JP2008006450A - Method and apparatus of bending special-shaped tube and worked automotive part - Google Patents

Method and apparatus of bending special-shaped tube and worked automotive part Download PDF

Info

Publication number
JP2008006450A
JP2008006450A JP2006177071A JP2006177071A JP2008006450A JP 2008006450 A JP2008006450 A JP 2008006450A JP 2006177071 A JP2006177071 A JP 2006177071A JP 2006177071 A JP2006177071 A JP 2006177071A JP 2008006450 A JP2008006450 A JP 2008006450A
Authority
JP
Japan
Prior art keywords
bending
deformed pipe
deformed
pipe
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006177071A
Other languages
Japanese (ja)
Other versions
JP4946206B2 (en
Inventor
Atsushi Tomizawa
淳 富澤
Tokumasa Kameoka
徳昌 亀岡
Goro Yamada
吾郎 山田
Original Assignee
Sumitomo Metal Ind Ltd
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Ind Ltd, 住友金属工業株式会社 filed Critical Sumitomo Metal Ind Ltd
Priority to JP2006177071A priority Critical patent/JP4946206B2/en
Publication of JP2008006450A publication Critical patent/JP2008006450A/en
Application granted granted Critical
Publication of JP4946206B2 publication Critical patent/JP4946206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressive bending method of a special shaped tube excellent in the bending accuracy by which working limit can be remarkably improved regardless of strength level. <P>SOLUTION: In the bending method which is suitable to a special shaped tube having a tapered shape, the bending work is performed in the state where compressive stress is imparted by moving the end to be worked of the special shaped tube in synchronism with the rotation of a rotary bending die while fitting the special shaped tube to the rotary bending die and also moving the feeding end of the special shaped tube faster than the moving speed of the end to be worked while fitting the special shaped tube into the rotary bending die having approximately the same groove as the shape after the bending work by holding both ends composed of the end to be worked of the special shaped tube and a feeding end in the opposite position of the end to be worked or/and by moving a groove guide, having approximately the same groove as the shape of the special shaped tube, which is pushed against the side face of the special shaped tube faster than the feed rate of the special shaped tube. The automotive parts obtained by these working methods are used in the base material of a body or the frame member of the body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、異形管に圧縮応力を付与した曲げ加工方法およびそれで加工された自動車用部品に関し、さらに詳しくは、高強度の部材の曲げ加工限界を大幅に向上させることができる異形管の圧縮曲げ加工方法、およびこの加工方法を用いる曲げ加工装置、並びにこの加工方法で加工された自動車用部品に関するものである。   The present invention relates to a bending method in which compressive stress is applied to a deformed pipe and an automotive part processed with the bending method. More specifically, the present invention relates to a compression bending of a deformed pipe that can greatly improve the bending limit of a high-strength member. The present invention relates to a processing method, a bending apparatus using the processing method, and an automotive part processed by the processing method.
近年、自動車業界においては、地球環境への配慮とともに車体に対する安全性の要求が高まり、自動車部品の軽量化および高強度化に対する要請がますます厳しくなっており、燃費向上や衝突安全性の向上といった観点から、自動車用部品の開発が進められている。このような要請に対応するため、従来とは全く異なる強度レベルからなる高張力鋼板、例えば、引張強さが440MPa以上、780MPa以上、または900MPa以上という高強度の素材が広く用いられるようになっている。   In recent years, in the automobile industry, demands for vehicle safety have increased along with consideration for the global environment, and demands for lighter and higher strength automotive parts have become increasingly strict, such as improved fuel economy and improved collision safety. From the viewpoint, development of automotive parts is in progress. In order to meet such demands, high-strength steel sheets having a completely different strength level from conventional ones, for example, high-strength materials having a tensile strength of 440 MPa or more, 780 MPa or more, or 900 MPa or more are widely used. Yes.
一方、これらの素材の高強度化とともに、従来の自動車用部品の構造を見直すことも行われている。例えば、特許文献1には、センターピラーを対象にして部品構造を見直す提案が示されている。具体的には、車体のセンターピラー部は、上端側が小径、下端側が大径であり、上端側から下端側へ向かい外周形状(断面)が漸次変化する細長の形状をなしていることから、通常のプレス品のスポット溶接による組み立て構造を、テーパ形状の異形管を用いた閉断面構造に変更することにしている。   On the other hand, along with increasing the strength of these materials, the structure of conventional automotive parts is being reviewed. For example, Patent Document 1 discloses a proposal for reviewing a part structure for a center pillar. Specifically, the center pillar part of the vehicle body has a small diameter on the upper end side and a large diameter on the lower end side, and since the outer peripheral shape (cross section) gradually changes from the upper end side to the lower end side, it is normal. The assembly structure of the pressed product by spot welding is changed to a closed cross-sectional structure using a tapered shaped pipe.
従来から用いられていた開断面構造の部品を閉断面にすることにより、部品全体としての剛性や衝突特性が大幅に向上させることができる。また、特許文献1に開示される例によれば、通常のストレート管の形状に替えて、断面形状が長手方向に変化するテーパ形状の異形管を素材に用いることにより、部品の製造工程を簡略化できるとともに、剛性を高め必要な部品強度を確保できることから、自動車用部品の装着スペースや重量を減少させることができるとしている。   By making a part with an open cross-section structure that has been conventionally used a closed cross section, the rigidity and impact characteristics of the whole part can be greatly improved. In addition, according to the example disclosed in Patent Document 1, instead of a normal straight tube shape, a taper-shaped deformed tube whose cross-sectional shape changes in the longitudinal direction is used as a material, thereby simplifying the part manufacturing process. In addition, it is possible to reduce the mounting space and weight of automobile parts because it can increase the rigidity and secure the required component strength.
ところで、上述の通り、製造工程上のメリットを有する異形管であっても、多様な自動車用部品に適用しようとすると、所定形状の異形管に曲げ加工を施すことが必要になる。また、曲げ加工を施した異形管をハイドロフォームの素材として用いることによって、さらに適用範囲を拡大することが可能になり、優れた性能を有する自動車用部品を得ることができる。   By the way, as described above, even if a deformed pipe having merit in the manufacturing process is applied to various automotive parts, it is necessary to bend the deformed pipe having a predetermined shape. Further, by using a deformed pipe subjected to bending as a raw material for the hydroform, the applicable range can be further expanded, and an automotive part having excellent performance can be obtained.
このような異形管の曲げ加工技術の開発要求に対して、特許文献2には、テーパ管の如き棒状素材の曲げ加工方法として、素材と同一の半円形の溝を有し、かつこの溝が周上除々に半径を変え、素材と接触する部分の半径が素材の半径と常に等しくなるように成形されているローラとダイスとによって、テーパ形状の棒状素材を挟み、ローラを回転させながらダイスに沿わせて曲げ変形を行う方法が開示されている。   In response to the development request for bending technology for such a deformed tube, Patent Document 2 discloses a method for bending a rod-shaped material such as a tapered tube, and the groove has the same semicircular groove as the material. By gradually changing the radius around the circumference, the tapered rod-shaped material is sandwiched between the roller and the die that are formed so that the radius of the part in contact with the material is always equal to the radius of the material. A method of bending deformation along it is disclosed.
