に限定されず、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール類、フェノール塩、フェノールノボラック塩、炭酸塩、ギ酸塩などのアミン類およびその誘導体、エチルホスフィン、トリフェニルホスフィンなどのオルガノホスフィン類などがあげられる。   The curing accelerator is not particularly limited, but imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, phenol salts, phenol novolac salts, Examples thereof include amines such as carbonate and formate and derivatives thereof, and organophosphines such as ethylphosphine and triphenylphosphine.

反応性希釈剤は、粘度調整を行う為に用いられるもので、特に限定されるものではないが、低粘度なエポキシ化合物が挙げられ、例えば、ジグリジジルエーテル、ブタンジオールジグリジシルエーテル、ジグリシジルアニリン、シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ビニルシクロヘキセンジオキサイドなどがあげられる。これら反応性希釈剤は1種のみを単独で使用してもよく、また、2種以上を混合して使用することもできる。   The reactive diluent is used for adjusting the viscosity and is not particularly limited, and examples thereof include low-viscosity epoxy compounds such as diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline. , Cyclohexanedimethanol diglycidyl ether, alkylene diglycidyl ether, vinylcyclohexene dioxide, and the like. These reactive diluents may be used alone or in combination of two or more.

酸化防止剤も特に限定されず、フェニルホスファイト類、フェノール類、硫黄系、リン系等があげられる。   The antioxidant is not particularly limited, and examples thereof include phenyl phosphites, phenols, sulfur-based, phosphorus-based and the like.

カップリング剤は、粘土と樹脂の界面の密着力を向上させ、粘土薄膜フィルムの強度を向上させるために用いることができる。樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂との反応性のある官能基を有するシラン化合物が好適に用いられる。具体的には、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン等のエポキシ基を有するシランカップリング剤、3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン等のアミノ基を有するシランカップリング剤等があげられる。   The coupling agent can be used to improve the adhesion of the interface between clay and resin and improve the strength of the clay thin film. When an epoxy resin is used as the resin, a silane compound having a functional group reactive with the epoxy resin is preferably used. Specifically, silane coupling agents having an epoxy group such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane Silane coupling agents having an amino group such as 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, etc. It is done.

本発明の粘土薄膜フィルムにおける、陽イオン物質を導入した粘土粒子よりなる粘土、すなわち有機化粘土とビスアリールフルオレン骨格を有するエポキシ樹脂の配合比率(重合比)は50:50〜99:1、より好ましくは60:40〜97:3、更に好ましくは80:20〜97:3の配合比率である。樹脂が多くなると粘土薄膜フィルムとしての耐熱性が粘土より耐熱性の低い樹脂に支配されてしまうので好ましくない。   In the clay thin film of the present invention, the blending ratio (polymerization ratio) of clay composed of clay particles into which a cationic substance is introduced, that is, an organized clay and an epoxy resin having a bisarylfluorene skeleton is 50:50 to 99: 1. The blending ratio is preferably 60:40 to 97: 3, more preferably 80:20 to 97: 3. If the amount of the resin increases, the heat resistance of the clay thin film is controlled by a resin having a lower heat resistance than clay, which is not preferable.

本発明の粘土薄膜フィルムは、150〜350℃の範囲における線膨張係数が40×10-6/℃以下であり、柔軟性を有している。粘土と樹脂との配合比率を50:50〜99:1にすることにより、通常の樹脂フィルムでは得ることができない350℃までの高温範囲で40×10-6/℃以下の低線膨張係数が実現でき、且つ樹脂が添加されていることにより柔軟性を有するものとなる。 The clay thin film of the present invention has a linear expansion coefficient in the range of 150 to 350 ° C. of 40 × 10 −6 / ° C. or less and has flexibility. By setting the blending ratio of clay and resin to 50:50 to 99: 1, a low linear expansion coefficient of 40 × 10 −6 / ° C. or less can be obtained at a high temperature range up to 350 ° C. that cannot be obtained with a normal resin film. It can be realized and has flexibility by adding a resin.

本発明の粘土薄膜フィルムにおいて、粘土として合成粘土を用いることにより、透明性が向上し、85%以上の全光線透過率を有するものとすることができる。また、粘土粒子の膨潤性、分散性の調整、製膜時の表面平滑化をすることにより、ヘイズ(曇度)を2.5%以下にすることができる。   In the clay thin film of the present invention, by using synthetic clay as the clay, transparency can be improved and the total light transmittance can be 85% or more. In addition, by adjusting the swelling and dispersibility of the clay particles and smoothing the surface during film formation, the haze (cloudiness) can be reduced to 2.5% or less.

