JP2008020329A - Remote non-contact sonic speed/heat conductivity measuring method based on measurement of reflected light of pulse laser induced elastic wave attenuation process - Google Patents

Remote non-contact sonic speed/heat conductivity measuring method based on measurement of reflected light of pulse laser induced elastic wave attenuation process Download PDF

Info

Publication number
JP2008020329A
JP2008020329A JP2006192468A JP2006192468A JP2008020329A JP 2008020329 A JP2008020329 A JP 2008020329A JP 2006192468 A JP2006192468 A JP 2006192468A JP 2006192468 A JP2006192468 A JP 2006192468A JP 2008020329 A JP2008020329 A JP 2008020329A
Authority
JP
Japan
Prior art keywords
elastic wave
measurement
pulse laser
light
heat conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006192468A
Other languages
Japanese (ja)
Other versions
JP4831512B2 (en
Inventor
Koyo Shimada
幸洋 島田
Akihiko Nishimura
昭彦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2006192468A priority Critical patent/JP4831512B2/en
Publication of JP2008020329A publication Critical patent/JP2008020329A/en
Application granted granted Critical
Publication of JP4831512B2 publication Critical patent/JP4831512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it is difficult to measure an activation material and a high-temperature material because contact measurement is inevitable theoretically in a presently used sonic speed measuring method and methods for measuring heat conductivity showing the heat propagation efficiency through the material surface of a metal are also variously present but the contact measurement of a temperature is inevitable in these methods in order to precisely detect the temperature. <P>SOLUTION: A sonic wave is generated along the surface or inside of a substance by a theory of an induction light scattering method using a short pulse laser and the sonic speed of the sound wave, which is formed from the time response of reflected or diffracted light when probe light is applied to the sound wave formed place, and heat conductivity are measured at the same time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物質表面における、パルスレーザー誘起弾性波減衰過程の反射光測定による遠隔非接触音速(音波の伝播速度)・熱伝導率測定法に関する。さらに詳しくは、本発明は短パルスレーザー光を用いた誘導光散乱法から物質表面における音速及び熱伝導率を非接触測定し、例えば、原子炉材料の応力腐食割れの原因となる加工硬化層の変性部分の存在(位置及び/又は深さ)の検出を行う測定方法および照射劣化する核破砕中性子源のターゲット水銀容器の健全性検証方法に関する。   The present invention relates to a method for measuring remote non-contact sound velocity (acoustic wave propagation velocity) and thermal conductivity by measuring reflected light in a pulse laser induced elastic wave decay process on a material surface. More specifically, the present invention non-contact measures the sound velocity and thermal conductivity on the material surface from the stimulated light scattering method using a short pulse laser beam, for example, the work hardening layer that causes stress corrosion cracking of the reactor material The present invention relates to a measurement method for detecting the presence (position and / or depth) of a denatured portion and a method for verifying the integrity of a target mercury container of a spallation neutron source that is deteriorated by irradiation.

本発明の方法は、被測定物質がラス材料等の透明固体では、レーザー光を集光する部位を制御することで変性部分が存在する特定箇所の位置及び/又は深さを音波の伝播速度及び熱伝導率により測定することができる。   In the method of the present invention, when the substance to be measured is a transparent solid such as a lath material, the position and / or depth of the specific portion where the denatured portion exists is controlled by controlling the portion where the laser beam is collected, It can be measured by thermal conductivity.

金属組織は機械加工を受けるとその表層に引張応力が残留する。また金属組織はガンマ線や中性子照射などの放射線照射を受けると原子の弾き出しが生じ、硬化及び脆化による破壊を生じる。   When a metal structure is subjected to machining, tensile stress remains on the surface layer. In addition, when a metal structure is irradiated with radiation such as gamma rays or neutron irradiation, atoms are ejected, and are destroyed by hardening and embrittlement.

前記加工硬化層の変性部分は長時間にわたり水環境に曝されることで応力腐食割れを生じることから、これを防ぐべく超短パルスレーザーの集光により原子力用ステンレス鋼材の表層の引張応力が残留した加工硬化層を蒸発除去し、且つ、材料の内部の残留応力を引っ張り側から圧縮側に変化させる手法が提案された。原子炉内部のステンレス機器をはじめとする応力腐食割れの対策技術の開発が進められていて、特許が出願されている(例えば、特許文献1)。この対策技術を効果的に実施するためには、超短パルスレーザーによる蒸発除去を行うべき加工硬化層の位置及び深さを知る必要がある。   Since the modified part of the work hardened layer is exposed to the water environment for a long time, stress corrosion cracking occurs, so that the tensile stress of the surface layer of the stainless steel for nuclear power remains by focusing the ultrashort pulse laser to prevent this. A method has been proposed in which the work hardened layer is removed by evaporation and the residual stress inside the material is changed from the tension side to the compression side. Development of countermeasure technology against stress corrosion cracking including stainless steel equipment inside a nuclear reactor is in progress, and a patent has been filed (for example, Patent Document 1). In order to effectively implement this countermeasure technique, it is necessary to know the position and depth of the work hardened layer to be evaporated and removed by the ultrashort pulse laser.