また、特許文献3には、テーパ管を所定の形状に折り曲げるための曲げ金型と、この曲げ金型に添設したテーパ管を回転ベースにより曲げ金型に沿って加圧しつつ回動するロールガイドとを設けて、このロールガイドの凹溝曲面を曲げ加工後のテーパ管の形状に略同じ曲面により形成し、これらの曲げ金型とロールガイドとによって曲げ加工するテーパ管の曲げ加工装置が提案されている。   Patent Document 3 discloses a bending mold for bending a taper tube into a predetermined shape, and a roll that rotates while pressing the taper tube attached to the bending mold along the bending mold by a rotating base. A taper tube bending apparatus that forms a concave groove curved surface of the roll guide with a curved surface that is substantially the same as the shape of the tapered tube after bending, and is bent by the bending mold and the roll guide. Proposed.
特開2001−321842号公報JP 2001-321842 A 特開昭49−94347号公報JP 49-94347 A 特開2001−47141号公報JP 2001-47141 A
前述の通り、自動車用部品の加工技術の多様化にともなう、テーパ形状の異形管の曲げ加工技術の開発要求に対応し、異形管の加工方法や加工装置が提案されている。しかし、特許文献2、3で提案されているのは、いずれも街路灯等に使用されるテーパ丸管の曲げ加工であり、それほどの加工精度や加工限界が要求される技術ではなく、いわゆる押し付け曲げ加工に基づく加工方法や加工装置である。   As described above, a processing method and a processing apparatus for deformed pipes have been proposed in response to the development requirements for the bending process technology for tapered deformed pipes due to the diversification of processing techniques for automotive parts. However, all proposed in Patent Documents 2 and 3 are bending of tapered round tubes used for street lamps and the like, and are not techniques that require so much processing accuracy and processing limits, but so-called pressing. A processing method and a processing apparatus based on bending.
図1は、特許文献2、3で提案される押し付け曲げ加工の内容を説明する図である。同(a)はローラ2とダイス3との間の溝空間にテーパ丸管(異形管)1を挿入した状態を示し、(b)は曲げ加工の進行状態を示し、(c)は曲げ加工が終了した状態を示している。しかし、押し付け曲げ加工は、単に素管をダイス型に押し付けながら成型する方法であるため、曲げ外周側の割れが発生し易く、また、曲げ内周側に座屈が生じ易く、高強度異形管の曲げ加工に適用するのは困難である。   FIG. 1 is a diagram for explaining the content of the press bending process proposed in Patent Documents 2 and 3. (A) shows a state in which a tapered round tube (deformed tube) 1 is inserted into the groove space between the roller 2 and the die 3, (b) shows the progress of bending, and (c) shows the bending. Indicates a state in which is terminated. However, the pressing bending process is a method in which the raw tube is simply pressed against a die, so that cracking on the outer periphery of the bending is likely to occur, buckling is likely to occur on the inner periphery of the bending, and a high-strength deformed tube It is difficult to apply to the bending process.
特に、自動車車体の軽量化に対応するため、引張強さが440MPa級以上となるような高強度の異形管を曲げ加工する場合には、材料の延性が乏しいため、曲げ外周側に発生する割れが顕著となり、曲げ成形法として採用することができないという問題がある。   In particular, when bending a high-strength deformed tube with a tensile strength of 440 MPa class or higher in order to cope with the weight reduction of automobile bodies, the ductility of the material is poor, and cracks occur on the outer periphery of the bend. Becomes conspicuous and cannot be adopted as a bending method.
本発明は、上述した問題に鑑みてなされたものであり、異形管の曲げ加工に際して、自動車用部品の加工技術の多様化にともない、高強度(引張強さが440MPa級以上)の異形管を成形加工する場合であっても、加工性能を確保することができるとともに、作業能率に優れた異形管の曲げ加工方法、およびこの加工法により得られた自動車用部品を提供することを目的としている。   The present invention has been made in view of the above-described problems. When bending a deformed pipe, a deformed pipe having a high strength (tensile strength of 440 MPa class or more) has been developed in accordance with the diversification of processing technology for automotive parts. An object of the present invention is to provide a method for bending a deformed pipe excellent in working efficiency and an automotive part obtained by this processing method while ensuring processing performance even when forming. .
本発明者らは、前述の課題を達成するため、異形管の曲げ加工限界について各種の曲げ加工方法に基づいて検討を加えた。曲げ加工限界には管の肉厚/外径比(t/D)または矩形断面などの異形管の場合は肉厚/曲げ平面内の製品の幅(t/W)、および曲げ半径/外径比(r/D)または異形管の場合は曲げ半径/曲げ平面内の製品の幅(r/W)、そして異形管の材質が大きく影響を与えることになる。   In order to achieve the above-described problems, the present inventors have studied the bending limit of a deformed pipe based on various bending methods. The bending limit includes the tube thickness / outer diameter ratio (t / D) or, in the case of a deformed tube such as a rectangular cross section, the thickness / width of the product in the bending plane (t / W), and the bending radius / outer diameter. In the case of a ratio pipe (r / D) or a deformed pipe, the bending radius / the width of the product in the bending plane (r / W) and the material of the deformed pipe have a great influence.
図2は、異形管の曲げ加工方法によって加工された自動車の骨格部品の補強材(レインフォース)の外観構成を示す図である。一般的には、異形管を用いて曲げ加工を行う場合には、その加工限界の要因となるのは、曲げ外周側のA部での引張応力による破断(割れ発生)、曲げ内周側のB部での圧縮応力による座屈(しわ発生)、さらに偏平などにみられる断面形状の変形発生である。   FIG. 2 is a diagram showing an external configuration of a reinforcing material (reinforce) for a skeleton component of an automobile processed by the method of bending a deformed pipe. In general, when bending using a deformed tube, the causes of the processing limit are breakage (cracking) due to tensile stress at part A on the outer periphery of the bending, This is buckling (wrinkle generation) due to compressive stress at B part, and further deformation of the cross-sectional shape seen in flattening.
特に、高強度管になると延性が乏しくなるため、高強度の異形管では、曲げ半径Rが小さい場合には曲げ外周側のA部での引張応力による割れの発生が問題になる。このため、異形管の曲げ加工において圧縮力を作用させることによって、曲げ外周側に発生する割れを回避することができる。   In particular, since ductility becomes poor when a high-strength pipe is used, cracking due to tensile stress at the A portion on the outer periphery side of the bending becomes a problem with a high-strength deformed pipe when the bending radius R is small. For this reason, the crack which generate | occur | produces in a bending outer peripheral side can be avoided by making a compression force act in the bending process of a deformed pipe.