本発明の粘土薄膜フィルムは、単独でも自立膜として利用可能であるが、より高いガスバリア性、耐薬品性、表面平滑性、ハードコート性、高強度を得るために、粘土薄膜フィルムの片面または両面に無機薄膜または有機薄膜のうち少なくとも一方を単層または複数層、積層して粘土薄膜積層体にすることも可能である。積層される無機薄膜および有機薄膜の膜種は特に限定されるものではないが、用途により最適なものを選択すればよい。例えば酸化珪素または酸化窒化珪素、窒化珪素をスパッタ法またはプラズマCVD法により製膜を行うことにより、高いガスバリア性及び耐薬品性を付与することができる。更には有機ポリマーを塗布することにより表面に平坦性やハードコート性を持たせることができる。これらの無機薄膜および有機薄膜よりなる表面コートを積層することにより粘土薄膜フィルム単独では持ち得ない特性を付与することができる。   The clay thin film of the present invention can be used alone as a self-supporting film, but in order to obtain higher gas barrier properties, chemical resistance, surface smoothness, hard coat properties, and high strength, one side or both sides of the clay thin film Further, it is possible to form a clay thin film laminate by laminating at least one of an inorganic thin film and an organic thin film as a single layer or a plurality of layers. Although the film | membrane type of the inorganic thin film and organic thin film to be laminated | stacked is not specifically limited, What is necessary is just to select the optimal thing according to a use. For example, by forming silicon oxide, silicon oxynitride, or silicon nitride by sputtering or plasma CVD, high gas barrier properties and chemical resistance can be imparted. Furthermore, by applying an organic polymer, the surface can have flatness and hard coat properties. By laminating a surface coat composed of these inorganic thin films and organic thin films, it is possible to impart characteristics that cannot be obtained with a clay thin film alone.

次に、本発明の粘土薄膜フィルムの製造方法について説明する。まず、粘土を疎水性を有する陽イオン物質で処理して、有機化粘土を作製する。疎水性を有する陽イオン物質による処理は、例えば、疎水性を有する陽イオン物質を水に分散させ、それに粘土を投入して分散膨潤させた後、固液分離処理を行い、更に水を加えて固液分離処理を発泡がなくなるまで繰り返し、その後、乾燥して水分を完全に除去することによって製造することができる。それにより、粘土に含まれる親水性の交換性陽イオンが疎水性を有する陽イオンにより交換されて、有機化粘土が作製される。   Next, the manufacturing method of the clay thin film of this invention is demonstrated. First, clay is treated with a cationic substance having hydrophobicity to produce an organized clay. The treatment with the hydrophobic cationic substance is performed, for example, by dispersing the hydrophobic cationic substance in water, adding clay to the dispersion and swelling it, then performing solid-liquid separation treatment, and adding water. The solid-liquid separation process can be repeated until foaming disappears, and then dried to completely remove moisture. Thereby, the hydrophilic exchangeable cation contained in the clay is exchanged by the cation having hydrophobicity, and the organized clay is produced.

