JP2008010990A - Optical receiver - Google Patents

Optical receiver Download PDF

Info

Publication number
JP2008010990A
JP2008010990A JP2006177363A JP2006177363A JP2008010990A JP 2008010990 A JP2008010990 A JP 2008010990A JP 2006177363 A JP2006177363 A JP 2006177363A JP 2006177363 A JP2006177363 A JP 2006177363A JP 2008010990 A JP2008010990 A JP 2008010990A
Authority
JP
Japan
Prior art keywords
optical receiver
power supply
photoelectric conversion
conversion means
transimpedance amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006177363A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fukuyama
裕之 福山
Michihiro Hirata
道広 平田
Koichi Murata
浩一 村田
Koichi Sano
公一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006177363A priority Critical patent/JP2008010990A/en
Publication of JP2008010990A publication Critical patent/JP2008010990A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the size and power consumption of an optical transmission apparatus by enabling the single power supply operation of an optical receiver and by dispensing with a sequencer for controlling the order of on/off of a power supply when inserting and extracting a live line. <P>SOLUTION: There are provided: first and second photodiodes PD1, PD2, where a first polar terminal is connected to a first power line 200; and a differential transimpedance amplifier 101 that is connected to the first power line 200 and a second power line 300 for operation, where a second polar terminal of the first photodiode PD1 is connected to a non-inverted input terminal, and the second polar terminal of the second photodiode PD2 is connected to an inverted input terminal. Voltage applied across both the ends of the first and second photodiodes PD1, PD2 is within a recommended operating voltage of the first and second photodiodes PD1, PD2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光伝送装置中に用いられ、活線挿抜に対応し、かつ光伝送装置の小型化、低消費電力化に寄与する光受信器の構成技術に関する。   The present invention relates to a configuration technique of an optical receiver that is used in an optical transmission device, supports hot-swapping, and contributes to downsizing and low power consumption of the optical transmission device.

図11は光差動位相変調(以下、光DPSKと称す。)信号受信器(例えば、非特許文献1参照)の構成を示す図である。本光DPSK信号受信器は、マッハ−ツェンダ干渉計400と光受信器500ら構成されている。マッハ−ツェンダ干渉計400は、1ビット遅延器401、光信号が入力する光信号入力端子402、光信号が出力する光信号出力端子403,404を有する。また、光受信器500はトランスインピーダンス増幅器501、フォトダイオードPD3,PD4、トランスインピーダンス増幅器501の電源端子502,503、フォトダイオードPD3,PD4の電源端子504,505、出力端子506を有する。   FIG. 11 is a diagram illustrating a configuration of an optical differential phase modulation (hereinafter referred to as optical DPSK) signal receiver (see, for example, Non-Patent Document 1). This optical DPSK signal receiver includes a Mach-Zehnder interferometer 400 and an optical receiver 500. The Mach-Zehnder interferometer 400 includes a 1-bit delay unit 401, an optical signal input terminal 402 for inputting an optical signal, and optical signal output terminals 403 and 404 for outputting an optical signal. The optical receiver 500 includes a transimpedance amplifier 501, photodiodes PD3 and PD4, power terminals 502 and 503 of the transimpedance amplifier 501, power terminals 504 and 505 of the photodiodes PD3 and PD4, and an output terminal 506.

本光DPSK信号受信器の光入力端子402に位相変調された光信号が入射すると、マッハ−ツェンダ干渉計400の作用により、1ビット遅延器401によって1ビット分の送信時間だけ遅延した光信号の位相と現在の光信号の位相に依存して、位相が同位相の場合には、光出力端子403からフォトダイオードPD3にのみ光が入射し、逆位相の場合には光出力端子404からフォトダイオードPD4にのみ光が入射する。フォトダイオードPD3,PD4は光入力を電流に変換し、その電流値の差がトランスインピーダンス増幅器501に入力される。トランスインピーダンス増幅器501は、フォトダイオードPD3,PD4の電流出力を増幅し、電圧出力に変換して出力端子506に出力する。こうした各部品の動作により、送信器で送出したデータを、出力端子506から得ることができる。   When a phase-modulated optical signal is incident on the optical input terminal 402 of the optical DPSK signal receiver, the optical signal delayed by the transmission time of 1 bit by the 1-bit delay unit 401 by the action of the Mach-Zehnder interferometer 400. Depending on the phase and the phase of the current optical signal, when the phase is the same, light enters only the photodiode PD3 from the light output terminal 403, and when the phase is opposite, the light is output from the light output terminal 404 to the photodiode. Light is incident only on PD4. The photodiodes PD3 and PD4 convert the optical input into a current, and the difference between the current values is input to the transimpedance amplifier 501. The transimpedance amplifier 501 amplifies the current output of the photodiodes PD3 and PD4, converts it into a voltage output, and outputs it to the output terminal 506. The data sent by the transmitter can be obtained from the output terminal 506 by the operation of each of these components.

T.J.Paul,et al.,“3 Gbit/s Optically Preamp1ified Direct Detection DPSK Receiver with 116 photon/bit Sensitivity”,IEE Electoronics letters Vol.29,No.7,pp.614-615,1993T.J.Paul, et al., “3 Gbit / s Optically Preamp1ified Direct Detection DPSK Receiver with 116 photon / bit Sensitivity”, IEE Electoronics letters Vol.29, No.7, pp.614-615,1993

今日の大容量光伝送装置では、波長多重(WDM)が行なわれるため、伝送装置中に図11に示す光DPSK信号受信器が波長多重された通信チャネルの数だけ備え付けられている。このため、伝送装置に用いられる部品は、一部の通信チャネル用の部品を交換する必要があった場合に、他の通信チャネルの動作を停止することなく、該当する部品の搭載されたボードのみを交換できる、活線挿抜に対応する必要がある。一般に、1枚のボードには異なる電圧値を設定した複数の電源が供給されているが、活線挿抜時には、いずれの電源から投入され、あるいはいずれの電源から停止されるのか、順番は保証されない。   In today's large-capacity optical transmission apparatus, wavelength multiplexing (WDM) is performed, and therefore, the optical DPSK signal receiver shown in FIG. 11 is provided in the transmission apparatus by the number of wavelength-multiplexed communication channels. For this reason, the parts used in the transmission device are only boards with the corresponding parts mounted without stopping the operation of other communication channels when it is necessary to replace parts for some communication channels. It is necessary to cope with hot-swapping. In general, a single board is supplied with a plurality of power supplies with different voltage values, but the order in which power is turned on or stopped is not guaranteed during hot-swap. .