ところが、従来では、このような高強度の異形管の曲げ加工において精度の良い加工方法の要求がなされなかったために、このような異形管の曲げ方法は実用化されなかった。さらに、異形管の曲げ加工において曲げ外周側のA部での割れを避けるため、圧縮力を付加する場合には、曲げ内周側のB部には圧縮応力による座屈(しわ発生)が生じ易くなり、この座屈(しわ発生)が加工限界を低下させることになる。   However, conventionally, there has been no demand for a highly accurate processing method in bending such a high-strength deformed tube, so that such a deformed tube bending method has not been put to practical use. Furthermore, in order to avoid cracking at the A part on the outer periphery side of bending when bending a deformed pipe, buckling (wrinkle generation) occurs due to compressive stress at the B part on the inner periphery side when bending is applied. This becomes easier, and this buckling (wrinkle generation) lowers the processing limit.
この圧縮応力による座屈(しわ発生)を防止するには、異形管の曲げ加工の内周側に尖り部を形成させるのが有効である。このことから、圧縮応力を付与した状態で曲げ加工を行う場合に、異形管の曲げ内周側に尖り部を形成させつつ曲げ加工を行うことにより、効果的に圧縮応力による座屈(しわ発生)を防止でき、曲げ加工限界を著しく改善できることを明らかにした。   In order to prevent buckling (wrinkle generation) due to this compressive stress, it is effective to form a sharp portion on the inner peripheral side of the bending of the deformed pipe. Therefore, when bending is performed with compressive stress applied, buckling (wrinkle generation) due to compressive stress is effectively achieved by bending while forming a sharp point on the inner periphery of the deformed tube. ) Can be prevented and the bending limit can be remarkably improved.
さらに、異形管の曲げ加工を行う場合には、管端部をクランプ等で保持しながら曲げ加工を行うため、クランプ力が足りないと、被加工管材を保持できず、加工中にすべり、金型から抜けるおそれがある。また、薄肉管の場合には、内面の保持工具がないとクランプで被加工管材そのものが、潰れてしまう場合がある。厚肉管の場合にはクランプによる潰れのおそれは少ないが、薄肉でも厚肉でも加工中に材料が滑らないように、一定以上の保持力が必要になる。すなわち、内面に保持工具を挿入することによって、内面からの摩擦力が期待できるため、比較的大きなクランプ力を得ることができる。   Furthermore, when bending a deformed pipe, the pipe end is bent while holding it with a clamp, etc., so if the clamping force is insufficient, the pipe material to be processed cannot be held, slipping during processing, There is a risk of falling out of the mold. In the case of a thin-walled tube, the tube material itself may be crushed by the clamp without a holding tool on the inner surface. In the case of a thick tube, there is little risk of crushing due to the clamp, but a holding force of a certain level or more is required so that the material does not slip during processing even if it is thin or thick. That is, since a frictional force from the inner surface can be expected by inserting the holding tool on the inner surface, a relatively large clamping force can be obtained.
圧縮応力を付与した状態で曲げ加工を行う場合において、より現実的な方法として、テーパ形状の被加工管材(以下、「テーパ素管」という)の両端のうち、外径または周長が漸次減少する側の管端部(以下、「小周長側端部」という)を加工端または送り端とする場合には、小周長側端に平行部を設け、内面に中子を装着して圧縮応力を付与した状態で曲げ加工を行うことにより、テーパ素管を滑らせることなく、へこみの発生防止を図りつつ良好な曲げ加工ができる。   When bending with compressive stress applied, a more realistic method is to gradually reduce the outer diameter or circumference of both ends of the tapered pipe material (hereinafter referred to as “taper tube”). If the pipe end on the side to be used (hereinafter referred to as the “small circumferential end”) is used as the machining end or feed end, a parallel section is provided at the small circumferential end and a core is attached to the inner surface. By performing the bending process in a state where a compressive stress is applied, it is possible to perform a favorable bending process while preventing the occurrence of dents without sliding the taper pipe.
一方、テーパ素管の小周長側端部の対極となる、外径または周長が漸次増加する側の管端部(以下、「大周長側端部」という)を加工端または送り端とする場合には、大周長側端に平行部を設け、内面に中子を装着して圧縮応力を付与した状態で曲げ加工を行うのが、へこみの発生防止を図りつつ良好な曲げ成形を図るのに有効である。   On the other hand, the pipe end on the side where the outer diameter or circumference increases gradually (hereinafter referred to as the “large circumference end”), which is the counter electrode of the small circumference end of the taper pipe, is the machining end or feed end. In this case, it is preferable to provide a parallel part at the end of the large circumference side, and to perform bending with a core attached to the inner surface and applying compressive stress. It is effective to plan.
本発明は、上記の知見に基づいて完成されたものであり、下記(1)〜(5)の異形管の曲げ加工方法、および(6)の異形管の曲げ加工装置、並びに(7)の自動車用部品を要旨としている。
(1)軸方向の一方から他方にかけて周長が漸次増加または減少する異形管の曲げ加工方法であって、当該異形管の加工端およびその対極の送り端からなる両端を保持し、前記異形管をその曲げ加工後の形状と略同一の孔型を有する回転曲げダイスに嵌合させつつ、前記異形管の加工端を前記回転曲げダイスの回転に同調して移動させるとともに、前記異形管の送り端を加工端の移動速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とする異形管の曲げ加工方法である(以下、単に「バックブースタータイプの加工方法」という)。
The present invention has been completed on the basis of the above findings, and includes the following (1) to (5) deformed pipe bending method, (6) deformed pipe bending apparatus, and (7) The main point is automotive parts.
(1) A method of bending a deformed pipe whose circumferential length gradually increases or decreases from one side to the other in the axial direction, wherein the deformed pipe is held at both ends including a processed end of the deformed pipe and a feed end of the counter electrode. Is fitted to a rotating bending die having a hole shape substantially the same as the shape after bending, and the processed end of the deformed tube is moved in synchronization with the rotation of the rotating bending die, and the deformed tube is fed. This is a deformed pipe bending method characterized in that bending is performed in a state where compressive stress is applied by moving the end faster than the moving end moving speed (hereinafter simply referred to as “back booster type processing method”). ).