又、固体の弾性異常を測定する手段として、接触法として超音波振動子からの音波の伝播時間から音速(音波の伝播速度)を測定する超音波法、基準硬度探触子を材料に押し付けて測定するビッカース硬度法がある。非接触法としてはレーザー光を用いるブリルアン散乱法や硬X線を用いるX線応力測定法があるが、どの方法も簡便な方法でなく現場で使用可能な小型装置化や対策技術との組み合わせには適さない。   Also, as a means of measuring solid elastic anomalies, the contact method is an ultrasonic method that measures the speed of sound (the propagation speed of sound waves) from the propagation time of sound waves from an ultrasonic transducer, and a standard hardness probe is pressed against the material. There is a Vickers hardness method to measure. Non-contact methods include the Brillouin scattering method using laser light and the X-ray stress measurement method using hard X-rays. Is not suitable.

また固体の熱伝導率を測定する手段は接触法としてレーザーフラッシュ法、熱線プローブ法、非接触法としてサーモグラフ法があるが、微小領域の測定は困難であり、かつ前記した弾性異常と同時に測定する手段は皆無である。
特開2005-131704号(ステンレス鋼表面の超短パルスレーザー光を用いた応力除去法)
There are two methods for measuring the thermal conductivity of solids: the laser flash method as a contact method, the hot-wire probe method, and the thermograph method as a non-contact method. There is no means to do it.
JP 2005-131704 (Stress relief method using stainless steel surface with ultrashort pulse laser light)

現在最も広く使用される弾性異常診断法である超音波法は、超音波振動子などを測定対象に接触あるいは接着させて音波の伝播時間及び伝搬距離から音速を計測する測定法であるが、原理的に接触測定が不可避であるから、放射化材料及び高温材料の測定は困難である。また、測定振動数が低振動数側に限られること、超音波振動子の小型化には限界があることから微小な領域の材料変性を検知することは不可能である。   The ultrasonic method, which is the most widely used diagnostic method for elastic abnormality, is a measurement method that measures the speed of sound from the propagation time and propagation distance of a sound wave by contacting or bonding an ultrasonic transducer to the measurement object. Since contact measurement is unavoidable, activation material and high temperature material are difficult to measure. Further, since the measurement frequency is limited to the low frequency side and there is a limit to miniaturization of the ultrasonic vibrator, it is impossible to detect material modification in a minute region.

ビッカース硬度法は基準硬度を持つ探触子を材料に押し当てて材料の弾性率を測定する方法である。このため、材料表面の一部の切り出しによる破壊が必要であり、探触子の接触は不可避である。   The Vickers hardness method is a method of measuring the elastic modulus of a material by pressing a probe having a standard hardness against the material. For this reason, destruction by cutting out a part of material surface is required, and contact of a probe is inevitable.

非接触の弾性測定法であるブリルアン散乱法は単一波長化されたレーザー光を材料に照射し、散乱光の波長のドップラーシフトを高精度の分光器である干渉分光計にて測定して弾性率を計測する方法である。この測定に不可欠な高精度な光源および分光器は測定環境に対して極めて繊細かつ高価であり、原子炉や核破砕中性子源の設置される現場での測定や小型装置化は不可能である。   The Brillouin scattering method, which is a non-contact elasticity measurement method, irradiates a material with a single wavelength laser beam, and measures the Doppler shift of the wavelength of the scattered light with an interferometer, which is a high-precision spectrometer. It is a method of measuring the rate. High-precision light sources and spectrometers that are indispensable for this measurement are extremely delicate and expensive for the measurement environment, and it is impossible to carry out measurements on the site where a nuclear reactor or a spallation neutron source is installed or to make a compact device.

同じく非接触の弾性測定法であるX線応力法ではX線管や放射光からの硬X線を材料に照射し、回折線の変化から材料の応力を測定する方法であるが、用いる硬X線は人体に極めて有害であることから放射線管理区域以外の測定は危険であり、また装置も大型になる。   Similarly, the X-ray stress method, which is a non-contact elasticity measurement method, is a method in which a material is irradiated with hard X-rays from an X-ray tube or synchrotron radiation, and the stress of the material is measured from changes in diffraction lines. Measurements outside the radiation control area are dangerous because the wires are extremely harmful to the human body, and the equipment becomes large.

