JP2008022625A - Ac-dc converter - Google Patents

Ac-dc converter Download PDF

Info

Publication number
JP2008022625A
JP2008022625A JP2006191881A JP2006191881A JP2008022625A JP 2008022625 A JP2008022625 A JP 2008022625A JP 2006191881 A JP2006191881 A JP 2006191881A JP 2006191881 A JP2006191881 A JP 2006191881A JP 2008022625 A JP2008022625 A JP 2008022625A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
capacitor
circuit
full
voltage
connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006191881A
Other languages
Japanese (ja)
Inventor
Kazuo Kuroki
Makoto Tanitsu
誠 谷津
一男 黒木
Original Assignee
Fuji Electric Systems Co Ltd
富士電機システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the following problem in a configuration wherein a single-phase alternating-current power supply, a full-wave rectification circuit composed of diodes, a reactor, a capacitor series circuit, bidirectional switches, and a load are connected: when the power factor of an input alternating current is enhanced by switching the bidirectional switches, the voltages of the capacitors connected in series are imbalanced during a half-cycle period.
SOLUTION: A reactor is connected between a single-phase AC power supply and one AC input of a full-wave rectification circuit composed of diodes. A capacitor series circuit is connected between the DC outputs of the full-wave rectification circuit. Bidirectional switches 10, 11 are connected between the internal junction points of the capacitor series circuit and the individual AC inputs of the full-wave rectification circuit. A load 14 is connected in parallel with the capacitor series circuit. The voltages of the capacitor 12 and the capacitor 13 connected in series are detected, and the turn-on/off of the bidirectional switches 10 and 11 is controlled at a high frequency so that these voltages are equalized.
COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、交流入力電流を高力率化しつつ、単相交流電源から全波整流電圧のピーク電圧よりも高い直流電圧を作り出す交流−直流変換回路に関し、特に全波整流回路の直流端子間にコンデンサ直列回路を接続した場合の各コンデンサ電圧をバランスさせることのできる変換回路に関する。 The present invention, an AC input current with high power factor of the AC from the single-phase AC power source produces a DC voltage higher than a peak voltage of the full-wave rectified voltage - relates DC converter circuit, especially between the DC terminals of the full-wave rectifier circuit about the conversion circuit capable of balancing the respective capacitor voltage when connecting the capacitor series circuit.

図6に、従来の技術を用いた交流−直流変換回路の回路構成を示す。 6, alternating with conventional techniques - shows the circuit configuration of the DC converter circuit. 単相交流電源1とダイオード6〜9で構成された全波整流回路の一方の交流入力との間にリアクトル4が、全波整流回路の直流出力間にコンデンサ12とコンデンサ13からなるコンデンサ直列回路が、コンデンサ直列回路の内部接続点と全波整流回路の他方の交流入力との間に双方向スイッチ11が、コンデンサ直列回路と並列に負荷14が、各々接続された構成である。 Reactor 4 between one of the AC input of the full-wave rectification circuit composed of single-phase AC power supply 1 and the diode 6-9, the capacitor series circuit comprising a capacitor 12 and a capacitor 13 between the DC output of the full-wave rectifier circuit but bidirectional switch 11 between the other AC input of the internal connection point between the full-wave rectifier circuit of the capacitor series circuit, a load 14 in parallel with the capacitor series circuit are each connected. このような構成において、双方向スイッチ11を交流電源の半サイクルに1回スイッチングさせることにより、交流入力電流を高力率化するものである。 In such a configuration, by switching one bidirectional switch 11 in a half cycle of the AC power source is an AC input current intended to high power index. 双方向スイッチ11がない場合には、コンデンサ12と13の直列回路の電圧を交流電源1の電圧が越えた期間だけ電源から電流が流れるいわゆるコンデンサインプット形の構成であるが、力率が低いことは周知である。 If there is no bidirectional switch 11 is the configuration of the period just called capacitor input type current flows from a power source voltage of the series circuit voltage of the AC power supply 1 exceeds the capacitor 12 and 13, it the power factor is low it is well known. これを改善するために、双方向スイッチ11を交流電源の半サイクルに1回オンさせることにより、双方向スイッチ11がない場合に比べて交流電源から流れる電流の期間が長くなり、入力力率が高くなる。 To improve this, by turning on once the bidirectional switch 11 to a half cycle of the AC power supply, the period of the current flowing from the AC power source becomes longer than when there is no two-way switch 11, the input power factor higher. 即ち、双方向スイッチ11がオフの場合、交流電源1の電圧極性が正の期間でこの電圧が直流電圧(コンデンサ直列回路の電圧)よりも高い期間だけ、交流電源1→リアクトル4→ダイオード6→コンデンサ12→コンデンサ13→ダイオード9→交流電源1の経路で交流電流が流れるが、双方向スイッチ11をオンさせると交流電源1の電圧がコンデンサ12の電圧を越えた期間に、交流電源1→リアクトル4→ダイオード6→コンデンサ12→双方向スイッチ11→交流電源1の経路で交流電流が流れ、コンデンサ12が充電されると同時にリアクトル4にエネルギーが蓄積される。 That is, when the bidirectional switch 11 is off, the voltage polarity of the AC power supply 1 is the voltage at the positive period only higher period than (the voltage of the capacitor series circuit) DC voltage, the AC power source 1 → reactor 4 → diode 6 → capacitor 12 → capacitor 13 → the diode 9 → alternating current flows but in the path of the AC power supply 1, the period in which the voltage of the AC power supply 1 is turned on bidirectional switch 11 exceeds the voltage of the capacitor 12, the AC power source 1 → reactor 4 → diode 6 → alternating current flows through a path of the capacitor 12 → the bidirectional switch 11 → the AC power supply 1, energy is stored in the same time the reactor 4 when the capacitor 12 is charged. 従って、交流電源1の電圧が低い期間でも電流が流れることになり、電流の流れる期間が長くなり、力率が高くなる。 Accordingly, the voltage of the AC power supply 1 will be the current also flows at a low period, the period is long in which the current flows, the power factor is high. ここで、双方向スイッチ11をオンさせる期間を調整することにより直流電圧を制御することができる。 Here, it is possible to control the DC voltage by adjusting a period to turn on the bidirectional switch 11. 交流電源1の極性が負の場合、双方向スイッチ11がオフの時は交流電源1→ダイオード8→コンデンサ12→コンデンサ13→ダイオード7→リアクトル4→交流電源1の経路で、交流スイッチがオンの時は交流電源1→双方向スイッチ11→コンデンサ13→ダイオード7→リアクトル4→交流電源1の経路で交流電流が流れる。 When the polarity of the AC power supply 1 is negative, the bidirectional switch 11 is off in the path of the AC power source 1 → diode 8 → the capacitor 12 → the capacitor 13 → the diode 7 → reactor 4 → AC power supply 1, an AC switch is turned on when the alternating current flows through a path of the AC power source 1 → bidirectional switch 11 → the capacitor 13 → the diode 7 → reactor 4 → the AC power supply 1. 尚、詳細は特許文献1に記載されている。 The details are described in Patent Document 1.
特開平10−174442号公報 JP 10-174442 discloses