上記バックブースタータイプの加工方法では、前記回転曲げダイスと、異形管の形状と略同一の孔型を有する孔型ガイドとで前記異形管を挟持して曲げ加工を行うことが望ましい。
(2)軸方向の一方から他方にかけて周長が漸次増加または減少する異形管の曲げ加工方法であって、当該異形管の加工端およびその対極の送り端からなる両端を保持し、前記異形管をその曲げ加工後の形状と略同一の孔型を有する回転曲げダイスに嵌合させつつ、前記異形管の加工端を前記回転曲げダイスの回転に同調して移動させるとともに、前記異形管の側面に押し当てられた、当該異形管の形状と略同一の孔型を有する孔型ガイドを前記異形管の送り速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とする異形管の曲げ加工方法である(以下、単に「サイドブースタータイプの加工方法」という)。
(3)軸方向の一方から他方にかけて周長が漸次増加または減少する異形管の曲げ加工方法であって、当該異形管の加工端およびその対極の送り端からなる両端を保持し、前記異形管をその曲げ加工後の形状と略同一の孔型を有する回転曲げダイスに嵌合させつつ、前記異形管の加工端を前記回転曲げダイスの回転に同調して移動させるとともに、前記異形管の送り端を加工端の移動速度より速く移動させ、かつ前記異形管の側面に押し当てられた、当該異形管の形状と略同一の孔型を有する孔型ガイドを前記異形管の送り速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とする異形管の曲げ加工方法である。すなわち、この(3)で規定する曲げ加工方法は、バックブースタータイプの加工方法とサイドブースタータイプの加工方法とを組み合わせた加工方法と言える。
(4)上記(1)〜(3)の異形管の曲げ加工方法においては、前記異形管の割れを防止するように前記圧縮応力を制御すること、さらには、前記異形管の曲げ加工の内周側の一部または全部に尖り部を形成させつつ、圧縮応力を付与した状態で曲げ加工を行うことが望ましい。
(5)上記(1)〜(4)の異形管の曲げ加工方法では、前記異形管の加工端または/および送り端に平行部を設け、この平行部に中子を装着して当該平行部をクランプすることにより、加工端の移動時、または送り端の移動時のすべりを防止することができる。さらに、前記異形管の内面に芯金を装着して内面を拘束しつつ、曲げ加工を行うのが望ましい。
(6)上記(1)〜(3)の異形管の曲げ加工方法を用いる装置であって、前記異形管の曲げ加工後の形状と略同一の孔型を有する回転曲げダイスと、前記異形管の形状と略同一の孔型を有する孔型ガイドと、前記孔型ガイドを前記異形管の側面に押し当てながら所定の速度で当該孔型ガイドを移動可能にする移動手段と、前記異形管の加工端を前記回転曲げダイスに嵌合させ、これと同調して移動させる加工端の保持手段と、前記異形管の送り端を所定の速度で移動可能にする送り端の保持手段と具備し、前記送り端の保持手段を前記加工端の保持手段の移動速度より速く移動させ、または/および前記孔型ガイドの当接手段を前記加工端の保持手段の移動速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とする異形管の曲げ加工装置である。
(7)上記(1)〜(5)の異形管の曲げ加工方法によって加工され、ブレーキペダルおよびシートフレームなどの車体基材、またはリインフォースなどの車体骨格部材に用いられることを特徴とする自動車用部品である。
In the back booster type processing method, it is desirable that the deformed pipe is sandwiched between the rotary bending die and a hole guide having a hole shape substantially the same as the shape of the deformed pipe.
(2) A method of bending a deformed pipe in which the circumference gradually increases or decreases from one side to the other in the axial direction, the both ends including the processed end of the deformed pipe and the feed end of the counter electrode are held, and the deformed pipe Is fitted to a rotating bending die having a hole shape substantially the same as the shape after bending, and the processed end of the deformed tube is moved in synchronization with the rotation of the rotating bending die, and the side surface of the deformed tube is moved. And bending with a compressive stress applied by moving a hole guide having a hole shape substantially the same as the shape of the deformed tube pressed to the feed rate of the deformed tube. This is a method of bending a deformed pipe (hereinafter simply referred to as “side booster type processing method”).
(3) A deformed pipe bending method in which the circumferential length gradually increases or decreases from one side to the other in the axial direction, and holds both ends including the processed end of the deformed pipe and the feed end of the counter electrode, and the deformed pipe Is fitted to a rotating bending die having a hole shape substantially the same as the shape after bending, and the processed end of the deformed tube is moved in synchronization with the rotation of the rotating bending die, and the deformed tube is fed. The end guide is moved faster than the moving speed of the machining end, and the perforated guide, which is pressed against the side surface of the deformed pipe and has a hole shape substantially identical to the shape of the deformed pipe, is moved faster than the feed speed of the deformed pipe. The bending method of the deformed pipe is characterized in that bending is performed in a state where compressive stress is applied. That is, the bending method defined in (3) can be said to be a processing method in which a back booster type processing method and a side booster type processing method are combined.
(4) In the method of bending a deformed pipe according to the above (1) to (3), the compressive stress is controlled so as to prevent cracking of the deformed pipe. It is desirable to perform bending in a state where compressive stress is applied while forming a sharp portion on a part or all of the peripheral side.
(5) In the method for bending a deformed pipe according to (1) to (4), a parallel portion is provided at a processing end or / and a feed end of the deformed tube, and a core is attached to the parallel portion, and the parallel portion Can be prevented from slipping when the machining end moves or when the feed end moves. Furthermore, it is desirable to perform bending while attaching a cored bar to the inner surface of the deformed pipe and restraining the inner surface.
(6) An apparatus using the method for bending a deformed pipe according to the above (1) to (3), the rotating bending die having substantially the same hole shape as the shape after bending of the deformed pipe, and the deformed pipe A hole guide having a hole shape that is substantially the same as the shape of the guide, a moving means that allows the hole guide to move at a predetermined speed while pressing the hole guide against a side surface of the deformed tube, and A processing end holding means for fitting the processing end to the rotary bending die and moving in synchronization therewith, and a feed end holding means for allowing the feed end of the deformed pipe to move at a predetermined speed; Compressive stress by moving the holding means of the feed end faster than the moving speed of the holding means of the machining end and / or moving the contact means of the hole guide faster than the moving speed of the holding means of the machining end Bending can be performed with A bending apparatus profiled tube characterized by.
(7) For automobiles characterized by being processed by the bending method for deformed pipes of the above (1) to (5) and used for vehicle body base materials such as brake pedals and seat frames, or vehicle body skeleton members such as reinforcements. It is a part.
本発明で規定する「異形管」とは、断面形状が軸方向に変化することにより、軸方向の一方から他方にかけて周長が漸次増加または減少するテーパ丸管、テーパ角管、およびこれらの組み合わせからなるテーパ管を意味する。   The “deformed tube” defined in the present invention is a tapered round tube, a tapered square tube, or a combination thereof whose circumferential length gradually increases or decreases from one to the other in the axial direction when the cross-sectional shape changes in the axial direction. The taper tube which consists of.