ところが、図11に示したような複数の電源端子を有する光DPSK信号受信器がボードに搭載されている場合には、電源投入・停止の順番によっては部品が破壊されることがあるため、ある一定の順番で電源が投入・停止されねばならない。このため、図11に示したような複数の電源端子を有する部品を搭載するボードには、活線挿抜時に電源投入・停止の順番を制御する、シーケンサを備えることが必要となる。   However, when an optical DPSK signal receiver having a plurality of power supply terminals as shown in FIG. 11 is mounted on the board, parts may be destroyed depending on the order of power-on / stop. Power must be turned on and off in a certain order. For this reason, a board on which a component having a plurality of power supply terminals as shown in FIG. 11 is mounted must be equipped with a sequencer that controls the order of power on / off when hot-plugging.

しかしながら、シーケンサを備えると、ボードが大型化する上、消費電力も増加する。こうしたボードは、1つの伝送装置にWDMで多重化された通信チャネルの数だけ備えられているので、光伝送装置の小型化・低消費電力化の障害になっている。   However, the provision of a sequencer increases the board size and power consumption. Such boards are provided as many as the number of communication channels multiplexed by WDM in one transmission apparatus, which is an obstacle to miniaturization and low power consumption of the optical transmission apparatus.

本発明は、こうした問題を解決するためになされたもので、ボード上にシーケンサを必要とせず、単体で活線挿抜に適応可能な光受信器を提供することを目的とする。   The present invention has been made to solve these problems, and it is an object of the present invention to provide an optical receiver that can be adapted for hot-line insertion and removal without requiring a sequencer on the board.

上記目的を達成するために、請求項1にかかる発明の光受信器は、第1の電源線に第1の極性端子が接続された第1および第2の光電変換手段と、前記第1の電源線と第2の電源線に接続されて動作し、前記第1の光電変換手段の第2の極性端子が非反転入力端子に接続され、前記第2の光電変換手段の第2の極性端子が反転入力端子に接続された差動トランスインピーダンス増幅器とを備え、前記第1および第2の光電変換手段の両端間に印加する電圧が、前記第1および第2の光電変換手段の推奨動作電圧内にあるようにしたことを特徴とする。
請求項2にかかる発明の光受信器は、第1の電源線に第1の極性端子が接続された第1および第2の光電変換手段と、前記第1の電源線に一端が接続された電圧調整手段と、前記電圧調整手段の他端と第2の電源線に接続されて動作し、前記第1の光電変換手段の第2の極性端子が非反転入力端子に接続され、前記第2の光電変換手段の第2の極性端子が反転入力端子に接続された差動トランスインピーダンス増幅器とを備え、前記第1および第2の光電変換手段の両端間に印加する電圧が、前記第1および第2の光電変換手段の推奨動作電圧内にあるようにしたことを特徴とする。
請求項3にかかる発明の光受信器は、第1の電源線に一端が接続された電圧調整手段と、前記電圧調整手段の他端に第1の極性端子が接続された第1および第2の光電変換手段と、前記第1の電源線と第2の電源線に接続されて動作し、前記第1の光電変換手段の第2の極性端子が非反転入力端子に接続され、前記第2の光電変換手段の第2の極性端子が反転入力端子に接続された差動トランスインピーダンス増幅器とを備え、前記第1および第2の光電変換手段の両端間に印加する電圧が、前記第1および第2の光電変換手段の推奨動作電圧内にあるようにしたことを特徴とする。
請求項4にかかる発明は、請求項3に記載の光受信器において、前記電圧調整手段に代えて、2個の電圧調整手段を用意し、一方の電圧調整手段と前記第1の光電変換手段を直列接続した第1の直列回路および他方の電圧調整手段と前記第2の光電変換手段を直列接続した第2の直列回路をそれぞれ構成し、前記第1の直列回路を前記第1の電源線と前記差動トランスインピーダンス増幅器の前記非反転入力端子との間に接続し、前記第2の直列回路を前記第1の電源線と前記差動トランスインピーダンス増幅器の前記反転入力端子との間に接続したことを特徴とする。
請求項5にかかる発明は、請求項2、3又は4に記載の光受信器において、前記電圧調整手段が前記差動トランスインピーダンス増幅器と集積化されていることを特徴とする
請求項6にかかる発明は、請求項2、3又は4に記載の光受信器において、前記電圧調整手段が前記第1および第2の光電変換手段と集積化されていることを特徴とする。
請求項7にかかる発明は、請求項2、3又は4に記載の光受信器において、前記第1および第2の光電変換手段と前記電圧調整手段と前記差動トランスインピーダンス増幅器が集積化されていることを特徴とする。
請求項8にかかる発明は、請求項1に記載の光受信器において、前記第1および第2の光電変換手段と前記差動トランスインピーダンス増幅器が集積化されていることを特徴とする。
In order to achieve the above object, an optical receiver according to a first aspect of the present invention comprises: first and second photoelectric conversion units each having a first polarity terminal connected to a first power supply line; The second polarity terminal of the second photoelectric conversion means is operated by being connected to the power supply line and the second power supply line, and the second polarity terminal of the first photoelectric conversion means is connected to the non-inverting input terminal. And a differential transimpedance amplifier connected to the inverting input terminal, and a voltage applied across the first and second photoelectric conversion means is a recommended operating voltage of the first and second photoelectric conversion means. It is characterized by being inside.
According to a second aspect of the present invention, there is provided an optical receiver comprising: first and second photoelectric conversion means having a first polarity terminal connected to a first power supply line; and one end connected to the first power supply line. The voltage adjusting means operates by being connected to the other end of the voltage adjusting means and a second power supply line, the second polarity terminal of the first photoelectric conversion means is connected to a non-inverting input terminal, and the second A differential transimpedance amplifier in which a second polarity terminal of the photoelectric conversion means is connected to an inverting input terminal, and a voltage applied between both ends of the first and second photoelectric conversion means is the first and second It is characterized in that it is within the recommended operating voltage of the second photoelectric conversion means.
According to a third aspect of the present invention, there is provided an optical receiver comprising: a voltage adjusting unit having one end connected to a first power line; and first and second terminals having a first polarity terminal connected to the other end of the voltage adjusting unit. The photoelectric conversion means and the first power supply line and the second power supply line connected to operate, the second polarity terminal of the first photoelectric conversion means is connected to a non-inverting input terminal, and the second A differential transimpedance amplifier in which a second polarity terminal of the photoelectric conversion means is connected to an inverting input terminal, and a voltage applied between both ends of the first and second photoelectric conversion means is the first and second It is characterized in that it is within the recommended operating voltage of the second photoelectric conversion means.
According to a fourth aspect of the present invention, in the optical receiver according to the third aspect, two voltage adjusting units are prepared instead of the voltage adjusting unit, and one voltage adjusting unit and the first photoelectric conversion unit are provided. And a second series circuit in which the other voltage adjusting means and the second photoelectric conversion means are connected in series, respectively, and the first series circuit is the first power line. And the non-inverting input terminal of the differential transimpedance amplifier, and the second series circuit is connected between the first power supply line and the inverting input terminal of the differential transimpedance amplifier. It is characterized by that.
The invention according to claim 5 is the optical receiver according to claim 2, 3 or 4, characterized in that the voltage adjusting means is integrated with the differential transimpedance amplifier. The invention is characterized in that in the optical receiver according to claim 2, 3 or 4, the voltage adjusting means is integrated with the first and second photoelectric conversion means.
According to a seventh aspect of the present invention, in the optical receiver according to the second, third, or fourth aspect, the first and second photoelectric conversion means, the voltage adjusting means, and the differential transimpedance amplifier are integrated. It is characterized by being.
The invention according to claim 8 is the optical receiver according to claim 1, characterized in that the first and second photoelectric conversion means and the differential transimpedance amplifier are integrated.