次に、上記の有機化粘土と樹脂とを所定の配合割合で溶媒に分散させて粘土塗料を作製する。分散は一般的な分散方法により行うことができるが、粘土粒子を溶媒中に均一に、且つ、一層一層ばらばらに分散させるためには、高せん断力を与えたり、溶媒の温度を高くするのが好ましい。なお、粘土塗料には、本発明の目的を損なわない範囲内で、酸化防止剤、界面活性剤、紫外線吸収剤、帯電防止剤、顔料、レベリング剤等の一般的な添加剤を添加してもよい
次いで、得られた粘土塗料を、基材上に塗布する。基材としては、特に限定されるものではないが、一般的な有機高分子フィルム、金属箔、金属板等を用いることができる。塗布したフィルムの表面性は、基材側の場合、基材の表面性がそのまま転写されるために、基材としては、表面が平坦のものの方が好ましい。なお、基材として高分子フィルムを用いる場合は、乾燥時やキュア時にある程度の温度しかかけることができない。何故ならば、粘土塗料を高分子フィルム上に塗布し、そのまま剥離せずに高温、例えば200℃の温度にさらすと、基材の高分子フィルムが変形して基材としての役割を果たせなくなるからである。したがって、高温での乾燥や高温をかける必要がある場合には、基材として、金属箔や金属板、金属長尺ロール等を使用すればよい。それによって、基材の耐熱性を心配することなく、高温処理することができる。また、金属箔や金属板、金属長尺ロールの表面は、やはり塗布したフィルムの表面性にかかわってくるために、鏡面仕上げ等を施した平坦なものであることが好ましい。前記基材に粘土塗料を塗布する方法としては、特に限定するものではないが、各種ブレードコーター、ロールコーター、エアーナイフコーター、バーコーター、グラビアコーター、ダイコーター、カーテンコーター等が用いられる。
Next, the above-mentioned organized clay and resin are dispersed in a solvent at a predetermined blending ratio to prepare a clay paint. Dispersion can be carried out by a general dispersion method. However, in order to disperse clay particles uniformly and more evenly in a solvent, it is necessary to give a high shear force or raise the temperature of the solvent. preferable. The clay paint may be added with general additives such as an antioxidant, a surfactant, an ultraviolet absorber, an antistatic agent, a pigment, and a leveling agent within the range not impairing the object of the present invention. Good The resulting clay paint is then applied onto the substrate. Although it does not specifically limit as a base material, A general organic polymer film, metal foil, a metal plate, etc. can be used. As for the surface property of the applied film, since the surface property of the substrate is transferred as it is in the case of the substrate side, the substrate having a flat surface is preferable. When a polymer film is used as the substrate, only a certain temperature can be applied during drying or curing. This is because if a clay paint is applied on a polymer film and exposed to a high temperature, for example, 200 ° C. without peeling off, the substrate polymer film is deformed and cannot serve as a substrate. It is. Therefore, when drying at a high temperature or applying a high temperature is necessary, a metal foil, a metal plate, a long metal roll, or the like may be used as the base material. Thereby, high temperature processing can be performed without worrying about the heat resistance of the substrate. Further, the surface of the metal foil, metal plate, and metal long roll is preferably flat with a mirror finish or the like in order to affect the surface properties of the applied film. The method of applying the clay paint to the substrate is not particularly limited, and various blade coaters, roll coaters, air knife coaters, bar coaters, gravure coaters, die coaters, curtain coaters and the like are used.

基材に粘土塗料を塗工し、乾燥し、剥離して粘土薄膜フィルムを得た後に、または前記各工程の間に加圧処理、加熱加圧処理を施して表面を平坦化、膜の緻密化をすることができる。例えば、熱カレンダー処理をすることによって、表面を平坦化することができる。   After applying clay paint on the substrate, drying, peeling and obtaining a clay thin film film, or by applying pressure treatment, heat pressure treatment between the above steps, the surface is flattened, the film is dense Can be made. For example, the surface can be flattened by performing a thermal calendar process.

本発明の粘土薄膜フィルムの厚さは、特に限定されるものではないが、10〜300μmの範囲が好ましい。より好ましくは、50〜200μmであり、10μmより薄いと強度がなく自立膜として成立しない。300μmより厚いと、乾燥工程での負荷が大きくなって、生産性が低下するので好ましくない。   Although the thickness of the clay thin film of this invention is not specifically limited, The range of 10-300 micrometers is preferable. More preferably, it is 50-200 micrometers, and when it is thinner than 10 micrometers, there is no intensity | strength and it does not materialize as a self-supporting film. If it is thicker than 300 μm, the load in the drying process is increased, and the productivity is lowered, which is not preferable.

上記の方法においては、層状構造を有する粘土が一層一層バラバラにほぐされて、その層間に添加した樹脂が入り込んだ状態の粘土塗料が作製され、それを塗工し、乾燥して製膜するので、粘土粒子を粘土薄膜フィルムの水平方向に高度に配向させることができ、粘土粒子が緻密に積層された構造の粘土薄膜フィルムを得ることができる。したがって、本発明の粘土薄膜フィルムの製造方法によって、ガスバリア性の向上した粘土薄膜フィルムを作製することができる。   In the above method, the clay having a layered structure is further loosened, and a clay paint in which the resin added between the layers enters is prepared, and it is applied and dried to form a film. The clay particles can be highly oriented in the horizontal direction of the clay thin film, and a clay thin film having a structure in which clay particles are densely laminated can be obtained. Therefore, a clay thin film with improved gas barrier properties can be produced by the method for producing a clay thin film of the present invention.