同様に金属の材料表面を熱が伝播する効率をあらわす熱伝導率を測定する手段としては、レーザーフラッシュ熱伝導法が用いられる。これはレーザー光によって局所的に材料の温度を上昇させた後、別の場所で温度の時間変化を記録することで熱伝導率を計測する方法であるが、精度良く温度を検出するためには接触しての温度計測が不可欠である。また試料を熱が伝播するための大きさも必要であり、微小領域の測定は困難である。   Similarly, a laser flash thermal conduction method is used as a means for measuring the thermal conductivity representing the efficiency of heat propagation on the metal material surface. This is a method of measuring the thermal conductivity by recording the time change of the temperature in another place after raising the temperature of the material locally with laser light, but in order to detect the temperature accurately, Temperature measurement in contact is essential. In addition, a size for heat propagation through the sample is also required, and measurement of a minute region is difficult.

非接触で可能な熱伝導率測定として材料からの放射熱温度を計測するサーモグラフ法があるが、計測温度精度を上げることは難しく、かつ微小領域の測定には不向きである。   There is a thermographic method for measuring the radiant heat temperature from a material as a non-contact thermal conductivity measurement, but it is difficult to increase the accuracy of the measurement temperature and is unsuitable for measuring a minute region.

発明を解決するための手段Means for Solving the Invention

本発明では短パルスレーザーを用いた誘導光散乱法の原理にて物質の表面または内部に音波を生成し、その場所にプローブ光を入射した際の反射光または回折光(光検出器への信号光として使用される)の時間応答から生成した音波の伝播速度と熱伝導率の同時測定を行う方法である。   In the present invention, a sound wave is generated on the surface or inside of a substance based on the principle of the stimulated light scattering method using a short pulse laser, and the reflected light or diffracted light (signal to the photodetector) when the probe light is incident on the site. This is a method for simultaneous measurement of the propagation speed and thermal conductivity of a sound wave generated from the time response (used as light).

特に、本発明は、具体的には、応力腐食割れの原因になる加工硬化層の厚みを非接触、迅速、非破壊で検査するレーザーによる新手法に関する。即ち、本発明は、パルスレーザーを光源として使用し、このレーザー光を2分割後に集光して物質表面に照射し、加工硬化層を有する物質表面にレーザー光の干渉による弾性波を誘起し、この弾性波により生じた表面の微小起伏が消失、減衰する過程を別波長のレーザー光による反射光又は回折光の強度変化により観測し、その変化を電気信号に変換し、その信号波形の時間変化により加工硬化層の音速と熱伝導率を同一の光学系で観測するものである。
[発明の効果]
In particular, the present invention relates to a new laser-based method for inspecting the thickness of a work-hardened layer causing stress corrosion cracking in a non-contact, rapid and non-destructive manner. That is, the present invention uses a pulsed laser as a light source, condenses the laser light after being divided into two and irradiates the material surface, induces an elastic wave due to the interference of the laser light on the material surface having the work hardening layer, The process of the disappearance and attenuation of the micro undulations on the surface caused by this elastic wave is observed by the intensity change of the reflected or diffracted light by the laser beam of another wavelength, the change is converted into an electrical signal, and the time change of the signal waveform Thus, the sound velocity and thermal conductivity of the work hardened layer are observed with the same optical system.
[The invention's effect]

本発明によって、パルスレーザに誘起された弾性波により変性した金属材料等の物質の弾性率と熱伝導率の同時測定が可能となり、材料の劣化を予測する多くの情報を提供する。この弾性率は実験結果から得られる音波の伝播速度を下記の数式2にて換算して求められる。さらにこの発明は遠隔から非接触で測定可能であり、且つ、装置の小型化が容易であることから、従来測定が困難であった放射化材料、高温材料の現場観測の方法を提供し、応力腐食割れ対策技術との組み合わせが可能となる。   According to the present invention, it is possible to simultaneously measure the elastic modulus and thermal conductivity of a substance such as a metal material modified by an elastic wave induced by a pulse laser, and provide a lot of information for predicting deterioration of the material. This elastic modulus is obtained by converting the propagation velocity of the sound wave obtained from the experimental result by the following formula 2. Furthermore, the present invention provides a method for on-site observation of radioactive materials and high-temperature materials, which has been difficult to measure in the past, because it can be measured from a remote location in a non-contact manner and the apparatus can be easily downsized. Combination with anti-corrosion cracking technology is possible.

