JP2008041553A - Mask for vapor deposition, and manufacturing method of mask for vapor deposition - Google Patents

Mask for vapor deposition, and manufacturing method of mask for vapor deposition Download PDF

Info

Publication number
JP2008041553A
JP2008041553A JP2006217176A JP2006217176A JP2008041553A JP 2008041553 A JP2008041553 A JP 2008041553A JP 2006217176 A JP2006217176 A JP 2006217176A JP 2006217176 A JP2006217176 A JP 2006217176A JP 2008041553 A JP2008041553 A JP 2008041553A
Authority
JP
Japan
Prior art keywords
mask
vapor deposition
copper foil
rolled copper
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006217176A
Other languages
Japanese (ja)
Inventor
Norio Hagiwara
宣男 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006217176A priority Critical patent/JP2008041553A/en
Publication of JP2008041553A publication Critical patent/JP2008041553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mask for a large scale high-precision vapor deposition. <P>SOLUTION: The mask is composed of a frame body with an open mouth and non-rarefaction rolled copper foil, and at a position to face the open mouth, there is arranged a patterning region comprising a plurality of penetrating holes arranged for penetration of a depositing material, and there is provided a mask main body which is stretched and fixed on the frame body, in a peripheral part of the patterning region and where the patterning region is processed with high precision. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば有機発光ディスプレイの製造における有機層を蒸着するのに使用して好適な蒸着用マスク及びこの蒸着用マスクの製造方法に関する。   The present invention relates to a vapor deposition mask suitable for use in vapor deposition of an organic layer, for example, in the production of an organic light emitting display, and a method for producing the vapor deposition mask.

一般に、有機発光ディスプレイの製造における有機層を形成するのに、この有機層を蒸着により形成している。この有機層を蒸着するのに蒸着用マスクが使用されている。   In general, this organic layer is formed by vapor deposition to form an organic layer in the manufacture of an organic light emitting display. A vapor deposition mask is used to deposit the organic layer.

従来、この蒸着用マスクは、例えば図1及び図2に示す如く、蒸着材料通過用に配列された複数の通過孔131から成るパターン領域130を有るマスク本体120の周縁部を枠体110に対して張設固定したものである。図2は、図1の蒸着用マスクの例に応力緩和パターン140を設けた例を示す。   Conventionally, as shown in FIGS. 1 and 2, for example, the vapor deposition mask has a peripheral portion of a mask body 120 having a pattern region 130 composed of a plurality of passage holes 131 arranged for passage of vapor deposition material with respect to the frame 110. It is fixed and stretched. FIG. 2 shows an example in which the stress relaxation pattern 140 is provided in the example of the evaporation mask of FIG.

この応力緩和パターン140は、パターン領域130と固定部との間に複数の細孔からなるもので、この蒸着用マスクでは、マスク本体120の有する応力を細孔により効率良く分散させ、通過孔131の位置精度を向上させることができるようになっている。応力緩和パターン140の細孔とパターン領域130の通過孔131とは、必ずしも同一形状及び同一間隔で配列されている必要はなく、形状や配置間隔は異なっていてもよいが、図2に示すように同一形状及び同一間隔で配列されていれば、マスク本体120の製造工程を簡素化することができるので好ましい。   The stress relaxation pattern 140 is composed of a plurality of pores between the pattern region 130 and the fixed portion. In this vapor deposition mask, the stress of the mask main body 120 is efficiently dispersed by the pores, and the passage holes 131 are formed. The position accuracy can be improved. The pores of the stress relaxation pattern 140 and the passage holes 131 of the pattern region 130 do not necessarily have to be arranged with the same shape and the same interval, and the shapes and arrangement intervals may be different, but as shown in FIG. It is preferable that they are arranged in the same shape and at the same interval because the manufacturing process of the mask body 120 can be simplified.

従来、この蒸着用マスクのマスク本体120として、金属薄膜をエッチング処理して、複数の通過孔131から成るパターン領域130を形成したものと、メッキ(電鋳)によって複数の通過孔131から成るパターン領域130を形成したものとがあった。   Conventionally, as a mask main body 120 of this vapor deposition mask, a metal thin film is etched to form a pattern region 130 composed of a plurality of passage holes 131, and a pattern composed of a plurality of passage holes 131 by plating (electroforming). Some of the regions 130 were formed.

金属薄膜をエッチング処理して、蒸着用マスクのマスク本体120を作成するものにおいては、例えば熱膨張の小さいインバー材やSUS材が金属薄膜として使用され、このインバー材としては、一般に、厚さ50μm以上のものが入手できる限界であり、それより薄い素材を実現することは、困難であった。   In the case of forming the mask main body 120 of the vapor deposition mask by etching the metal thin film, for example, an invar material or a SUS material having a small thermal expansion is used as the metal thin film, and the invar material generally has a thickness of 50 μm. The above is the limit that can be obtained, and it has been difficult to realize a thinner material.

一般に、蒸着物質の膜厚均一性を確保するためには、マスク本体120の蒸着源側の開口エッジのシャドウ効果を低減することが必要であり、通過孔131のサイズ(寸法)をワーク(被蒸着物)側に比較して大きくなるようにテーパーエッチング等の手段を用いなければならなかった。   In general, in order to ensure the film thickness uniformity of the vapor deposition material, it is necessary to reduce the shadow effect of the opening edge on the vapor deposition source side of the mask main body 120, and the size (dimension) of the passage hole 131 is set to the workpiece (covered). Means such as taper etching had to be used so as to be larger than the deposit) side.

また、エッチング精度の面から言っても厚みのある材料では、サイドエッチングの影響等から所望に寸法を精度良く得るのが困難であるため、通過孔131の有効開口部を形成する部分の厚みをできるだけ減少させるように蒸着源側からエッチング処理により、除去していく方法が従来とられていた(特許文献1)。   In addition, in terms of etching accuracy, it is difficult to obtain a desired dimension with high accuracy due to the influence of side etching, etc., so the thickness of the portion that forms the effective opening of the passage hole 131 is reduced. Conventionally, a method of removing by etching from the deposition source side so as to reduce as much as possible has been taken (Patent Document 1).