本発明によれば、光受信器の単一電源動作が可能になり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化することができる。   According to the present invention, a single power supply operation of an optical receiver becomes possible, and a sequencer for controlling the order of power on / off at the time of hot plugging / removing is not required, so the optical transmission apparatus can be reduced in size and reduced in power consumption. can do.

[第1の実施例]
図1は、本発明の第1の実施例の光受信器100Aを示す図である。同図において、200は第1の電源線、300は第2の電源線、101は差動トランスインピーダンス増幅器、102A,102Bは差動出力端子、PD1,PD2は第1、第2のフォトダイオード、103,104は差動トランスインピーダンス増幅器101の第1、第2の電源端子、105はフォトダイオードPD1,PD2の電源端子を表している。
[First embodiment]
FIG. 1 is a diagram showing an optical receiver 100A according to the first embodiment of the present invention. In the figure, 200 is a first power supply line, 300 is a second power supply line, 101 is a differential transimpedance amplifier, 102A and 102B are differential output terminals, PD1 and PD2 are first and second photodiodes, Reference numerals 103 and 104 denote first and second power supply terminals of the differential transimpedance amplifier 101, and reference numeral 105 denotes a power supply terminal of the photodiodes PD1 and PD2.

図7は差動トランスインピーダンス増幅器101の回路構成の例を示したものである。Q1〜Q4はバイポーラトランジスタ、R1〜R4は抵抗、I1〜I3は電流源、1011は差動増幅器、INA、INBはフォトダイオードPD1,PD2に接続される差動入力端子、OUTA,OUTBは差動出力端子102A,102Bに接続される差動出力端子である。同図では、バイポーラトランジスタによる構成例を示したが、電界効果型トランジスタでも同様の回路構成により差動トランスインピーダンス増幅器101を構成することができる。   FIG. 7 shows an example of the circuit configuration of the differential transimpedance amplifier 101. Q1 to Q4 are bipolar transistors, R1 to R4 are resistors, I1 to I3 are current sources, 1011 is a differential amplifier, INA and INB are differential input terminals connected to the photodiodes PD1 and PD2, and OUTA and OUTB are differential. It is a differential output terminal connected to the output terminals 102A and 102B. In the figure, a configuration example using bipolar transistors is shown, but the differential transimpedance amplifier 101 can be configured with a similar circuit configuration even with a field effect transistor.

フォトダイオードPD1,PD2は光入力を電流に変換し、それぞれ差動トランスインピーダンス増幅器101の差動入力端子INA,INBに入力する。差動トランスインピーダンス増幅器101は、電流入力の差を増幅し、電圧出力に変換して差動出力端子OUTA,OUTBに出力する。   The photodiodes PD1 and PD2 convert the optical input into a current and input the current to the differential input terminals INA and INB of the differential transimpedance amplifier 101, respectively. The differential transimpedance amplifier 101 amplifies the difference between the current inputs, converts it into a voltage output, and outputs it to the differential output terminals OUTA and OUTB.

従って、図11の光受信器500の構成とは異なり、図1の光受信器100Aの構成では、フォトダイオードPD1,PD2の同一極性端子が電源端子105に接続され、その出力の減算は差動トランスインピーダンス増幅器101の内部で行われる。また、このとき、差動トランスインピーダンス増幅器101の差動入力端子INA,INBの直流電位は同一であるため、フォトダイオードPD1,PD2の各電源端子は、電源端子105に共通化することができる。更に、差動トランスインピーダンス増幅器101の差動入力端子INA,INBの直流電位と電源線200の電位の差は、フォトダイオードPD1,PD2の推奨動作電圧内にあるため、差動トランスインピーダンス増幅器101が電源端子103を介して直接接続されている電源線200に、フォトダイオードPD1,PD2の電源端子105を共通に接続することが可能となる。本実施例の光受信器100Aは、電源線200と電源線300のいずれかを光伝送装置の接地に接続し、他方の電源線にある一定の電圧を供給して動作されるため、単一電源で動作することが可能になる。   Therefore, unlike the configuration of the optical receiver 500 of FIG. 11, in the configuration of the optical receiver 100A of FIG. 1, the same polarity terminals of the photodiodes PD1 and PD2 are connected to the power supply terminal 105, and the output subtraction is differential. This is performed inside the transimpedance amplifier 101. At this time, since the DC potentials of the differential input terminals INA and INB of the differential transimpedance amplifier 101 are the same, the power terminals of the photodiodes PD1 and PD2 can be shared with the power terminal 105. Furthermore, since the difference between the DC potential of the differential input terminals INA and INB of the differential transimpedance amplifier 101 and the potential of the power supply line 200 is within the recommended operating voltage of the photodiodes PD1 and PD2, the differential transimpedance amplifier 101 It is possible to connect the power supply terminals 105 of the photodiodes PD1 and PD2 in common to the power supply line 200 that is directly connected via the power supply terminal 103. The optical receiver 100A of this embodiment is operated by connecting either the power supply line 200 or the power supply line 300 to the ground of the optical transmission apparatus and supplying a certain voltage to the other power supply line. It becomes possible to operate with a power supply.

このように、本実施例の光受信器100Aは、単一電源で動作し、2つ以上の電源電圧を必要としないため、活線挿抜時に電源投入・停止の順番を制御するシーケンサを光伝送装置に備える必要がなくなり、光伝送装置を小型化・低消費電力化する効果が得られる。   As described above, the optical receiver 100A according to the present embodiment operates with a single power supply and does not require two or more power supply voltages. Therefore, an optical transmission is performed by a sequencer that controls the order of power on / off during hot-swap. There is no need to provide the apparatus, and the effect of reducing the size and reducing the power consumption of the optical transmission apparatus can be obtained.