本発明は、上記の課題を解決するものとして、2分割した超短パルスレーザーを同時刻、同一箇所に照射して生じる干渉縞が物質と結合することで弾性波を生成し、この弾性波の伝播に伴う減衰過程を別のレーザー光の反射強度の時間変化として測定する。一連の測定は物質に対して非接触、遠隔より測定が可能であり、初期の時間領域には物質を伝播する弾性波の音速(音波の伝播速度)の情報、長時間の時間領域には熱伝導率の情報が含まれ、同一の装置にて同時測定が可能である。こうして表面変性部分の存在(位置及び/又は深さ)を検出する方法(請求項1)を提供する。   In order to solve the above-mentioned problem, the present invention generates an elastic wave by combining interference fringes generated by irradiating the same part at the same time with an ultrashort pulse laser divided into two, and generates an elastic wave. The decay process associated with the propagation is measured as the time variation of the reflection intensity of another laser beam. A series of measurements can be performed from a remote location without contact with the substance. In the initial time domain, information on the acoustic velocity (acoustic wave velocity) of the elastic wave propagating through the substance, and heat in the long time domain It contains conductivity information and can be measured simultaneously with the same device. Thus, a method for detecting the presence (position and / or depth) of a surface-modified portion is provided (claim 1).

図1は、本発明に係るパルスレーザー誘起弾性波減衰過程の反射光測定を表す図であり、短パルスレーザー1が、偏光ビームスプリッターにより2分割された後、それぞれが長焦点集光レンズ3を通して測定対象試料4の表面に集光照射される。その際、照射表面に2分割された照射レーザーによる干渉縞が生じ、この干渉縞により試料表面に弾性波が誘起され、この誘起された弾性波により試料表面に微小起伏が発生するが、その起伏は減衰、消失する。この照射表面に別波長の連続光レーザー2を検出光として照射し、その反射光又は信号光を光検出器5で検出して電気信号に変換し、この電気信号の時間変化をデジタルオシログラフ6及びパーソナルコンピューター7を用いて表示、記録することにより、その微小起伏の減衰、消失過程をその反射光又は信号光の強度変化として観測することができる。   FIG. 1 is a diagram showing reflected light measurement in a pulse laser induced elastic wave attenuation process according to the present invention. After a short pulse laser 1 is divided into two by a polarization beam splitter, each passes through a long focus condenser lens 3. The surface of the sample 4 to be measured is condensed and irradiated. At that time, an interference fringe due to the irradiation laser divided into two is generated on the irradiation surface, an elastic wave is induced on the sample surface by this interference fringe, and a micro undulation is generated on the sample surface by the induced elastic wave. Decays and disappears. The irradiation surface is irradiated with a continuous light laser 2 of another wavelength as detection light, the reflected light or signal light is detected by the photodetector 5 and converted into an electrical signal, and the time change of this electrical signal is converted into a digital oscillograph 6. And by displaying and recording using the personal computer 7, the attenuation and disappearance process of the micro undulations can be observed as the intensity change of the reflected light or signal light.

また本発明は、上記の音速(音波の伝播速度)と熱伝導率の同時測定による加工硬化層の存在(位置及び/又は深さ)の検出において、原子炉圧力容器壁或いは原子炉圧力容器内のシュラウド又は再循環系配管のステンレス鋼材料から作製した残留応力を有する板状サンプルに適応される方法(請求項2)を提供する。   In addition, the present invention can detect the presence (position and / or depth) of a work-hardened layer by simultaneous measurement of the sound velocity (acoustic wave propagation velocity) and thermal conductivity. A method adapted to a plate-like sample having a residual stress made of a stainless steel material of a shroud or a recirculation system pipe is provided.

また本発明は、上記の音速と熱伝導率の同時測定による照射材料の表面劣化層の存在(位置及び/又は深さ)の検出において、高速中性子に長時間曝露される核破砕中性子源のターゲット容器内壁のステンレス鋼材料に適応される方法(請求項3)を提供する。   The present invention also provides a target for a spallation neutron source that is exposed to fast neutrons for a long time in the detection of the presence (position and / or depth) of the surface degradation layer of the irradiated material by simultaneous measurement of the sound velocity and thermal conductivity. A method (claim 3) adapted to the stainless steel material of the inner wall of the container is provided.

以下、本発明を実施例によって詳細に説明する。材料の硬化を表す残留応力:Tは、一般化されたフックの法則で表記すると以下の関係で表すことができる。   Hereinafter, the present invention will be described in detail by way of examples. Residual stress representing the hardening of the material: T can be expressed by the following relationship when expressed by the generalized Hooke's law.