上述のように、直列接続された各コンデンサには双方向スイッチ11がオンの時には一方のコンデンサが交流電源1からリアクトル4を介して充電され、リアクトル4にはエネルギーが蓄積される。 As described above, in the capacitors connected in series when the bidirectional switch 11 is turned on is charged one capacitor via the reactor 4 from the AC power supply 1, the reactor 4 energy is stored. 双方向スイッチ11がオフの時にはコンデンサ12と13の直列回路を交流電源1とリアクトル4の直列回路で充電し、この時リアクトルのエネルギーはコンデンサ12と13の直列回路に放電される。 Bidirectional switch 11 is charged by the series circuit of the AC power supply 1 and the reactor 4 a series circuit of a capacitor 12 and 13 in the off, the energy of this time the reactor is discharged to the series circuit of the capacitors 12 and 13. この構成においては、双方向スイッチをオンさせる期間が半サイクル毎に僅かに違う場合、あるいは各直列コンデンサ容量に差がある場合、あるいは負荷として各直列コンデンサから不均等に電力を消費する場合などには直列コンデンサの電圧が均等にならない問題が発生する。 In this configuration, for example, if the period for turning on the bidirectional switch consuming when slightly different in each half cycle, or if the respective series capacitance there is a difference, or unequally power from each of the series capacitor as a load a problem which the voltage of the series capacitor is not uniform is generated. この対策として交流電源の半サイクル毎に双方向スイッチをオンさせる期間を調整することにより、平均的にはバランスさせることができるが、半サイクルの期間内では変動を抑制することができないという問題がある。 By adjusting the period to turn on the bidirectional switch in each half cycle of the AC source as a countermeasure, but on average it is possible to balance the problem of within a period of a half cycle can not be suppressed variation is there.

上述の課題を解決するために、第1の発明においては単相交流電源と全波整流回路の交流入力端子のいずれか一方または両方との間にリアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、各々接続する。 To solve the problems described above, the reactor between either or both of the AC input terminals of single-phase AC power source and the full-wave rectifier circuit in the first invention, the DC output terminals of said full-wave rectifier circuit a first capacitor series circuit between the bidirectional switch between an internal connection point of the first capacitor series circuit and an AC input terminal each of said full-wave rectifier circuit, respectively connected.
第2の発明においては、単相交流電源と並列に第2のコンデンサ直列回路を、前記交流電源と全波整流回路の交流入力端子との間に各々リアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、前記第1のコンデンサ直列回路の内部接続点に前記第2のコンデンサ直列回路の内部接続点を、各々接続する。 In the second invention, the second capacitor series circuit in parallel with the single-phase AC power source, each reactor between the AC input terminals of the AC power source and full-wave rectifier circuit, the DC output of the full-wave rectifier circuit a first capacitor series circuit between the terminals, the bidirectional switch between an internal connection point of the first capacitor series circuit and an AC input terminal each of said full-wave rectifying circuit, the first capacitor series circuit the internal connection point of the second capacitor series circuit in the internal connection point, respectively coupled.