本発明の粘土薄膜フィルムおよび粘土薄膜積層体は、上記の構成を有するから、従来のプラスチックフィルムでは実現できなかった高温での低寸法変化率が実現でき、耐熱性、寸法安定性、耐水性、透明性、ガスバリア性に優れたものである。また、本発明の粘土薄膜フィルムの製造方法は、上記の構成を有するから、得られる粘土薄膜フィルムは、粘土粒子が水平方向に高度に配向したものとなり、粘土粒子が緻密に積層された構造のものとなり、ガスバリア性の向上したものとなる。   Since the clay thin film and the clay thin film laminate of the present invention have the above-described configuration, a low dimensional change rate at a high temperature that could not be realized by a conventional plastic film can be realized, and heat resistance, dimensional stability, water resistance, It has excellent transparency and gas barrier properties. In addition, since the method for producing a clay thin film of the present invention has the above-described configuration, the resulting clay thin film has a structure in which clay particles are highly oriented in the horizontal direction and clay particles are densely laminated. The gas barrier property is improved.

したがって、本発明の粘土薄膜フィルムおよび粘土薄膜積層体は、それがもつ諸特性により、多くの製品に利用することができる。例えば電子ペーパー用基板、電子デバイス用封止フィルム、レンズフィルム、導光板用フィルム、プリズムフィルム、位相差板・偏光板用フィルム、視野角補正フィルム、PDP用フィルム、LED用フィルム、有機EL用フィルム基板、光通信用部材、タッチパネル用フィルム、各種機能性フィルムの基板、内部が透けて見える構造の電子機器用フィルム、ビデオディスク・CD・CD−R・CD−RW・DVD・MO・MD・相変化ディスク・光カードを含む光記録メディア用フィルム、燃料電池用封止フィルム、太陽電池用フィルム、包装関係フィルム、電子デバイス基板フィルム、フレキシブルプリント基板、プリント基板等に使用することができる。上記以外にも、従来の樹脂フィルムでは用いることのできない高温域での耐熱性フィルムとしての利用が可能になる。   Therefore, the clay thin film and the clay thin film laminate of the present invention can be used for many products due to various properties thereof. For example, electronic paper substrate, electronic device sealing film, lens film, light guide plate film, prism film, retardation plate / polarizing plate film, viewing angle correction film, PDP film, LED film, organic EL film Substrates, optical communication members, touch panel films, various functional film substrates, electronic device films with a transparent structure, video discs, CDs, CD-Rs, CD-RWs, DVDs, MOs, MDs, phases It can be used for films for optical recording media including change disks and optical cards, sealing films for fuel cells, films for solar cells, packaging-related films, electronic device substrate films, flexible printed boards, printed boards and the like. In addition to the above, it can be used as a heat resistant film in a high temperature range that cannot be used with conventional resin films.

以下、本発明を実施するための最良の形態を実施例に基づいて説明するが、本願発明はこれら実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described based on examples, but the present invention is not limited to these examples.

(粘土の有機化)
オクタデシルトリフェニルホスホニウムブロミド5gを純水50g中に分散させた後、合成スメクタイト(スメクトンSA、クニミネ工業社製)5gを投入し、十分に分散膨潤させた。得られた分散液を遠心分離器で固液分離して液分を取り除いた後、更に純水50gを投入し、分散および固液分離を行った。この分散・固液分離を発泡がなくなるまで繰り返した後、乾燥機で水分を完全に除去した。これにより粘土に含まれる親水性の交換性陽イオンとオクタデシルトリフェニルホスホニウムイオンが交換され、無極性溶剤であるトルエンに対し膨潤性を持つ耐水性有機化粘土が得られた。
(Organization of clay)
After 5 g of octadecyltriphenylphosphonium bromide was dispersed in 50 g of pure water, 5 g of synthetic smectite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) was added and sufficiently dispersed and swollen. The obtained dispersion was subjected to solid-liquid separation with a centrifuge to remove the liquid, and then 50 g of pure water was further added to perform dispersion and solid-liquid separation. This dispersion / solid-liquid separation was repeated until no foaming occurred, and then water was completely removed by a dryer. As a result, the hydrophilic exchangeable cation and octadecyltriphenylphosphonium ion contained in the clay were exchanged, and a water-resistant organoclay having swelling properties with respect to toluene, which is a nonpolar solvent, was obtained.