図2は、本発明の第1の実施例の光受信器100Aの変形例の光受信器100Bを示す図である。符号が図1と共通であるものは説明を省略する。図1の光受信器器100Aでは、フォトダイオードの極性から明らかなように、電源線200の電位をV1、差動トランスインピーダンス増幅器101の差動入力端子INA,INBの直流電位をV2、電源線300の電位をV3とすると、それらの間に、V1>V2>V3という関係がある。   FIG. 2 is a diagram illustrating an optical receiver 100B which is a modification of the optical receiver 100A according to the first embodiment of this invention. Description of the same reference numerals as those in FIG. 1 is omitted. In the optical receiver 100A of FIG. 1, as is apparent from the polarity of the photodiode, the potential of the power supply line 200 is V1, the DC potential of the differential input terminals INA and INB of the differential transimpedance amplifier 101 is V2, and the power supply line When the potential of 300 is V3, there is a relationship of V1> V2> V3 between them.

これに対し、図2の実施例の光受信器100Bは、V3>V2>V1という関係がある場合の構成である。本実施例の光受信器100Bにおいても、光受信器が単一電源で動作することは明白であり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化する効果が得られる。   On the other hand, the optical receiver 100B of the embodiment of FIG. 2 has a configuration in the case where there is a relationship of V3> V2> V1. Also in the optical receiver 100B of this embodiment, it is obvious that the optical receiver operates with a single power source, and a sequencer for controlling the order of power on / off at the time of hot plugging / unplugging is not required. The effect of reducing the size and power consumption can be obtained.

[第2の実施例]
図3は、本発明の第2の実施例の光受信器100Cを示す図である。同図において、106は電圧調整手段、107は電圧調整手段106を電源線200に接続する電源端子であり、その他の符号は図1と共通であるため説明を省略する。本実施例の光受信器100Cは、差動トランスインピーダンス増幅器101の電源端子103を直接に電源線200に接続するように光受信器を構成すると、その電源線200と差動トランスインピーダンス増幅器101の差動入力端子INA,INBの直流電位差が、フォトダイオードPD1,PD2の推奨動作電圧範囲に満たない場合の構成である。
[Second embodiment]
FIG. 3 is a diagram showing an optical receiver 100C according to the second embodiment of the present invention. In the figure, reference numeral 106 denotes voltage adjusting means, 107 denotes a power supply terminal for connecting the voltage adjusting means 106 to the power supply line 200, and the other reference numerals are the same as those in FIG. When the optical receiver 100C of this embodiment is configured so that the power supply terminal 103 of the differential transimpedance amplifier 101 is directly connected to the power supply line 200, the power supply line 200 and the differential transimpedance amplifier 101 are connected to each other. In this configuration, the DC potential difference between the differential input terminals INA and INB is less than the recommended operating voltage range of the photodiodes PD1 and PD2.

本実施例の光受信器100Cによれば、差動トランスインピーダンス増幅器101の電源端子103と電源線200との間に電圧調整手段106を挿入するので、差動トランスインピーダンス増幅器101の差動入力端子INA,INBの直流電位と電源線200の電位との差を、フォトダイオードPD1,PD2の推奨動作電圧内とすることができるため、フォトダイオードPD1,PD2の電源端子105と電圧調整手段106の電源端子107を、電源線200に共通に接続することが可能となる。   According to the optical receiver 100C of the present embodiment, since the voltage adjusting means 106 is inserted between the power supply terminal 103 of the differential transimpedance amplifier 101 and the power supply line 200, the differential input terminal of the differential transimpedance amplifier 101 is used. Since the difference between the DC potential of INA and INB and the potential of the power supply line 200 can be within the recommended operating voltage of the photodiodes PD1 and PD2, the power supply for the power supply terminals 105 and the voltage adjusting means 106 of the photodiodes PD1 and PD2 The terminal 107 can be connected to the power supply line 200 in common.

本実施例の光受信器100Cにおいても、光受信器が単一電源で動作することは明白であり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化する効果が得られる。   Also in the optical receiver 100C of this embodiment, it is obvious that the optical receiver operates with a single power source, and a sequencer for controlling the order of power on / off at the time of hot-swapping is not required. The effect of reducing the size and power consumption can be obtained.

なお、電圧調整手段106は、単純に抵抗で構成することもできるが、図8に示すようにダイオードD1〜D3による構成、図9に示すようにバイポーラトランジスタQ5と抵抗R5,R6を用いた構成、あるいは図10に示すように帰還回路を用いた構成などで実現することができる。図10において、Q6はバイポーラトランジスタ、R7〜R9は抵抗、DZは定電圧ダイオード、1061は差動増幅器である。また、図10に示すように、電圧調整手段106は電源線200だけではなく、電源線300への接続があってもよい。   The voltage adjusting means 106 can be simply constituted by a resistor, but a configuration using diodes D1 to D3 as shown in FIG. 8, and a configuration using bipolar transistor Q5 and resistors R5 and R6 as shown in FIG. Alternatively, it can be realized by a configuration using a feedback circuit as shown in FIG. In FIG. 10, Q6 is a bipolar transistor, R7 to R9 are resistors, DZ is a constant voltage diode, and 1061 is a differential amplifier. As shown in FIG. 10, the voltage adjusting means 106 may be connected not only to the power supply line 200 but also to the power supply line 300.

図4は、本発明の第2の実施例の光受信器100Cの変形例の光受信器100Dを示す図である。同図において、符号が図3と共通であるものは説明を省略する。図3の実施例の光受信器100Cでは、図1の実施例の光受信器100Aと同様に、電源線200の電位をV1、差動トランスインピーダンス増幅器101の差動入力端子INA,INBの直流電位をV2、電源線300の電位をV3とすると、それらの間に、V1>V2>V3という関係がある場合の構成であるが、図4の実施例は、V3>V2>V1という関係がある場合の構成である。本実施例の光受信器100Dにおいても、光受信器が単一電源で動作することは明白であり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化する効果が得られる。   FIG. 4 is a diagram illustrating an optical receiver 100D which is a modification of the optical receiver 100C according to the second embodiment of this invention. In the figure, those having the same reference numerals as those in FIG. In the optical receiver 100C of the embodiment of FIG. 3, as in the optical receiver 100A of the embodiment of FIG. 1, the potential of the power line 200 is V1, and the DC power of the differential input terminals INA and INB of the differential transimpedance amplifier 101 is set. 4 is a configuration in which the relationship of V1> V2> V3 is established between them, where V2> V3> V1, and the potential of the power supply line 300 is V3. In the embodiment of FIG. This is a configuration in some cases. Also in the optical receiver 100D of this embodiment, it is obvious that the optical receiver operates with a single power source, and a sequencer for controlling the order of power on / off at the time of hot plugging / unplugging is not required. The effect of reducing the size and power consumption can be obtained.