ここでcは弾性定数、Sは歪みの大きさを表す。この弾性定数は以下の式によって音速:Vの変化として計測可能である。 Here, c represents an elastic constant, and S represents the magnitude of strain. This elastic constant can be measured as a change in sound velocity: V by the following equation.

ここでρは媒質の密度である。こうして音速を計測することで残留応力の変化を検出することができる。 Here, ρ is the density of the medium. By measuring the speed of sound in this way, a change in residual stress can be detected.

使用する超短パルスレーザーの時間幅は生成する弾性波の振動周期時間以下とし、弾性波の時間振動が観測できるものとする。弾性波の波長は2分割した光の波長と交差角で決まる。光の波長が1064nm、交差角が3.2°の時には弾性波の波長は19.2μmとなる。   The time width of the ultrashort pulse laser used is set to be equal to or less than the vibration period time of the generated elastic wave, and the time vibration of the elastic wave can be observed. The wavelength of the elastic wave is determined by the wavelength of the light divided into two and the crossing angle. When the wavelength of light is 1064 nm and the crossing angle is 3.2 °, the wavelength of the elastic wave is 19.2 μm.

2分割した光は交差位置にて集光されているものとし、微小領域のみの測定を可能にするとともに集光による信号光強度の増大を図る。この測定部位の領域の大きさは交差角が6度の時には約20μm四方である。上記測定部位は、2つのレーザーを交差、集光する数10μm程度の領域に限られるので、ガラス材料等の透明固体では、集光する測定部位を制御することで深さ方向の特定箇所の音波の伝播速度及び熱伝導率の測定を行なうことができる。しかし、金属試料等の可視光に対して非透明な物質では試料内部に集光することは不可能であるために表面のみの測定が可能である。   It is assumed that the light divided into two is collected at the crossing position so that only a minute region can be measured and the signal light intensity is increased by the light collection. The size of the region of the measurement site is about 20 μm square when the crossing angle is 6 degrees. Since the measurement site is limited to a region of several tens of μm that intersects and collects two lasers, in a transparent solid such as a glass material, a sound wave at a specific location in the depth direction can be controlled by controlling the measurement site to be collected. It is possible to measure the propagation speed and thermal conductivity of However, since a substance that is not transparent to visible light such as a metal sample cannot be condensed inside the sample, only the surface can be measured.

生成した弾性波を観察するための検出光は、光の干渉縞が作る弾性波を回折格子とみなした時のブラッグ条件を満たす角度で入射させる。すると信号光又は反射光の強度は増大し、直進性も良くなるため信号に寄与しない散乱光の除去がしやすくなる効果を図る。   The detection light for observing the generated elastic wave is incident at an angle that satisfies the Bragg condition when the elastic wave formed by the interference fringes of the light is regarded as a diffraction grating. Then, the intensity of the signal light or reflected light is increased, and the straightness is improved, so that it is possible to easily remove scattered light that does not contribute to the signal.

信号光を検出する光検出器の時間応答は弾性波の振動周期以下の時間分解能を持つ性能のものとし、弾性波の振動が十分観測できるものとする。   The time response of the photodetector for detecting the signal light is assumed to have a performance having a time resolution equal to or less than the vibration period of the elastic wave, and the vibration of the elastic wave can be sufficiently observed.

光検出器で変換された電気信号の時間変化を記録するためのデジタルオシログラフの時間応答は弾性波の振動周期以下の時間分解能を持つ性能のもの、かつ長時間の変化をも記録できる十分な記憶容量を持つ性能のものとする。   The time response of the digital oscillograph for recording the time change of the electrical signal converted by the photo detector has a performance with a time resolution equal to or less than the vibration period of the elastic wave, and is sufficient to record a long time change. It is assumed to have performance with storage capacity.

デジタルオシログラフで記録された回折光又は反射光の時間変化を表す電気信号はパーソナルコンピューターに転送されて記録される。記録された電気信号から非線形最小2乗法を用いて解析を行う。図2及び図3は液体であるエタノール試料で測定された回折光の時間変化の図である。2つの測定は全く同じ機器配置にて行われ、記録する時間領域のみ異なる。   An electric signal representing a time change of diffracted light or reflected light recorded by a digital oscillograph is transferred to a personal computer and recorded. Analysis is performed from the recorded electrical signal using a nonlinear least square method. 2 and 3 are diagrams showing temporal changes in diffracted light measured with an ethanol sample that is a liquid. The two measurements are made with exactly the same equipment arrangement and differ only in the time domain for recording.