(粘土薄膜フィルムの形成)
上記のようにして得られた有機化粘土を粉砕し、その有機化粘土10gをトルエン100g中に分散・膨潤させ、更に有機化粘土と樹脂の比率が8:2となるようにビスアリールフルオレン骨格を有するエポキシ樹脂2.5g(EX1020、長瀬産業社製)と、酸無水物系硬化剤2.0g(HNA−100、新日本理化社製)を添加し、分散させた。得られた粘土塗料をアプリケーターで離けい処理したPETフィルム上に塗布して製膜した。その後、100℃の乾燥機に投入し、溶剤分を除去した。次いで、PETフィルムから粘土薄膜を剥離し、170℃/2時間のキュアによりエポキシ樹脂を硬化させた。それにより、透明で柔軟性のある厚さ80μmの粘土薄膜フィルムが得られた。
(Formation of clay thin film)
The organoclay obtained as described above is pulverized, 10 g of the organoclay is dispersed and swollen in 100 g of toluene, and the bisarylfluorene skeleton is so formed that the ratio of the organoclay to the resin is 8: 2. Epoxy resin having 2.5 g (EX1020, manufactured by Nagase Sangyo Co., Ltd.) and 2.0 g of acid anhydride curing agent (HNA-100, manufactured by Shin Nippon Rika Co., Ltd.) were added and dispersed. The obtained clay paint was applied onto a PET film that had been treated with an applicator to form a film. Thereafter, it was put into a dryer at 100 ° C. to remove the solvent. Next, the clay thin film was peeled from the PET film, and the epoxy resin was cured by curing at 170 ° C./2 hours. As a result, a transparent and flexible clay thin film having a thickness of 80 μm was obtained.

有機化粘土と樹脂の比率を5:5とした以外は、実施例1と同様の方法で厚さ80μmの粘土薄膜フィルムを得た。   A clay thin film having a thickness of 80 μm was obtained in the same manner as in Example 1 except that the ratio of the organized clay to the resin was 5: 5.

有機化粘土と樹脂の比率を9.5:0.5とした以外は、実施例1と同様の方法で厚さ80μmの粘土薄膜フィルムを得た。   A clay thin film having a thickness of 80 μm was obtained in the same manner as in Example 1 except that the ratio of the organized clay to the resin was 9.5: 0.5.

有機化処理の際に、オクタデシルフェニルイミダゾリウムブロミドを用いた以外は、実施例1と同様の方法で厚さ80μmの粘土薄膜フィルムを得た。   A clay thin film having a thickness of 80 μm was obtained in the same manner as in Example 1 except that octadecylphenylimidazolium bromide was used during the organic treatment.

実施例1で作製した粘土薄膜フィルムの表裏両面に、ハードコート材料である紫外線硬化ウレタンアクリレート(紫光UV7600B、日本合成化学社製)をバーコーターを用いて塗布し、紫外線照射にて硬化させ、表裏両面に各1μmのハードコート層を積層し、粘土薄膜積層体を得た。   UV curing urethane acrylate (purple light UV7600B, manufactured by Nippon Synthetic Chemical Co., Ltd.), which is a hard coat material, was applied to both sides of the clay thin film produced in Example 1 using a bar coater and cured by ultraviolet irradiation. A hard coat layer of 1 μm was laminated on both sides to obtain a clay thin film laminate.

実施例1で作製した粘土薄膜フィルムの表裏両面に、反応性スパッタリングにて無機層である厚さ60nmのSiO膜を積層し、粘土薄膜積層体を得た。 A SiO x film having a thickness of 60 nm, which is an inorganic layer, was laminated on both the front and back surfaces of the clay thin film produced in Example 1 by reactive sputtering to obtain a clay thin film laminate.

[比較例1]
有機化処理をしていない合成スメクタイト(スメクトンSA、クニミネ工業社製)を用いた以外は、実施例1と同様の方法で粘土薄膜フィルム作製を試みた。しかしながら、トルエン中に粘土が均一に分散、膨潤せずに粘土粒子が沈降したために、膜化することができなかった。
[Comparative Example 1]
A clay thin film was prepared in the same manner as in Example 1 except that synthetic smectite (Smecton SA, manufactured by Kunimine Kogyo Co., Ltd.) not subjected to organic treatment was used. However, since the clay particles settled without the clay being uniformly dispersed and swollen in toluene, the film could not be formed.

[比較例2]
樹脂としてビスアリールフルオレン骨格を持っていないエポキシ樹脂(ケシミールE−622、ケミテック社製)を用いた以外は、実施例1と同様の方法で厚さ80μmの粘土薄膜フィルムを得た。
[Comparative Example 2]
A clay thin film having a thickness of 80 μm was obtained in the same manner as in Example 1 except that an epoxy resin having no bisarylfluorene skeleton (Kesimir E-622, manufactured by Chemtech) was used as the resin.