第3の発明においては、第1および第2の発明において、双方向スイッチは、前記直列接続された各コンデンサの電圧を検出し、各々の電圧が等しくなるようにオン・オフ制御する。 In a third aspect, in the first and second aspects of the invention, the bidirectional switch, the detected voltage of the series-connected respective capacitors, to the on-off control such that each voltage is equal.
第4の発明においては、第1および第2の発明において、双方向スイッチをダイオードとスイッチング素子の組み合わせで構成する。 In a fourth aspect, in the first and second aspects of the invention, constituting a bidirectional switch by a combination of diodes and switching elements.

本発明では、単相交流電源と全波整流回路の交流入力端子のいずれか一方または両方との間にリアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、各々接続し、直列接続された各コンデンサの電圧を検出し、各々の電圧が等しくなるように、高周波スイッチングする双方向スイッチをオン・オフ制御しているため、交流入力電流を高力率化させつつ、半サイクル期間内で直列コンデンサ各々の電圧を均等化させることが可能となる。 In the present invention, the reactor between either or both of the AC input terminals of single-phase AC power source and full-wave rectifying circuit, the first capacitor series circuit between the DC output terminals of the full wave rectifier circuit, wherein a bidirectional switch between the AC input terminal each of said full-wave rectifier circuit and the internal connection point of the first capacitor series circuit, respectively connected to detect a voltage of each capacitor connected in series, each of the voltage to be equal, since the on-off control of the bidirectional switch for high frequency switching, while the high power factor of the AC input current, can be equalized series capacitors each voltage within a half-cycle period and Become.
この結果、直列コンデンサ各々に不均等な消費電力の負荷を個別に接続することが可能となり適用性が向上する。 Consequently, applicability it is possible to individually connected to the load of the unequal power to each series capacitor is improved. また、直列コンデンサの容量を低減することができ、装置の小型化と低価格化が可能となる。 Further, it is possible to reduce the capacitance of the series capacitors, can be miniaturized and cost of the apparatus.

本発明の要点は、単相交流電源と全波整流回路の交流入力端子のいずれか一方または両方との間にリアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、各々接続し、直列接続された各コンデンサの電圧を検出し、各々の電圧が等しくなるように、高周波スイッチングする双方向スイッチをオン・オフ制御して、交流入力電流を高力率化させつつ、半サイクル期間内で直列コンデンサ各々の電圧を均等化させる点である。 Gist of the present invention, the reactor between either or both of the AC input terminals of single-phase AC power source and full-wave rectifying circuit, the first capacitor series circuit between the DC output terminals of said full-wave rectifier circuit , the first bidirectional switch between the internal connection point of the capacitor series circuit and the AC input terminal of each of said full-wave rectifier circuit, respectively connected to detect a voltage of each capacitor connected in series, each of as the voltage is equal to on-off control of the bidirectional switch for high frequency switching, while the high power factor of the AC input current, in that to equalize the respective voltage series capacitor in a half-cycle period.