一方、メッキ(電鋳)によって、蒸着用マスクのマスク本体120を作成するものにおいては、パターン領域形成用のガラス原盤上に電気ニッケルメッキを行い所望の膜厚まで仕上げる。このメッキによって、複数の通過孔131から成るパターン領域130を形成したときは、ガラス原盤から剥離するまでは、パターン精度として良好である。   On the other hand, in the case where the mask main body 120 of the vapor deposition mask is prepared by plating (electroforming), electronickel plating is performed on the glass master for forming the pattern region to finish to a desired film thickness. When the pattern region 130 composed of the plurality of passage holes 131 is formed by this plating, the pattern accuracy is good until it is peeled off from the glass master.

また、従来、エッチング処理とメッキ処理とのハイブリッド法で2層構造の精度の良い複数の通過孔131から成るパターン領域130を形成するようにしたものが提案されている(特許文献2)。
特開2005−183153号公報 特開2005−314787号公報
Conventionally, there has been proposed a method in which a pattern region 130 including a plurality of through holes 131 having a two-layer structure with high accuracy is formed by a hybrid method of an etching process and a plating process (Patent Document 2).
JP 2005-183153 A JP 2005-314787 A

然しながら、インバー材やSUS材の金属薄膜をエッチング処理して、複数の通過孔131から成るパターン領域130を形成するようにしたときには、インバー材やSUS材の金属薄膜は、厚さが50μm以上と比較的厚く、高精度の蒸着用マスクのマスク本体120を得ることは、困難であった。   However, when an invar material or SUS material metal thin film is etched to form a pattern region 130 composed of a plurality of passage holes 131, the invar material or SUS material metal thin film has a thickness of 50 μm or more. It was difficult to obtain a mask body 120 of a relatively thick and highly accurate vapor deposition mask.

また、メッキにより、複数の通過孔131から成るパターン領域130を形成するようにしたときには、ガラス原盤から剥離するまでは、パターン精度として良好であるが、一度このマスク本体120をガラス原盤から剥離した後は、メッキ時の残留応力のばらつきや、メッキ槽の電極や液の成分均一性等の因子が影響して、メッキ厚みのばらつきが生じ、平面状態が保てないほどのパターンの歪みが発生する。   In addition, when the pattern region 130 including the plurality of through holes 131 is formed by plating, the pattern accuracy is good until peeling from the glass master, but the mask body 120 is once peeled from the glass master. After that, due to factors such as variations in residual stress during plating and uniformity of plating tank electrodes and liquid components, variations in plating thickness occur, resulting in pattern distortion that cannot maintain a flat state. To do.

更に、蒸着用マスクのマスク本体120として、形を仕上げるとき、パターン形状を所望の寸法にするためマスク本体120にかけるテンションを部分的に調整しながら引っ張り、枠体110に固定する方法を一般的にとる。しかし、この方法とったとしても、元々寸法精度が悪くなっているものは、完全には、歪みをとりきることができない。   Further, when the shape of the mask main body 120 of the evaporation mask is finished, a method of pulling while partially adjusting the tension applied to the mask main body 120 to fix the pattern shape to a desired dimension is generally used. Take it. However, even if this method is used, the distortion that has originally deteriorated in dimensional accuracy cannot be completely removed.

また、特許文献2に開示の方法により、複数の通過孔131から成るパターン領域130を形成するようにした場合でも、メッキで形成した通過孔131の有効開口部に連なるベースの開口部の傾斜が問題となりやすく、蒸着物質の通過を妨げないようにするためには、エッチングのコントロールが難しい。極端な場合、ベース部を除去してしまうと、メッキ薄膜のみとなり、上述の歪みの発生や平面を保持するための良好なテンションが得られないことから、たるみや位置ずれを生じ易くなってしまう不都合があった。   Further, even when the pattern region 130 including a plurality of passage holes 131 is formed by the method disclosed in Patent Document 2, the inclination of the opening of the base connected to the effective opening of the passage hole 131 formed by plating is inclined. Etching control is difficult in order not to interfere with the passage of the vapor deposition material. In an extreme case, if the base portion is removed, only the plating thin film is formed, and since the above-described distortion and good tension for maintaining the flat surface cannot be obtained, sagging and misalignment are likely to occur. There was an inconvenience.

従って、従来は、大型の高精度の蒸着用マスクが、得られない不都合があった。   Therefore, conventionally, there has been a disadvantage that a large-sized high-precision deposition mask cannot be obtained.

本発明は、斯かる点に鑑み、大型の高精度の蒸着用マスクを得ることができるようにすることを目的とする。   The present invention has been made in view of such points, and an object of the present invention is to provide a large-sized high-precision deposition mask.

本発明蒸着用マスク、開口を有する枠体と、無粗化圧延銅箔により構成され、この開口に対応する位置に、蒸着材料通過用に配列された複数の通過孔から成るパターン領域を有し、このパターン領域の周縁部においてこの枠体に対して張設固定されると共にこのパターン領域を高精度に加工したマスク本体とを備えるものである。   The vapor deposition mask of the present invention, a frame having an opening, and a non-roughened rolled copper foil, and having a pattern region composed of a plurality of through holes arranged for passage of the vapor deposition material at a position corresponding to the opening. And a mask body which is stretched and fixed to the frame body at the peripheral edge of the pattern region and which has processed the pattern region with high accuracy.

本発明蒸着用マスクの製造方法は、無粗化圧延銅箔に蒸着材料通過用に配列された複数の通過孔から成るパターン領域を設けてマスク本体を形成する工程と、開口を有する枠体に対して、このパターン領域の周縁部において張設固定する工程とを含むものである。   The method of manufacturing a mask for vapor deposition of the present invention includes a step of forming a mask body by providing a pattern region composed of a plurality of through holes arranged for passing a vapor deposition material on a non-roughened rolled copper foil, and a frame having an opening. On the other hand, it includes a step of stretching and fixing at the peripheral edge of the pattern region.

