JP2008047753A - Semiconductor device, and its manufacturing method - Google Patents

Semiconductor device, and its manufacturing method Download PDF

Info

Publication number
JP2008047753A
JP2008047753A JP2006223074A JP2006223074A JP2008047753A JP 2008047753 A JP2008047753 A JP 2008047753A JP 2006223074 A JP2006223074 A JP 2006223074A JP 2006223074 A JP2006223074 A JP 2006223074A JP 2008047753 A JP2008047753 A JP 2008047753A
Authority
JP
Japan
Prior art keywords
semiconductor device
semiconductor structure
layer
conductor layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006223074A
Other languages
Japanese (ja)
Inventor
Yoshihiko Minamoto
良彦 皆本
Yoshio Imamura
圭男 今村
Toru Matsumoto
徹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Original Assignee
Nippon CMK Corp
CMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp filed Critical Nippon CMK Corp
Priority to JP2006223074A priority Critical patent/JP2008047753A/en
Publication of JP2008047753A publication Critical patent/JP2008047753A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device with a thin total thickness, and to provide its manufacturing method. <P>SOLUTION: The semiconductor device P1 includes a semiconductor structure 4 having a plurality of externally connecting electrodes 5 on its upper surface, a support 1 for supporting the structure, and insulative layers 12 and 16 provided on sides of the structure. At least one or more re-wiring layers 18 are provided on the externally connecting electrodes and the insulative layers provided on the sides of the semiconductor structure. Conductor layers 2, 11 and 15 are provided on sides of the semiconductor structure, and a through-plated through-hole 20 is provided between the support and the conductor layers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体装置、特にウエハーレベルCSP(wafer−level chip size package)を有機基板に内蔵し、しかも薄型化した半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which a wafer level CSP (wafer-level chip size package) is built in an organic substrate and is thinned, and a manufacturing method thereof.

最近、電子機器の軽薄短小化が進み、機器に搭載されるウエハーレベルCSP(wafer−level chip size package)と呼ばれる半導体装置が使用されている。このウエハーレベルCSPは、一般に複数の外部接続用の接続パッドが形成されたベアの半導体装置の上面に封止材を設け、次いで、当該封止材の各接続パッドに対応する部分に開口部を形成し、次いで、当該開口部を介して各接続パッドに接続される再配線を形成し、次いで、各再配線の他の接続部に柱状の外部接続用電極を形成すると共に、絶縁樹脂で封止後、研磨にて外部接続用電極が露出するまで研磨し、次いで、露出した外部接続用電極にはんだを形成することによって製造されている(例えば、特許文献1参照)。   Recently, electronic devices have become lighter, thinner, and smaller, and a semiconductor device called wafer level CSP (wafer-level chip size package) mounted on the device is used. In this wafer level CSP, generally, a sealing material is provided on the upper surface of a bare semiconductor device in which a plurality of connection pads for external connection are formed, and then an opening is formed in a portion corresponding to each connection pad of the sealing material. Next, a rewiring connected to each connection pad through the opening is formed, and then a columnar external connection electrode is formed on the other connection portion of each rewiring and sealed with an insulating resin. After stopping, it is polished by polishing until the external connection electrode is exposed, and then solder is formed on the exposed external connection electrode (for example, see Patent Document 1).

しかしながら、通常ウエハーレベルCSPは、ベアチップの半導体装置の上面に外部接続用電極をマトリクス状に配列するため、外部接続用電極数の多い半導体装置では外部接続用電極サイズ及びピッチが極端に小さくなってしまう結果、マザーボードとの接続が困難になる問題があった。すなわち、外部接続用電極のピッチが小さくなればマザーボードとの位置合わせが困難であるばかりでなく接合強度が不足し、ボンディング時に電極間の短絡が発生する。また、シリコンからなる半導体装置とマザーボードでは線膨張係数の差に起因して発生する応力により外部接続用電極が断線してしまう問題が発生する。   However, the wafer level CSP usually has external connection electrodes arranged in a matrix on the top surface of a bare chip semiconductor device, so that the size and pitch of the external connection electrodes are extremely small in a semiconductor device having a large number of external connection electrodes. As a result, there is a problem that it is difficult to connect to the motherboard. That is, if the pitch of the electrodes for external connection is reduced, not only the alignment with the mother board is difficult, but also the bonding strength is insufficient, and a short circuit between the electrodes occurs during bonding. In addition, there is a problem that the external connection electrode is disconnected due to the stress generated due to the difference in linear expansion coefficient between the semiconductor device made of silicon and the mother board.