本発明の異形管の曲げ加工方法によれば、バックブースタータイプの加工方法、またはサイドブースタータイプの加工方法、さらにこれらの組み合わせの加工方法によって、圧縮応力を付与した状態で曲げ加工を行うことにより、さらに望ましくは圧縮応力を制御し、また曲げ加工の内周側の一部または全面に尖り部を形成させつつ曲げ加工を行うことにより、高強度(引張強さが440MPa級以上)の異形管を成形加工する場合であっても、曲げ外周側で発生する破断(割れ発生)や、曲げ内周側で発生する座屈(しわ発生)を抑制し、曲げ加工限界を大幅に向上させることができる。   According to the method for bending a deformed pipe according to the present invention, the back booster type processing method, the side booster type processing method, or a combination of these processing methods is used to perform bending processing in a state where compressive stress is applied. More preferably, the deformed pipe having high strength (tensile strength of 440 MPa class or more) is controlled by controlling the compressive stress and bending while forming a sharp portion on the inner peripheral side of the bending or the entire surface. Even in the case of forming, it is possible to suppress the breakage (cracking) that occurs on the outer periphery of the bend and the buckling (wrinkle) that occurs on the inner periphery of the bend, thereby significantly improving the bending limit. it can.
しかも、成形加工後の曲げ精度に優れ、加工欠陥の少ない自動車用部品を曲げ成形できる。これにより、一層、車体の軽量化とともにコスト低減が図れ、益々、高度化する自動車用部品に対する要求レベルにも対応することができる。   Moreover, it is possible to bend and form automotive parts that have excellent bending accuracy after forming and have few processing defects. As a result, the weight of the vehicle body can be further reduced and the cost can be reduced, and it is possible to meet the increasingly demanded level of automotive parts.
本発明の具体的な内容を(曲げ加工装置および加工方法)、(圧縮応力の制御)、(尖り部の形成)および(端部保持、クランプ方法)に区分して説明する。
(曲げ加工装置および加工方法)
図3は、本発明の曲げ加工方法を実施するための装置構成を示す図であり、(a)は曲げ加工前に異形管をセットした状態を示し、(b)は曲げ加工が進行している状態を示している。図3(a)に示すように、異形管1の先端側にセットされる加工端は、小周長側端部からなり、回転曲げダイス3に設けられた金型クランプ4と締め付けダイ5とでクランプされる。
The specific contents of the present invention will be described by being divided into (bending apparatus and processing method), (control of compressive stress), (formation of sharp part) and (end holding, clamping method).
(Bending device and processing method)
FIG. 3 is a diagram showing a device configuration for carrying out the bending method of the present invention, (a) shows a state where a deformed pipe is set before bending, and (b) shows that the bending process proceeds. It shows the state. As shown in FIG. 3 (a), the processing end set on the distal end side of the deformed tube 1 is composed of a small circumferential end, and a mold clamp 4 and a clamping die 5 provided on the rotary bending die 3. It is clamped with.
一方、異形管1の後端側となる送り端は、大周長側端部からなり、図示されない送り装置に接続されたロッド7に取り付けられた保持装置6と後端クランプダイ8とに挟み込まれた状態で加工装置にセットされる。   On the other hand, the feed end on the rear end side of the deformed tube 1 is composed of a large circumferential end and is sandwiched between a holding device 6 and a rear end clamp die 8 attached to a rod 7 connected to a feed device (not shown). Set in the processing device.
図3に示す加工装置では、異形管1の側面は、別の送り装置(図示せず)に接続されたロッド10に接続された孔型ガイド9に保持されている。孔型ガイド9は、回転曲げダイス3に油圧などで異形管1を押し付けられながら、移動することができる。孔型ガイド9は、異形管1の曲げ加工部を外周側から保持することによって、曲げ外周側での加工形状の変形を防止すると同時に、所定の速度で移動させることによって、異形管1の外表面に圧縮応力を付加させることができる。   In the processing apparatus shown in FIG. 3, the side surface of the deformed tube 1 is held by a hole guide 9 connected to a rod 10 connected to another feeding device (not shown). The hole guide 9 can move while the deformed tube 1 is pressed against the rotary bending die 3 by hydraulic pressure or the like. The perforated guide 9 holds the bent portion of the deformed tube 1 from the outer peripheral side to prevent deformation of the processed shape on the outer peripheral side of the bend, and at the same time moves the outer periphery of the deformed tube 1 by moving at a predetermined speed. A compressive stress can be applied to the surface.
一方、孔型ガイド9の送り速度を異形管1の送り端の送り速度と同じにする場合には、孔型ガイド9と保持装置6とを一体構造することができる。このとき、孔型ガイド9は回転曲げダイス3へ押し付けられるが、リリーフ弁の機構などを用いてこのときの押し付け力が一定になるように制御を行えば、単一の半径R管の曲げだけではなく、複雑な形状の曲げを行うことも可能になる。   On the other hand, when the feed speed of the hole guide 9 is the same as the feed speed of the feed end of the deformed tube 1, the hole guide 9 and the holding device 6 can be integrally formed. At this time, the hole guide 9 is pressed against the rotary bending die 3, but if the pressing force at this time is controlled to be constant by using a relief valve mechanism or the like, only the bending of a single radius R tube is possible. Instead, it is possible to perform bending of a complicated shape.
図4は、本発明が採用する加工装置の回転曲げダイス、締め付けダイおよび孔型ガイドの構成を示す斜視図であり、(a)は回転曲げダイスの構成、(b)は締め付けダイの構成、(c)孔型ガイドの構成をそれぞれ示している。回転曲げダイス3には金型クランプ4が設けられており、これらの内周面には異形管の曲げ加工後の形状と略同一の孔型3aが設けられている。また、締め付けダイ5には異形管の先端部の形状と略同一の孔型5aが設けられ、金型クランプ4とで異形管1の加工端を挟み込む。さらに、孔型ガイド9には異形管の形状と略同一の孔型9aが設けられている。   FIG. 4 is a perspective view showing the configuration of a rotary bending die, a clamping die, and a hole guide of the processing apparatus employed by the present invention, (a) is a configuration of the rotary bending die, (b) is a configuration of the clamping die, (C) The structure of the hole guide is shown. The rotary bending die 3 is provided with a mold clamp 4, and the inner peripheral surface thereof is provided with a hole die 3a having substantially the same shape as that of the deformed tube after bending. Further, the clamping die 5 is provided with a hole mold 5a substantially the same as the shape of the tip of the deformed tube, and the processed end of the deformed tube 1 is sandwiched between the mold clamps 4. Further, the hole guide 9 is provided with a hole mold 9a substantially the same as the shape of the deformed tube.
図4に示す構成からなる金型クランプ4および締め付けダイ5でクランプされた異形管1は、図3(b)に示すように、回転曲げダイス3により加工端が回転され、曲げ加工に進行する。すなわち、異形管1を孔型3aを有する回転曲げダイス3に嵌合させつつ、異形管1の加工端を回転曲げダイス3の回転にともなって移動させ、曲げ加工が進むにつれて、異形管1の曲げ内周部が回転曲げダイス3の孔型3aに拘束され製品形状に保持される。   The deformed tube 1 clamped by the mold clamp 4 and the clamping die 5 having the configuration shown in FIG. 4 is rotated at the processing end by the rotary bending die 3 as shown in FIG. . That is, while the deformed tube 1 is fitted to the rotating bending die 3 having the hole mold 3a, the processed end of the deformed tube 1 is moved with the rotation of the rotating bending die 3, and the bending of the deformed tube 1 proceeds as the bending process proceeds. The bending inner peripheral part is restrained by the hole mold 3a of the rotary bending die 3, and is held in a product shape.
後述するように、異形管の曲げ加工に際し、曲げ内周側に尖り部を形成させつつ加工を行うためには、図4(a)に示す回転曲げダイス3の孔型3aに所定寸法の凹み部を設けて、異形管の加工面を孔型3aに拘束させた状態で回転曲げダイスの回転に同調して移動させることが必要になる。   As will be described later, when bending a deformed tube, in order to perform the processing while forming a sharp portion on the inner circumferential side of the bending, a recess of a predetermined dimension is formed in the hole mold 3a of the rotary bending die 3 shown in FIG. It is necessary to provide a portion and move the deformed pipe in synchronization with the rotation of the rotating bending die in a state where the processed surface of the deformed pipe is constrained by the hole mold 3a.
本発明のバックブースタータイプの加工方法では、異形管の加工端およびその対極の送り端からなる両端を保持し、異形管をその曲げ加工後の形状と略同一の孔型を有する回転曲げダイスに嵌合させつつ、前記異形管の加工端を前記回転曲げダイスの回転に同調して移動させるとともに、前記異形管の送り端を加工端の移動速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴としている。   In the back booster type processing method of the present invention, both ends including the processing end of the deformed tube and the feed end of the counter electrode are held, and the deformed tube is turned into a rotary bending die having a hole shape substantially the same as the shape after bending. A state in which the processing end of the deformed pipe is moved in synchronization with the rotation of the rotary bending die while being fitted, and a compressive stress is applied by moving the feed end of the deformed pipe faster than the moving speed of the processing end. It is characterized by bending.
通常、高強度の異形管では、曲げ内周側での圧縮応力による座屈(しわ発生)が問題になる場合が多いが、高強度でも厚肉からなるテーパ素管を用いて曲げ加工を行う場合には、比較的、曲げ内周側に発生する座屈は問題とならない。このため、高強度でも厚肉からなるテーパ素管を用いる場合に、圧縮応力を付与した状態で曲げ加工を行うことにより、曲げ外周側で引張応力によって発生する割れやへこみを抑制でき、加工限界を向上させることができる。   Usually, a high-strength deformed pipe often has a problem of buckling (wrinkle generation) due to compressive stress on the inner periphery of the bend, but bending is performed using a thick-walled taper pipe with high strength. In some cases, the buckling occurring on the inner peripheral side of the bending is not a problem. For this reason, when using a taper pipe with high strength and thickness, bending and compressing stress can be used to suppress cracks and dents caused by tensile stress on the outer periphery of the bend. Can be improved.
すなわち、本発明のバックブースタータイプの加工方法は、特に、引張強さが440MPa級以上の高強度の異形管を曲げ加工する場合に、テーパ素管の両端をクランプし、送り端を加工端の移動速度より速く移動させて圧縮応力を付与した状態で曲げ成形することにより、異形管の外周表面に圧縮応力を生じさせながら曲げ加工が施されることから、曲げ外周側での引張応力による割れやへこみが発生し難く、加工限界を向上できる。   That is, the back booster type processing method of the present invention clamps both ends of the taper pipe and bends the feed end to the processing end, particularly when bending a high-strength deformed pipe having a tensile strength of 440 MPa or higher. Bending is performed while generating compressive stress on the outer peripheral surface of the deformed tube by bending it while moving it faster than the moving speed and applying compressive stress. It is difficult for dents to occur and the processing limit can be improved.
また、本発明のバックブースタータイプの加工方法は、前記図3に示す孔型ガイド9を必須とするものではないが、回転曲げダイス3と、この孔型ガイド9とで前記異形管を挟持して曲げ加工を行うことにより、曲げ外周側で発生する割れやへこみを抑制できることから、孔型ガイド9を用いるのが望ましい。   Further, the back booster type processing method of the present invention does not require the hole guide 9 shown in FIG. 3, but the deformed pipe is sandwiched between the rotary bending die 3 and the hole guide 9. By performing the bending process, it is preferable to use the hole guide 9 because cracks and dents generated on the outer periphery of the bending can be suppressed.
本発明のサイドブースタータイプの加工方法は、異形管をその曲げ加工後の形状と略同一の孔型を有する回転曲げダイスに嵌合させつつ、前記異形管の加工端を前記回転曲げダイスの回転に同調して移動させるとともに、前記異形管の側面に押し当てられた、当該異形管の形状と略同一の孔型を有する孔型ガイドを前記異形管の送り速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴としている。   In the side booster type processing method of the present invention, the deformed tube is fitted into a rotating bending die having a hole shape substantially the same as the shape after bending, and the processed end of the deformed tube is rotated by the rotating bending die. Compressive stress by moving a hole guide having a hole shape substantially the same as the shape of the deformed tube, which is pressed against the side surface of the deformed tube, faster than the feed rate of the deformed tube. It is characterized in that bending is performed in a state in which is provided.
異形管1の側面に押し当てられた孔型ガイド9は、異形管の断面形状に応じて、異形管1の送り方向に自由に移動させることができる。例えば、後述する図5〜図8に示すように、異形管1の断面形状が、幅方向の厚みTが均一であり、または断面形状が曲げ内周側から曲げ外周側に亘り厚みTが増大する異形管1を曲げ加工する場合には、孔型ガイド9は移動させることができ、異形管1の送り速度と孔型ガイド9の送り速度を個別に設定できる。   The hole guide 9 pressed against the side surface of the deformed tube 1 can be freely moved in the feed direction of the deformed tube 1 according to the cross-sectional shape of the deformed tube. For example, as shown in FIGS. 5 to 8 described later, the cross-sectional shape of the deformed tube 1 has a uniform thickness T in the width direction, or the cross-sectional shape increases from the bending inner peripheral side to the bending outer peripheral side. When bending the deformed pipe 1 to be bent, the hole guide 9 can be moved, and the feed speed of the deformed pipe 1 and the feed speed of the hole guide 9 can be set individually.
この場合に、孔型ガイド9を異形管1の側面に図示しない油圧シリンダーにより押し当てると同時に、異形管の加工端の移動速度より速く移動させることによって、異形管1の曲げ外周側に摩擦力による圧縮力を付加し、外周表面に圧縮応力を発生されることができる。本発明のサイドブースタータイプの加工方法では、このような曲げ外周側に圧縮力を付加する作用により、異形管の曲げ外周側の引張応力による割れ発生を抑制することができる。   In this case, the hole guide 9 is pressed against the side surface of the deformed pipe 1 by a hydraulic cylinder (not shown) and simultaneously moved faster than the moving speed of the processed end of the deformed pipe, whereby a frictional force is exerted on the outer peripheral side of the deformed pipe 1. Compressive force can be applied to generate a compressive stress on the outer peripheral surface. In the side booster type processing method of the present invention, the occurrence of cracks due to the tensile stress on the outer periphery side of the deformed pipe can be suppressed by the action of applying a compressive force to the outer periphery side of the bend.
図5〜図8は、異形管の断面形状に応じて本発明のサイドブースタータイプの加工方法を実施する構成を説明する図である。図5は、異形管の断面形状が、幅方向の厚みTが一定であり、かつ異形管の外周側がフラットにセットできる場合の構成を説明する図であり、(a)はその方法を実施するための装置構成を、(b)はA−A部位が曲げ加工位置に送られたときの孔型ガイドの保持断面を示している。図5に示す構成においては、孔型ガイド9は水平方向への移動となり、比較的に簡易な構造にできる。   5-8 is a figure explaining the structure which implements the side booster type processing method of this invention according to the cross-sectional shape of a deformed pipe. FIG. 5 is a diagram for explaining a configuration in which the cross-sectional shape of the deformed tube has a constant thickness T in the width direction and the outer peripheral side of the deformed tube can be set flat, and (a) implements the method. (B) has shown the holding | maintenance cross section of the hole type | mold guide when an AA site | part is sent to the bending position. In the configuration shown in FIG. 5, the perforated guide 9 is moved in the horizontal direction, and a relatively simple structure can be achieved.
図6は、異形管の断面形状が、幅方向の厚みTが一定でありかつ異形管の外周側がテーパである場合の構成を説明する図であり、(a)はその方法を実施するための装置構成を、(b)はA−AおよびB−B部位が曲げ加工位置に送られたときの孔型ガイドの保持断面を示している。図6に示す構成においては、孔型ガイド9が異形管のテーパ外周面に沿って移動するように、孔型ガイド9の断面構成を変化させる必要がある。   FIG. 6 is a diagram illustrating a configuration in which the cross-sectional shape of the deformed tube has a constant thickness T in the width direction and the outer peripheral side of the deformed tube is tapered, and (a) is a diagram for carrying out the method. (B) has shown the holding | maintenance cross section of the hole type | mold guide when AA and a BB site | part are sent to the bending process position. In the configuration shown in FIG. 6, it is necessary to change the cross-sectional configuration of the hole guide 9 so that the hole guide 9 moves along the tapered outer peripheral surface of the deformed pipe.
図7は、異形管の断面形状が、幅方向の厚みTが一定でありかつ異形管の外周側がテーパである場合に適用できる他の構成を説明する図であり、(a)はその方法を実施するための装置構成を、(b)はA−A、B−BおよびC−C部位が曲げ加工位置に送られたときの孔型ガイドの保持断面を示している。   FIG. 7 is a diagram for explaining another configuration that can be applied when the cross-sectional shape of the deformed tube has a constant thickness T in the width direction and the outer peripheral side of the deformed tube is tapered. (B) has shown the holding | maintenance cross section of the hole type | mold guide when AA, BB, and CC site | parts are sent to the bending process position.
図8は、異形管の断面形状が曲げ内周側から曲げ外周側に亘り厚みTが増大する場合に適用できる構成を説明する図であり、(a)はその方法を実施するための装置構成を、(b)はA−A、B−BおよびC−C部位が曲げ加工位置に送られたときの孔型ガイドの保持断面を示している。   FIG. 8 is a diagram for explaining a configuration that can be applied when the cross-sectional shape of the deformed tube increases in thickness T from the bending inner peripheral side to the bending outer peripheral side, and (a) is a device configuration for carrying out the method. (B) shows the holding cross section of the hole guide when the AA, BB and CC portions are sent to the bending position.
図7、図8に示す構成では、加工後の異形管1のほぼ全幅に、曲げ内周側から外周側の全域に亘り厚みT方向に拘束する孔型を有する回転曲げダイス3を用いて引張曲げ加工を行うが、孔型ガイド9には孔型を設けておらず、単に異形管1の外周面を保持する。そこで、孔型ガイド9を異形管1の側面に図示しない油圧シリンダーにより押し当てることにより、異形管1の曲げ外周側に摩擦力による圧縮力を付加し、外周表面に圧縮応力を発生されることができる。   In the configuration shown in FIG. 7 and FIG. 8, the deformed tube 1 after processing is tensioned by using the rotating bending die 3 having a hole shape constrained in the thickness T direction from the inner peripheral side to the outer peripheral side. Although bending is performed, the hole guide 9 is not provided with a hole mold, and simply holds the outer peripheral surface of the deformed tube 1. Therefore, by pressing the perforated guide 9 against the side surface of the deformed tube 1 with a hydraulic cylinder (not shown), a compressive force is applied to the outer periphery of the deformed tube 1 by a frictional force, and a compressive stress is generated on the outer peripheral surface. Can do.
本発明の加工方法は、バックブースタータイプの加工方法とサイドブースタータイプの加工方法とを組み合わせることができる。すなわち、異形管の加工端およびその対極の送り端からなる両端を保持し、前記異形管をその曲げ加工後の形状と略同一の孔型を有する回転曲げダイスに嵌合させつつ、前記異形管の加工端を前記回転曲げダイスの回転に同調して移動させるとともに、前記異形管の送り端を加工端の移動速度より速く移動させ、かつ前記異形管の側面に押し当てられた、当該異形管の形状と略同一の孔型を有する孔型ガイドを前記異形管の送り速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とすることができる。   The processing method of the present invention can combine a back booster type processing method and a side booster type processing method. That is, holding the both ends consisting of the processed end of the deformed tube and the feed end of the counter electrode, and fitting the deformed tube to a rotating bending die having a hole shape substantially the same as the shape after the bending, The deformed tube is moved in synchronization with the rotation of the rotating bending die, the feed end of the deformed tube is moved faster than the moving speed of the deformed tube, and is pressed against the side surface of the deformed tube. Bending is performed in a state in which a compressive stress is applied by moving a hole guide having a hole shape substantially the same as the shape of the guide tube at a speed higher than the feed speed of the deformed pipe.