[第3の実施例]
図5は、本発明の第3の実施例の光受信器100Eを示す図である。同図において、符号が図3と共通であるものは説明を省略する。本実施例は、差動トランスインピーダンス増幅器101の電源端子103を直接に電源線200に接続するように光受信器を構成すると、電源線200と差動トランスインピーダンス増幅器101の差動入力端子INA,INBの直流電位との差が、フォトダイオードPD1,PD2の推奨動作電圧範囲を超過する場合の構成である。
[Third embodiment]
FIG. 5 is a diagram showing an optical receiver 100E according to the third embodiment of the present invention. In the figure, those having the same reference numerals as those in FIG. In this embodiment, when the optical receiver is configured such that the power supply terminal 103 of the differential transimpedance amplifier 101 is directly connected to the power supply line 200, the differential input terminals INA, In this configuration, the difference between the INB DC potential exceeds the recommended operating voltage range of the photodiodes PD1 and PD2.

本実施例の光受信器100Eによれば、フォトダイオードPD1,PD2の電源端子105と電源線200との間に電圧調整手段106を挿入するので、差動トランスインピーダンス増幅器101の差動入力端子INA,INBの直流電位と電源端子105の電位との差を、フォトダイオードPD1,PD2の推奨動作電圧範囲内とすることができるため、差動トランスインピーダンス増幅器101の電源端子103と電圧調整手段106の電源端子107を、電源線200に共通に接続することが可能となる。   According to the optical receiver 100E of the present embodiment, since the voltage adjusting means 106 is inserted between the power supply terminal 105 of the photodiodes PD1 and PD2 and the power supply line 200, the differential input terminal INA of the differential transimpedance amplifier 101 is inserted. , INB and the potential of the power supply terminal 105 can be within the recommended operating voltage range of the photodiodes PD1 and PD2, so that the power supply terminal 103 of the differential transimpedance amplifier 101 and the voltage adjustment means 106 The power supply terminal 107 can be connected to the power supply line 200 in common.

本実施例の光受信器100Eにおいても、光受信器が単一電源で動作することは明白であり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化する効果が得られる。なお、本実施例においては、フォトダイオードPD1,PD2の共通電源端子105と電源線200との間に電圧調整手段106を挿入したが、電圧調整手段を2個用いて、フォトダイオードPD1,PD2のそれぞれに対して電圧調整手段を個々に挿入しても、同じ効果が得られることは明白である。この場合、フォトダイオードPD1と第1の電圧調整手段の直列回路が電源線200と差動トランスインピーダンス増幅器101の非反転入力端子INAとの間に、フォトダイオードPD2と第2の電圧調整手段の直列回路が電源線200と差動トランスインピーダンス増幅器101の反転入力端子INBとの間に、それぞれ接続される。   Also in the optical receiver 100E of this embodiment, it is obvious that the optical receiver operates with a single power source, and a sequencer for controlling the order of power on / off at the time of hot plugging / unplugging is not required. The effect of reducing the size and power consumption can be obtained. In this embodiment, the voltage adjusting means 106 is inserted between the common power supply terminal 105 of the photodiodes PD1 and PD2 and the power supply line 200. However, two voltage adjusting means are used to connect the photodiodes PD1 and PD2. It is clear that the same effect can be obtained even if the voltage adjusting means is inserted individually for each. In this case, a series circuit of the photodiode PD1 and the first voltage adjusting unit is connected between the power line 200 and the non-inverting input terminal INA of the differential transimpedance amplifier 101, and the photodiode PD2 and the second voltage adjusting unit are connected in series. A circuit is connected between the power line 200 and the inverting input terminal INB of the differential transimpedance amplifier 101, respectively.

図6は、本発明の第3の実施例の光受信器100Eの変形例の光受信器100Fを示す図である。同図において、符号が図5と共通であるものは説明を省略する。図5の実施例の光受信器100Eでは、図1の実施例の光受信器100Aと同様に、電源線200の電位をV1、差動トランスインピーダンス増幅器101の差動入力端子INA,INBの直流電位をV2、電源線300の電位をV3とすると、それらの間に、V1>V2>V3という関係がある場合の構成であるが、図6の実施例の光受信器100Fは、V3>V2>V1という関係がある場合の構成である。本実施例の光受信器100Fにおいても、光受信器が単一電源で動作することは明白であり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化する効果が得られる。   FIG. 6 is a diagram illustrating an optical receiver 100F which is a modification of the optical receiver 100E according to the third embodiment of this invention. In the figure, those having the same reference numerals as those in FIG. In the optical receiver 100E of the embodiment of FIG. 5, as in the optical receiver 100A of the embodiment of FIG. 1, the potential of the power line 200 is V1, and the DC power of the differential input terminals INA and INB of the differential transimpedance amplifier 101 is set. 6 is a configuration in which there is a relationship of V1> V2> V3 between them, and the optical receiver 100F in the embodiment of FIG. This is a configuration when there is a relationship of> V1. Also in the optical receiver 100F of this embodiment, it is clear that the optical receiver operates with a single power source, and a sequencer for controlling the order of power on / off at the time of hot plugging / unplugging is not required. The effect of reducing the size and power consumption can be obtained.

なお、本実施例においても、フォトダイオードPD1,PD2の共通電源端子105と電源線200との間に電圧調整手段106を挿入しているが、電圧調整手段を2個用いて、フォトダイオードPD1,PD2のそれぞれに対して電圧調整手段を個々に挿入しても、同じ効果が得られることは明白である。この場合、フォトダイオードPD1と第1の電圧調整手段の直列回路が電源線200と差動トランスインピーダンス増幅器101の非反転入力端子INAとの間に、フォトダイオードPD2と第2の電圧調整手段の直列回路が電源線200と差動トランスインピーダンス増幅器101の反転入力端子INBとの間に、それぞれ接続される。   In this embodiment, the voltage adjusting means 106 is inserted between the common power supply terminal 105 of the photodiodes PD1 and PD2 and the power supply line 200. However, two photodiodes PD1 and PD2 are used by using two voltage adjusting means. It is obvious that the same effect can be obtained even if the voltage adjusting means is individually inserted for each of the PDs 2. In this case, a series circuit of the photodiode PD1 and the first voltage adjusting unit is connected between the power line 200 and the non-inverting input terminal INA of the differential transimpedance amplifier 101, and the photodiode PD2 and the second voltage adjusting unit are connected in series. A circuit is connected between the power line 200 and the inverting input terminal INB of the differential transimpedance amplifier 101, respectively.