図1に、本発明の第1の実施例を示す。 Figure 1 shows a first embodiment of the present invention. 単相交流電源1とダイオード6〜9で構成された全波整流回路の一方の交流入力との間にリアクトル4が、全波整流回路の直流出力間にコンデンサ12とコンデンサ13からなるコンデンサ直列回路が、コンデンサ直列回路の内部接続点と全波整流回路の各交流入力との間に双方向スイッチ10、11が、コンデンサ直列回路と並列に負荷14が、各々接続された構成である。 Reactor 4 between one of the AC input of the full-wave rectification circuit composed of single-phase AC power supply 1 and the diode 6-9, the capacitor series circuit comprising a capacitor 12 and a capacitor 13 between the DC output of the full-wave rectifier circuit but bidirectional switches 10, 11 between each AC input of the internal connection point between the full-wave rectifier circuit of the capacitor series circuit, a load 14 in parallel with the capacitor series circuit are each connected.
このような構成において、双方向スイッチ10および11をオン・オフ制御する制御回路例を図2に示す。 In such a configuration, it is showing a control circuit example of on-off control of the bidirectional switch 10 and 11 in FIG. 主回路部においては、交流入力電流を電流検出器15で、交流入力で電圧を電圧検出器16で、直列接続されたコンデンサ12の電圧を電圧検出器17で、コンデンサ13の電圧を電圧検出器13で、各々検出して制御回路の入力とする。 In the main circuit unit, a current detector 15 AC input current, voltage detector 16 voltage at the AC input, the voltage of the series connected capacitors 12 by the voltage detector 17, the voltage detector a voltage of the capacitor 13 13, the input of each detector to the control circuit.
制御回路部は、直列接続されたコンデンサ12と13の和の電圧が所定値になるように制御する直流定電圧制御部と、コンデンサ12と13の電圧が等しくなるように制御するコンデンサ電圧均等化制御部とから構成される。 The control circuit unit, the capacitor voltage equalization be controlled to a DC constant voltage controller arranged to control the voltage of the sum of capacitors 12 and 13 connected in series becomes a predetermined value, the voltage of the capacitor 12 and 13 is equal It consists of a control unit. 直流定電圧制御部は、直流電圧検出器17の出力と直流電圧検出器18の出力を加算器22で加算して、この加算値が設定器37の設定値となるように調節器28で調整し、この調整量と交流入力電圧検出器16の出力とを掛算器30で掛算して交流入力電流が高力率の正弦波となるような電流指令値とし、この電流指令値と電流検出器15で検出された電流実際値との差を加算器24で求め、この値が零になるように調節器32で制御する。 DC constant voltage control unit, and added by the adder 22 outputs the output of the DC voltage detector 17 a DC voltage detector 18, adjusted by the adjuster 28 as the added value becomes the set value of the setting device 37 and, the adjustment amount and the AC input voltage detector 16 and the output of the multiplied at multiplier 30 with the AC input current is the current command value such that the sine wave of high power factor, the current command value and the current detector 15 calculated by the adder 24 the difference between the detected actual current value is controlled by the regulator 32 so that this value becomes zero. また、コンデンサ電圧均等化制御部は、電圧検出器17の出力と直流電圧検出器18の出力を加算器21で減算して、この減算値が零となるように調節器27で調整し、この調整値と交流入力電圧検出器16の出力とを掛算器29で掛算して電流指令値とし、この電流指令値と電流検出器15で検出された電流実際値との差を加算器23で求め、この値が零になるように調節器31で制御する。 The capacitor voltage equalization control unit subtracts an adder 21 the output of the output DC voltage detector 18 of the voltage detector 17, adjusted with adjuster 27 as the subtraction value becomes zero, the a current command value by multiplying the adjustment value and the output of the AC input voltage detector 16 at multiplier 29 obtains a difference between the detected actual current value in the current command value and the current detector 15 by the adder 23 , controlled by regulator 31 so that the value becomes zero. 調節器32の出力v1と調節器31の出力v2から双方向スイッチ10と11のオン・オフ信号を作り出す動作波形を図3に示す。 The operation waveform to produce an on-off signal of the bidirectional switches 10 and 11 and the output v1 of the regulator 32 from the output v2 of the regulator 31 shown in FIG. この図は交流入力電圧が正極性の場合(リアクトル4のある側が正の場合)を示す。 This figure shows the case the AC input voltage is positive polarity (if the side where the reactor 4 is positive). ここで、コンデンサ12の電圧をEd1、コンデンサ13の電圧をEd2とする。 Here, the voltage of the capacitor 12 Ed1, the voltage of the capacitor 13 and Ed2. ここで、コンデンサ均等化制御量v2をEd1<Ed2の場合は正の制御量、Ed1>Ed2の場合は負の制御量とし、直流電圧制御量v1にコンデンサ電圧均等化制御量v2を加算器26で加算した制御量からキャリア35と比較器34でPWM変調されたオン・オフ信号を作り出し、これを双方向スイッチ10のオン・オフ信号とする。 Here, <positive control amount in the case of Ed2, Ed1> a Ed1 capacitor equalization control variable v2 For Ed2 a negative control amount adder capacitor voltage equalization control variable v2 to a DC voltage control amount v1 26 creating a PWM-modulated on-off signals from in addition to the control amount by the comparator 34 with the carrier 35, which is an on-off signal of the bidirectional switch 10. また、直流電圧制御量v1からコンデンサ電圧均等化制御量v2を加算器25で減算した制御量からキャリア35と比較器33でPWM変調されたオン・オフ信号を作り出し、これを双方向スイッチ11のオン・オフ信号とする。 Further, from the DC voltage control amount v1 produces a PWM-modulated on-off signal in a comparator 33 from the control amount of the capacitor voltage equalization control variable v2 was subtracted in adder 25 with the carrier 35, which bidirectional switch 11 and on-off signal.
この結果、Ed1<Ed2の場合は、双方向スイッチ10のオン・オフ信号はオフの期間が長く、双方向スイッチ11のオン・オフ信号はオンの期間が長い信号となり、両方の双方向スイッチ10および11がオンしている間にリアクトル4に蓄積されたエネルギーがコンデンサ12に多く充電されてEd1の電圧が上昇する方向に、コンデンサ13の電圧Ed2が下降する方向に制御され、均等化される。 As a result, Ed1 <For Ed2, on-off signal of the bidirectional switch 10 has a long period of OFF, ON-OFF signal of the bidirectional switch 11 is the ON period of becomes long signal, both the bidirectional switch 10 the energy stored in the reactor 4 is in a direction in which the voltage of Ed1 is charged more to the capacitor 12 rises, are controlled in a direction in which the voltage Ed2 of the capacitor 13 is lowered, is equalized between and the 11 is turned on . また、Ed1>Ed2の場合は、双方向スイッチ10のオン・オフ信号はオンの期間が長く、双方向スイッチ11のオン・オフ信号はオフの期間が長い信号となり、両方の双方向スイッチ10および11がオンしている間にリアクトル4に蓄積されたエネルギーがコンデンサ13に多く充電されてEd2の電圧が上昇する方向に、コンデンサ12の電圧Ed1が下降する方向に制御され、均等化される。 Further, Ed1> For Ed2, the on-off signal of the bidirectional switch 10 has a long period of ON, ON-OFF signal of the bidirectional switch 11 is OFF period becomes long signal, both of the bidirectional switch 10 and 11 in the direction the energy stored in the reactor 4 is voltage Ed2 is charged more to the capacitor 13 is increased while on, is controlled in a direction in which the voltage Ed1 of the capacitor 12 is lowered, is equalized. 交流入力電圧が負極性(リアクトル4のある側が負)の場合はこれを検出して、パルス分配回路で双方向スイッチ10の信号と双方向スイッチ11の信号を切換えれば同様にコンデンサ12と13の電圧は均等化される。 If the AC input voltage is negative polarity (negative side with the reactor 4) detects this signal as well as the capacitor 12 be switched to signals of the bidirectional switch 11 of the bidirectional switch 10 by the pulse distribution circuit 13 the voltage is equalized.