さらに、シリコンからなる半導体装置のマトリクス状の配線を狭ピッチにすることは可能だが、マザーボードと精度よく接続する関係からこれ以上半導体装置を小さくできないという問題も発生していた。   Furthermore, although it is possible to reduce the matrix wiring of the semiconductor device made of silicon to a narrow pitch, there has been a problem that the semiconductor device cannot be further reduced due to the high-precision connection with the mother board.

そこで、図10に示すような、シリコンからなる半導体装置を小さくして、マトリクス状の狭ピッチ配線を形成し、外部接続用電極を形成し、絶縁樹脂で封止し、個片化した半導体構成体を有機基板に埋め込み再配線することでマザーボードに精度よく実装できる配線ピッチが可能となる半導体装置が提案されている(例えば、特許文献2参照)。   Therefore, as shown in FIG. 10, a semiconductor device made of silicon is made smaller, a matrix-like narrow pitch wiring is formed, an external connection electrode is formed, and sealed with an insulating resin, and separated into individual pieces. There has been proposed a semiconductor device that enables a wiring pitch that can be accurately mounted on a mother board by embedding the body in an organic substrate and rewiring (see, for example, Patent Document 2).

ここで、図10に示したような従来の半導体装置の製造工程例を、図11〜図16を用いて説明する。   Here, an example of the manufacturing process of the conventional semiconductor device as shown in FIG. 10 will be described with reference to FIGS.

まず、図11(a)に示すように、支持体(絶縁層)101の上下両面に導体層102を備えた基板P102を用意する。   First, as shown in FIG. 11A, a substrate P102 having a conductor layer 102 on both upper and lower surfaces of a support (insulating layer) 101 is prepared.

次に、図11(b)に示すように、前記基板P102の上下両面にエッチングレジスト103aを形成後、導体層102の回路形成を行い、図11(c)に示すような構造体を得る。   Next, as shown in FIG. 11B, after forming an etching resist 103a on both upper and lower surfaces of the substrate P102, a circuit of the conductor layer 102 is formed, and a structure as shown in FIG. 11C is obtained.

次に、図12(d)に示すように、前記エッチングレジスト103aを剥離し、基板P103を得る。   Next, as shown in FIG. 12D, the etching resist 103a is removed to obtain a substrate P103.

次に、図12(e)に示すように、前記基板P103に、接着層108を介して半導体構成体104を搭載し、図12(f)に示すような構造体P104を得る。ここで、前記半導体構成体104は、シリコン107の上面に複数の外部接続用電極105を備えていると共に、前記外部接続用電極105の側面に封止材106が形成されている。   Next, as shown in FIG. 12E, the semiconductor structure 104 is mounted on the substrate P103 via the adhesive layer 108 to obtain a structure P104 as shown in FIG. Here, the semiconductor structure 104 includes a plurality of external connection electrodes 105 on the upper surface of the silicon 107, and a sealing material 106 is formed on a side surface of the external connection electrode 105.

次に、図13(g)に示すように、前記構造体P104に、パンチングプレス機を用いて前記半導体構成体104にはめ込むための窓抜きをした絶縁埋め込み材112をレイアップし、真空積層プレス機を用いて積層プレスを行い、図13(h)に示すような構造体P105を得る。   Next, as shown in FIG. 13G, the structure P104 is laid up with an insulating embedding material 112 that has been punched into the semiconductor structure 104 by using a punching press, and a vacuum lamination press. A laminating press is performed using a machine to obtain a structure P105 as shown in FIG.

次に、前記積層プレスによって半導体構成体104上にもフローした絶縁埋め込み材112を研磨機にて表面研磨し、図13(k)に示すような構造体P106を得る。   Next, the insulating embedding material 112 that has also flowed onto the semiconductor structure 104 by the laminating press is subjected to surface polishing by a polishing machine to obtain a structure P106 as shown in FIG.

次に、図14(m)に示すように、表裏にビルドアップ材117、銅箔118をレイアップし、真空積層プレス機を用いて積層プレスを行い、図14(n)に示すような構造体P107を得る。   Next, as shown in FIG. 14 (m), a build-up material 117 and a copper foil 118 are laid up on the front and back, and a lamination press is performed using a vacuum laminating press, and a structure as shown in FIG. 14 (n). A body P107 is obtained.

次に、スルーホール及び層間接続ビアの穴明け加工を施し、図14(q)に示すような構造体P108を得る。   Next, through holes and interlayer connection vias are drilled to obtain a structure P108 as shown in FIG.