[第4の実施例]
本発明の第4の実施例の光受信器は、第2あるいは第3の実施例の光受信器100C〜100Fにおいて、電圧調整手段106が差動トランスインピーダンス増幅器101と集積化される。電気的な構成は第2あるいは第3の実施例の光受信器100C〜100Fと同一であるので、本実施例の光受信器が単一電源で動作することは明白であり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化する効果が得られる。更に、そうした効果に加え、集積化による小型化・低消費電力化、実装部品点数の減少による低コスト化などの利点がある。
[Fourth embodiment]
In the optical receiver of the fourth embodiment of the present invention, the voltage adjusting means 106 is integrated with the differential transimpedance amplifier 101 in the optical receivers 100C to 100F of the second or third embodiment. Since the electrical configuration is the same as that of the optical receivers 100C to 100F of the second or third embodiment, it is obvious that the optical receiver of this embodiment operates with a single power source. Since a sequencer for controlling the turn-on / stop sequence is not necessary, the optical transmission apparatus can be reduced in size and power consumption can be obtained. In addition to these effects, there are advantages such as downsizing and low power consumption by integration, and cost reduction by reducing the number of mounted components.

[第5の実施例]
本発明の第5の実施例の光受信器は、第2あるいは第3の実施例の光受信器100C〜100Fにおいて、電圧調整手段106がフォトダイオードPD1,PD2と集積化される。電気的な構成は第2あるいは第3の実施例の光受信器100C〜100Fと同一であるので、本実施例の光受信器が単一電源で動作することは明白であり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化する効果が得られる。更に、そうした効果に加え、集積化による小型化・低消費電力化、実装部品点数の減少による低コスト化などの利点がある。本実施例においては、フォトダイオードPD1,PD2、電圧調整手段106が同一チップに集積化されていてもよいし、2個のフォトダイオードPD1,PD2が個別チップとなっている場合には、それぞれに対して電圧調整手段106を集積すればよい。
[Fifth embodiment]
In the optical receiver of the fifth embodiment of the present invention, the voltage adjusting means 106 is integrated with the photodiodes PD1 and PD2 in the optical receivers 100C to 100F of the second or third embodiment. Since the electrical configuration is the same as that of the optical receivers 100C to 100F of the second or third embodiment, it is obvious that the optical receiver of this embodiment operates with a single power source. Since a sequencer for controlling the turn-on / stop sequence is not necessary, the optical transmission apparatus can be reduced in size and power consumption can be obtained. In addition to these effects, there are advantages such as downsizing and low power consumption by integration, and cost reduction by reducing the number of mounted components. In the present embodiment, the photodiodes PD1 and PD2 and the voltage adjusting means 106 may be integrated on the same chip, and when the two photodiodes PD1 and PD2 are individual chips, respectively. On the other hand, the voltage adjusting means 106 may be integrated.

[第6の実施例]
本発明の第6の実施例の光受信器は、第2あるいは第3の実施例の光受信器100C〜100Fにおいて、電圧調整手段106が2つのフォトダイオードPD1,PD2および差動トランスインピーダンス増幅器101とともに集積化される。電気的な構成は第2あるいは第3の実施例の光受信器100C〜100Fと同一であるので、本実施例の光受信器が単一電源で動作することは明白であり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化する効果が得られる。更に、そうした効果に加え、集積化による小型化・低消費電力化、実装部品点数の減少による低コスト化等の効果が著しいという利点がある。
[Sixth embodiment]
The optical receiver of the sixth embodiment of the present invention is the same as the optical receiver 100C to 100F of the second or third embodiment. The voltage adjusting means 106 includes two photodiodes PD1 and PD2 and a differential transimpedance amplifier 101. Integrated with it. Since the electrical configuration is the same as that of the optical receivers 100C to 100F of the second or third embodiment, it is obvious that the optical receiver of this embodiment operates with a single power source. Since a sequencer for controlling the turn-on / stop sequence is not necessary, the optical transmission apparatus can be reduced in size and power consumption can be obtained. Further, in addition to such effects, there is an advantage that effects such as downsizing and low power consumption by integration and cost reduction by reducing the number of mounted parts are remarkable.

[第7の実施例]
本発明の第7の実施例の光受信器は、第1の実施例の光受信器100A,100Bにおいて、2つのフォトダイオードPD1,PD2が差動トランスインピーダンス増幅器101とともに集積化される。電気的な構成は第1の実施例の受信器100A,100Bと同一であるので、本発明の光受信器が単一電源で動作することは明白であり、活線挿抜時に電源投入・停止の順番を制御するシーケンサが不要となるため、光伝送装置を小型化・低消費電力化する効果が得られる。更に、そうした効果に加え、集積化による小型化・低消費電力化、実装部品点数の減少による低コスト化等の効果が著しいという利点がある。
[Seventh embodiment]
In the optical receiver of the seventh embodiment of the present invention, two photodiodes PD1 and PD2 are integrated with the differential transimpedance amplifier 101 in the optical receivers 100A and 100B of the first embodiment. Since the electrical configuration is the same as that of the receivers 100A and 100B of the first embodiment, it is clear that the optical receiver of the present invention operates with a single power source. Since a sequencer for controlling the order becomes unnecessary, the effect of reducing the size and reducing the power consumption of the optical transmission apparatus can be obtained. Further, in addition to such effects, there is an advantage that effects such as downsizing and low power consumption by integration and cost reduction by reducing the number of mounted parts are remarkable.

[他の実施例]
前記第4〜7の実施例において、電源線200および電源線300に接続するための電源端子は、集積回路中で共通になっていてもよいし、共通にせずに個別にボード上の電源線200および電源線300に接続しても良い。
[Other examples]
In the fourth to seventh embodiments, the power supply terminals for connecting to the power supply line 200 and the power supply line 300 may be common in the integrated circuit, or may not be shared, but individually on the board. 200 and the power line 300 may be connected.

また、前記第1〜7の実施例において、フォトダイオードPD1,PD2は、通常使われるPIN型フォトダイオードに限らず、一般の光電気変換手段と置き換えることができる。例えば、アバランシェ・フォトダイオードやMSM受光素子、あるいはフォトトランジスタ等も利用できる。   In the first to seventh embodiments, the photodiodes PD1 and PD2 are not limited to commonly used PIN photodiodes, and can be replaced with general photoelectric conversion means. For example, an avalanche photodiode, an MSM light receiving element, a phototransistor, or the like can be used.

更に、前記第1〜7の実施例において、差動トランスインピーダンス増幅器101は、光受信器に要求される入力範囲において出力振幅が飽和しない線形増幅器でも良いし、出力振幅が飽和するリミツタ増幅器であってもよい。   Furthermore, in the first to seventh embodiments, the differential transimpedance amplifier 101 may be a linear amplifier whose output amplitude is not saturated in the input range required for the optical receiver, or a limiter amplifier whose output amplitude is saturated. May be.