図4に、本発明の第2の実施例を示す。 Figure 4 shows a second embodiment of the present invention. 第1の実施例との違いは、交流電源1と並列にコンデンサ2と3の直列回路が接続され、この内部接続点と全波整流回路の直流出力間に接続されたコンデンサ12と13の直列回路の内部接続点とが接続されている点とリアクトル5が交流電源1と全波整流回路の交流入力点との間に付加されている点である。 The difference from the first embodiment, the AC power source 1 and a series circuit of a capacitor 2 and 3 are connected in parallel, series capacitor 12 and 13 connected between the DC output of the internal connection point and the full-wave rectifying circuit it is that the point a reactor 5 in which the internal connection point of the circuit is connected is added between the AC input point of the AC power supply 1 and the full-wave rectifier circuit.
このような構成において、交流電源が正極性(リアクトル4側が正)の時、双方向スイッチ10と11を同時にオンさせると交流電源1→リアクトル4→双方向スイッチ10→双方向スイッチ11→リアクトル5→交流電源1の経路で電流が流れ、リアクトル4と5にエネルギーが蓄積される。 In such a configuration, when the AC power supply is positive (reactor 4 side is positive), and an AC power source is turned on and the bidirectional switch 10 11 simultaneously 1 → reactor 4 → bidirectional switch 10 → bidirectional switch 11 → reactor 5 → current flows through the route of the AC power supply 1, the energy is accumulated in the reactor 4 and 5. 次に双方向スイッチ10と11の両方をオフさせるとリアクトル4と5の電流は、ダイオード6→コンデンサ12→コンデンサ13→ダイオード9→リアクトル5→交流電源1の経路となり、コンデンサ12と13が充電され、電圧が上昇する。 Next, when turning off both of the bidirectional switches 10 and 11 reactor 4 and 5 of the current, the diode 6 → the capacitor 12 → the capacitor 13 → the diode 9 → reactor 5 → becomes a path for the AC power source 1, a capacitor 12 and 13 is charged is, the voltage rises. また、双方向スイッチ10のみをオフさせた場合には、コンデンサ2が電源となり、リアクトル5の電流はダイオード6を介してコンデンサ12を充電し、リアクトル5の電流はコンデンサ3が電源となり増加を続ける。 Also, when turning off only the bidirectional switch 10, the capacitor 2 is the power supply, the current of the reactor 5 charges the capacitor 12 via the diode 6, the current of the reactor 5 will continue to increase becomes capacitor 3 to the power supply . また、双方向スイッチ11のみをオフさせた場合には、コンデンサ3が電源となりリアクトル5の電流はダイオード9を介してコンデンサ13を充電し、リアクトル4の電流はコンデンサ2が電源となり増加を続ける。 Also, when turning off only the bidirectional switch 11, the current of the reactor 5 becomes capacitor 3 and the power supply charges the capacitor 13 through the diode 9, the current of the reactor 4 will continue to increase it becomes capacitor 2 and power supply. 以上のように双方向スイッチ10と11を適切に制御することにより、コンデンサ12と13の電圧を均等化することができる。 By appropriately controlling the bidirectional switch 10 and 11 as described above, it is possible to equalize the voltage of the capacitor 12 and 13. 制御の原理は第1の実施例と同様である。 The principle of the control is the same as in the first embodiment. 交流電源が負極性(リアクトル4側の電圧が負)の場合も同様の原理により、コンデンサ12と13の電圧を均等化することができる。 The same principle in the case of AC power supply is negative (negative voltage of the reactor 4 side), it is possible to equalize the voltage of the capacitor 12 and 13.