次に、図15(r)に示すように、前記構造体図P108にめっき層118aを形成した後、図15(s)に示すように、上下両面にエッチングレジスト103bの形成し、図15(t)に示すように、回路形成を行う。   Next, as shown in FIG. 15 (r), after forming a plating layer 118a on the structure diagram P108, as shown in FIG. 15 (s), an etching resist 103b is formed on both upper and lower surfaces, and FIG. As shown in t), circuit formation is performed.

次に、図16(u)に示すように、前記エッチングレジスト103bを剥離し、構造体P110を得る。   Next, as shown in FIG. 16 (u), the etching resist 103b is peeled off to obtain a structure P110.

次に、再配線層119とソルダーレジスト103cを形成し、図16(v)に示すような半導体構成体P111を得る。   Next, the rewiring layer 119 and the solder resist 103c are formed to obtain a semiconductor structure P111 as shown in FIG.

しかしながら、前記半導体装置P111は、予めあけられた各基材外周の穴を、基準となるピンに入れてレイアップ及び積層する、所謂ピンラミを用いた製造方法であり、基材同士の合せ位置精度に限界があった。   However, the semiconductor device P111 is a manufacturing method using a so-called pin lamination in which holes formed on the outer periphery of each base material are placed in a reference pin and laid up and stacked, and the alignment accuracy between the base materials is There was a limit.

また、半導体構成体の上層に複数層の絶縁層を重ね、再配線を繰り返すとどうしても総板厚が厚くなるため、特に、携帯電話機器などのモバイル製品に適用しようとしても、厚み制限で採用されないという問題もあった。   In addition, if multiple layers of insulating layers are stacked on top of the semiconductor structure and rewiring is repeated, the total plate thickness will inevitably increase. Therefore, even if it is applied to mobile products such as mobile phone devices, it is not adopted due to thickness restrictions. There was also a problem.

一方、シリコンからなる半導体装置と側方に形成される絶縁層の線膨張係数の差を緩和するためにはどうしても外部接続用電極の高さを50μm以下にすることができず、しかも、シリコンを薄くするには時間がかかる上、ウエハーの反りやウエハーへのマイクロクラックが発生し易いため、ウエハーレベルCSPを薄く加工することは困難なのが実状であった。
特開2001−168128号公報 特開2004−221417号公報
On the other hand, in order to alleviate the difference in coefficient of linear expansion between the semiconductor device made of silicon and the insulating layer formed on the side, the height of the external connection electrode cannot be reduced to 50 μm or less. It takes a long time to reduce the thickness, and the wafer warp and the microcrack to the wafer are likely to occur, so that it is difficult to thin the wafer level CSP.
JP 2001-168128 A JP 2004-221417 A

本発明は、上記の問題と実状に鑑みてなされたもので、総板厚が薄い半導体装置及びその製造方法を提供することを課題とする。   The present invention has been made in view of the above problems and actual circumstances, and an object of the present invention is to provide a semiconductor device having a thin total plate thickness and a manufacturing method thereof.

請求項1に係る本発明は、上面に複数の外部接続用電極を有する半導体構成体と、前記半導体構成体を支える支持体と、前記半導体構成体の側方に設けられた絶縁層とを有し、且つ前記半導体構成体の外部接続用電極上及び前記側方に設けられた絶縁層上に少なくとも1層以上の再配線層が設けられた半導体装置であって、前記半導体構成体の側方に導体層を備えていると共に、前記支持体と前記導体層の間に貫通めっきスルーホールを備えていることを特徴とする半導体装置により上記課題を解決したものである。   The present invention according to claim 1 includes a semiconductor structure having a plurality of external connection electrodes on an upper surface, a support that supports the semiconductor structure, and an insulating layer provided on a side of the semiconductor structure. And a semiconductor device in which at least one rewiring layer is provided on the external connection electrode of the semiconductor structure and the insulating layer provided on the side, wherein The semiconductor device is provided with a conductor layer, and a through-plated through hole is provided between the support and the conductor layer.

これにより、半導体構成体の側方に導体層が設けられているため、総板厚を増加させることなく内層の導体層を増加させることができる。また、前記増加させた導体層を貫通めっきスルーホールで接続するため、層間ビア接続のように、レーザ加工装置の加工条件の範囲、即ち加工限界にとらわれることなく、半導体構成体の側方の各層の厚み及び層構成を自在に設定することができる。従って、総板厚が薄い半導体装置が得られる。   Thereby, since the conductor layer is provided on the side of the semiconductor structure, the inner conductor layer can be increased without increasing the total thickness. Further, since the increased conductor layers are connected by through-plating through holes, each layer on the side of the semiconductor structure is not limited by the processing condition range of the laser processing apparatus, that is, the processing limit as in the case of interlayer via connection. The thickness and the layer configuration can be freely set. Therefore, a semiconductor device having a thin total plate thickness can be obtained.