記録された回折光の時間変化の信号から非線形最小2乗法を用いて解析を行う。弾性波の減衰振動の振動周期の解析を行う際は10マイクロ秒以下の速い領域の計測データを使用する。弾性波の音速は弾性波の波長と振動周期から算出する。上記の条件では弾性波の波長は19.2μm、また図2の実験結果から算出した振動周期は16ナノ秒であるとき、測定対象の音速は1200m/秒であると算出される。   Analysis is performed using the nonlinear least square method from the recorded time-change signal of the diffracted light. When analyzing the vibration period of the damped vibration of elastic waves, measurement data in the fast region of 10 microseconds or less is used. The acoustic velocity of the elastic wave is calculated from the wavelength of the elastic wave and the vibration period. Under the above conditions, when the wavelength of the elastic wave is 19.2 μm and the vibration period calculated from the experimental result of FIG. 2 is 16 nanoseconds, the sound velocity of the measurement object is calculated to be 1200 m / second.

熱伝導率の解析を行う際は100マイクロ秒程度の遅い領域の計測データを使用する。図3の実験結果から回折光強度の減衰の時定数は120マイクロ秒と算出される。   When analyzing thermal conductivity, measurement data in a slow region of about 100 microseconds is used. From the experimental results of FIG. 3, the time constant of attenuation of the diffracted light intensity is calculated as 120 microseconds.

以上により、同一の光学系による時間領域のみ異なる同一のデータにより音速(音波の伝播速度)測定と熱伝導率測定が可能となる。   As described above, sound velocity (acoustic wave propagation velocity) measurement and thermal conductivity measurement can be performed with the same data that differs only in the time domain by the same optical system.

本手法は、2分割したパルスレーザーの集光を金属表面の照射位置に沿って走査した場合には、加工硬化層の硬化度に応じて金属結晶に誘起される歪により、音速と熱伝導率が変化する。この変化を検出し、加工硬化層の位置、及び/又は厚み若しくは深さを推定することにより応力腐食割れの原因となる加工硬化層を蒸発除去するために必要なパルスレーザー数を求めることができる。これにより、迅速な超短パルスレーザー除去が現場で実施可能となる。即ち、例えば、金属表面に加工硬化層がある場合には、音波の伝播速度が速くなる。これは図2の減衰振動の周期が小さくなることにより判明する。又、同時に減衰振動の減衰時間が小さくなる。これは図2の減衰振動の存在時間に相当する。   In this method, when the focused light of the pulse laser divided into two is scanned along the irradiation position on the metal surface, the sound velocity and thermal conductivity are affected by the strain induced in the metal crystal according to the degree of cure of the work hardening layer. Changes. By detecting this change and estimating the position and / or thickness or depth of the work hardening layer, the number of pulse lasers necessary for evaporating and removing the work hardening layer causing stress corrosion cracking can be obtained. . This enables rapid ultrashort pulse laser removal on site. That is, for example, when there is a work hardened layer on the metal surface, the propagation speed of the sound wave is increased. This is clarified by the decrease in the period of the damped oscillation in FIG. At the same time, the damping time of the damped vibration is reduced. This corresponds to the existence time of the damped oscillation in FIG.

従来、加工硬化層の検出には、ビッカース硬度計のような破壊検査や熱電対や超音波振動子のような接触式の検査に頼っていた。又、放射光X線回折やサーモグラフは、装置が大型であること或いは時間応答性が遅いことや高温環境では使えないなど、いずれも、小型、迅速、簡便なものではなく、応力腐食割れ対策技術と融合させるには不適であった。本発明は、この点を抜本的に革新できる新たな加工硬化層検出技術である。   Conventionally, the work hardened layer has been detected by destructive inspection such as a Vickers hardness tester or contact inspection such as a thermocouple or an ultrasonic vibrator. In addition, synchrotron radiation X-ray diffraction and thermographs are not compact, quick, and simple because they are large in size, slow in time response, and cannot be used in high-temperature environments. It was unsuitable for integrating with technology. The present invention is a new work-hardened layer detection technology that can radically innovate this point.