図5に双方向スイッチ10、11をスイッチング素子とダイオードの組合せにより実現する回路例を示す。 Figure 5 shows a circuit example for realizing the bidirectional switch 10 and 11 by a combination of switching elements and a diode. 図5(a)はダイオード43を逆並列接続したIGBT41とダイオード44を逆並列接続したIGBT42を逆直列接続した構成である。 5 (a) is a configuration in which reverse series connection IGBT42 obtained by inversely connected in parallel IGBT41 and a diode 44 connected in inverse parallel to diodes 43. A点からB点へ電流を流す場合はIGBT41をオンさせ、B点からA点へ電流を流す場合はIGBT42をオンさせる。 When a current flows from point A to point B to turn on the IGBTs 41, if a current flows to point A from point B to turn on the IGBT 42. 両方のIGBT41と42をオフさせれば何れの方向でもスイッチオフとなる。 If brought into off IGBT41 both 42 becomes switched off in either direction. 図5(b)はダイオード45、46の直列回路と、ダイオード47、48の直列回路と、IGBT49とを並列接続し、各ダイオード直列回路の内部接続点を端子とした構成である。 A series circuit of FIG. 5 (b) diode 45, 46, a series circuit of diodes 47 and 48, connected in parallel and IGBT49, a configuration in which the internal connection point of the diode series circuit to the terminal. A点からB点へ電流を流す場合は、IGBT49をオンさせると、ダイオード45→IGBT49→ダイオード48の経路となり、B点からA点へ電流を流す場合は、IGBT49をオンさせると、ダイオード47→IGBT49→ダイオード46の経路となる。 When a current flows from point A to point B, when turning on the IGBT49, becomes a path of the diode 45 → IGBT49 → diode 48, when current flows to point A from point B, when to turn on the IGBT49, the diode 47 → a path for IGBT49 → diode 46. IGBT49をオフさせるといずれの方向でもスイッチオフとなる。 IGBT49 the When turning off the switch-off in either direction.

本発明は、直流電源の出力にハーフブリッジ形のインバータ回路を接続する場合や、直流中間電圧と正極間、直流中間電圧と負極間に別々に負荷を接続する場合の単相昇圧形直流電源の構成法であり、無停電電源装置(UPS)、スイッチング電源、高周波電源、誘導加熱用電源などへの適用が可能である。 The present invention is useful when connecting the inverter circuit of the half-bridge type to an output of the DC power supply, a DC intermediate voltage and positive electrodes, single-phase step-up DC power source when connecting the separately loaded between the DC intermediate voltage and a negative electrode a configuration method, uninterruptible power supplies (UPS), switching power supplies, high-frequency power source, it can be applied to such as an induction heating power supply.

本発明の第1の実施例を示す回路図 Circuit diagram showing a first embodiment of the present invention 本発明の制御回路例を示す回路図 Circuit diagram showing a control circuit of the present invention 図2の各部の動作を示す動作波形図 Operation waveform diagram illustrating the operation of each part of FIG. 2 本発明の別の実施例を示す回路図 Circuit diagram showing another embodiment of the present invention 双方向スイッチの構成例 Configuration of a bidirectional switch example 従来技術を示す回路図 Circuit diagram showing a prior art

符号の説明 DESCRIPTION OF SYMBOLS

1・・・交流電源 2、3・・・コンデンサ 4、5・・・リアクトル 6〜9、43〜48・・・ダイオード 10、11・・・双方向スイッチ 12,13・・・コンデンサ 14・・・負荷 15・・・電流検出器 1 ... AC power source 2, 3 capacitor 4, 5 ... reactor 6~9,43~48 ... diodes 10, 11 ... bidirectional switches 12 and 13 ... condenser 14 ... • load 15 ... current detector
16・・・交流入力電圧検出器 17、18・・・直流電圧検出器 21〜26・・・加算器 27、28、31、32・・・調節器 29、30・・・掛算器 33、34・・・比較器 16 ... AC input voltage detector 17 and 18 ... DC voltage detector 21 to 26 ... adder 27,28,31,32 ... controller 29 ... multipliers 33 and 34 ... comparator
35・・・キャリア発生器 36・・・パルス分配回路 37・・・電圧設定器 35 ... carrier generator 36 ... pulse distribution circuit 37 ... voltage setter