更に、前記第1〜7の実施例において、差動トランスインピーダンス増幅器101の出力端子は、差動出力端子OUTA,OUTBの両方を光受信器の出力端子102A,102Bに取り出しているが、いずれか一方を適切に終端し、非反転出力のみ、あるいは反転出力のみを出力する構成にしても良い。   Further, in the first to seventh embodiments, the output terminal of the differential transimpedance amplifier 101 takes out both the differential output terminals OUTA and OUTB to the output terminals 102A and 102B of the optical receiver. One of them may be appropriately terminated and only non-inverted output or only inverted output may be output.

本発明の第1の実施例の光受信器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical receiver of 1st Example of this invention. 本発明の第1の実施例の光受信器の変形例の構成を示すブロック図である。It is a block diagram which shows the structure of the modification of the optical receiver of 1st Example of this invention. 本発明の第2の実施例の光受信器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical receiver of the 2nd Example of this invention. 本発明の第2の実施例の光受信器の変形例の構成を示すブロック図である。It is a block diagram which shows the structure of the modification of the optical receiver of the 2nd Example of this invention. 本発明の第3の実施例の光受信器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical receiver of the 3rd Example of this invention. 本発明の第3の実施例の光受信器の変形例の構成を示すブロック図である。It is a block diagram which shows the structure of the modification of the optical receiver of the 3rd Example of this invention. 差動トランスインピーダンス増幅器101の構成を示す回路図である。2 is a circuit diagram showing a configuration of a differential transimpedance amplifier 101. FIG. 電圧調整手段106の構成例を示す回路図である。3 is a circuit diagram showing a configuration example of a voltage adjusting means 106. FIG. 電圧調整手段106の構成例を示す回路図である。3 is a circuit diagram showing a configuration example of a voltage adjusting means 106. FIG. 電圧調整手段106の構成例を示す回路図である。3 is a circuit diagram showing a configuration example of a voltage adjusting means 106. FIG. 従来の光受信器の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional optical receiver.

符号の説明Explanation of symbols

100A〜100F:光受信器、101:差動トランスインピーダンス増幅器、102A,102B:差動出力端子、103〜105:電源端子、106:電圧調整手段、107:電源端子
200:電源線
300:電源線
400:マッハ−ツェンダ干渉計、401:1ビット遅延器、402:光入力端子、403:404:光出力端子
500:光受信器、501:トランスインピーダンス増幅器、502〜505:電源端子、506:出力端子
100A to 100F: optical receivers, 101: differential transimpedance amplifiers, 102A and 102B: differential output terminals, 103 to 105: power supply terminals, 106: voltage adjusting means, 107: power supply terminals 200: power supply lines 300: power supply lines 400: Mach-Zehnder interferometer, 401: 1 bit delay device, 402: optical input terminal, 403: 404: optical output terminal 500: optical receiver, 501: transimpedance amplifier, 502 to 505: power supply terminal, 506: output Terminal

Claims (8)

第1の電源線に第1の極性端子が接続された第1および第2の光電変換手段と、前記第1の電源線と第2の電源線に接続されて動作し、前記第1の光電変換手段の第2の極性端子が非反転入力端子に接続され、前記第2の光電変換手段の第2の極性端子が反転入力端子に接続された差動トランスインピーダンス増幅器とを備え、前記第1および第2の光電変換手段の両端間に印加する電圧が、前記第1および第2の光電変換手段の推奨動作電圧内にあるようにしたことを特徴とする光受信器。   First and second photoelectric conversion means having a first polarity terminal connected to a first power supply line, connected to the first power supply line and the second power supply line and operated, and the first photoelectric conversion means A differential transimpedance amplifier having a second polarity terminal of the conversion means connected to a non-inverting input terminal and a second polarity terminal of the second photoelectric conversion means connected to an inverting input terminal; An optical receiver characterized in that a voltage applied between both ends of the first and second photoelectric conversion means is within a recommended operating voltage of the first and second photoelectric conversion means. 第1の電源線に第1の極性端子が接続された第1および第2の光電変換手段と、前記第1の電源線に一端が接続された電圧調整手段と、前記電圧調整手段の他端と第2の電源線に接続されて動作し、前記第1の光電変換手段の第2の極性端子が非反転入力端子に接続され、前記第2の光電変換手段の第2の極性端子が反転入力端子に接続された差動トランスインピーダンス増幅器とを備え、前記第1および第2の光電変換手段の両端間に印加する電圧が、前記第1および第2の光電変換手段の推奨動作電圧内にあるようにしたことを特徴とする光受信器。   First and second photoelectric conversion means having a first polarity terminal connected to a first power supply line, voltage adjustment means having one end connected to the first power supply line, and the other end of the voltage adjustment means Connected to the second power supply line, the second polarity terminal of the first photoelectric conversion means is connected to the non-inverting input terminal, and the second polarity terminal of the second photoelectric conversion means is inverted. A differential transimpedance amplifier connected to the input terminal, and a voltage applied across the first and second photoelectric conversion means is within a recommended operating voltage of the first and second photoelectric conversion means. An optical receiver characterized by being provided. 第1の電源線に一端が接続された電圧調整手段と、前記電圧調整手段の他端に第1の極性端子が接続された第1および第2の光電変換手段と、前記第1の電源線と第2の電源線に接続されて動作し、前記第1の光電変換手段の第2の極性端子が非反転入力端子に接続され、前記第2の光電変換手段の第2の極性端子が反転入力端子に接続された差動トランスインピーダンス増幅器とを備え、前記第1および第2の光電変換手段の両端間に印加する電圧が、前記第1および第2の光電変換手段の推奨動作電圧内にあるようにしたことを特徴とする光受信器。   Voltage adjusting means having one end connected to the first power supply line, first and second photoelectric conversion means having a first polarity terminal connected to the other end of the voltage adjusting means, and the first power supply line Connected to the second power supply line, the second polarity terminal of the first photoelectric conversion means is connected to the non-inverting input terminal, and the second polarity terminal of the second photoelectric conversion means is inverted. A differential transimpedance amplifier connected to the input terminal, and a voltage applied across the first and second photoelectric conversion means is within a recommended operating voltage of the first and second photoelectric conversion means. An optical receiver characterized by being provided. 請求項3に記載の光受信器において、
前記電圧調整手段に代えて、2個の電圧調整手段を用意し、一方の電圧調整手段と前記第1の光電変換手段を直列接続した第1の直列回路および他方の電圧調整手段と前記第2の光電変換手段を直列接続した第2の直列回路をそれぞれ構成し、前記第1の直列回路を前記第1の電源線と前記差動トランスインピーダンス増幅器の前記非反転入力端子との間に接続し、前記第2の直列回路を前記第1の電源線と前記差動トランスインピーダンス増幅器の前記反転入力端子との間に接続したことを特徴とする光受信器。
The optical receiver according to claim 3.
Instead of the voltage adjusting means, two voltage adjusting means are prepared, and a first series circuit in which one voltage adjusting means and the first photoelectric conversion means are connected in series, the other voltage adjusting means, and the second A second series circuit in which the photoelectric conversion means are connected in series, and the first series circuit is connected between the first power line and the non-inverting input terminal of the differential transimpedance amplifier. An optical receiver in which the second series circuit is connected between the first power supply line and the inverting input terminal of the differential transimpedance amplifier.
請求項2、3又は4に記載の光受信器において、
前記電圧調整手段が前記差動トランスインピーダンス増幅器と集積化されていることを特徴とする光受信器。
The optical receiver according to claim 2, 3 or 4,
An optical receiver characterized in that the voltage adjusting means is integrated with the differential transimpedance amplifier.
請求項2、3又は4に記載の光受信器において、
前記電圧調整手段が前記第1および第2の光電変換手段と集積化されていることを特徴とする光受信器。
The optical receiver according to claim 2, 3 or 4,
The optical receiver, wherein the voltage adjusting means is integrated with the first and second photoelectric conversion means.
請求項2、3又は4に記載の光受信器において、
前記第1および第2の光電変換手段と前記電圧調整手段と前記差動トランスインピーダンス増幅器が集積化されていることを特徴とする光受信器。
The optical receiver according to claim 2, 3 or 4,
An optical receiver, wherein the first and second photoelectric conversion means, the voltage adjustment means, and the differential transimpedance amplifier are integrated.
請求項1に記載の光受信器において、
前記第1および第2の光電変換手段と前記差動トランスインピーダンス増幅器が集積化されていることを特徴とする光受信器。
The optical receiver according to claim 1.
An optical receiver characterized in that the first and second photoelectric conversion means and the differential transimpedance amplifier are integrated.
JP2006177363A 2006-06-27 2006-06-27 Optical receiver Pending JP2008010990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177363A JP2008010990A (en) 2006-06-27 2006-06-27 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177363A JP2008010990A (en) 2006-06-27 2006-06-27 Optical receiver