(評価)
上記の実施例1〜6および比較例2で作製した粘土薄膜フィルムに関して、以下の評価を行った。
線膨張係数:
熱分析装置TMA(Thermomechanical Analyzer、8310、リガク社製)を用いて、引張荷重法により、荷重1g、室温〜350℃まで5℃/minの昇温速度で測定を行い、線膨張係数を算出した。
全光線透過率およびヘイズ:
ヘーズメータ(Haze Meter NDH2000、日本電色社製)を用いて測定した。
(Evaluation)
The clay thin film films produced in Examples 1 to 6 and Comparative Example 2 were evaluated as follows.
Linear expansion coefficient:
Using a thermal analyzer TMA (Thermomechanical Analyzer, 8310, manufactured by Rigaku Corporation), a linear expansion coefficient was calculated by measuring at a heating rate of 5 ° C./min from a load of 1 g to room temperature to 350 ° C. by a tensile load method. .
Total light transmittance and haze:
It measured using the haze meter (Haze Meter NDH2000, the Nippon Denshoku make).

ガスバリア性(酸素透過度、水蒸気透過度):
差圧式ガス・蒸気透過率測定装置(GTR−30XATS、GTRテック社製)を用いて、40℃/90%の条件における酸素と水蒸気の透過率を測定した。
200℃/30min加熱後の外観:
200℃の温度に設定した乾燥機内にサンプルを置き、30分間加熱処理した後、取り出して外観(寸法、色目、透明性等)に変化があるか否かを目視によって確認した。実施例の結果を表1に、比較例の結果を表2に示す。
Gas barrier properties (oxygen permeability, water vapor permeability):
Using a differential pressure type gas / vapor vapor transmission measuring device (GTR-30XATS, manufactured by GTR Tech Co., Ltd.), the oxygen and water vapor transmission rates at 40 ° C./90% were measured.
Appearance after heating at 200 ° C./30 min:
The sample was placed in a dryer set at a temperature of 200 ° C., heat-treated for 30 minutes, and then taken out to check visually whether or not the appearance (dimensions, color, transparency, etc.) had changed. Table 1 shows the results of the examples and Table 2 shows the results of the comparative examples.

Figure 2008050235
Figure 2008050235

Figure 2008050235
Figure 2008050235

上記表から明らかなように、本発明の粘土薄膜フィルムおよび粘度薄膜積層体は、高温域(150〜350℃)での線膨張係数が非常に低く、他の高分子フィルムでは到達できないレベルを達成し、かつ柔軟性があり、透明性、ガスバリア性が良好であった。   As is clear from the above table, the clay thin film and the viscous thin film laminate of the present invention have a very low linear expansion coefficient in a high temperature range (150 to 350 ° C.), achieving a level that cannot be achieved with other polymer films. In addition, it was flexible and had good transparency and gas barrier properties.

Claims (13)