また、請求項2に係る本発明は、前記導体層の少なくとも一部が金属箔であることを特徴とする。   The present invention according to claim 2 is characterized in that at least a part of the conductor layer is a metal foil.

これにより、無電解めっきを施す前に必要な被めっき面の粗化工程が不要となり、粗化条件が異なるものの同時粗化による半導体構成体表面の平滑性損失を回避できる。   Thereby, the roughening process of a to-be-plated surface required before performing electroless plating becomes unnecessary, and the smoothness loss of the semiconductor structure surface by simultaneous roughening can be avoided although the roughening conditions differ.

また、請求項3に係る本発明は、支持体の上面に、複数の外部接続用電極を有する半導体構成体を配置する工程と、前記半導体構成体の側方に第一の絶縁層とキャリアを備えた第一の導体層を配置し積層する工程と、前記積層工程後前記キャリアを剥離する工程と、前記剥離工程後前記半導体構成体の側方に第二の絶縁層と第二の導体層を配置し積層する工程と、前記支持体と前記第一の導体層と前記第二の導体層の間にスルーホールを設ける工程と、前記スルーホールを設ける工程の後にめっき層を設ける工程と、前記半導体構成体の外部接続用電極上と前記側方に配置された第一の絶縁層上及び/又は第二の絶縁層上に再配線層を形成する工程とを有することを特徴とする半導体装置の製造方法により上記課題を解決したものである。   According to a third aspect of the present invention, there is provided a step of disposing a semiconductor structure having a plurality of external connection electrodes on an upper surface of a support, and a first insulating layer and a carrier on a side of the semiconductor structure. A step of disposing and laminating the first conductor layer provided; a step of peeling the carrier after the lamination step; and a second insulating layer and a second conductor layer on the side of the semiconductor structure after the peeling step. Arranging and laminating, a step of providing a through hole between the support, the first conductor layer and the second conductor layer, a step of providing a plating layer after the step of providing the through hole, Forming a rewiring layer on the external connection electrode of the semiconductor structure and on the first insulating layer and / or the second insulating layer disposed on the side. The above-described problems are solved by a device manufacturing method.

これにより、積層プレスによって半導体構成体上にもフローした絶縁埋め込み材を研磨機にて表面研磨する際に発生する反りが、キャリアを剥離することで緩和される。また、レーザ加工装置の加工条件の範囲、即ち加工限界にとらわれることなく、半導体構成体の側方の各層の厚み及び層構成を自在に設定することができる。従って、基材同士の合せ位置精度が高く、総板厚が薄い半導体装置が得られる。   Thereby, the curvature which generate | occur | produces when carrying out surface grinding | polishing of the insulating embedding material which also flowed on the semiconductor structure with the lamination press with a grinder is eased by peeling a carrier. Further, the thickness and layer configuration of each layer on the side of the semiconductor structure can be freely set without being limited by the range of processing conditions of the laser processing apparatus, that is, the processing limit. Therefore, a semiconductor device having a high alignment accuracy between the substrates and a thin total plate thickness can be obtained.

また、請求項4に係る本発明は、前記第一の導体層と前記第二の導体層が、予め窓抜きされていることを特徴とする。   The present invention according to claim 4 is characterized in that the first conductor layer and the second conductor layer are pre-windowed.

これにより、半導体構成体とその直上層に積層される基材との密着性不具合を回避できる。   Thereby, the adhesion defect with the base material laminated | stacked on a semiconductor structure and its immediate upper layer can be avoided.

また、請求項5に係る本発明は、前記第二の導体層が、金属箔であることを特徴とする。   The present invention according to claim 5 is characterized in that the second conductor layer is a metal foil.

これにより、粗化条件が異なるものの同時粗化による半導体構成体表面の平滑性損失を回避しつつ、前記スルーホールに接する導体全てとの電気的接合が可能となる。   Thereby, although the roughening conditions are different, it is possible to electrically connect all the conductors in contact with the through hole while avoiding the smoothness loss of the surface of the semiconductor structure due to the simultaneous roughening.

本発明により、総板厚が薄い半導体装置及びその製造方法を提供することができる。   According to the present invention, it is possible to provide a semiconductor device having a thin total plate thickness and a manufacturing method thereof.

本発明の請求項1〜2に係る実施の形態を図1を用いて説明する。   An embodiment according to claims 1 to 2 of the present invention will be described with reference to FIG.

図1において、P1は半導体装置で、支持体1と、前記支持体1の上面に接着層8を介して設けられた半導体構成体4と、支持体1の上下両面に設けられた導体層2と、前記半導体構成体4の側方、且つ支持体1の上方に設けられた絶縁層12及び導体層11と、前記半導体構成体4の側方、且つ絶縁層12の上方に設けられた絶縁層16及び導体層15と、前記支持体1と前記導体層15の間に設けられた貫通めっきスルーホール20と、前記半導体構成体4の外部接続用電極5の上方及び前記側方に設けられた絶縁層16の上方に、ビルドアップ材17を介して設けられた再配線層18と、ソルダーレジスト19とから構成されている。因に、半導体構成体4は、シリコン7と、当該シリコン7の上面に設けられた複数の外部接続用電極5と、当該外部接続用電極5間に設けられた封止材6とから構成されている。   In FIG. 1, P <b> 1 is a semiconductor device, a support 1, a semiconductor structure 4 provided on the upper surface of the support 1 via an adhesive layer 8, and a conductor layer 2 provided on both upper and lower surfaces of the support 1. And an insulating layer 12 and a conductor layer 11 provided on the side of the semiconductor structure 4 and above the support 1, and an insulation provided on the side of the semiconductor structure 4 and above the insulating layer 12. The layer 16 and the conductor layer 15, the through-plating through hole 20 provided between the support 1 and the conductor layer 15, and the external connection electrode 5 of the semiconductor structure 4 are provided above and on the side. A rewiring layer 18 provided via a buildup material 17 and a solder resist 19 are formed above the insulating layer 16. The semiconductor structure 4 is composed of silicon 7, a plurality of external connection electrodes 5 provided on the upper surface of the silicon 7, and a sealing material 6 provided between the external connection electrodes 5. ing.

前記半導体装置P1は、半導体構成体4の側方に導体層11及び導体層15が設けられているため、総板厚を増加させることなく内層の導体層を増加させることができる。また、支持体1と導体層15の間に貫通めっきスルーホール20を設けているため、層間ビア接続のように、レーザ加工装置の加工条件の範囲、即ち加工限界にとらわれることなく、半導体構成体の側方の各層の厚み及び層構成を自在に設定することができる。従って、総板厚が薄い半導体装置が得られる。   In the semiconductor device P1, since the conductor layer 11 and the conductor layer 15 are provided on the side of the semiconductor structure 4, the inner conductor layer can be increased without increasing the total thickness. In addition, since the through-plating through hole 20 is provided between the support 1 and the conductor layer 15, the semiconductor structure is not limited by the processing condition range of the laser processing apparatus, that is, the processing limit, as in the case of interlayer via connection. The thickness and layer structure of each side layer can be freely set. Therefore, a semiconductor device having a thin total plate thickness can be obtained.

次に、本発明の請求項3〜5に係る実施の形態を図2〜図9を用いて説明する。   Next, embodiments according to claims 3 to 5 of the present invention will be described with reference to FIGS.

まず、図2(a)に示すように、支持体(絶縁層)1の上下両面に導体層2を備えた基板P2を用意する。尚、前記基板P2は、多層基板でも構わない。   First, as shown to Fig.2 (a), the board | substrate P2 provided with the conductor layer 2 on the upper and lower surfaces of the support body (insulating layer) 1 is prepared. The substrate P2 may be a multilayer substrate.

次に、図2(b)に示すように、前記基板P2の上下両面のエッチングをしない箇所をエッチングレジスト3aで覆う。尚、前記エッチングレジスト3aは、ドライフィルム又はインキでも構わない。   Next, as shown in FIG. 2B, portions where the upper and lower surfaces of the substrate P2 are not etched are covered with an etching resist 3a. The etching resist 3a may be a dry film or ink.

次に、図2(c)に示すように、導体層2を回路形成し、その後、エッチングレジスト3aを剥離して、図3(d)に示すような基板P3を得る。   Next, as shown in FIG. 2C, the conductor layer 2 is formed as a circuit, and then the etching resist 3a is peeled off to obtain a substrate P3 as shown in FIG. 3D.

次に、図3(e)に示すように、前記基板P3に、接着層8を介して半導体構成体4を搭載し、図3(f)に示すような構造体P4を得る。尚、半導体構成体4は、前記と同様シリコン7の上面に複数の外部接続用電極5を備えていると共に、前記外部接続用電極5間に封止材6を備えている。   Next, as shown in FIG. 3E, the semiconductor structure 4 is mounted on the substrate P3 via the adhesive layer 8 to obtain a structure P4 as shown in FIG. The semiconductor structure 4 includes a plurality of external connection electrodes 5 on the upper surface of the silicon 7 as described above, and a sealing material 6 between the external connection electrodes 5.

次に、図4(g)に示すように、銅箔11にキャリア10を備えたキャリア付き銅箔9と絶縁層(絶縁埋め込み材)12をパンチングプレス機等を用いてパンチングし、前記半導体構成体4にはめ込む窓抜きをした後、前記構造体P4にレイアップし、真空積層プレス機等を用いて積層プレスを行い、図4(h)に示すような構造体P5を得る。   Next, as shown in FIG. 4G, a copper foil 9 with a carrier provided with a carrier 10 on a copper foil 11 and an insulating layer (insulating embedding material) 12 are punched using a punching press or the like, and the semiconductor structure After removing the window that fits into the body 4, the structure P4 is laid up, and a lamination press is performed using a vacuum lamination press or the like to obtain a structure P5 as shown in FIG. 4 (h).

次に、前記キャリア10を剥離し、図4(k)に示すような構造体P6を得る。   Next, the carrier 10 is peeled off to obtain a structure P6 as shown in FIG.

次に、図5(m)に示すように、前記構造体P6のエッチングをしない箇所をエッチングレジスト3bで覆った後、図5(n)に示すように、露出している箇所のエッチングを行う。   Next, as shown in FIG. 5 (m), the portion where the structure P6 is not etched is covered with an etching resist 3b, and then the exposed portion is etched as shown in FIG. 5 (n). .

次に、前記エッチングレジスト3bを剥離し、図5(q)に示すような構造体P7を得る。   Next, the etching resist 3b is peeled off to obtain a structure P7 as shown in FIG.

次に、図6(r)に示すように、銅箔15及び絶縁層(絶縁埋め込み材)16をパンチングプレス機等を用いて必要な大きさの窓抜きをした後、前記構造体P7にレイアップし、真空積層プレス機等を用いて積層プレスを行い、図6(s)に示すような構造体P8を得る。   Next, as shown in FIG. 6 (r), the copper foil 15 and the insulating layer (insulating embedding material) 16 are subjected to window opening of a necessary size using a punching press machine or the like, and then the structure P7 is laid out. And performing a lamination press using a vacuum lamination press or the like to obtain a structure P8 as shown in FIG. 6 (s).

次に、NCドリル装置やレーザにより表裏接続用のスルーホールを形成し、図6(t)に示すような構造体P9を得る。   Next, through holes for front and back connection are formed by an NC drill device or a laser to obtain a structure P9 as shown in FIG. 6 (t).

次に、図7(u)に示すように、前記構造体P9のめっきしない箇所を覆うようにめっきレジスト3cを設け、図7(v)に示すように、めっき層15aを形成した後、めっきレジスト3cを剥離し、図7(w)に示すような貫通めっきスルーホール20を備えた構造体P10を得る。   Next, as shown in FIG. 7 (u), a plating resist 3c is provided so as to cover the portion of the structure P9 that is not plated, and after forming the plating layer 15a as shown in FIG. The resist 3c is peeled off to obtain a structure P10 having through-plated through holes 20 as shown in FIG. 7 (w).

次に、図8(x)に示すように、前記構造体P10のエッチングしない箇所を覆うようにエッチングレジスト3dを設け、図8(y)に示すように、回路形成を実施後、エッチングレジスト3dを剥離し、図8(z)に示すような構造体P11を得る。   Next, as shown in FIG. 8 (x), an etching resist 3d is provided so as to cover the portion of the structure P10 that is not etched, and after the circuit is formed as shown in FIG. 8 (y), the etching resist 3d is formed. Is peeled off to obtain a structure P11 as shown in FIG.

次に、表裏にビルドアップ材17を設け、図9(AA)に示すような構造体P12を得る。   Next, build-up materials 17 are provided on the front and back sides to obtain a structure P12 as shown in FIG.

次に、通常の基板と同様に層間接続ビア形成、再配線層18形成、ソルダーレジスト19の形成の各工程を経て、図9(BB)に示すような半導体装置P13を得る。   Next, through the respective steps of interlayer connection via formation, rewiring layer 18 formation, and solder resist 19 formation as in a normal substrate, a semiconductor device P13 as shown in FIG. 9B is obtained.

尚、本発明を説明するに当たって、上記2つの実施の形態を例として説明したが、本発明の構成はこれらの限りでなく、また、これらの例により何ら制限されるものではなく、本発明の範囲内で種々の変更が可能である。   In the description of the present invention, the above-described two embodiments have been described as examples. However, the configuration of the present invention is not limited to these, and is not limited to these examples. Various modifications within the range are possible.

本発明の半導体装置例を示す概略断面説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional explanatory diagram illustrating an example of a semiconductor device of the present invention. 本発明の半導体装置の製造方法例を示す概略断面工程説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional process explanatory diagram illustrating an example of a method for manufacturing a semiconductor device of the present invention. 図2に続く概略断面工程説明図。FIG. 3 is a schematic cross-sectional process explanatory diagram following FIG. 2. 図3に続く概略断面工程説明図。FIG. 4 is a schematic cross-sectional process explanatory diagram following FIG. 3. 図4に続く概略断面工程説明図。FIG. 5 is a schematic cross-sectional process explanatory diagram subsequent to FIG. 4. 図5に続く概略断面工程説明図。FIG. 6 is a schematic cross-sectional process explanatory diagram following FIG. 5. 図6に続く概略断面工程説明図。FIG. 7 is a schematic cross-sectional process explanatory diagram following FIG. 6. 図7に続く概略断面工程説明図。FIG. 8 is a schematic cross-sectional process explanatory diagram following FIG. 7. 図8に続く概略断面工程説明図。FIG. 9 is a schematic cross-sectional process explanatory diagram following FIG. 8. 従来の半導体装置例を示す概略断面説明図。FIG. 10 is a schematic cross-sectional explanatory view showing an example of a conventional semiconductor device. 従来の半導体装置の製造方法例を示す概略断面工程説明図。FIG. 10 is a schematic cross-sectional process explanatory diagram illustrating an example of a conventional method for manufacturing a semiconductor device. 図11に続く概略断面工程説明図。FIG. 12 is a schematic cross-sectional process explanatory diagram following FIG. 11. 図12に続く概略断面工程説明図。FIG. 13 is a schematic cross-sectional process explanatory diagram following FIG. 12. 図13に続く概略断面工程説明図。FIG. 14 is a schematic cross-sectional process explanatory diagram following FIG. 13. 図14に続く概略断面工程説明図。FIG. 15 is a schematic cross-sectional process explanatory diagram following FIG. 14. 図15に続く概略断面工程説明図。FIG. 16 is a schematic cross-sectional process explanatory diagram following FIG. 15.

符号の説明Explanation of symbols

1,101:支持体(絶縁層)
2,102:導体層
3a,3b,3d,103a,103b:エッチングレジスト
3c:めっきレジスト
4,104:半導体構成体
5,105:外部接続用電極
6,106:封止材
7,107:シリコン
8,108:接着層
9:キャリア付き銅箔
10:キャリア
11,15,118:銅箔
12,16,112:絶縁層(絶縁埋め込み材)
15a:めっき層
17,117:ビルドアップ材
18,119:再配線層
19,103c:ソルダーレジスト
20:貫通めっきスルーホール
P2,P3,P102,P103:基板
P4〜P12,P104〜P110:構造体
P1,P13,P101,P111:半導体装置
1,101: Support (insulating layer)
2, 102: Conductive layers 3a, 3b, 3d, 103a, 103b: Etching resist 3c: Plating resist 4, 104: Semiconductor structure 5, 105: External connection electrode 6, 106: Sealing material 7, 107: Silicon 8 108: Adhesive layer 9: Copper foil with carrier 10: Carrier 11, 15, 118: Copper foil 12, 16, 112: Insulating layer (insulating embedding material)
15a: Plating layer 17, 117: Build-up material 18, 119: Rewiring layer 19, 103c: Solder resist 20: Through-plating through holes P2, P3, P102, P103: Substrates P4 to P12, P104 to P110: Structure P1 , P13, P101, P111: Semiconductor device

Claims (5)

上面に複数の外部接続用電極を有する半導体構成体と、前記半導体構成体を支える支持体と、前記半導体構成体の側方に設けられた絶縁層とを有し、且つ前記半導体構成体の外部接続用電極上及び前記側方に設けられた絶縁層上に少なくとも1層以上の再配線層が設けられた半導体装置であって、前記半導体構成体の側方に導体層を備えていると共に、前記支持体と前記導体層の間に貫通めっきスルーホールを備えていることを特徴とする半導体装置。   A semiconductor structure having a plurality of external connection electrodes on an upper surface; a support that supports the semiconductor structure; and an insulating layer provided on a side of the semiconductor structure; and the outside of the semiconductor structure A semiconductor device in which at least one or more redistribution layers are provided on a connection electrode and an insulating layer provided on the side, and a conductor layer is provided on a side of the semiconductor structure, A semiconductor device comprising a through-plated through hole between the support and the conductor layer. 前記導体層の少なくとも一部が金属箔であることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein at least a part of the conductor layer is a metal foil. 支持体の上面に、複数の外部接続用電極を有する半導体構成体を配置する工程と、前記半導体構成体の側方に第一の絶縁層とキャリアを備えた第一の導体層を配置し積層する工程と、前記積層工程後前記キャリアを剥離する工程と、前記剥離工程後前記半導体構成体の側方に第二の絶縁層と第二の導体層を配置し積層する工程と、前記支持体と前記第一の導体層と前記第二の導体層の間にスルーホールを設ける工程と、前記スルーホールを設ける工程の後にめっき層を設ける工程と、前記半導体構成体の外部接続用電極上と前記側方に配置された第一の絶縁層上及び/又は第二の絶縁層上に再配線層を形成する工程とを有することを特徴とする半導体装置の製造方法。   A step of disposing a semiconductor structure having a plurality of external connection electrodes on the upper surface of the support, and a first conductor layer having a first insulating layer and a carrier on the side of the semiconductor structure A step of peeling the carrier after the laminating step, a step of arranging and laminating a second insulating layer and a second conductor layer on the side of the semiconductor structure after the peeling step, and the support. And a step of providing a through hole between the first conductor layer and the second conductor layer, a step of providing a plating layer after the step of providing the through hole, and an external connection electrode of the semiconductor structure; Forming a redistribution layer on the first insulating layer and / or the second insulating layer disposed on the side. The method for manufacturing a semiconductor device, comprising: 前記第一の導体層と前記第二の導体層が、予め窓抜きされていることを特徴とする請求項3記載の半導体装置の製造方法。   4. The method of manufacturing a semiconductor device according to claim 3, wherein the first conductor layer and the second conductor layer are pre-windowed. 前記第二の導体層が、金属箔であることを特徴とする請求項3又は4記載の半導体装置の製造方法。   5. The method of manufacturing a semiconductor device according to claim 3, wherein the second conductor layer is a metal foil.
JP2006223074A 2006-08-18 2006-08-18 Semiconductor device, and its manufacturing method Pending JP2008047753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223074A JP2008047753A (en) 2006-08-18 2006-08-18 Semiconductor device, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223074A JP2008047753A (en) 2006-08-18 2006-08-18 Semiconductor device, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008047753A true JP2008047753A (en) 2008-02-28

Family

ID=39181180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223074A Pending JP2008047753A (en) 2006-08-18 2006-08-18 Semiconductor device, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008047753A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217337A (en) * 2000-01-31 2001-08-10 Shinko Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2005019938A (en) * 2003-06-03 2005-01-20 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217337A (en) * 2000-01-31 2001-08-10 Shinko Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2005019938A (en) * 2003-06-03 2005-01-20 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US7129117B2 (en) Method of embedding semiconductor chip in support plate and embedded structure thereof
JP4716819B2 (en) Manufacturing method of interposer
JP4345808B2 (en) Manufacturing method of semiconductor device
US20080315398A1 (en) Packaging substrate with embedded chip and buried heatsink
JP2004335641A (en) Method of manufacturing substrate having built-in semiconductor element
JP2008112996A (en) Method of manufacturing printed-circuit substrate
JP2002164467A (en) Circuit block body, its manufacturing method, wiring circuit device, its manufacturing method, semiconductor device and its manufacturing method
US6323435B1 (en) Low-impedance high-density deposited-on-laminate structures having reduced stress
JP4950743B2 (en) Multilayer wiring board and manufacturing method thereof
KR20110012771A (en) A printed circuit board and a fabricating method the same
US9922897B1 (en) Method of manufacturing semiconductor package
US10515898B2 (en) Circuit board incorporating semiconductor IC and manufacturing method thereof
JP2007027706A (en) Wiring board, manufacturing method therefor and semiconductor package
KR100658022B1 (en) Method of manufacturing circuit device
KR100639737B1 (en) Method of manufacturing circuit device
KR20100053762A (en) Stacked wafer level package and method manufacturing the same
JP2002076576A (en) Forming method for wiring pattern and original plate used therefor
JP2005353837A (en) Semiconductor device and its manufacturing method
JP2009146940A (en) Laminated wiring board and manufacturing method therefor
US11257713B2 (en) Interposer board without feature layer structure and method for manufacturing the same
JP5285385B2 (en) Manufacturing method of multilayer wiring board
JP2008047753A (en) Semiconductor device, and its manufacturing method
KR101015762B1 (en) Method of manufacturing semiconductor package
JP2020202241A (en) Flip chip package, flip chip package substrate and method of manufacturing flip chip package
JP2007129148A (en) Method of manufacturing electronic component packaging structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731