本発明に係るパルスレーザー誘起弾性波減衰過程の反射光測定を表す図である。It is a figure showing the reflected light measurement of the pulse laser induced elastic wave attenuation | damping process based on this invention. エタノール試料での回折光の測定例。減衰振動の周期が音波の振動を表す図である。この例での振動周期は16nsec、音波の波長は19.2μmであるから、音速値1200m/secが得られる。Measurement example of diffracted light in an ethanol sample. It is a figure in which the period of a damped vibration represents the vibration of a sound wave. In this example, the vibration cycle is 16 nsec and the wavelength of the sound wave is 19.2 μm, so that a sound velocity value of 1200 m / sec is obtained. エタノール試料での回折光の測定例。非振動成分の時間変化は熱伝導による信号強度の減衰に起因することを示す図である。Measurement example of diffracted light in an ethanol sample. It is a figure which shows that the time change of a non-vibration component originates in attenuation | damping of the signal strength by heat conduction.

符号の説明Explanation of symbols

1 短パルスレーザー
2 連続光レーザー
3 長焦点集光レンズ
4 測定対象試料
5 光検出器
6 デジタルオシログラフ
7 パーソナルコンピューター



DESCRIPTION OF SYMBOLS 1 Short pulse laser 2 Continuous light laser 3 Long focus condensing lens 4 Sample to be measured 5 Photo detector 6 Digital oscillograph 7 Personal computer



Claims (4)

物質表面の応力腐食割れの原因となる表面変性部分の存在を非接触検出するための計測方法において、物質の表面に2分割した超短パルスレーザーを同時刻同一箇所に照射して生じる干渉縞が作る弾性波の減衰過程を別のレーザー光の反射強度の時間変化として測定することで、弾性波の速度と熱伝導率を同時に測定し、表面変性部分の存在を検出する方法。   In a measurement method for non-contact detection of the presence of surface-modified parts that cause stress corrosion cracking on the material surface, interference fringes generated by irradiating the surface of the material with an ultrashort pulse laser divided into two at the same time A method of detecting the presence of a surface-modified part by simultaneously measuring the velocity and thermal conductivity of an elastic wave by measuring the decay process of the elastic wave to be produced as the time variation of the reflection intensity of another laser beam. 前記物質が、原子炉圧力容器壁或いは原子炉圧力容器内のシュラウド又は再循環系配管のステンレス鋼材料から作製した残留応力を有する板状サンプルである請求項1に記載の方法。   The method according to claim 1, wherein the substance is a plate sample having a residual stress made from a stainless steel material of a reactor pressure vessel wall or a shroud or recirculation piping in the reactor pressure vessel. 前記物質が、大強度陽子ビームおよび高速中性子ビームに長時間曝露され材料表面が劣化する核破砕中性子源のターゲット水銀容器内壁のステンレス鋼材料である請求項1に記載の方法。   The method according to claim 1, wherein the substance is a stainless steel material of a target mercury container inner wall of a spallation neutron source that is exposed to a high-intensity proton beam and a fast neutron beam for a long period of time and whose surface is deteriorated. 前記物質表面に2分割した超短パルスレーザーを集光、走査した際に、その物質表面の加工硬化層の硬化度に応じて物質表面に誘起される歪に基づいて誘起される弾性波の速度と熱伝導率が変化することにより、この変化を検出して加工硬化層の存在を非接触的に検出することを特徴とする請求項1乃至3のいずれかに記載の方法。



The velocity of the elastic wave induced based on the strain induced on the material surface according to the degree of cure of the work hardening layer on the material surface when the ultrashort pulse laser divided into two is focused on the material surface and scanned. 4. The method according to claim 1, wherein the change is detected and the presence of the work hardened layer is detected in a non-contact manner by changing the thermal conductivity.



JP2006192468A 2006-07-13 2006-07-13 Remote non-contact sound velocity and thermal conductivity measurement method by reflected light measurement of pulse laser induced elastic wave decay process Expired - Fee Related JP4831512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192468A JP4831512B2 (en) 2006-07-13 2006-07-13 Remote non-contact sound velocity and thermal conductivity measurement method by reflected light measurement of pulse laser induced elastic wave decay process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192468A JP4831512B2 (en) 2006-07-13 2006-07-13 Remote non-contact sound velocity and thermal conductivity measurement method by reflected light measurement of pulse laser induced elastic wave decay process

Publications (2)

Publication Number Publication Date
JP2008020329A true JP2008020329A (en) 2008-01-31
JP4831512B2 JP4831512B2 (en) 2011-12-07

Family

ID=39076376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192468A Expired - Fee Related JP4831512B2 (en) 2006-07-13 2006-07-13 Remote non-contact sound velocity and thermal conductivity measurement method by reflected light measurement of pulse laser induced elastic wave decay process

Country Status (1)