Claims (4)

  1. 単相交流電源と全波整流回路の交流入力端子のいずれか一方または両方との間にリアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、各々接続したことを特徴とする交流−直流変換装置。 The reactor between either or both of the AC input terminals of single-phase AC power source and full-wave rectifying circuit, the first capacitor series circuit between the DC output terminals of said full-wave rectifying circuit, the first capacitor a bidirectional switch between the internal connection point of the series circuit and the AC input terminal of each of said full-wave rectifying circuit, characterized in that respectively connect the AC - DC converter.
  2. 単相交流電源と並列に第2のコンデンサ直列回路を、前記交流電源と全波整流回路の交流入力端子との間に各々リアクトルを、前記全波整流回路の直流出力端子間に第1のコンデンサ直列回路を、前記第1のコンデンサ直列回路の内部接続点と前記全波整流回路の交流入力端子各々との間に双方向スイッチを、前記第1のコンデンサ直列回路の内部接続点に前記第2のコンデンサ直列回路の内部接続点を、各々接続したことを特徴とする交流−直流変換装置。 A second capacitor series circuit in parallel with the single-phase AC power source, each reactor between the AC input terminals of the AC power source and full-wave rectifying circuit, a first capacitor between the DC output terminals of said full-wave rectifier circuit a series circuit, a bidirectional switch between the AC input terminal each of said full-wave rectifier circuit and the internal connection point of the first capacitor series circuit, the inside connecting point of the first capacitor series circuit second an internal connection point of the capacitor series circuit, and characterized in that each connecting exchanges - DC converter.
  3. 前記双方向スイッチは、前記直列接続された各コンデンサの電圧を検出し、各々の電圧が等しくなるようにオン・オフ制御されることを特徴とする請求項1または2に記載の交流−直流変換装置。 The bidirectional switch, the detected voltage of the series-connected respective capacitors, AC according to claim 1 or 2, characterized in that each voltage is turned on and off control equal - DC converter apparatus.
  4. 前記双方向スイッチは、ダイオードとスイッチング素子の組合せで構成されることを特徴とする請求項1または2に記載の交流−直流変換装置。 The bidirectional switch exchange according to claim 1 or 2, characterized in that it is a combination of diodes and switching elements - DC converter.
JP2006191881A 2006-07-12 2006-07-12 Ac-dc converter Withdrawn JP2008022625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191881A JP2008022625A (en) 2006-07-12 2006-07-12 Ac-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191881A JP2008022625A (en) 2006-07-12 2006-07-12 Ac-dc converter

Publications (1)

Publication Number Publication Date
JP2008022625A true true JP2008022625A (en) 2008-01-31

Family

ID=39078181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191881A Withdrawn JP2008022625A (en) 2006-07-12 2006-07-12 Ac-dc converter

Country Status (1)