Publications (1)

Publication Number Publication Date
JP2008010990A true JP2008010990A (en) 2008-01-17

Family

ID=39068834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177363A Pending JP2008010990A (en) 2006-06-27 2006-06-27 Optical receiver

Country Status (1)

Country Link
JP (1) JP2008010990A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041158A (en) * 2008-08-01 2010-02-18 Yokogawa Electric Corp Optical receiver
JP2012235376A (en) * 2011-05-06 2012-11-29 Sumitomo Electric Ind Ltd Electronic circuit and light-receiving circuit
JP2014192895A (en) * 2013-03-26 2014-10-06 Excelitas Canada Inc DIFFERENTIAL OPTICAL RECEIVER FOR AVALANCHE PHOTODIODE AND SiPM
EP3145098A1 (en) * 2015-09-16 2017-03-22 Ciena Corporation Method and system for monitoring optical receiver circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382230A (en) * 1989-08-25 1991-04-08 Toshiba Corp Optical transmission system and optical transmitter
JPH09172329A (en) * 1995-12-20 1997-06-30 Fujitsu Ltd Current voltage conversion circuit and photoelectric converter
JP2001177355A (en) * 1999-12-15 2001-06-29 Nec Corp Offset control circuit and optical receiver using the same, and optical communication system
WO2001048914A1 (en) * 1999-12-27 2001-07-05 Fujitsu Limited Signal amplifying circuit and optical signal receiver using the same
JP2003344696A (en) * 2002-03-28 2003-12-03 Agilent Technol Inc Method, device and system for aligning end of optical fiver with light guide
JP2005124085A (en) * 2003-10-20 2005-05-12 Sumitomo Electric Ind Ltd Optical receiver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382230A (en) * 1989-08-25 1991-04-08 Toshiba Corp Optical transmission system and optical transmitter
JPH09172329A (en) * 1995-12-20 1997-06-30 Fujitsu Ltd Current voltage conversion circuit and photoelectric converter
JP2001177355A (en) * 1999-12-15 2001-06-29 Nec Corp Offset control circuit and optical receiver using the same, and optical communication system
WO2001048914A1 (en) * 1999-12-27 2001-07-05 Fujitsu Limited Signal amplifying circuit and optical signal receiver using the same
JP2003344696A (en) * 2002-03-28 2003-12-03 Agilent Technol Inc Method, device and system for aligning end of optical fiver with light guide
JP2005124085A (en) * 2003-10-20 2005-05-12 Sumitomo Electric Ind Ltd Optical receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041158A (en) * 2008-08-01 2010-02-18 Yokogawa Electric Corp Optical receiver
JP2012235376A (en) * 2011-05-06 2012-11-29 Sumitomo Electric Ind Ltd Electronic circuit and light-receiving circuit
JP2014192895A (en) * 2013-03-26 2014-10-06 Excelitas Canada Inc DIFFERENTIAL OPTICAL RECEIVER FOR AVALANCHE PHOTODIODE AND SiPM
EP3145098A1 (en) * 2015-09-16 2017-03-22 Ciena Corporation Method and system for monitoring optical receiver circuit
US9625662B2 (en) 2015-09-16 2017-04-18 Ciena Corporation Method and system having a transimpedance amplifier circuit with a differential current monitoring device for monitoring optical receiver circuit

Similar Documents

Publication Publication Date Title
US10917267B2 (en) Method and system for split voltage domain receiver circuits
US8139956B2 (en) Bi-directional signal transmission system using a dual-purpose pin
CN104518751B (en) Optics receives circuit, optical receiving device and optics and sends system
JP2013510540A (en) High speed communication
JP2008010990A (en) Optical receiver
KR20120128847A (en) Optical transceiver module for controlling power in lane
JP2008010991A (en) Amplifier for receiving light and light receiver using the same
GB2523426A (en) Trans-impedance amplifier arrangement and control module
JP6367984B2 (en) Driver circuit
CN104604137A (en) Driver circuit
US20140218073A1 (en) Driver for high speed electrical-optical modulator interface
US9130682B2 (en) Circuit for setting the voltage potential at the output of a pin photoreceiver and photoreceiver assembly
JP2012019431A (en) Optical data link
KR100623083B1 (en) System for bidirectional transmitting/receiving of optical interconnect data communication
JP2005086376A (en) Photoelectric conversion amplifier circuit, optical reception device, optical transmission device and optical transmission system
Magri et al. Highly practical polarization tracking system
JP2013081064A (en) Photoreceiver
Lothian Demultiplexing 2.48 Gb/s Optical Signals with a Lower-Speed Clocked-Sense-Amplifier-Based Hybrid CMOS/MQW Receiver Array
JP2007124473A (en) Optical communication equipment
JPH0758703A (en) Optical transmission equipment, optical reception equipment, and optical transmission and reception equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607