また、本発明蒸着用マスクの製造方法は、上述蒸着用マスクの製造方法において、この無粗化圧延銅箔に蒸着材料通過用に配列された複数の通過孔から成るパターン領域を設けるに、先ずこの無粗化圧延銅箔をエッチング処理して複数の所定開口の開口孔を形成し、その後、この無粗化圧延銅箔の被蒸着物対向側に孔内埋め込み性のあるドライフィルムレジストをラミネートし、その後、この無粗化圧延銅箔の被蒸着物対向側と反対側よりこの開口孔部にこの開口孔の開口寸法より大なる寸法の開口を所定深さエッチング処理により形成したものである。   Moreover, the manufacturing method of the vapor deposition mask of the present invention is the above-described vapor deposition mask manufacturing method, in which the roughened rolled copper foil is provided with a pattern region composed of a plurality of passage holes arranged for vapor deposition material passage. This roughened rolled copper foil is etched to form a plurality of predetermined openings, and then a dry film resist that can be embedded in the hole is laminated on the opposite side of the roughened rolled copper foil to the deposition target. Then, an opening having a size larger than the opening size of the opening hole is formed in the opening hole portion from the side opposite to the deposition object facing side of the non-roughened rolled copper foil by a predetermined depth etching process. .

また、本発明蒸着用マスクの製造方法は、上述蒸着用マスクの製造方法において、この無粗化圧延銅箔に蒸着材料通過用に配列された複数の通過孔から成るパターン領域を設けるに、先ずこの無粗化圧延銅箔の被蒸着物対向側と反対側に厚さ100μm以上の第1のベースフィルムを被着し、その後、無粗化圧延銅箔をエッチング処理して複数の所定開口の開口孔を形成し、その後、この無粗化圧延銅箔の被蒸着物対向側に孔内埋め込み性のあるドライフィルムレジストをラミネートし、その後、このドライフィルムレジスト上に厚さ100μm以上の第2のベースフィルムを被着し、その後、この第1のベースフィルムを除去し、その後、この無粗化圧延銅箔の被蒸着物対向側と反対側よりこの開口孔部にこの開口孔の開口寸法より大なる寸法の開口を所定深さエッチング処理により形成したものである。   Moreover, the manufacturing method of the vapor deposition mask of the present invention is the above-described vapor deposition mask manufacturing method, in which the roughened rolled copper foil is provided with a pattern region composed of a plurality of passage holes arranged for vapor deposition material passage. A first base film having a thickness of 100 μm or more is deposited on the opposite side of the non-roughened rolled copper foil to the deposition target, and then the non-roughened rolled copper foil is etched to form a plurality of predetermined openings. An opening hole is formed, and then, a dry film resist having an embedding property in the hole is laminated on the opposite side of the non-roughened rolled copper foil to the deposition target, and then a second film having a thickness of 100 μm or more is formed on the dry film resist. After that, the first base film is removed, and then the opening dimension of the opening hole is set to the opening hole portion from the opposite side of the non-roughened rolled copper foil to the deposition target side. Larger dimension The method opening is formed by a predetermined depth etching process.

本発明によれば、マスク本体の金属薄膜として、無粗化圧延銅箔を使用したので、例えば6〜12μmの薄いマスク本体を実現でき、エッチング精度が確保でき、また、この無粗化圧延銅箔は、圧延方向とそれに直角方向との差がほとんど無く、所謂異方性が非常に少ないので、高精度の良好な蒸着用マスクを得ることでき、大型の蒸着用マスクを得るのに適している。   According to the present invention, since the roughened rolled copper foil is used as the metal thin film of the mask body, a thin mask body of, for example, 6 to 12 μm can be realized, and the etching accuracy can be ensured. The foil has almost no difference between the rolling direction and the direction perpendicular to the rolling direction, and the so-called anisotropy is very small. Therefore, it is possible to obtain a highly accurate deposition mask and suitable for obtaining a large deposition mask. Yes.

以下、図面を参照して、本発明蒸着用マスク及び蒸着用マスクの製造方法を実施するための最良の形態の例につき説明する。   Hereinafter, with reference to the drawings, an example of the best mode for carrying out the evaporation mask and the manufacturing method of the evaporation mask of the present invention will be described.

先ず、図3〜図9を参照し、本例による蒸着用マスクのマスク本体120を製造する例につき説明する。   First, an example of manufacturing the mask main body 120 of the evaporation mask according to the present example will be described with reference to FIGS.

本例においては、図3Aに示す如く、マスク本体120を形成する材料として、所定大きさの粗化処理しない圧延銅箔(無粗化圧延銅箔)例えばマイクロハード株式会社製のSHPCやZSPCのような、高周波向け無粗化圧延銅箔1を用意する。   In this example, as shown in FIG. 3A, as a material for forming the mask main body 120, a rolled copper foil having a predetermined size that is not roughened (non-roughened rolled copper foil), for example, SHPC or ZSPC manufactured by Microhardware Corporation. Such a high-frequency roughening-free rolled copper foil 1 is prepared.

この無粗化圧延銅箔1としては、厚さが6〜12μmのものを用いる。この無粗化圧延銅箔1として、厚さが6〜12μmのものを用いることで、薄いマスク本体120を実現でき、エッチング精度の確保に有利である。この無粗化圧延銅箔1の特徴として、エッチング後のプロファイルをレジストの形状から1μm以内の精度で仕上げることができる。また、無粗化圧延銅箔1の特徴として、圧延方向とそれに直角方向との差がほとんど無く、所謂異方性が非常に少ない。   As the non-roughened rolled copper foil 1, one having a thickness of 6 to 12 μm is used. By using a non-roughened rolled copper foil 1 having a thickness of 6 to 12 μm, a thin mask body 120 can be realized, which is advantageous in ensuring etching accuracy. As a feature of the non-roughened rolled copper foil 1, the profile after etching can be finished with an accuracy within 1 μm from the shape of the resist. Further, as a feature of the non-roughened rolled copper foil 1, there is almost no difference between the rolling direction and the direction perpendicular thereto, and so-called anisotropy is very small.

また、一般に、プリント基板の銅箔は基材との蜜着性を確保するため片側面に粗化処理を行っている。この粗化処理は、マスク本体120の材料としてみたときに、精度悪化の要因となり、且つマスク本体120に付着した蒸着物の洗浄性に悪影響を与えるので、本例では、粗化処理を行わないこととした。   In general, the copper foil of the printed circuit board is roughened on one side surface in order to ensure adhesion with the base material. This roughening process causes deterioration in accuracy when viewed as the material of the mask body 120 and adversely affects the cleaning properties of the deposit deposited on the mask body 120. Therefore, in this example, the roughening process is not performed. It was decided.