Country Link
JP (1) JP2008022625A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261077A (en) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp Alternating current-direct current converter, compressor driving device, and air conditioner
WO2010013344A1 (en) 2008-08-01 2010-02-04 三菱電機株式会社 Ac-dc converter, ac-dc converter control method, motor driving device, compressor driving device, air conditioner, and heat pump-type hot-water supply device
JP2010068552A (en) * 2008-09-08 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, control method for the ac-dc converter, heat pump water heater, and air conditioner
JP2010068642A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, compressor driving apparatus, and air conditioner
WO2010064284A1 (en) 2008-12-01 2010-06-10 三菱電機株式会社 Alternating current-direct current converting apparatus and apparatus for driving electric machinery
JP2010239770A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Dc/dc converter and power supply system using the same
JP2011250694A (en) * 2011-09-02 2011-12-08 Mitsubishi Electric Corp Ac-dc converter and control method thereof and heat pump hot water supply apparatus and air conditioner
JP2012105399A (en) * 2010-11-08 2012-05-31 Fuji Electric Co Ltd Ac-dc converter
JP2012191761A (en) * 2011-03-10 2012-10-04 Fuji Electric Co Ltd Ac-dc conversion circuit
WO2013150573A1 (en) * 2012-04-06 2013-10-10 富士電機株式会社 Rectifier circuit
CN104242605A (en) * 2013-06-07 2014-12-24 台达电子工业股份有限公司 Current equalizing busbar
US8994216B2 (en) 2008-07-30 2015-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
CN106208763A (en) * 2016-08-30 2016-12-07 成都英格瑞德电气有限公司 Rectifying circuit supporting hot plugging function
WO2017179112A1 (en) * 2016-04-12 2017-10-19 東芝三菱電機産業システム株式会社 Converter and power conversion device using same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261077A (en) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp Alternating current-direct current converter, compressor driving device, and air conditioner
US8994216B2 (en) 2008-07-30 2015-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
WO2010013344A1 (en) 2008-08-01 2010-02-04 三菱電機株式会社 Ac-dc converter, ac-dc converter control method, motor driving device, compressor driving device, air conditioner, and heat pump-type hot-water supply device
US8508165B2 (en) 2008-08-01 2013-08-13 Mitsubishi Electric Corporation AC-DC converter, method of controlling the same, motor driver, compressor driver, air-conditioner, and heat pump type water heater
JP2010068552A (en) * 2008-09-08 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, control method for the ac-dc converter, heat pump water heater, and air conditioner
JP2010068642A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, compressor driving apparatus, and air conditioner
JP4642101B2 (en) * 2008-09-11 2011-03-02 三菱電機株式会社 AC-DC converter, a compressor driving device, an air conditioner
EP2164161A3 (en) * 2008-09-11 2011-03-23 Mitsubishi Electric Corporation AC/DC converter for a compressor driver and air conditioner with a troubleshooting mechanism for faulty bidirectional switches
EP2355329A1 (en) * 2008-12-01 2011-08-10 Mitsubishi Electric Corporation Alternating current-direct current converting apparatus and apparatus for driving electric machinery
US8823303B2 (en) 2008-12-01 2014-09-02 Mitsubishi Electric Corporation Alternating-current direct-current converter and electric motor driver
WO2010064284A1 (en) 2008-12-01 2010-06-10 三菱電機株式会社 Alternating current-direct current converting apparatus and apparatus for driving electric machinery
EP2355329A4 (en) * 2008-12-01 2013-05-01 Mitsubishi Electric Corp Alternating current-direct current converting apparatus and apparatus for driving electric machinery
JP2010239770A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Dc/dc converter and power supply system using the same
US8664926B2 (en) 2009-03-31 2014-03-04 Honda Motor Co., Ltd. DC-DC converter and power supplying system using a DC-DC converter
JP2012105399A (en) * 2010-11-08 2012-05-31 Fuji Electric Co Ltd Ac-dc converter
JP2012191761A (en) * 2011-03-10 2012-10-04 Fuji Electric Co Ltd Ac-dc conversion circuit
JP2011250694A (en) * 2011-09-02 2011-12-08 Mitsubishi Electric Corp Ac-dc converter and control method thereof and heat pump hot water supply apparatus and air conditioner
CN104205602A (en) * 2012-04-06 2014-12-10 富士电机株式会社 Rectifier circuit
JP2013219903A (en) * 2012-04-06 2013-10-24 Fuji Electric Co Ltd Rectifier circuit
US9385624B2 (en) 2012-04-06 2016-07-05 Fuji Electric Co., Ltd. Rectifier circuit
WO2013150573A1 (en) * 2012-04-06 2013-10-10 富士電機株式会社 Rectifier circuit
CN104242605A (en) * 2013-06-07 2014-12-24 台达电子工业股份有限公司 Current equalizing busbar
CN104242605B (en) * 2013-06-07 2016-08-10 台达电子工业股份有限公司 Equalizing busbar
WO2017179112A1 (en) * 2016-04-12 2017-10-19 東芝三菱電機産業システム株式会社 Converter and power conversion device using same
CN106208763A (en) * 2016-08-30 2016-12-07 成都英格瑞德电气有限公司 Rectifying circuit supporting hot plugging function

Similar Documents

Publication Publication Date Title
US5808882A (en) Three-phase bridge rectifier
US7116087B2 (en) Current sharing method and apparatus for alternately controlling parallel connected boost PFC circuits
JP2009095160A (en) Power converter
JPH10174442A (en) Converter
US20090168476A1 (en) Bridgeless power factor correction circuit
US8188693B2 (en) DC bus boost method and system for regenerative brake
JP2008259343A (en) Converter-inverter device
CN101499675A (en) Charging circuit and power supply system
JP2001197757A (en) Power converter
US7751212B2 (en) Methods and apparatus for three-phase rectifier with lower voltage switches
US7613018B2 (en) Apparatus and method for supplying DC power source
US20150015181A1 (en) Dc/dc converter
Lin et al. Single-phase power-factor-correction AC/DC converters with three PWM control schemes
US20140369090A1 (en) Inverter apparatus
JP2008022625A (en) Ac-dc converter
EP1643626A2 (en) Direct current power supply apparatus and control method for the same, and a compressor drive apparatus
US20120092911A1 (en) Power conversion apparatus and method
JP2014087134A (en) Dc/dc converter
JP2012249375A (en) Power supply device
JP2009232681A (en) Multilevel inverter
CN102075105A (en) Power conversion equipment
US20110215651A1 (en) Power conversion apparatus
US20150280601A1 (en) Direct power conversion device and method for controlling direct power conversion device
US20080157598A1 (en) Power converting apparatus
JP2010252451A (en) Switching element drive circuit of power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20081215

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091214