層間に疎水性を有する陽イオン物質を導入した粘土粒子よりなる粘土とビスアリールフルオレンを基本骨格とするエポキシ樹脂との複合物からなり、該粘土粒子が配向し、積層された構造を有することを特徴とする粘土薄膜フィルム。   It is composed of a composite of clay composed of clay particles introduced with a cationic substance having hydrophobicity between layers and an epoxy resin having bisarylfluorene as a basic skeleton, and the clay particles are oriented and have a laminated structure. Characteristic clay thin film. 前記粘土とエポキシ樹脂の配合比率が50:50〜99:1であることを特徴とする請求項1に記載の粘土薄膜フィルム。   The clay thin film according to claim 1, wherein a blending ratio of the clay and the epoxy resin is 50:50 to 99: 1. 前記エポキシ樹脂の硬化剤として、酸無水物系硬化剤を用いることを特徴とする請求項1または請求項2に記載の粘土薄膜フィルム。   The clay thin film according to claim 1 or 2, wherein an acid anhydride curing agent is used as a curing agent for the epoxy resin. 前記陽イオン物質が、炭素数1〜18の直鎖状又は分岐状のアルキル基を含有する4級ホスホニウム、ピリジニウム、イミダゾリウムのうち少なくとも1つを含んでいることを特徴とする請求項1に記載の粘土薄膜フィルム。   2. The cationic substance according to claim 1, wherein the cationic substance contains at least one of quaternary phosphonium, pyridinium, and imidazolium containing a linear or branched alkyl group having 1 to 18 carbon atoms. The clay thin film described. 前記陽イオン物質がフェニル基を含有していることを特徴とする請求項4に記載の粘土薄膜フィルム。   The clay thin film according to claim 4, wherein the cationic substance contains a phenyl group. 前記粘土が合成粘土であることを特徴とする請求項1に記載の粘土薄膜フィルム。   The clay thin film according to claim 1, wherein the clay is a synthetic clay. 150〜350℃の範囲における線膨張係数が40×10-6/℃以下であり、柔軟性を有していることを特徴とする請求項1〜6のいずれか1項に記載の粘土薄膜フィルム。 The linear expansion coefficient in the range of 150-350 degreeC is 40 * 10 < -6 > / degrees C or less, and has a softness | flexibility, The clay thin film of any one of Claims 1-6 characterized by the above-mentioned. . 全光線透過率が85%以上であることを特徴とする請求項1〜7のいずれか1項に記載の粘土薄膜フィルム。   The clay thin film according to any one of claims 1 to 7, wherein the total light transmittance is 85% or more. ヘイズが2.5%以下であることを特徴とする請求項1〜8のいずれか1項に記載の粘土薄膜フィルム。   The clay thin film according to any one of claims 1 to 8, wherein the haze is 2.5% or less. ガスバリア性能を有し、40℃/90%での酸素透過度が30cc/m・day・atm以下であることを特徴とする請求項1〜9のいずれか1項に記載の粘土薄膜フィルム。 The clay thin film according to any one of claims 1 to 9, which has a gas barrier performance and has an oxygen permeability at 40 ° C / 90% of 30 cc / m 2 · day · atm or less. ガスバリア性能を有し、40℃/90%での水蒸気透過度が5.0g/m・day以下であることを特徴とする請求項1〜10のいずれか1項に記載の粘土薄膜フィルム。 The clay thin film according to any one of claims 1 to 10, which has gas barrier performance and has a water vapor permeability at 40 ° C / 90% of 5.0 g / m 2 · day or less. 請求項1〜11のいずれか1項に記載の粘土薄膜フィルムの片面又は両面に、無機薄膜または有機薄膜の少なくとも一方を、単層または複数層の状態で積層したことを特徴とする粘土薄膜積層体。   A clay thin film laminate, wherein at least one of an inorganic thin film or an organic thin film is laminated in a single layer or a plurality of layers on one side or both sides of the clay thin film according to any one of claims 1 to 11. body. 粘土粒子層間に疎水性を有する陽イオン物質を導入した粘土粒子よりなる粘土と樹脂とを溶媒中に分散させて得た粘土塗料を、基材に塗布し、乾燥し、基材から剥離することを特徴とする請求項1に記載の粘土薄膜フィルムの製造方法。   Applying a clay paint obtained by dispersing clay and resin made of clay particles with a hydrophobic cationic substance between clay particle layers in a solvent to a substrate, drying, and peeling from the substrate The method for producing a clay thin film according to claim 1.
JP2006230670A 2006-08-28 2006-08-28 Clay thin film, method for producing the same, and clay thin film laminate Active JP4930917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230670A JP4930917B2 (en) 2006-08-28 2006-08-28 Clay thin film, method for producing the same, and clay thin film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230670A JP4930917B2 (en) 2006-08-28 2006-08-28 Clay thin film, method for producing the same, and clay thin film laminate

Publications (2)

Publication Number Publication Date
JP2008050235A true JP2008050235A (en) 2008-03-06
JP4930917B2 JP4930917B2 (en) 2012-05-16

Family

ID=39234619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230670A Active JP4930917B2 (en) 2006-08-28 2006-08-28 Clay thin film, method for producing the same, and clay thin film laminate

Country Status (1)