Country Link
JP (1) JP4831512B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524060A (en) * 2012-06-22 2015-08-20 コリア アトミック エナジー リサーチ インスティテュート Method for nondestructive evaluation of intergranular stress corrosion cracking (IGSSC) in structural elements made of metal alloys, and method for evaluating the lifetime of structural elements
CN109342575A (en) * 2018-09-06 2019-02-15 北京大学 Elastic wave polarized systems
US10451545B2 (en) 2017-06-22 2019-10-22 Kabushiki Kaisha Toshiba Optical test apparatus and optical test method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172260A (en) * 1986-01-27 1987-07-29 Hitachi Metals Ltd Surface wave probe
JP2000260369A (en) * 1999-03-09 2000-09-22 Toshiba Corp Target for x-ray tube and x-ray tube using it
JP2001343481A (en) * 2000-03-31 2001-12-14 Hitachi Ltd Crack diagnostic method for reactor core internal structure
JP2006524813A (en) * 2003-04-16 2006-11-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thin film evaluation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172260A (en) * 1986-01-27 1987-07-29 Hitachi Metals Ltd Surface wave probe
JP2000260369A (en) * 1999-03-09 2000-09-22 Toshiba Corp Target for x-ray tube and x-ray tube using it
JP2001343481A (en) * 2000-03-31 2001-12-14 Hitachi Ltd Crack diagnostic method for reactor core internal structure
JP2006524813A (en) * 2003-04-16 2006-11-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thin film evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524060A (en) * 2012-06-22 2015-08-20 コリア アトミック エナジー リサーチ インスティテュート Method for nondestructive evaluation of intergranular stress corrosion cracking (IGSSC) in structural elements made of metal alloys, and method for evaluating the lifetime of structural elements
US10451545B2 (en) 2017-06-22 2019-10-22 Kabushiki Kaisha Toshiba Optical test apparatus and optical test method
CN109342575A (en) * 2018-09-06 2019-02-15 北京大学 Elastic wave polarized systems
CN109342575B (en) * 2018-09-06 2024-03-22 北京大学 Elastic wave polarization system

Also Published As

Publication number Publication date
JP4831512B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
Kromine et al. Laser ultrasonic detection of surface breaking discontinuities: scanning laser source technique
Aindow et al. Laser‐generated ultrasonic pulses at free metal surfaces
Millon et al. Development of laser ultrasonics inspection for online monitoring of additive manufacturing
JP4386709B2 (en) Material nondestructive inspection method and apparatus by laser ultrasonic wave
WO2016090589A1 (en) Nondestructive measurement method and device for residual stress of laser ultrasonic metal material
JP2008116209A (en) Ultrasonic multi-echo measurement device
Lee et al. Study on effect of laser-induced ablation for Lamb waves in a thin plate
Hayashi Non-contact imaging of pipe thinning using elastic guided waves generated and detected by lasers
JP5058109B2 (en) Method and apparatus for measuring longitudinal and transverse sound velocities in materials by laser ultrasonic method
Chen et al. Laser-Generated Surface Acoustic Wave Technique for Crack Monitoring-A Review.
Chen et al. All-optical laser-ultrasonic technology for width and depth gauging of rectangular surface-breaking defects
JP4831512B2 (en) Remote non-contact sound velocity and thermal conductivity measurement method by reflected light measurement of pulse laser induced elastic wave decay process
Hosoya et al. Measurements of S0 mode Lamb waves using a high-speed polarization camera to detect damage in transparent materials during non-contact excitation based on a laser-induced plasma shock wave
Rosencwaig et al. Photoacoustic study of laser damage in thin films
JP5072789B2 (en) Method and apparatus for measuring longitudinal and transverse sound velocities in materials by laser ultrasonic method
Kitazawa et al. Laser-induced surface acoustic waves and their detection via diagnostic systems for detecting radiation damage on steel materials of nuclear devices
KR101257203B1 (en) Apparatus and method for evaluating micro damage of materials using nonlinear laser-generated surface wave
Chen et al. A modified synthetic aperture focusing algorithm used for transmission detection based on laser ultrasonics method
Schley et al. Real-time measurement of material elastic properties in a high gamma irradiation environment
Pei et al. A new ultrasonic testing method for residual strain measurement with laser grating
BA et al. A fibre-optic detection system for laser-ultrasound Lamb-wave examination of defects in thin materials
Hayashi Detection of a Defect on the Back of a Pipe by Noncontact Remote Measurements
JP3271994B2 (en) Dimension measurement method
Ruipeng et al. Theoretical and experimental studies on the detection of high-temperature metal surface imperfections using a scanning laser point source method
Wall et al. Irradiation of ultrasonic sensors and adhesive couplants for application in light water reactor primary loop piping and components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees