JP2008043008A - スイッチング電源回路 - Google Patents

スイッチング電源回路 Download PDF

Info

Publication number
JP2008043008A
JP2008043008A JP2006211787A JP2006211787A JP2008043008A JP 2008043008 A JP2008043008 A JP 2008043008A JP 2006211787 A JP2006211787 A JP 2006211787A JP 2006211787 A JP2006211787 A JP 2006211787A JP 2008043008 A JP2008043008 A JP 2008043008A
Authority
JP
Japan
Prior art keywords
primary
capacitor
power
circuit
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006211787A
Other languages
English (en)
Inventor
Masayuki Yasumura
昌之 安村
Original Assignee
Sony Corp
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, ソニー株式会社 filed Critical Sony Corp
Priority to JP2006211787A priority Critical patent/JP2008043008A/ja
Publication of JP2008043008A publication Critical patent/JP2008043008A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】力率改善機能を有し、電力変換効率の向上、回路構成部品の削減を図るスイッチング電源回路を提供する。
【解決手段】力率を改善するスイッチング電源回路である。コンバータ部は、漏れインダクタL1と1次側電圧共振コンデンサC1で形成される1次側並列共振回路および漏れインダクタL2と2次側直列共振コンデンサC2で形成される2次側直列共振回路を有する多重共振コンバータである。また、力率を改善する力率改善回路13と、力率改善回路13と交流電源ACとの間のコモンモードフィルタ部とを具備する。そして、力率改善回路13とコモンモードフィルタ部のコンデンサCNLを共用して、少ない部品点数にもかかわらず、ノイズの発生を低減する。また、部品点数の削減によって効率の改善を図った。
【選択図】図5

Description

本発明は、各種電子機器の電源として備えられるスイッチング電源回路に関する。
近年、商用電源を整流して所望の直流電圧を得る電源回路としては、大部分がスイッチング方式の電源回路とされている。スイッチング電源回路はスイッチング周波数を高くすることによりトランスその他のデバイスを小型にすると共に、大電力のDC−DCコンバータとして各種の電子機器の電源として使用されている。
ところで、商用電源は正弦波の交流電圧であるが、商用電源を整流素子と平滑コンデンサとを用いる平滑・整流回路において整流および平滑を行う場合には、平滑・整流回路のピークホールド作用のために、商用電源からスイッチング電源回路には、交流電圧のピーク電圧付近の短時間だけ電流が流れ込むこととなり、商用電源から電源回路に流れ込む電流は、正弦波とは大きく異なる歪み波形になってしまう。そして、電源の利用効率を示す力率が損なわれるという問題が生じる。また、このような歪み電流波形となることによって発生する商用電源周期の高調波を抑圧するための対策が必要とされてしまう。これらの問題を解決するために、従来において力率改善を図る技術として、いわゆるアクティブフィルタを用いる手法が知られている(例えば特許文献1参照)。
図14にこのようなアクティブフィルタの基本構成を示す。図14においては、商用の交流電源ACにコモンモードノイズを抑圧するためのコモンモードチョークコイルCMC1およびコモンモードチョークコイルCMC2の2個コモンモードチョークコイルと、3個のアクロスコンデンサCLとからなるコモンモードフィルタを介して、交流電源ACにブリッジ整流器として構成される1次側整流素子Diの入力側を接続している。この1次側整流素子Diの出力側の正極/負極ラインに対しては、ノーマルモードノイズを防止するためのインダクタLNと2個のコンデンサCNとで構成されるノーマルモードフィルタを介してステップアップ型のコンバータが接続され、その出力には並列に2次側平滑コンデンサCoutが接続され、その両端電圧として直流電圧Voutが得られる。この直流電圧Voutは、DC−DCコンバータ110の入力電圧として供給される。そして、DC−DCコンバータ110の2次側には出力直流電圧Eoutが得られる。
そして、力率改善のための構成としては、インダクタL100、高速リカバリ型の高速スイッチングダイオードD100、スイッチング素子Q100からなるステップアップ型のコンバータ、および乗算器111を主なる構成要素とするステップアップ型のコンバータの制御部と、を備える。インダクタL100、高速スイッチングダイオードD100は、1次側整流素子Diの正極出力端子と、2次側平滑コンデンサCoutの正極端子との間に、直列に接続されて挿入される。抵抗Riは、1次側整流素子Diの負極出力端子(1次側アース)と2次側平滑コンデンサCoutの負極端子との間に挿入される。また、スイッチング素子Q100は、例えば、MOS−FETとされ、インダクタL100と高速スイッチングダイオードD100の接続点と、1次側アース間に挿入される。また、高速スイッチングダイオードD100の空乏層容量と漏れインダクタンスとで生じる共振を吸収するための抵抗RsnとコンデンサCsnとから成るスナバ回路が設けられている。
乗算器111に対しては、電流検出ラインLiおよび波形入力ラインLwが接続され、さらに電圧検出ラインLvが接続される。そして、乗算器111は、電流検出ラインLiから入力される1次側整流素子Diの負極出力端子に流れる整流電流Iinに応じた信号を抵抗Riの両端から検出する。また、波形入力ラインLwから入力される1次側整流素子Diの正極出力端子の整流電圧Vinに応じた信号を検出する。この整流電圧Vinは、商用の交流電源ACからの交流入力電圧の波形を絶対値化したものである。さらに、電圧検出ラインLvから入力される2次側平滑コンデンサCoutの直流電圧Voutと所定の基準電圧との差分である誤差電圧を検出する。そして、乗算器111からは、スイッチング素子Q100を駆動するためのドライブ信号が出力される。
乗算器111によって制御部されるステップアップ型のコンバータでは、電流検出ラインLiから検出した整流電流Iinに応じた信号と、上記電圧検出ラインLvから検出した誤差電圧とを乗算し、この乗算結果と、波形入力ラインLwから検出した整流電圧Vinに応じた信号との誤差を検出する。そしてこの誤差信号を増幅した後に、PWM(Pulse Width Modulation)変換を行い、ハイレベルとローレベルとの2値信号によって、スイッチング素子Q100を制御する。このようにして、2入力フィードバック系が構成され、直流電圧Voutの値が所定の値とされるとともに、整流電圧Vinに対して整流電流Iinを相似形の波形とする。この結果、商用の交流電源ACから1次側整流素子Diに印加される交流入力電圧VACと、1次側整流素子Diに流れ込む交流入力電流IACの波形も相似形となって、力率がほぼ1に近付くようにして力率改善が図られることになる。
しかしながら、図14に示した構成による電源回路では、次のような問題を有している。図14に示す電源回路における電力変換効率としては、前段のアクティブフィルタに対応するAC電力からDC電力への変換効率と、後段のDC−DCコンバータ110におけるDC電力からDC電力への変換効率とを総合したものとなる。つまり、図14に示される回路の総合的な電力変換効率(総合効率)としては、これらの電力変換効率の値を乗算した値となるものであり、各々1以下となる数の積であるので、総合効率は低下してしまう。
また、アクティブフィルタ回路はハードスイッチング動作であることから、ノイズの発生が大きいため、厳重なノイズ抑制対策が必要となる。このため、図14に示した回路では、商用の交流電源ACのラインに対して、コモンモードノイズに対応するためにコモンモードチョークコイルCMC1とコモンモードチョークコイルCMC2、アクロスコンデンサCLによるコモンノイズフィルタを設けている。また、ノーマルモードノイズに対応するために、1個のインダクタLNと2個のコンデンサCNから成るノーマルモードノイズフィルタを設けている。さらに、整流用の高速リカバリ型の高速スイッチングダイオードD100に対しては、抵抗RsnとコンデンサCsnとから成るスナバ回路を設けている。このようにして、多くの部品点数によるノイズ対策が必要であり、コストアップおよび電源回路基板の実装面積の大型化を招いている。
さらに、スイッチング素子Q100のスイッチング周波数は、例えば、60kHzの固定の周波数であるのに対して、後段のDC/DCコンバータ110においては、例えば、電流共振コンバータのようなスイッチング周波数を変化させて出力直流電圧Eoutを一定に保つ定電圧制御方式とするコンバータを採用する場合には、そのスイッチング周波数は80kHz〜200kHzの範囲で可変となる。このようにして両者のスイッチングタイミング(クロック)は別個独立であるので、各々のクロックを基準に働く両者のスイッチング動作により、アース電位は干渉しあって不安定になり、例えば異常発振が生じやすくなる。これにより、例えば回路設計が難しいものとなったり、信頼性を劣化させたりするなどの問題も招くことになる。
特開平6−327246号公報
本発明は、上述した課題を解決し、従来に較べて、ノイズの発生をより少なくし、より効率の向上を図り、部品点数をより少なくした力率改善機能を有するスイッチング電源回路を提供することを目的とする。
本発明のスイッチング電源回路は、交流電源からの入力交流電力を1次側直流電力に変換する1次側整流平滑部と、前記1次側直流電力を交流電力に変換し、さらに2次側直流電力に変換するコンバータ部と、力率を改善する力率改善部と、前記力率改善部と前記交流電源との間に介在されるコモンモードフィルタ部と、を備えるスイッチング電源回路であって、前記1次側整流平滑部は、交流電源からの入力交流電力を入力して整流する1次側整流素子と、前記1次側整流素子からの電力がコンバータトランスに巻回された3次巻線を介して供給される1次側平滑コンデンサと、を具備し、前記コンバータ部は、1次巻線と、前記1次巻線と磁気的に疎結合とされる2次巻線と、前記1次巻線と磁気的に結合される前記3次巻線と、を有する前記コンバータトランスと、前記1次側整流平滑部から供給される前記1次側直流電力を、前記交流電力に変換して前記1次巻線に供給するスイッチング素子と、前記スイッチング素子をオン・オフ駆動する発振・ドライブ回路と、前記1次巻線に生じる漏れインダクタと1次側電圧共振コンデンサとによって形成され、前記スイッチング素子から電力が供給される1次側並列共振回路と、前記2次巻線に生じる漏れインダクタと2次側直列共振コンデンサとによって形成される2次側直列共振回路と、前記2次側直列共振回路に接続される整流素子と、前記整流素子に接続され出力直流電圧を得るようにされた2次側平滑コンデンサと、前記出力直流電圧の値を所定の値とするように周波数が可変とされる制御信号を前記発振・ドライブ回路に供給する制御回路と、を具備し、前記力率改善部は、前記1次側整流素子の入力側に接続された力率改善用インダクタとコンデンサとの直列回路を具備するとともに、前記1次側整流素子のスイッチング速度が、該1次側整流素子の出力側に接続される前記3次巻線に発生される共振パルスを整流できる速度を有するものとされて形成され、前記コモンモードフィルタ部は、コモンモードチョークコイルとアクロスコンデンサとして機能する前記力率改善部の前記コンデンサと、を具備する。
このスイッチング電源回路は、1次側整流平滑部と、コンバータ部と、力率改善部と、コモンモードフィルタ部と、を備える。1次側整流平滑部は、1次側整流素子によって交流電源からの入力交流電力を入力して整流する。ここで、1次側整流素子からの電力はコンバータトランスに巻回された3次巻線を介して1次側平滑コンデンサに供給されて平滑されて1次側直流電力を得ることができる。また、コンバータ部は、1次巻線と、1次巻線と磁気的に疎結合とされる2次巻線と、1次巻線と磁気的に結合される3次巻線と、を有するコンバータトランスを具備している。疎結合とされる1次巻線と2次巻線との各々には漏れインダクタンスが生じ、1次巻線と磁気的に結合される3次巻線には共振電流に応じたパルス電圧が生じる。また、スイッチング素子は、発振・ドライブ回路によってオン・オフ駆動され、1次側整流平滑部からの1次側直流電力を、交流電力に変換して1次巻線に供給する。また、1次巻線に生じる漏れインダクタと1次側電圧共振コンデンサとによって形成される1次側並列共振回路と、2次巻線に生じる漏れインダクタと2次側直列共振コンデンサとによって形成される2次側直列共振回路とを具備しており、1次巻線に供給される交流電力の周波数に応じて1次側から2次側へ伝送される電力の大きさが変化させられる。また、2次側直列共振回路に接続される整流素子と2次側平滑コンデンサとによって出力直流電圧を得るようにされている。また、制御回路は周波数が可変とされる制御信号を発振・ドライブ回路に供給して、出力直流電圧が所定値となるように制御する。また、力率改善部は、1次側整流素子の入力側に接続された力率改善用インダクタとコンデンサとの直列回路を具備してノーマルモードのフィルタを形成する。1次側整流素子のスイッチング速度は1次側整流素子の出力側に接続される3次巻線に発生される共振パルスを整流できる速度を有するものとされて形成されている。このような、高速のスイッチング速度を有する1次側整流素子と力率改善用インダクタとによって共振パルス電圧は整流されて1次側平滑コンデンサに帰還される。これによって、交流入力電流の流通角を拡大して力率の改善を図る。また、コモンモードフィルタ部は、コモンモードチョークコイルとアクロスコンデンサを具備する。ここで、アクロスコンデンサは力率改善部のコンデンサを共通に用いるものとされている。
本発明のスイッチング電源回路によれば、従来に較べて、部品点数をより少なくし、ノイズの発生もより少なくし、より効率の改善を図る力率改善機能を有するスイッチング電源回路を提供することができる。
まず、力率改善機能と、定電圧機能とをDC/DCコンバータに持たせたワンコンバータ方式の電源について説明する。
図1にワンコンバータ方式のスイッチング電源回路の一実施形態を示す。図1に示すワンコンバータ方式の電源回路は、1次側に主スイッチであるスイッチ素子Q1を1個備え、1次側巻線N1に生じる漏れインダクタL1と1次側共振コンデンサC1とで形成される1次側電圧共振回路を具備し、1次巻線N1と2次巻線N2とが磁気的に疎結合とされるコンバータトランスPITの2次巻線N2に発生する漏れインダクタL2と2次側直列コンデンサC2とで形成される2次側電流共振回路を具備し、この2次側電流共振回路に接続された全波整流回路から出力直流電圧Eoを得るようにされたDC/DCコンバータである。そしてこのDC/DCコンバータは、いわゆる、多重共振形コンバータとして形成され、定電圧機能を有する。さらに、力率改善回路10を組み合わせて力率改善機能を有するものである。ここで、疎結合とは、1次巻線N1と2次巻線N2との磁気的な結合係数の値が、1以下であることを言うものであり、例えば、結合係数の値が0.7程度である場合を言うものである。すなわち、結合係数が1以下であるということは、1次巻線N1には鎖交し2次巻線N2には鎖交しない磁束が存在し、また、2次巻線N2には鎖交し1次巻線N1には鎖交しない磁束が存在するということである。この相互に鎖交しない磁束によって、漏れインダクタL1(以下、インダクタL1と省略する)と漏れインダクタL2(以下、インダクタL2と省略する)とが生じることとなる。
なお、図1においては、2次側回路としては全波整流を備えるものであるが、これに替えて、2次側回路としては両波整流回路または倍圧整流回路を備えるものとしても良いものである。
図1に示すワンコンバータ方式のスイッチング電源回路におけるDC/DCコンバータ部の説明を簡単にする。
コンバータトランスPITは、1次側と2次側とを絶縁するとともに電圧の変換を行う機能を有するが、さらに、多重共振スイッチングコンバータとして機能させるための共振回路の一部を構成する上述したインダクタL1としても機能する。
コンバータトランスPITは、フェライト材によるコアと1次巻線N1と2次巻線N2とによって構成されている。このコンバータトランスPITにおいては1次巻線N1と2次巻線N2との磁気的な結合は疎結合とされている。このようにして、大きなインダクタンスの値を漏れインダクタンス成分として得るようにしている。
また、スイッチング素子Q1は、MOS−FETが選定され、ソース−ドレイン間に並列にボディダイオードDD1を内蔵する。このような、スイッチング素子Q1が、スイッチング動作をすることによって、1次側電圧共振コンデンサC1とインダクタL1とによって形成される1次側並列共振回路に並列共振電流を流す。
コンバータトランスPITの2次側では、1次巻線N1により誘起された交番電圧に相似した電圧波形が2次巻線N2に発生する。この2次巻線N2に対して2次側整流素子Doを接続している。この2次側整流素子Doは高速スイッチングダイオードDo1ないし高速スイッチングダイオードDo4をブリッジ接続して構成されており、2次側整流素子Doの出力側には2次側平滑コンデンサCoが接続されている。これにより、2次側平滑コンデンサCoの両端から出力直流電圧Eoを得ている。
制御回路1は、入力された出力直流電圧Eoと所定の値の基準電圧値との差に応じた検出出力(誤差電圧)を発振・ドライブ回路2に供給する。発振・ドライブ回路2では、入力された制御回路1の検出出力に応じて主としてはスイッチング周波数を可変するようにして、スイッチング素子Q1を駆動する。また、スイッチング周波数とともに一周期におけるスイッチング素子Q1のオンとなる時間の比率である時比率を変化させるようにしても良い。
このようにしてスイッチング素子Q1のスイッチング周波数が可変制御されることにより、この可変制御の周波数に対して1次側並列共振回路のインピーダンスが変化し、コンバータトランスPITの1次巻線N1から2次巻線N2側に伝送される電力量、また、2次側整流回路から負荷に供給すべき電力量が変化することになる。これにより、出力直流電圧Eoの大きさを基準電圧と一致させる動作が得られることになる。つまり、出力直流電圧Eoの安定化が図られる。
図1に示すワンコンバータ方式のスイッチング電源回路における力率改善回路10では、コンバータトランスPITに設けられた3次巻線N3の一方の巻端に高速スイッチングダイオードD1と力率改善用インダクタLoとの直列回路を接続し、3次巻線N3の他方の巻端と力率改善用インダクタLoに接続されない側の高速スイッチングダイオードD1の端子との間にノーマルモードのノイズを抑制するためのコンデンサCNおよび1次側平滑コンデンサの一端を接続している。
力率改善回路10のこのような接続態様によって、3次巻線N3に発生する共振パルス電圧を1次側平滑コンデンサCiに帰還して力率の改善を図っている。このように共振動作に応じて発生する電圧を1次側平滑コンデンサCiに帰還して力率を改善する方式を電圧帰還方式の力率改善回路と総称する。
また、図2に示すのは別の方式の力率改善回路11である。1次側整流素子Diの交流入力側については、記載を省略したが、図1に示すものと同様な構成を有するものとされている。力率改善回路11では、1次巻線N1の一端に対して電圧帰還トランスVFTの第2巻線Lo’と1次平滑コンデンサCiとを直列に接続して、電圧帰還トランスVFTの第2巻線Lo’に1次側直列共振電流を流している。そして、電圧帰還トランスVFTの第2巻線Lo’に誘起する共振パルス電圧を電圧帰還トランスVFTの第1巻線Loにも誘起してこの電圧を1次側平滑コンデンサCiに帰還して、1次側整流素子Diにおける流通角を拡大して力率を改善する電圧帰還方式の力率改善回路である。
また、図3に示すのはさらに別の方式の力率改善回路12である。力率改善回路12では、1次側電圧共振コンデンサC1と1次巻線N1とが交流的に並列に接続される共振回路に対して、スイッチング素子Q1とボディダイオードDD1との並列回路を接続し、1次巻線N1の一端に対して、力率改善用インダクタLoを接続している。そして、力率改善用インダクタLoを介して1次側平滑コンデンサCiに並列共振電流を帰還して力率を改善する電力回生方式の力率改善回路である。
上述した、図1および図3に示すスイッチング電源回路では、力率改善回路10および力率改善回路13を構成するための部品は、力率改善用インダクタLo、高速スイッチングダイオードD1およびコンデンサCNの3点である。また、図2に示すスイッチング電源回路では、力率改善回路11を構成するための部品は、電圧帰還トランスVFT、高速スイッチングダイオードD1およびコンデンサCNの3点である。
図1ないし図3のスイッチング電源回路を代表するものとして、図2に示す力率改善回路11を備えるスイッチング電源回路について、その特性を説明する。
図4は、負荷電力Poの値が、0W(無負荷)から300Wの範囲での負荷変動に対する力率PF、および交流入力電力に対する直流出力電力の電力変換効率ηAC→DCを示している。
ここで、高調波歪規制値のクラスA規格では交流入力電力が75W以上の場合が規制の対象となるものである。したがって、図2に示す回路のみならず、図1に示す回路および図3に示す回路の各々において、各部の定数の設定を適切なものとしている。例えば、図3に示す回路において、交流入力電圧VACの値が100V、負荷電力Poが70Wのとき力率PFの値を0.75となるように電圧帰還トランスVFTの第1巻線Loと第2巻線Lo’とを設定している。なお、このときの300Wにおける電力変換効率ηAC→DCの値は91%程度であり、力率改善回路13における損失は少ないものであった。
以上述べたように、図1ないし図3に示すスイッチング電源回路では、高調波歪規制値のクラスA規格を満たし、部品点数も背景技術に示すものに較べて大幅に少なくすることができ、電力変換効率ηAC→DCの値も良好なものとできる。しかしながら、上述した図1ないし図3に示すスイッチング電源回路を医療機器に用いる場合には、交流電源ACのラインに対する電源妨害である雑音端子電圧の規格は、家庭用の電機機器(家電機器)の規格よりも低レベルであり、さらに、ノイズの発生のレベルを低下させることが望ましい。
上述した、電源妨害、電力変換効率、力率改善について、より良好なる特性を有するのが図5に示す回路および図5の変形例としての図10ないし図13に示す回路である。各々のスイッチング電源回路の細部の説明をする前に、それらに、共通する技術的特徴を以下に簡単に説明する。なお、図10ないし図13は、回路のすべてが記載されておらず、その一部が記載されており、記載されていない部分は図5に示すと同一の構成を有している。
上述のスイッチング電源回路は、いずれも、1次側に1次側並列共振回路を有し、2次側に2次側直列共振回路を有する、多重共振コンバータとして構成されている。また、この多重共振コンバータは、力率を改善する力率改善部(力率改善回路)と、力率改善部と交流電源との間に介在して、コモンモードノイズを抑圧するコモンモードフィルタ部と、を備えるものである。そして、力率改善部の構成部分のコンデンサとコモンモードフィルタ部の構成部分のコンデンサとを共用して用い、部品点数を減らすものである。さらに、図13に示す実施形態においてはノーマルモードノイズを抑圧するためのインダクタとコモンモードチョークコイルとを共用するものである。
このように重複した機能を有する共用部品を採用することによって部品点数の削減を図り効率を向上するとともに、これらの部品の高周波特性を良好なるものとして、電源妨害(ノイズ)を抑圧する。
まず、図5、図10ないし図13に示すスイッチング電源回路に共通する部分の説明をする。その後、図5、図10ないし図13に示すスイッチング電源回路の各々の特徴部分について説明する。
図5および図10ないし図13に示すスイッチング電源回路は、交流電源ACからの入力交流電力を1次側直流電力に変換する1次側整流平滑部と、1次側直流電力を交流電力に変換しさらに2次側直流電力に変換するコンバータ部と、力率を改善する力率改善部と、前記力率改善部と前記交流電源との間に介在されるコモンモードフィルタ部と、を備えるスイッチング電源回路である。
そして、1次側整流平滑部は、交流電源からの入力交流電力を入力して整流する1次側整流素子Diと、1次側整流素子Diからの電力を平滑する1次側平滑コンデンサCiとを具備する。
また、コンバータ部は、1次巻線N1と、1次巻線N1と磁気的に疎結合とされる2次巻線N2と、1次巻線N1と磁気的に結合される3次巻線N3と、を有するコンバータトランスPITと、上述した1次側整流平滑部から供給される1次側直流電力を、交流電力に変換して1次巻線N1に供給するスイッチング素子Q1と、スイッチング素子Q1をオン・オフ駆動する発振・ドライブ回路2と、1次巻線N1に生じる漏れインダクタL1と1次側電圧共振コンデンサC1とによって形成され、スイッチング素子Q1から電力が供給される1次側並列共振回路と、によって形成され、2次巻線N2(または、2次巻線N2および2次巻線N2’)に生じる漏れインダクタL2(または、漏れインダクタL2および漏れインダクタL2’)と2次側直列共振コンデンサC2(または、2次側直列共振コンデンサC2および2次側直列共振コンデンサC2’)と、によって形成される2次側直列共振回路と、2次側直列共振回路に接続される2次側整流素子Do(または、高速スイッチングダイオードDo1および高速スイッチングダイオードDo2、または、高速スイッチングダイオードDo5ないし高速スイッチングダイオードDo8)と、この2次側整流素子Do等に接続され出力直流電圧Eoを得るようにされた2次側平滑コンデンサCoと、出力直流電圧Eoの値を所定の値とするような制御信号を発振・ドライブ回路2に供給する制御回路1と、を具備する。ここで、2次側の整流回路については、全波整流回路、全波倍電圧整流回路、倍電流整流回路のいずれを用いるものとしても良いものである。
また、力率改善部は、3次巻線N3に発生する共振パルスを整流できるスイッチング速度を有する1次側整流素子Diの入力側に接続された力率改善用インダクタLo(または、力率改善用インダクタLo1および力率改善用インダクタLo2)とコンデンサCNL(または、コンデンサCNL1、コンデンサCNL2およびコンデンサCNL3)との直列回路を具備する。
また、コモンモードフィルタ部は、コモンモードチョークコイルとアクロスコンデンサとして機能する力率改善部のコンデンサである、コンデンサCNL(または、コンデンサCNL1、コンデンサCNL2およびコンデンサCNL3)を具備する。以下、より詳細に説明する。
まず、図5に示すスイッチング電源回路について説明する。図5に示すスイッチング電源回路は、交流電源ACからの入力交流電力を1次側直流電力に変換する1次側整流平滑部と、前記1次側直流電力を交流電力に変換しさらに2次側直流電力に変換するコンバータ部と、力率を改善する力率改善部(力率改善回路)と、前記力率改善部と前記交流電源との間に介在されるコモンモードフィルタ部と、を備えるものである。
コンバータ部は、1次巻線N1と、1次巻線N1と磁気的に疎結合とされる2次巻線N2と、1次巻線N1と磁気的に結合される3次巻線N3と、を有するコンバータトランスPITと、1次側整流平滑部から供給される1次側直流電力を、商用周波数よりも高い周波数の交流電力に変換して1次巻線N1に供給するスイッチング素子であるスイッチング素子Q1と、これらのスイッチング素子をオン・オフ駆動する発振・ドライブ回路2と、1次巻線N1に生じる漏れインダクタL1と1次側電圧共振コンデンサC1とによって形成され、スイッチング素子から電力が供給される1次側並列共振回路と、2次巻線N2に生じる漏れインダクタL2と2次側直列共振コンデンサC2とによって形成される2次側直列共振回路と、2次側直列共振回路に接続される2次側整流素子Doと、2次側整流素子Doに接続され出力直流電圧Eoを得るようにされた2次側平滑コンデンサCoと、出力直流電圧Eoの値を所定の値とするような制御信号を発振・ドライブ回路に供給する制御回路1と、を具備する。
ここで、2次側整流回路の2次側整流素子Doは、高速スイッチングダイオードDo1ないし高速スイッチングダイオードDo4で形成されるブリッジ接続を採用して全波整流をおこなう。
また、力率改善部は、3次巻線N3に発生する共振パルスを整流できるスイッチング速度を有するように1次側整流素子Diを高速スイッチングダイオードDi1ないし高速スイッチングダイオードDi4のブリッジ接続によって形成する。そして、ブリッジ接続とされた1次側整流素子Diの入力側に接続された力率改善用インダクタLoとコンデンサCNLとの直列回路を具備する。この力率改善用インダクタLoとコンデンサCNLとは、1次側整流素子Diの入力側からみるとローパスフィルタとして機能し、ノーマルモードノイズを抑圧するノーマルモードノイズフィルタとして機能する。
また、コモンモードフィルタ部は、コモンモードチョークコイルCMCとアクロスコンデンサとして機能するコンデンサCNLと、を具備する。ここで、コンデンサCNLは上述したようにローパスフィルタの一部として作用するとともに、コモンモードフィルタのアクロスコンデンサとしても機能する。すなわち、コンデンサCNLが接続されることによって、コモンモードチョークコイルCMCの両端の電位が同一電位とされ、コモンモードノイズの抑圧の作用が効果的とされる。また、コンデンサCNLの両端に交流電源ACからの交流電圧が印加され1次側整流素子Diの入力側に交流電力が供給される。
図5に示すスイッチング電源回路の主要部について、より詳細に説明を加える。
交流電力は、1次整流平滑部で整流されて、平滑される。ここで、整流は、1次側整流素子Diでおこなわれ、平滑は1次側平滑コンデンサCiでおこなわれるものであるが、1次側整流素子Diの出力側の一端と1次側平滑コンデンサCiの一端との間には3次巻線N3が介在している。3次巻線N3は力率改善の機能を発揮するために配されているものである。このようにして1次側直流電力に変換された電力はコンバータ部に供給されるが、コンバータ部は、いわゆる、DC/DCコンバータの中でも、多重共振形コンバータとして構成されており、1次巻線N1の両端に生じると漏れインダクタL1と1次側電圧共振コンデンサC1とによって1次側並列共振回路が形成されており、この1次側並列共振回路には、スイッチング素子Q1が接続されている。スイッチング素子Q1はMOS―FETが用いられ、ドレインとソースとの間がスイッチング素子として作用する。このような接続態様とすることによって、スイッチング素子Q1のオンとオフによって生じる交流電力が1次側並列共振回路に印加される。さらに、2次巻線N2の両端に生じると漏れインダクタL2と2次側直列共振コンデンサC2とによって2次側直列共振回路が形成されている。
このような多重共振形コンバータが構成され、交流電力の周波数に応じて2次巻線N2に1次巻線N1から伝送される電力量が変化する。ここで、1次側並列共振回路の共振周波数は、漏れインダクタL1のインダクタンスの値と1次側電圧共振コンデンサC1のキャパシタンスの値とによって定められるものであり、1次側電圧共振コンデンサC1の値は、7500pF(ピコ・ファラッド)とした。また、2次側直列共振回路の共振周波数は、漏れインダクタL2のインダクタンスの値と2次側直列共振コンデンサC2のキャパシタンスの値とによって定められるものであり、2次側直列共振コンデンサC2の値は、0.047μF(マイクロ・ファラッド)とした。このようにして、2つの共振回路の共振周波数は、1次側電圧共振コンデンサC1と2次側直列共振コンデンサC2との値を選択することによって、各々、独立に定め得るものであるので、多重共振コンバータとしての所望の動作、例えば、スイッチング周波数の可変範囲を狭くする等の目的に合わせて、1次側直列共振周波数と2次側直列共振周波数は自由に設定が可能とされている。このような、多重共振コンバータの技術自体は公知の技術である。
漏れインダクタL1を発生させるコンバータトランスPITの構造を以下に説明する。コンバータトランスPITは、1次側と2次側とを絶縁するとともに電圧の変換を行う機能を有するが、さらに、インダクタL1としても機能する。ここで、インダクタL1のインダクタンスは、コンバータトランスPITによって形成される漏れインダクタンスである。このような漏れインダクタンスをどのようにして生じさせるかについて、図6に示すコンバータトランスPITの断面図を示して具体的に説明する。
コンバータトランスPITは、フェライト材によるE型コアCR1とE型コアCR2とを互いの磁脚が対向するように組み合わせたEE型コア(EE字形コア)を備える。そして、1次側と2次側の巻装部については、相互に独立するようにして分割し、例えば樹脂などによって形成されるボビンBが備えられる。そして、1次側の巻装部として1次巻線N1および3次巻線N3、2次側の巻装部として2次巻線N2が巻装されたボビンBをEE字形コアに取り付けることで、1次巻線N1および3次巻線N3が一の領域に巻装され、2次巻線N2がこの一の領域とは異なる巻装領域に分離され、EE字形コアの中央磁脚に巻装される状態となる。このようにしてコンバータトランスPIT全体としての構造が得られる。
このEE字形コアの中央磁脚に対しては、2.2mmのギャップGを形成する。これによって、1次側と2次側との結合係数kの値としては、結合係数kの値を1よりも小さくする、すなわち、疎結合とすることによって、1次巻線N1に発生する磁束の一部は2次巻線N2と鎖交しなくなり、この鎖交しない磁束の効果によってインダクタL1を形成して大きなインダクタンスの値を得るようにしている。なお、ギャップGは、E型コアCR1およびE型コアCR2の中央磁脚を、2本の外磁脚よりも短くすることで形成している。また、1次巻線N1の巻数は40T(ターン)、2次巻線N2の巻数は30T、3次巻線N3の巻数は9T、コア材は、EER―35(コア材名称)とした。また、結合係数kの値は0.67とした。
このようにして形成された1次側並列共振回路に印加される交流電力の周波数を変化させて、上述したように2次側に伝送される電力量を可変とし、よって、出力直流電圧Eoの値を負荷が消費する電力量にかかわらずに一定とできる多重共振コンバータが構成される。
上述したようにスイッチング素子Q1は、MOS−FETが選定され、ソース−ドレイン間に並列にボディダイオードDD1を内蔵する。ここで、MOS−FETは10A/900Vの仕様のものを使用した。
図5に示す力率改善回路13の構成について説明する。力率改善回路13は、1次側整流素子Diとして、高速スイッチングダイオードDi1ないし高速スイッチングダイオードDi4を用いるものであり、図1ないし図3においては、1次側整流素子Diとして、低速度の整流ダイオードを用いるものである点において異なる。ここで、1次側整流素子Diは3A/600Vのワンパッケージ品とした。
また、図5に示す力率改善回路13では力率改善用インダクタLoの一端を交流のライン側、すなわち、1次側整流素子Diの入力側に接続しており、図1ないし図3においては、力率改善用インダクタLoを1次側整流素子Diの出力側に接続している点において異なる。そして、1次側整流素子Diの出力側には上述したようにして3次巻線N3が接続されており、この3次巻線N3の一端は1次側整流素子Diの出力側の一端と接続され、3次巻線N3の他端には1次側平滑コンデンサCiの一端および1次巻線が接続されている。
ここで、力率改善用インダクタLoのインダクタンスの値は27μHとした。力率改善用インダクタLoの構造は、図6に示すコンバータトランスPITと略同様な構造が採用されているが、巻線は1つのみである。ギャップを設けることによって、磁気飽和が生じないものとすることができ、このときの、ギャップは1.4mmとした。また、コア材はEE−22とした。
また、コンデンサCNLは、3次巻線N3に接続された力率改善用インダクタLoの他端と1次側整流素子Diの入力側の他端との間に接続されている。ここで、コンデンサCNLのキャパシタンスの値は1μFとした。
上述した構成を有する力率改善回路では、共振電流である電流I1の一方向の電流は以下の経路を流れる。すなわち、コンデンサCNL、力率改善用インダクタLo、高速スイッチングダイオードDi1、3次巻線N3、1次側平滑コンデンサCi、高速スイッチングダイオードDi4、コンデンサCNLの順に流れる。一方、電流I1の他方向の電流は、コンデンサCNL、高速スイッチングダイオードDi3、3次巻線N3、1次側平滑コンデンサCi、高速スイッチングダイオードDi2、力率改善用インダクタLo、コンデンサCNLの順に流れる。
すなわち、電流I1の高周波成分はコンデンサCNLに流されるが、コンデンサCNLは高周波特性が良好なるコンデンサであるので、電流I1の高周波成分はコンデンサCNLによって短絡されてコンデンサCNLの両端の電圧(ノーマルモードノイズ)は非常に小さいものとなる。また、上述したようにして、共振電流I1は整流されて1次側平滑コンデンサCiに3次巻線に発生する共振パルスに応じた電圧が帰還されることとなる。
ここで、コンデンサCNLは、図1ないし図3に示すアクロスコンデンサCL2と同じ位置、すなわち、コモンモードチョークコイルCMCの両端の間に配置されたアクロスコンデンサとしても機能してコモンモードノイズを抑圧する作用も同時におこなう。このような構成を採用することによって、図1ないし図3に示すコモンモードノイズの発生を抑圧するアクロスコンデンサCL1およびアクロスコンデンサCL2と、図1ないし図3に示すノーマルモードノイズの発生を抑圧するコンデンサCNとの2個のコンデンサの各々が奏する作用を1個のコンデンサであるコンデンサCNLによって奏することができる。
すなわち、図5に示す力率改善回路13を有するスイッチング電源回路では、交流ライン側、すなわち、1次側整流素子Diの入力側に力率改善用インダクタLoとコンデンサCNとを備えることによって、少ない部品の点数で、コモンモードノイズを抑圧するコモンモードフィルタとノーマルモードノイズを抑圧するノーマルモードフィルタとの両方の特性を呈する回路構成を実現することができる。これによって、回路の簡略化、部品の低減によるコストの低価格化が可能となる。
コストの低価格化が可能となる大きな理由は以下に述べるものである。まず、コモンモードチョークコイルCMCの両端の間に配置されたアクロスコンデンサに対しては、耐圧に対する要求が厳格であり、また、このようなアクロスコンデンサの高周波特性が良好でない場合には、コモンモードノイズを抑圧する作用が十分得られないところから、高周波特性が良好であるコンデンサがアクロスコンデンサとしの特性として要求されるので、価格も高価なものになりがちであった。一方、高速スイッチングダイオードDi1ないし高速スイッチングダイオードDi4の4つの高速スイッチングダイオードの中の2つ高速スイッチングダイオードと力率改善用インダクタLoに流れる電流I1の高周波成分を抑圧するノーマルモードフィルタに用いるコンデンサの高周波特性は良好なるものでなければならず、同様に高価なものになりがちであった。図5に示す力率改善回路13では、このような高価なコンデンサを一つにすることができるので装置の低価格化が実現できる。また、コンデンサを一つにすることで、コンデンサの二個分のコストを投じることができるので、高周波特が良好でノイズの削減効果が高い高価なコンデンサを用いることができる。
制御回路1は、入力された出力直流電圧Eoと所定の値の基準電圧値との差に応じた検出出力を発振・ドライブ回路2に供給する。発振・ドライブ回路2では、入力された制御回路1の検出出力に応じて主としてはスイッチング周波数を可変するようにして、スイッチング素子Q1を駆動する。また、スイッチング周波数とともに一周期におけるスイッチング素子Q1のオンまたはスイッチング素子Q2のオンとなる時間の比率である時比率を変化させるようにしても良い。
このようにしてスイッチング素子Q1のスイッチング周波数が可変制御されることにより、スイッチング周波数に応じて1次側並列共振回路および2次側直列共振回路のインピーダンスが変化し、コンバータトランスPITの1次巻線N1から2次巻線N2側に伝送される電力量、また、2次側整流回路から負荷に供給すべき電力量が変化することになる。これにより、出力直流電圧Eoの大きさを基準電圧と一致させる動作が得られることになる。つまり、出力直流電圧Eoの安定化が図られる。
図5に示すスイッチング電源回路の要部の動作波形を図7および図8に示し、図5に示すスイッチング電源回路によって得られる特性の測定データを図9に示す。
図7は、交流入力電圧100V、最大負荷電力である負荷電力Poが300Wにおける主要部の動作波形を商用の交流電源周期により示している。上段より下段に向かって、交流電源から入力される電圧である交流入力電圧VAC(図5を参照)、交流電源から流れる電流である交流入力電流IAC(図5を参照)、1次側整流素子Diの出力側の電圧である電圧V2(図5を参照)、1次巻線N1に流れる電流である電流I1(図5を参照)、3次巻線N3に発生するパルス電圧である電圧V4(図5を参照)負荷に供給される電力の供給電圧である出力直流電圧Eo(図5を参照)に含まれるリップル電圧成分である電圧ΔEoの各々を示す。図7の電圧V2、電流I1、電圧V4の縦線を施した部分の各々は、スイッチング素子Q1のスイッチング周期と同じ周期でスイッチングしていることを示すものである。
図7の交流入力電圧VACと交流入力電流IACとの関係を見ると、交流入力電流IACの流れる期間である流通角は、力率改善回路13を設けることがない場合に較べて拡大している。すなわち、図5において、力率改善用インダクタLoおよび3次巻線N3を備えることがない場合、すなわち、図示しないが、1次側整流素子Diの出力側の端子に3次巻線N3を介することなく1次側平滑コンデンサCiを直接に接続する場合には、図7の交流入力電圧VACのピーク電圧付近でのみパルス状に交流入力電流IACが流れることとなる。一方、図5に示す力率改善回路13を設ける場合においてはこのようなことはなく、交流入力電圧VACと交流入力電流IACとの関係は略相似形となっている。
また、図8は、交流入力電圧100V、最大負荷電力である負荷電力Poが300Wにおける主要部の動作波形をスイッチング素子Q1のスイッチング周期により示している。スイッチング素子Q1の両端の電圧である電圧V3(図5を参照)、3次巻線N3に発生するパルス電圧である電圧V4(図5を参照)、パルス電圧である電圧V3によって生じるパルス電流である電流I1(図5を参照)、スイッチング素子Q1に流れる電流である電流IQ1(図5を参照)、2次巻線N2に流れる電流である電流I2(図5を参照)、ブリッジ整流器である2次側整流子素子Doの入力側に印加される電圧である電圧V5(図5を参照)の各々を示す。
図9は、交流入力電圧VACの値が100Vの条件下において負荷電力Poの値が、0W(無負荷)から300Wの範囲、出力直流電圧Eoの値が175Vのときの負荷変動に対する整流平滑電圧Ei、力率PF、および交流入力電力に対する直流出力電力の電力変換効率ηAC→DCを示している。
図9から読み取れる代表特性の一部を紹介する。3次巻線N3と力率改善用インダクタLoとの値を適切に設定することによって、広範囲な負荷変動の範囲で良好なる力率PFの特性を有することができるものとなる。例えば、図9に示すように、負荷電力Poの値については、無負荷から最大負荷である300Wの範囲の中間点で最良となるように設定する場合に広範囲な負荷変動に対して良好なる力率PFの値を有することができる。
また、図9においては、電力変換効率ηAC→DCの値としては、交流入力電圧VACの値が100Vの場合で、負荷電力Poの値が最大負荷の300Wのときに92.2%であった。この値は、背景技術の図14に示すスイッチング電源回路における90.8%に較べると大きく改善されたものとなっている。また、図1ないし図3に示すスイッチング電源回路よりも、電力変換効率ηAC→DCの値が向上している。これは、ダイオードに流れる電流が通過する経路に存在するダイオードの個数を減らし、高周波電流が流れるコンデンサの個数を減らす等によって部品点数を減らしたことによって得られる効果、すなわち、力率改善回路13の構成態様として、力率改善用インダクタLoをACライン側に挿入することによって得られる効果である。
すなわち、図1ないし図3に示すスイッチング電源回路では、1次側整流素子Diの中の2個の整流ダイオードおよび高速スイッチングダイオードD1を合わせた3個のダイオードに高周波の電流および整流電流が流れ、これによって生じる順方向電力損失およびスイッチング損失が電力損失となったが、図5に示すスイッチング電源回路では、高周波の電流および整流電流が流れるダイオードの数を2個としてダイオードにおける電力損失を減らしている。この電力損失の低減は、電力効率の改善に換算すると負荷電力Poの値が300Wの場合には、1.5%の電力効率の向上に相当する。
また、図5のスイッチング電源回路では、アクティブフィルタを不要としたことで、回路構成部品の点数削減が図られる。つまり、図14に示すアクティブフィルタは、スイッチング素子Q100と、これらを駆動するための乗算器111等を始め、多くの部品により構成される。これに対し、実施形態のスイッチング電源回路においては、力率改善のために必要な追加部品として、コンデンサCNL、力率改善用インダクタLoおよび1次側整流素子Diとして高速整流素子を備えればよく、アクティブフィルタと比較すれば部品点数を少ないものとすることができる。
また、図1ないし図3に示すスイッチング回路と比較した場合には、ノイズの低減効果は極めて良好であり、部品点数を少なくして低コストなものとすることができる。
また、図5のスイッチング電源回路では、多重共振形のコンバータ部および力率改善部の動作はいわゆるソフトスイッチング動作であるから、図14に示したアクティブフィルタを用いる回路と比較すればスイッチングノイズのレベルは大幅に低減される。
また、2次側整流素子Doを構成する2次側の高速スイッチングダイオードである高速スイッチングダイオードDo1ないし高速スイッチングダイオードDo4、1次側整流素子Doを構成する1次側の高速スイッチングダイオードDi1ないし高速スイッチングダイオードDi4などもスイッチング素子Q1およびスイッチング素子Q2に同期してスイッチングの動作をするものである。したがって、アース電位としては、図14のスイッチング電源回路のように、アクティブフィルタ側と、その後段のスイッチングコンバータとの間で干渉することが無く、スイッチング周波数の変化に関わらず安定させることができる。
さらに、図1ないし図3においては、交流電流が、アクロスコンデンサCL1、アクロスコンデンサCL2、コンデンサCNの3個に流れるのに対して、図5では、アクロスコンデンサCLとコンデンサCNLとの2個に流れるようにして、高周波電流が流れるコンデンサの数を減らし、結果としてコンデンサにおける電力損失を減らしている。
また、力率改善用インダクタLoの値と3次巻線N3の巻数の選定によって、中間負荷時(負荷電力Poの値が無負荷と最大負荷との間の値を言う)における力率PFの値を最良のものとして、力率PFを広範囲に良好なるものとすることができ、交流入力電圧VACの値が100Vの場合および交流入力電圧VACの値が230Vの場合のいずれにおいても最大負荷時の力率PFを同程度にすることができる。
また、図1ないし図3に示すスイッチング電源回路との比較においては、力率改善用インダクタLoを交流電源ライン側(1次側整流素子Diの入力側)に挿入してノーマルモードノイズが大幅に低減できた。
さらに、DC/DCコンバータに追加する力率改善のための追加の部品の点数は、図5に示す力率改善回路13においては、力率改善用インダクタLoの1点であり、部品点数を削減することができる。
図5に示すスイッチング電源回路の力率改善回路13の変形例を図10に示す。図10においては、力率改善回路13とは異なる力率改善回路14を採用し、全波整流回路に替えて倍圧整流回路を採用する点で図5に示すスイッチング電源回路と異なる。図10においては、図5と同様にして、3次巻線N3の他端には1次側平滑コンデンサCiが接続され、1次巻線N1には1次側電圧共振コンデンサC1とスイッチング素子Q1が接続されているが、その記載が省略されている。また、発振・ドライブ回路2および制御回路1が省略され、発振・ドライブ回路2および制御回路1については、図5に示すと同様の接続態様となされている。
図10に示す力率改善回路14においては、コンデンサCNLに替えてコンデンサCNL1およびコンデンサCNL2の直列接続回路を採用している。ここで、コンデンサCNL1およびコンデンサCNL2は、図1ないし図3に示すアクロスコンデンサCL2と同じ位置、すなわち、コモンモードチョークコイルCMCの両端の間に配置されたアクロスコンデンサとしても機能してコモンモードノイズを抑圧する作用も同時におこなう。そして、コンデンサCNL1およびコンデンサCNL2の接続点は1次側の基準電位となる1次側接地点に接続されているので、図5に示すような力率改善回路13で採用する回路構成と較べた場合にコモンモードノイズの低減効果はさらに良好となる。
すなわち、コンデンサCNL1およびコンデンサCNL2の接続点は高周波的には接地電位とされ、この接続点を接地しない場合に較べて、コモンモードノイズの発生のレベルが低いものとされている。それに加えて、コンデンサCNLのみを設ける場合と同様に、コモンモードチョークコイルCMCの出力側の2本のライン間の高周波の電位を同一として、コモンモードチョークコイルCMCの作用を効果的にしている。
図10に示す2次側の回路は、漏れインダクタL2と2次側直列共振コンデンサC2で第1の2次側直列共振回路を形成し、漏れインダクタL2’と2次側直列共振コンデンサC2’で第2の2次側直列共振回路を形成している。ここで、2次巻線N2の巻数と2次巻線N2’の巻数は同一とされており、センタータップを基準として逆位相の電圧が発生している。また、漏れインダクタL2と漏れインダクタL2’のインダクタンスの値は巻数が等しいので略同様の値であり、2次側直列共振コンデンサC2と次側2次側直列共振コンデンサC2’の値も等しいものに選ばれ、第1の2次側直列共振回路の共振周波数と第2の2次側直列共振回路の共振周波数は等しいものとされている。
2次側直列共振コンデンサC2は高速スイッチングダイオードDo6に流れる電流によって充電される。また、2次側直列共振コンデンサC2を通過した交流電圧は高速スイッチングダイオードDo6に印加されて2次側平滑コンデンサCoに充電電流を整流して供給する。この場合に、2次側直列共振コンデンサC2の充電電圧は高速スイッチングダイオードDo5に直列に加算方向に加えられているので、2次側平滑コンデンサCoに発生する電圧は2次巻線N2に発生する電圧の2倍となる。以上の動作は交流の半周期の動作である。他の半周期では、2次側直列共振コンデンサC2’は高速スイッチングダイオードDo8に流れる電流によって充電される。また、2次側直列共振コンデンサC2’を通過した交流電圧は高速スイッチングダイオードDo7に印加されて2次側平滑コンデンサCoに充電電流を整流して供給する。この場合に、2次側直列共振コンデンサC2’の充電電圧は高速スイッチングダイオードDo7に直列に加算方向に加えられているので、2次側平滑コンデンサCoに発生する電圧は2次巻線N2に発生する電圧の2倍となる。このようにして倍電圧全波整流回路が構成される。
図11に示す2次側の回路は、図5に示すと同様な1次側の構成において、2次側のみに変更を加えた構成例である。図11の回路構成は図10の回路構成の半周期が動作する部分のみを回路として構成した倍電圧半波整流回路である。
図12に示す回路は、図5に示すと同様な1次側の構成において、力率改善回路15と2次側のみに変更を加えた構成例である。
2次側整流回路は、漏れインダクタL2と2次側直列共振コンデンサC2とで2次側直列共振回路を構成する。2次巻線N2の一方の端子に接続される第1の2次側整流素子である高速スイッチングダイオードDo1を介して磁気エネルギーを蓄え、高速スイッチングダイオードDo2を介してこの磁気エネルギーを放出する第1の2次側インダクタであるインダクタLs1と、高速スイッチングダイオードDo2を介して磁気エネルギーを蓄え、高速スイッチングダイオードDo1を介してこの磁気エネルギーを放出する第2の2次側インダクタであるインダクタLs2と、高速スイッチングダイオードDo1に流れる電流および高速スイッチングダイオードDo2に流れる電流を充電するように接続されて出力直流電圧Eoを得るようにされた2次側平滑コンデンサCoと、を有するものである。
このような2次側整流回路の接続態様では、2次巻線N2からの電圧の極性が高速スイッチングダイオードDo1をオンとする極性である場合には、2次巻線N2からの電流とインダクタLs2からの電流が加算されて高速スイッチングダイオードDo1を流れ、同一の電力を負荷に供給する場合には、高速スイッチングダイオードDo1に流れるピーク電流の大きさは、インダクタLs2が無い場合に較べて低減する。また、2次巻線N2からの電圧の極性が高速スイッチングダイオードDo2をオンとする極性である場合には、2次巻線N2からの電流とインダクタLs1からの電流が加算されて高速スイッチングダイオードDo2を流れ、同一の電力を負荷に供給する場合には、高速スイッチングダイオードDo2に流れるピーク電流の大きさは、インダクタLs1が無い場合に較べて低減する。このような、2次側整流回路の構成態様を倍電流整流回路と称する。
図12に示す力率改善回路15においては、コンデンサCNL1およびコンデンサCNL2に加えてコンデンサCNL3を有するので、コンデンサCNL3がない場合に較べてノーマルモードノイズの発生はさらに少ないものとなる。さらに、コンデンサCNL1およびコンデンサCNL2の接続点を高周波的に接地電位とすることによって上述したようにコモンモードノイズの抑圧の効果は良好なるものとなる。また、コンデンサCNL3はコモンモードチョークコイルCMCの出力側の両方の極性の端子間の電圧を同一として、コモンモードチョークコイルCMCのコモンモード抑圧の作用をより効果的なものとする。
また、図13に示す力率改善回路16においては、インダクタLoに替えて、インダクタLo1とインダクタLo2の2個のインダクタを用いるが、インダクタLo1とインダクタLo2とは各々ノーマルモードを抑圧するインダクタとして、直列に接続されている。
なお、本発明は上述した実施形態に限定されるものではなく、実施形態は必要に応じて変更することができるものである。
実施形態のスイッチング電源回路の構成例を示す回路図である。 実施形態のスイッチング電源回路の構成例を示す回路図である。 実施形態のスイッチング電源回路の構成例を示す回路図である。 実施形態の電源回路の負荷電力に対する力率および電源効率の特性を示す図である。 実施形態のスイッチング電源回路の構成例を示す回路図である。 実施形態のコンバータトランスの構成例を示す図である。 実施形態のスイッチング電源回路の要部の波形を示す図である。 実施形態のスイッチング電源回路の要部の波形を示す図である。 実施形態の電源回路の負荷電力に対する力率および電源効率の特性を示す図である。 実施形態のスイッチング電源回路の構成例の一部を示す回路図である。 実施形態のスイッチング電源回路の構成例の一部を示す回路図である。 実施形態のスイッチング電源回路の構成例の一部を示す回路図である。 実施形態のスイッチング電源回路の構成例の一部を示す回路図である。 背景技術に示すスイッチング電源回路の構成例を示す図である。
符号の説明
1 制御回路、2 発振・ドライブ回路、10、11、12、13、14、15、16 力率改善回路、AC 交流電源、B ボビン、C1 1次側電圧共振コンデンサ、C2、C2’ 2次側直列共振コンデンサ、Ci、 1次側平滑コンデンサ、CL、CL1、CL2 アクロスコンデンサ、CMC コモンモードチョークコイル、CNL、CNL1、CNL2、CNL3 コンデンサ、Co、 2次側平滑コンデンサ、DD1 ボディダイオード、Di 1次側整流素子、Do 2次側整流素子、D1、Di1、Di2、Di3、Di4、Do1、Do2、Do3、Do4、Do5,Do6、Do7、Do8 高速スイッチングダイオード、Ei 整流平滑電圧、Eo 出力直流電圧、G ギャップ、I1、IQ1、12 電流、IAC 交流入力電流、L1、L2、Ls1、Ls2 インダクタ、Lo 第1巻線(力率改善用インダクタ、インダクタ)、Lo’ 第2巻線、N1 1次巻線、N2、N2’ 2次巻線、N3 3次巻線、PIT コンバータトランス、Q1 スイッチング素子、V1、V2、V3、V4、V5 電圧、VAC 交流入力電圧、VFT 電圧帰還トランス

Claims (3)

  1. 交流電源からの入力交流電力を1次側直流電力に変換する1次側整流平滑部と、前記1次側直流電力を交流電力に変換し、さらに2次側直流電力に変換するコンバータ部と、力率を改善する力率改善部と、前記力率改善部と前記交流電源との間に介在されるコモンモードフィルタ部と、を備えるスイッチング電源回路であって、
    前記1次側整流平滑部は、
    交流電源からの入力交流電力を入力して整流する1次側整流素子と、
    前記1次側整流素子からの電力がコンバータトランスに巻回された3次巻線を介して供給される1次側平滑コンデンサと、
    を具備し、
    前記コンバータ部は、
    1次巻線と、前記1次巻線と磁気的に疎結合とされる2次巻線と、前記1次巻線と磁気的に結合される前記3次巻線と、を有する前記コンバータトランスと、
    前記1次側整流平滑部から供給される前記1次側直流電力を、前記交流電力に変換して前記1次巻線に供給するスイッチング素子と、
    前記スイッチング素子をオン・オフ駆動する発振・ドライブ回路と、
    前記1次巻線に生じる漏れインダクタと1次側電圧共振コンデンサとによって形成され、前記スイッチング素子から電力が供給される1次側並列共振回路と、
    前記2次巻線に生じる漏れインダクタと2次側直列共振コンデンサとによって形成される2次側直列共振回路と、
    前記2次側直列共振回路に接続される整流素子と、
    前記整流素子に接続され出力直流電圧を得るようにされた2次側平滑コンデンサと、
    前記出力直流電圧の値を所定の値とするように周波数が可変とされる制御信号を前記発振・ドライブ回路に供給する制御回路と、を具備し、
    前記力率改善部は、
    前記1次側整流素子の入力側に接続された力率改善用インダクタとコンデンサとの直列回路を具備するとともに、
    前記1次側整流素子のスイッチング速度が、該1次側整流素子の出力側に接続される前記3次巻線に発生される共振パルスを整流できる速度を有するものとされて形成され、
    前記コモンモードフィルタ部は、
    コモンモードチョークコイルとアクロスコンデンサとして機能する前記力率改善部の前記コンデンサと、を具備する、
    スイッチング電源回路。
  2. 前記力率改善部のコンデンサは、
    第1コンデンサと第2コンデンサとの直列接続回路によって形成され、
    前記第1コンデンサと前記第2コンデンサとの接続点が前記1次側整流素子の出力側の基準電位点に接続されることを特徴とする請求項1に記載のスイッチング電源回路。
  3. 前記力率改善部のコンデンサは、
    第1コンデンサと第2コンデンサとの直列接続回路および前記直列接続回路に並列に接続された第3のコンデンサによって形成され、
    前記第1コンデンサと前記第2コンデンサとの接続点が前記1次側整流素子の出力側の基準電位点に接続されることを特徴とする請求項1または請求項2に記載のスイッチング電源回路。
JP2006211787A 2006-08-03 2006-08-03 スイッチング電源回路 Pending JP2008043008A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211787A JP2008043008A (ja) 2006-08-03 2006-08-03 スイッチング電源回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211787A JP2008043008A (ja) 2006-08-03 2006-08-03 スイッチング電源回路

Publications (1)

Publication Number Publication Date
JP2008043008A true JP2008043008A (ja) 2008-02-21

Family

ID=39177422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211787A Pending JP2008043008A (ja) 2006-08-03 2006-08-03 スイッチング電源回路

Country Status (1)

Country Link
JP (1) JP2008043008A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047705A (ja) * 2013-08-30 2015-03-16 セイコーエプソン株式会社 液体吐出装置およびヘッドユニット
JP2018068102A (ja) * 2016-10-19 2018-04-26 徐 夫子HSU Fu−Tzu ダンパー及びこれを用いた電気エネルギー変換装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047705A (ja) * 2013-08-30 2015-03-16 セイコーエプソン株式会社 液体吐出装置およびヘッドユニット
US10035341B2 (en) 2013-08-30 2018-07-31 Seiko Epson Corporation Driving circuit for driving capacitive load
JP2018068102A (ja) * 2016-10-19 2018-04-26 徐 夫子HSU Fu−Tzu ダンパー及びこれを用いた電気エネルギー変換装置

Similar Documents

Publication Publication Date Title
US7656686B2 (en) Switching power supply circuit
EP1835606A2 (en) Switching power supply circuit
EP1816537A2 (en) Switching power supply circuit
JP2008043008A (ja) スイッチング電源回路
JP2009017714A (ja) スイッチング電源回路
JP2007189779A (ja) スイッチング電源回路
JP2008043122A (ja) スイッチング電源回路
JP2008043060A (ja) スイッチング電源回路
JP2008029053A (ja) スイッチング電源回路
JP2008043152A (ja) スイッチング電源回路
JP2007267516A (ja) スイッチング電源回路
JP2007049864A (ja) スイッチング電源回路
JP2007074779A (ja) スイッチング電源回路
JP2007166806A (ja) スイッチング電源回路
JP2007189780A (ja) スイッチング電源回路
JP2007318934A (ja) スイッチング電源回路
JP2007329992A (ja) スイッチング電源回路
JP2007053823A (ja) スイッチング電源回路
JP2005033944A (ja) スイッチング電源回路
JP2007325394A (ja) スイッチング電源回路
JP2008017599A (ja) スイッチング電源回路
JP2008029054A (ja) スイッチング電源回路
JP2007166826A (ja) スイッチング電源回路
JP2007143263A (ja) スイッチング電源回路
JP2007020252A (ja) スイッチング電源回路