Country Link
JP (1) JP4930917B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090225A (en) * 2009-10-23 2011-05-06 Canon Inc Optical member, and method for manufacturing the same
JP2013511587A (en) * 2009-11-20 2013-04-04 サン ケミカル ビー.ブイ. Gas barrier coating
JP2015007197A (en) * 2013-06-25 2015-01-15 大日精化工業株式会社 Method for manufacturing clay mineral-containing polyhydroxyurethane resin composition, clay mineral-containing polyhydroxyurethane resin composition, and gas barrier film using the same composition
WO2017086383A1 (en) 2015-11-20 2017-05-26 国立研究開発法人産業技術総合研究所 Coating agent containing clay, resin, and organic solvent, protective film using same, and product
JPWO2018168862A1 (en) * 2017-03-14 2020-01-23 Dic株式会社 Resin composition, molded body, laminate, coating material and adhesive
JP2022027768A (en) * 2018-09-04 2022-02-14 味の素株式会社 Resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104133A (en) * 2003-09-08 2005-04-21 National Institute Of Advanced Industrial & Technology Clay oriented sheet and its production process
JP2006160593A (en) * 2004-12-10 2006-06-22 National Institute Of Advanced Industrial & Technology Fiber strengthened clay film and its manufacturing method
JP2006188408A (en) * 2004-12-10 2006-07-20 National Institute Of Advanced Industrial & Technology Surface treated clay film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104133A (en) * 2003-09-08 2005-04-21 National Institute Of Advanced Industrial & Technology Clay oriented sheet and its production process
JP2006160593A (en) * 2004-12-10 2006-06-22 National Institute Of Advanced Industrial & Technology Fiber strengthened clay film and its manufacturing method
JP2006188408A (en) * 2004-12-10 2006-07-20 National Institute Of Advanced Industrial & Technology Surface treated clay film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011090225A (en) * 2009-10-23 2011-05-06 Canon Inc Optical member, and method for manufacturing the same
JP2013511587A (en) * 2009-11-20 2013-04-04 サン ケミカル ビー.ブイ. Gas barrier coating
JP2015007197A (en) * 2013-06-25 2015-01-15 大日精化工業株式会社 Method for manufacturing clay mineral-containing polyhydroxyurethane resin composition, clay mineral-containing polyhydroxyurethane resin composition, and gas barrier film using the same composition
WO2017086383A1 (en) 2015-11-20 2017-05-26 国立研究開発法人産業技術総合研究所 Coating agent containing clay, resin, and organic solvent, protective film using same, and product
KR20180083335A (en) 2015-11-20 2018-07-20 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Coatings comprising clay, resins and organic solvents, protective films and articles using them
US11034140B2 (en) 2015-11-20 2021-06-15 National Institute Of Advanced Industrial Science And Technology Coating agent containing clay, resin, and organic solvent, protective film using same, and product
JPWO2018168862A1 (en) * 2017-03-14 2020-01-23 Dic株式会社 Resin composition, molded body, laminate, coating material and adhesive
JP7072806B2 (en) 2017-03-14 2022-05-23 Dic株式会社 Resin compositions, molded bodies, laminates, coating materials and adhesives
JP2022027768A (en) * 2018-09-04 2022-02-14 味の素株式会社 Resin composition
JP7444154B2 (en) 2018-09-04 2024-03-06 味の素株式会社 resin composition

Also Published As

Publication number Publication date
JP4930917B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
CN102216074B (en) Laminated plastic substrate, and a production method for the same
CN103732391B (en) transparent laminated film
JP4930917B2 (en) Clay thin film, method for producing the same, and clay thin film laminate
KR100646252B1 (en) A plastic substrate having structure of multi-layer and method for preparing the same
TWI422487B (en) Film and film laminate using the film
KR101099805B1 (en) Radiation curable hard coating composition and film, sheet, tray and piling support for display glass using it
JP2011140187A (en) Laminated film, transparent conductive laminated film, and electronic component
KR101284958B1 (en) A multi-layer plastic substrate having good dimensional stability and gas barrier properties and method for preparing the same
JP2015533696A (en) Polyester laminated film
JP2005104025A (en) Laminated film with gas barrier properties and image display element using this laminated film
JP4763496B2 (en) Thin film and thin film laminate using the same
KR101233936B1 (en) A plastic film having an excellent dimensional stability and gas barrier properties and method for preparing the same
JP5334069B2 (en) Multilayer film and method for producing the same
JP5183261B2 (en) Clay thin film and thin film laminate
JP4763552B2 (en) Clay thin film and laminated body thereof
JP5183112B2 (en) Clay thin film and clay thin film laminate using the same
JP5706096B2 (en) Gas barrier sheet containing nanosheets
JP2015056337A (en) Transparent conductive film and method for producing the same
JP5271501B2 (en) Clay thin film, laminate thereof, and method for producing clay thin film
KR20190123899A (en) Barrier film
KR101478919B1 (en) Encapsulant composition for electronic materials and multi-layer plasic substrates produced by the same
JP2011076081A (en) Optical laminated body, polarizing plate, and display device using the same
KR101370149B1 (en) Adhesive composition for lamination and multi-layer or symmetrical structure plasic substrates using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Ref document number: 4930917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250