従って、このマスク本体120の材料として無粗化圧延銅箔1を用いたときには、マスク本体120の蒸着材料を通過する複数の通過孔131から成るパターン領域130を狙い通りに高精度に得ることができ、その後の工程で引っ張り調整しながら所望の寸法精度を得て、枠体110に固定するときにも、厚みの均一性(±10%)が確保されていることから容易にパターン寸法を確保できる。   Therefore, when the non-roughened rolled copper foil 1 is used as the material of the mask main body 120, a pattern region 130 composed of a plurality of passage holes 131 that pass through the vapor deposition material of the mask main body 120 can be obtained with high accuracy as intended. It is possible to obtain the desired dimensional accuracy while adjusting the tension in the subsequent process, and even when fixed to the frame 110, the uniformity of thickness (± 10%) is ensured, so the pattern dimensions can be easily secured. it can.

この厚さが6〜12μmの無粗化圧延銅箔1によりマスク本体120を形成するに、この厚さが6〜12μmの無粗化圧延銅箔1は非常にやわらかく、ハンドリングに注意を要する。そこで図3Bに示す如く、蒸着時、被蒸着物である例えばガラス基板側に対応する、この無粗化圧延銅箔1のこしを強くするための100μm以上の厚みをもち、腐食液と剥離液とに耐える接着剤つきの第1のベースフィルム2をこの接着剤を介してラミネートする。また、この第1のベースフィルム2の接着剤は、UV(紫外)光により、接着性を失う性質のものを使用する。   When the mask body 120 is formed from the non-roughened rolled copper foil 1 having a thickness of 6 to 12 μm, the roughened rolled copper foil 1 having a thickness of 6 to 12 μm is very soft and requires handling. Therefore, as shown in FIG. 3B, the thickness of the non-roughened rolled copper foil 1 corresponding to, for example, the glass substrate side, which is an object to be deposited, is 100 μm or more at the time of vapor deposition. The first base film 2 with an adhesive resistant to the above is laminated through this adhesive. The adhesive for the first base film 2 is of a property that loses adhesiveness due to UV (ultraviolet) light.

次に、図3Cに示す如く、この無粗化圧延銅箔1の露出している面に感光性のレジスト3を塗布又はラミネートする。その後、この無粗化圧延銅箔1にテンションをかけたときに正寸になるように、予め収縮率をかけた、画像パターンが形成されたフォトマスク4を用いて図4Dに示す如く、露光し、その後、フォトマスク4を除去し、その後、図4Eに示す如く、現像する。   Next, as shown in FIG. 3C, a photosensitive resist 3 is applied or laminated on the exposed surface of the non-roughened rolled copper foil 1. Thereafter, exposure is performed as shown in FIG. 4D by using a photomask 4 on which an image pattern is formed in advance so as to be an exact size when tension is applied to the non-roughened rolled copper foil 1. Thereafter, the photomask 4 is removed, and thereafter development is performed as shown in FIG. 4E.

次に、レジスト3をマスクとし、このレジスト3側より、この無粗化圧延銅箔1をエッチング処理し、図4Fに示す如く、複数の開口孔5を形成する。このエッチング処理が終了後、図5Gに示す如く、アルカリ液にてレジスト3を剥離して除去し、洗浄、乾燥する。   Next, using the resist 3 as a mask, the non-roughened rolled copper foil 1 is etched from the resist 3 side to form a plurality of opening holes 5 as shown in FIG. 4F. After this etching process is completed, as shown in FIG. 5G, the resist 3 is stripped and removed with an alkaline solution, washed and dried.

次に、図5Hに示す如く、孔内埋め込み性のあるドライフィルムレジスト6を被蒸着物対向側の無粗化圧延銅箔1の面にラミネートする。この場合、このドライフィルムレジスト6の孔内埋め込みは、開口孔5(通過孔131)の被蒸着物対向側の寸法を確保するためである。この開口孔5(通過孔131)の被蒸着物対向側の寸法をより確実に確保するため、液状レジストを塗布する工程を、このドライフィルムレジスト6のラミネートに先立って行うようにしても良い。   Next, as shown in FIG. 5H, a dry film resist 6 having a hole-embedding property is laminated on the surface of the non-roughened rolled copper foil 1 on the side facing the deposition target. In this case, the embedding of the dry film resist 6 in the hole is to ensure the dimension of the opening hole 5 (passage hole 131) on the side facing the deposition target. In order to ensure the dimension of the opening hole 5 (passage hole 131) on the opposite side of the deposition target, the step of applying the liquid resist may be performed prior to the lamination of the dry film resist 6.

次に、図5Iに示す如く、このドライフィルムレジスト6上にこの無粗化圧延銅箔1のこしを強くするための100μm以上の厚みをもち、腐食液と剥離液とに耐える接着剤つきの第1のベースフィルム2と同様の第2のベースフィルム7をラミネートする。   Next, as shown in FIG. 5I, the dry film resist 6 has a thickness of 100 μm or more for strengthening the strain of the non-roughened rolled copper foil 1 and has a first adhesive with an adhesive that can withstand a corrosive solution and a stripping solution. A second base film 7 similar to the base film 2 is laminated.

次に、最初にラミネートした第1のベースフィルム2側からUV光を当て、この第1のベースフィルム2の接着剤の接着性を無くして、図6Jに示す如く、この第1のベースフィルム2を剥離する。この場合、この反対側にラミネートされているドライフィルムレジスト6(液状レジストが塗布されているときは、これも含む)をエッチング処理に耐えられるレベルまで十分に露光しておくか、この第1のベースフィルム2を剥離した後、この剥離側より露光するようにしても良い。   Next, UV light is applied from the side of the first base film 2 that is first laminated to eliminate the adhesive property of the adhesive of the first base film 2, and as shown in FIG. 6J, the first base film 2 To peel off. In this case, the dry film resist 6 laminated on the opposite side (including a liquid resist when it is applied) is sufficiently exposed to a level that can withstand the etching process, or the first film resist 6 is included. After peeling the base film 2, you may make it expose from this peeling side.

この図6Jで露出した無粗化圧延銅箔1の面に、図6Kに示す如く、感光性のレジスト8を塗布又はラミネートする。その後、図6Lに示す如く、このレジスト8上に、無粗化圧延銅箔1の開口孔5部に対向し、この開口孔5の開口寸法より大きく加工できる寸法に製作したフォトマスク9を用い、このレジスト8の露光を行う。その後、図7Mに示す如く、このレジスト8の現像を行う。   A photosensitive resist 8 is applied or laminated on the surface of the non-roughened rolled copper foil 1 exposed in FIG. 6J, as shown in FIG. 6K. Thereafter, as shown in FIG. 6L, a photomask 9 is used on the resist 8 so as to face the opening hole 5 of the non-roughened rolled copper foil 1 and to be processed to a size that can be processed larger than the opening dimension of the opening hole 5. The resist 8 is exposed. Thereafter, the resist 8 is developed as shown in FIG. 7M.

次に、図7Nに示す如く、このレジスト8をマスクとして、この無粗化圧延銅箔1の蒸着源側(被蒸着物対向側とは反対側)より、この無粗化圧延銅箔1をエッチング処理する。この時のエッチング液は、例えば硫酸一過水系等のエッチングレートをコントロールし易いものを使用する。   Next, as shown in FIG. 7N, using the resist 8 as a mask, the non-roughened rolled copper foil 1 is removed from the deposition source side (the opposite side to the deposition target side) of the non-roughened rolled copper foil 1. Etching process. As the etching solution at this time, for example, a solution that can easily control the etching rate, such as a sulfuric acid / hydrogen peroxide system, is used.

そして、この場合、この無粗化圧延銅箔1の厚みの概略1/2〜2/3程度エッチングが進んだ時点で、このエッチングをストプする。尚、このとき、エッチングを開始した面とは反対側の無粗化圧延銅箔1の被蒸着物対向側の面に近い領域は、図7Nに示す如く、孔内埋め込み性のあるドライフィルムレジスト6(液状レジスト)を加味した効果で、エッチング液から保護されるので、必要な開口孔5(通過孔131)の寸法精度が確保される。これにより通過孔131が形成される。   In this case, the etching is stopped when the etching progresses about 1/2 to 2/3 of the thickness of the non-roughened rolled copper foil 1. At this time, the region near the surface opposite to the deposition target of the non-roughened rolled copper foil 1 on the side opposite to the surface where the etching was started is a dry film resist having a hole-embedding property as shown in FIG. 7N. The effect of adding 6 (liquid resist) is protected from the etching solution, so that necessary dimensional accuracy of the opening hole 5 (passing hole 131) is ensured. Thereby, the passage hole 131 is formed.

次に、図7Oに示す如く、このレジスト8をアルカリ液にて剥離して除去し、洗浄、乾燥する。次に、この無粗化圧延銅箔1の露出面を、図8Pに示す如く、真空吸着等により所定の冶具10にセットし、第2のベースフィルム7側からUV光を当て、図8Qに示す如くこの第2のベースフィルム7の接着剤の接着性を無くして、この第2のベースフィルム7を剥離する。   Next, as shown in FIG. 7O, the resist 8 is removed by peeling with an alkaline solution, washed and dried. Next, as shown in FIG. 8P, the exposed surface of the non-roughened rolled copper foil 1 is set on a predetermined jig 10 by vacuum suction or the like, and irradiated with UV light from the second base film 7 side. As shown, the adhesive property of the adhesive of the second base film 7 is lost, and the second base film 7 is peeled off.

その後、図9Rに示す如く、アルカリ液にてドライフィルムレジスト6を剥離して除去し、洗浄、乾燥し、無粗化圧延銅箔1に蒸着材料を通過する複数の通過孔131から成るパターン領域130を有るマスク本体120を完成する。   Thereafter, as shown in FIG. 9R, the dry film resist 6 is stripped and removed with an alkaline solution, washed and dried, and a pattern region comprising a plurality of passage holes 131 through which the deposition material passes through the non-roughened rolled copper foil 1. The mask body 120 having 130 is completed.

次に、必要に応じて耐食性の確保と磁性を付与するために、図9Sに示す如く、マスク本体120を保持する冶具11にマスク本体120を取付け、無電解ニッケル合金メッキにより、このマスク本体120の無粗化圧延銅箔1の表面にニッケル合金メッキ層12を被着する。   Next, as shown in FIG. 9S, the mask main body 120 is attached to the jig 11 that holds the mask main body 120, and the mask main body 120 is plated by electroless nickel alloy to secure corrosion resistance and impart magnetism as necessary. A nickel alloy plating layer 12 is deposited on the surface of the non-roughened rolled copper foil 1.

このニッケル合金メッキ層12のうち、ニッケルーボロンメッキ層は、強磁性を持つが、耐食性では、ニッケルーリンメッキ層に劣る。一方、ニッケルーリンメッキ層は、耐食性に富むが、磁性をもたないため、磁性を得るためには、加熱処理を行う必要がある。そのため、適宜目的に応じて使い分けるのが良い。   Of the nickel alloy plating layer 12, the nickel-boron plating layer has ferromagnetism, but is inferior to the nickel-phosphorous plating layer in corrosion resistance. On the other hand, the nickel-phosphorous plating layer is rich in corrosion resistance, but does not have magnetism, so that heat treatment is required to obtain magnetism. Therefore, it is better to use properly according to the purpose.

このマスク本体120に磁性を持たせるのは、被蒸着物であるガラス基板にこのマスク本体120を磁石を用いて密着させるためである。   The reason why the mask main body 120 is magnetized is that the mask main body 120 is brought into close contact with a glass substrate, which is a deposition target, using a magnet.

このニッケル合金メッキ層12の厚さとしては、精度良く形成した通過孔131の開口寸法を崩さない程度の5μmぐらいまでが適当である。勿論このニッケル合金メッキ層12の厚さを見込んで、エッチングによるパターン形成を行うためのフォトマスク9の寸法を調整しておくことは、当然である。   The thickness of the nickel alloy plating layer 12 is suitably about 5 μm, which does not break the opening size of the passage hole 131 formed with high accuracy. Of course, it is natural to adjust the dimensions of the photomask 9 for performing pattern formation by etching in consideration of the thickness of the nickel alloy plating layer 12.

次に、このマスク本体120に所定のテンションを与え、正しい寸法に調整後、図1及び図2に示す如く、固定用の枠体110に接着剤又は抵抗溶着法等を用いて張設固定し、蒸着用マスクとして完成する。   Next, a predetermined tension is applied to the mask main body 120 to adjust it to the correct size, and then the tension is fixed to the fixing frame 110 using an adhesive or a resistance welding method as shown in FIGS. Completed as a mask for vapor deposition.

本例は、上述の如く、マスク本体120の金属薄膜として、無粗化圧延銅箔1を使用したので、例えば6〜12μmの薄いマスク本体120を実現でき、エッチング精度が確保でき、また、この無粗化圧延銅箔1は、圧延方向とそれに直角方向との差がほとんど無く、所謂異方性が非常に少ないので、高精度の良好な蒸着用マスクを得ることでき、大型の蒸着用マスクを得るのに適している。   In this example, as described above, the non-roughened rolled copper foil 1 is used as the metal thin film of the mask main body 120. Therefore, for example, a thin mask main body 120 of 6 to 12 μm can be realized, and the etching accuracy can be ensured. Since the non-roughened rolled copper foil 1 has almost no difference between the rolling direction and the direction perpendicular thereto, so-called anisotropy is very small, so that a highly accurate and favorable vapor deposition mask can be obtained. Suitable for getting.

尚、本発明は上述例に限ることなく、本発明の要旨を逸脱することなく、その他種々の構成が採り得ることは勿論である。   Of course, the present invention is not limited to the above-described examples, and various other configurations can be adopted without departing from the gist of the present invention.

蒸着用マスクの例を示す分解斜視図である。It is a disassembled perspective view which shows the example of the mask for vapor deposition. 蒸着用マスクの他の例を示す分解斜視図である。It is a disassembled perspective view which shows the other example of the mask for vapor deposition. 本発明蒸着用マスクの製造方法を実施するための最良の形態の例の工程を示す断面図である。It is sectional drawing which shows the process of the example of the best form for enforcing the manufacturing method of the mask for vapor deposition of this invention. 本発明蒸着用マスクの製造方法を実施するための最良の形態の例の工程を示す断面図である。It is sectional drawing which shows the process of the example of the best form for enforcing the manufacturing method of the mask for vapor deposition of this invention. 本発明蒸着用マスクの製造方法を実施するための最良の形態の例の工程を示す断面図である。It is sectional drawing which shows the process of the example of the best form for enforcing the manufacturing method of the mask for vapor deposition of this invention. 本発明蒸着用マスクの製造方法を実施するための最良の形態の例の工程を示す断面図である。It is sectional drawing which shows the process of the example of the best form for enforcing the manufacturing method of the mask for vapor deposition of this invention. 本発明蒸着用マスクの製造方法を実施するための最良の形態の例の工程を示す断面図である。It is sectional drawing which shows the process of the example of the best form for enforcing the manufacturing method of the mask for vapor deposition of this invention. 本発明蒸着用マスクの製造方法を実施するための最良の形態の例の工程を示す断面図である。It is sectional drawing which shows the process of the example of the best form for enforcing the manufacturing method of the mask for vapor deposition of this invention. 本発明蒸着用マスクの製造方法を実施するための最良の形態の例の工程を示す断面図である。It is sectional drawing which shows the process of the example of the best form for enforcing the manufacturing method of the mask for vapor deposition of this invention.

符号の説明Explanation of symbols

1…無粗化圧延銅箔、2、7…ベースフィルム、3、8…感光性のレジスト、4、9…フォトマスク、5…開口孔、10、11…冶具、12…ニッケル合金メッキ層、110…枠体、120…マスク本体、131…通過孔   DESCRIPTION OF SYMBOLS 1 ... Unroughened rolled copper foil, 2, 7 ... Base film, 3, 8 ... Photosensitive resist, 4, 9 ... Photomask, 5 ... Open hole, 10, 11 ... Jig, 12 ... Nickel alloy plating layer, 110 ... Frame, 120 ... Mask body, 131 ... Passing hole

Claims (6)

開口を有する枠体と、
無粗化圧延銅箔により構成され、前記開口に対応する位置に、蒸着材料通過用に配列された複数の通過孔から成るパターン領域を有し、前記パターン領域の周縁部において前記枠体に対して張設固定されると共に前記パターン領域を高精度に加工したマスク本体とを備えることを特徴とする蒸着用マスク。
A frame having an opening;
It is composed of a non-roughened rolled copper foil, and has a pattern region composed of a plurality of passage holes arranged for passage of the vapor deposition material at a position corresponding to the opening, and at the periphery of the pattern region with respect to the frame body And a mask main body obtained by processing the pattern region with high accuracy.
請求項1記載の蒸着用マスクにおいて、
前記無粗化圧延銅箔の厚さを6〜12μmとしたことを特徴とする蒸着用マスク。
The vapor deposition mask according to claim 1,
A vapor deposition mask, wherein the non-roughened rolled copper foil has a thickness of 6 to 12 µm.
請求項1又は2記載の蒸着用マスクにおいて、
前記マスク本体に無電解ニッケル合金メッキを施したことを特徴とする蒸着用マスク。
The vapor deposition mask according to claim 1 or 2,
A vapor deposition mask, wherein the mask body is plated with electroless nickel alloy.
無粗化圧延銅箔に蒸着材料通過用に配列された複数の通過孔から成るパターン領域を設けてマスク本体を形成する工程と、
開口を有する枠体に対して、前記パターン領域の周縁部において張設固定する工程とを含むことを特徴とする蒸着用マスクの製造方法。
Forming a mask body by providing a pattern region composed of a plurality of passage holes arranged for passing the vapor deposition material on the non-roughened rolled copper foil; and
A method of manufacturing a vapor deposition mask, comprising a step of stretching and fixing the frame body having an opening at a peripheral portion of the pattern region.
請求項4記載の蒸着用マスクの製造方法において、
前記無粗化圧延銅箔に蒸着材料通過用に配列された複数の通過孔から成るパターン領域を設けるに、先ず前記無粗化圧延銅箔をエッチング処理して複数の所定開口の開口孔を形成し、その後、前記無粗化圧延銅箔の被蒸着物対向側に孔内埋め込み性のあるドライフィルムレジストをラミネートし、その後、前記無粗化圧延銅箔の被蒸着物対向側と反対側より前記開口孔部に前記開口孔の開口寸法より大なる寸法の開口を所定深さエッチング処理により形成したことを特徴とする蒸着用マスクの製造方法。
In the manufacturing method of the mask for vapor deposition of Claim 4,
In order to provide the non-roughened rolled copper foil with a pattern region composed of a plurality of passage holes arranged for passing the vapor deposition material, first, the roughened rolled copper foil is etched to form a plurality of predetermined opening holes. And then laminating a dry film resist having a hole embedding property on the opposite side of the non-roughened rolled copper foil to the deposition target, and then from the opposite side of the non-roughened rolled copper foil on the opposite side of the deposition target An evaporation mask manufacturing method, wherein an opening having a size larger than an opening size of the opening hole is formed in the opening hole portion by a predetermined depth etching process.
請求項4記載の蒸着用マスクの製造方法において、
前記無粗化圧延銅箔に蒸着材料通過用に配列された複数の通過孔から成るパターン領域を設けるに、先ず前記無粗化圧延銅箔の被蒸着物対向側と反対側に厚さ100μm以上の第1のベースフィルムを被着し、その後、無粗化圧延銅箔をエッチング処理して複数の所定開口の開口孔を形成し、その後、前記無粗化圧延銅箔の被蒸着物対向側に孔内埋め込み性のあるドライフィルムレジストをラミネートし、その後、前記ドライフィルムレジスト上に厚さ100μm以上の第2のベースフィルムを被着し、その後、前記第1のベースフィルムを除去し、その後、前記無粗化圧延銅箔の被蒸着物対向側と反対側より前記開口孔部に前記開口孔の開口寸法より大なる寸法の開口を所定深さエッチング処理により形成したことを特徴とする蒸着用マスクの製造方法。
In the manufacturing method of the mask for vapor deposition of Claim 4,
In order to provide the non-roughened rolled copper foil with a pattern region composed of a plurality of passage holes arranged for passing a vapor deposition material, first, the thickness of the non-roughened rolled copper foil is 100 μm or more on the side opposite to the deposition target side. The first base film is deposited, and then the non-roughened rolled copper foil is etched to form a plurality of predetermined openings, and then the non-roughened rolled copper foil is opposite to the deposition target And laminating a dry film resist capable of embedding in a hole, and then depositing a second base film having a thickness of 100 μm or more on the dry film resist, and then removing the first base film, The vapor deposition is characterized in that an opening larger than the opening dimension of the opening hole is formed in the opening hole portion by a predetermined depth etching process from the opposite side of the non-roughened rolled copper foil to the deposition object facing side. Mask Manufacturing method.
JP2006217176A 2006-08-09 2006-08-09 Mask for vapor deposition, and manufacturing method of mask for vapor deposition Pending JP2008041553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217176A JP2008041553A (en) 2006-08-09 2006-08-09 Mask for vapor deposition, and manufacturing method of mask for vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217176A JP2008041553A (en) 2006-08-09 2006-08-09 Mask for vapor deposition, and manufacturing method of mask for vapor deposition

Publications (1)

Publication Number Publication Date
JP2008041553A true JP2008041553A (en) 2008-02-21

Family

ID=39176323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217176A Pending JP2008041553A (en) 2006-08-09 2006-08-09 Mask for vapor deposition, and manufacturing method of mask for vapor deposition

Country Status (1)

Country Link
JP (1) JP2008041553A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5516816B1 (en) * 2013-10-15 2014-06-11 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
WO2014192494A1 (en) * 2013-05-29 2014-12-04 タツタ電線株式会社 Electromagnetic wave shielding film, printed wire board using same, and rolled copper foil
JP5641462B1 (en) * 2014-05-13 2014-12-17 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
CN105714246A (en) * 2016-04-01 2016-06-29 昆山允升吉光电科技有限公司 Method for manufacturing mask plate assembly for evaporation of OLED
CN105714247A (en) * 2016-04-01 2016-06-29 昆山允升吉光电科技有限公司 Mask plate assembly for evaporation of OLED
CN105714248A (en) * 2016-04-01 2016-06-29 昆山允升吉光电科技有限公司 Manufacturing method for high-precision composite mask plate assembly for evaporation
CN105821373A (en) * 2016-04-01 2016-08-03 昆山允升吉光电科技有限公司 Mask plate assembly for high-precision evaporation
JP2016148111A (en) * 2015-02-10 2016-08-18 大日本印刷株式会社 Production method of deposition mask, metal sheet used for producing deposition mask, and production method of metal sheet
WO2017013903A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Metal mask base, metal mask and method for producing metal mask
WO2017013904A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
WO2017014016A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10876215B2 (en) 2015-07-17 2020-12-29 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
WO2021036372A1 (en) * 2019-08-28 2021-03-04 京东方科技集团股份有限公司 Mask plate, mask device and design method for mask plate

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11497152B2 (en) 2013-05-29 2022-11-08 Tatsuta Electric Wire & Cable Co., Ltd. Electromagnetic wave shield film, printed wiring board using same, and rolled copper foil
WO2014192494A1 (en) * 2013-05-29 2014-12-04 タツタ電線株式会社 Electromagnetic wave shielding film, printed wire board using same, and rolled copper foil
US10757849B2 (en) 2013-05-29 2020-08-25 Tatsuta Electric Wire & Cable Co., Ltd. Electromagnetic wave shield film, printed wiring board using same, and rolled copper foil
US11317548B2 (en) 2013-05-29 2022-04-26 Tatsuta Electric Wire & Cable Co., Ltd. Electromagnetic wave shield film, printed wiring board using same, and rolled copper foil
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10731261B2 (en) 2013-09-13 2020-08-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
JP2015078401A (en) * 2013-10-15 2015-04-23 大日本印刷株式会社 Metal plate, production method of metal plate, and method of producing vapor deposition mask by using metal plate
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate
JP5516816B1 (en) * 2013-10-15 2014-06-11 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
US9828665B2 (en) 2013-10-15 2017-11-28 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing deposition mask by use of metal plate
WO2015056537A1 (en) * 2013-10-15 2015-04-23 大日本印刷株式会社 Metal sheet, method for manufacturing metal sheet, and method for manufacturing vapor deposition mask using metal sheet
JP2015214741A (en) * 2014-05-13 2015-12-03 大日本印刷株式会社 Metal plate, manufacturing method of the metal plate, and manufacturing method of mask using the metal plate
WO2015174269A1 (en) * 2014-05-13 2015-11-19 大日本印刷株式会社 Metal plate, method for manufacturing metal plate, and method for manufacturing mask using metal plate
US11217750B2 (en) 2014-05-13 2022-01-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
JP5641462B1 (en) * 2014-05-13 2014-12-17 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
JP2016148111A (en) * 2015-02-10 2016-08-18 大日本印刷株式会社 Production method of deposition mask, metal sheet used for producing deposition mask, and production method of metal sheet
TWI656229B (en) * 2015-02-10 2019-04-11 日商大日本印刷股份有限公司 Production method of vapor deposition mask for organic EL display device, metal plate used for producing vapor deposition mask for organic EL display device, and production method thereof
TWI696708B (en) * 2015-02-10 2020-06-21 日商大日本印刷股份有限公司 Manufacturing method of vapor deposition mask for organic EL display device, metal plate to be used for manufacturing vapor deposition mask for organic EL display device, and manufacturing method thereof
US10612124B2 (en) 2015-02-10 2020-04-07 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
TWI671411B (en) * 2015-02-10 2019-09-11 日商大日本印刷股份有限公司 Metal plate for use in vapor deposition mask for organic EL display device, metal plate for use in vapor deposition mask for organic EL display device, and method for producing the same
JP2017043848A (en) * 2015-07-17 2017-03-02 凸版印刷株式会社 Base material of metal mask and management method of base material of metal mask
WO2017013903A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Metal mask base, metal mask and method for producing metal mask
JP2017106114A (en) * 2015-07-17 2017-06-15 凸版印刷株式会社 Method of manufacturing base material for metal mask and method of manufacturing metal mask for vapor deposition
JPWO2017013904A1 (en) * 2015-07-17 2018-04-26 凸版印刷株式会社 Metal mask base material, metal mask base material management method, metal mask, and metal mask manufacturing method
US10273569B2 (en) 2015-07-17 2019-04-30 Toppan Printing Co., Ltd. Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
JPWO2017014016A1 (en) * 2015-07-17 2018-04-26 凸版印刷株式会社 Metal mask substrate and metal mask for vapor deposition
JPWO2017013903A1 (en) * 2015-07-17 2018-02-15 凸版印刷株式会社 Metal mask base material and metal mask manufacturing method
WO2017014016A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
JP6120039B1 (en) * 2015-07-17 2017-04-26 凸版印刷株式会社 Method for manufacturing base material for metal mask, and method for manufacturing metal mask for vapor deposition
CN107406964A (en) * 2015-07-17 2017-11-28 凸版印刷株式会社 Metal mask base material, the management method of metal mask base material, the manufacture method of metal mask and metal mask
WO2017013904A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
CN109440062A (en) * 2015-07-17 2019-03-08 凸版印刷株式会社 Metal mask substrate, the management method of metal mask substrate, the manufacturing method of metal mask and metal mask
US10876215B2 (en) 2015-07-17 2020-12-29 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
US10903426B2 (en) 2015-07-17 2021-01-26 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask
US11746423B2 (en) 2015-07-17 2023-09-05 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
US11111585B2 (en) 2015-07-17 2021-09-07 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
US11706968B2 (en) 2015-07-17 2023-07-18 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask
US11453940B2 (en) 2015-07-17 2022-09-27 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
CN105714248A (en) * 2016-04-01 2016-06-29 昆山允升吉光电科技有限公司 Manufacturing method for high-precision composite mask plate assembly for evaporation
CN105714247A (en) * 2016-04-01 2016-06-29 昆山允升吉光电科技有限公司 Mask plate assembly for evaporation of OLED
CN105714246A (en) * 2016-04-01 2016-06-29 昆山允升吉光电科技有限公司 Method for manufacturing mask plate assembly for evaporation of OLED
CN105821373A (en) * 2016-04-01 2016-08-03 昆山允升吉光电科技有限公司 Mask plate assembly for high-precision evaporation
WO2021036372A1 (en) * 2019-08-28 2021-03-04 京东方科技集团股份有限公司 Mask plate, mask device and design method for mask plate

Similar Documents

Publication Publication Date Title
JP2008041553A (en) Mask for vapor deposition, and manufacturing method of mask for vapor deposition
JP6958597B2 (en) Method for manufacturing base material for metal mask and method for manufacturing metal mask for vapor deposition
WO2004065660A1 (en) Metal photo-etching product and production method therefor
TWI804481B (en) Mask for vapor deposition, installation method and manufacturing method thereof
US8597490B2 (en) Method of manufacturing a gas electron multiplier
KR20200137032A (en) Deposition mask, method of manufacturing deposition mask and metal plate
US20090081476A1 (en) Uv-liga process for fabricating a multilayer metal structure having adjacent layers that are not entirely superposed, and the structure obtained
TWI766114B (en) Vapor deposition mask substrate, vapor deposition mask substrate manufacturing method, vapor deposition mask manufacturing method, and display device manufacturing method
KR20170110623A (en) METHOD FOR MANUFACTURING VARIATION MASK
TW201709278A (en) Metal mask base, metal mask and method for producing metal mask
JP2013245392A (en) Vapor deposition mask and method for manufacturing the same
JP5441663B2 (en) Multilayer metal mask
JP2016113668A (en) Production method of vapor deposition mask, and metal plate and vapor deposition mask used for producing vapor deposition mask
JP6372755B2 (en) Method for manufacturing vapor deposition mask, metal plate used for producing vapor deposition mask, and vapor deposition mask
CN103205672B (en) A kind of preparation technology of the evaporation mask plate for being easy to welding
KR100899588B1 (en) Use of metallic treatment on copper foil to produce fine lines and replace oxide process in printed circuit board production
JPH09279366A (en) Production of fine structural parts
JP2019081962A (en) Vapor deposition mask
US20130044041A1 (en) Portable electronic device, antenna structure, and antenna producing process thereof
JP6425135B2 (en) Method of manufacturing vapor deposition mask
JPH09148714A (en) Manufacture of 3-dimensional molded circuit board
JP2005005453A (en) Printed wiring board and its manufacturing method
JP2005336552A (en) Method for producing metal etching product, and metal etching product
JP2003231764A (en) Method for etching polyimide
WO2016194241A1 (en) Method for manufacturing wiring board