本発明のバックブースタータイプの加工方法とサイドブースタータイプの加工方法とを組み合わせることにより、より効果的に異形管の曲げ外周側に摩擦力による圧縮力を付加することができ、異形管の曲げ外周側の引張応力による割れ発生を抑制することができる。   By combining the back booster type processing method and the side booster type processing method of the present invention, it is possible to more effectively add a compressive force due to frictional force on the bending outer periphery side of the deformed pipe, Generation of cracks due to the tensile stress on the side can be suppressed.
本発明の曲げ加工装置は、上述したバックブースタータイプの加工方法、またはサイドブースタータイプの加工方法、さらにこれらを組み合わせた曲げ加工方法を適用できる装置であって、異形管の曲げ加工後の形状と略同一の孔型を有する回転曲げダイスと、前記異形管の形状と略同一の孔型を有する孔型ガイドと、前記孔型ガイドを前記異形管の側面に押し当てながら所定の速度で当該孔型ガイドを移動可能とする移動手段と、前記異形管の加工端を前記回転曲げダイスに嵌合させ、これと同調して移動させる加工端の保持手段と、前記異形管の送り端を所定の速度で移動可能とする送り端の保持手段と具備し、前記送り端の保持手段を前記加工端の保持手段の移動速度より速く移動させ、または/および前記孔型ガイドの移動手段を前記加工端の保持手段の移動速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とする。
(圧縮応力の制御)
本発明の曲げ加工方法は、異形管の送り端を加工端の移動速度より速く移動させ、または/および異形管の側面に押し当てられた孔型ガイドを異形管の送り速度より速く移動させることによって圧縮応力を付与した状態とし、当該異形管の割れを防止するように圧縮応力を制御することを特徴としている。
The bending apparatus of the present invention is an apparatus to which the above-described back booster type processing method or side booster type processing method, and a bending method combining these, can be applied, and the shape of the deformed pipe after bending A rotary bending die having substantially the same hole type, a hole type guide having a hole type substantially the same as the shape of the deformed pipe, and the hole at a predetermined speed while pressing the hole type guide against the side surface of the deformed pipe A moving means for allowing the mold guide to move, a processing end holding means for fitting the processing end of the deformed pipe to the rotating bending die and moving it in synchronism therewith, and a feed end of the deformed pipe are set to a predetermined position. A feed end holding means which can move at a speed, and the feed end holding means is moved faster than the moving speed of the working end holding means, and / or the hole guide moving means is moved forward. Compressive stress by moving faster than the moving speed of the holding means of the working end and performs the bending while applying a.
(Control of compressive stress)
According to the bending method of the present invention, the feed end of the deformed pipe is moved faster than the moving speed of the work end, and / or the hole guide pressed against the side surface of the deformed pipe is moved faster than the feed speed of the deformed pipe. And compressive stress is controlled so as to prevent cracking of the deformed pipe.
すなわち、特に、引張強さが440MPa級以上と高強度の異形管を成形加工する場合に、被加工材の両端をクランプ等によって保持し、送り端を加工端の移動速度より速く移動させことにより、または/および孔型ガイドを異形管の送り速度より速く移動させることによって、曲げ外周側に発生する割れを回避することができる。   That is, in particular, when forming a deformed tube with a tensile strength of 440 MPa class or higher and a high strength, by holding both ends of the workpiece with clamps and moving the feed end faster than the moving speed of the processing end Alternatively, by causing the perforated guide to move faster than the feed rate of the deformed pipe, it is possible to avoid cracks that occur on the outer periphery of the bending.
図9は、本発明のバックブースタータイプの加工方法に適用できる圧縮応力の制御装置の構成例を示す図である。同図では、異形管1の圧縮曲げ加工が進行している状態を示しており、異形管1の先端側にセットされる加工端は、小周長側端部からなり、回転曲げダイス3に設けられた金型クランプ4と締め付けダイ5とでクランプされる。   FIG. 9 is a diagram showing a configuration example of a compressive stress control apparatus applicable to the back booster type processing method of the present invention. The figure shows a state in which the compression bending process of the deformed tube 1 is in progress, and the processing end set on the distal end side of the deformed tube 1 is composed of a small circumferential side end, and is formed on the rotary bending die 3. Clamping is performed by the provided mold clamp 4 and clamping die 5.
一方、異形管1の後端側となる送り端は、大周長側端部からなり、ロッド7に取り付けられた保持装置6と後端クランプダイ8とに挟み込まれた状態で曲げ加工装置にセットされ、ロッド7は応力制御装置13に連結されている。図示する孔型ガイド9は保持装置6と別個に構成される。   On the other hand, the feed end, which is the rear end side of the deformed tube 1, is composed of an end portion on the large circumference side, and is inserted into the bending device while being sandwiched between the holding device 6 attached to the rod 7 and the rear end clamp die 8. The rod 7 is connected to the stress control device 13. The illustrated hole guide 9 is configured separately from the holding device 6.
応力制御装置13は、油圧ポンプに接続された油圧シリンダー14で構成されており、異形管1の曲げ加工部に圧縮応力を付与する必要がある場合には、切替弁の作動により流量調節弁を通じて作動油が油圧シリンダーの下部14bに供給される。このとき、応力制御装置13はリリーフ弁を設定できる構成とし、一定の圧縮応力を付与した状態で曲げ加工を行うことができる。一方、異形管1の曲げ加工部に引張応力を付与する必要がある場合には、切替弁の作動により流量調節弁を通じて作動油が油圧シリンダーの上部14bに供給される。   The stress control device 13 is composed of a hydraulic cylinder 14 connected to a hydraulic pump. When it is necessary to apply a compressive stress to the bending portion of the deformed pipe 1, the flow control valve is operated by operating the switching valve. Hydraulic oil is supplied to the lower part 14b of the hydraulic cylinder. At this time, the stress control device 13 is configured so that a relief valve can be set, and bending can be performed with a certain compressive stress applied. On the other hand, when it is necessary to apply a tensile stress to the bending portion of the deformed pipe 1, the hydraulic oil is supplied to the upper part 14b of the hydraulic cylinder through the flow rate adjustment valve by the operation of the switching valve.
本発明のサイドブースタータイプの加工方法で圧縮応力制御を適用する場合には、孔型ガイド9を異形管1の側面に所定の押付力Pで押し当てるための油圧シリンダーを設けるとともに、孔型ガイド9に設けられるロッド10を、図示しない応力制御装置に連結する必要がある。このロッド10に連結する応力制御装置は、図9に示す応力制御装置13と同様の構成とすることができる。
(尖り部の形成)
本発明の曲げ加工方法では、異形管の送り端を加工端の移動速度より速く移動させ、または/および異形管の側面に押し当てられた孔型ガイドを異形管の送り速度より速く移動させ、圧縮応力を付与した状態で曲げ加工を行う際に、回転曲げダイスに嵌合させて異形管の曲げ加工の内周側の一部または全部に尖り部を形成させるのが望ましい。
When compressive stress control is applied in the side booster type processing method of the present invention, a hydraulic cylinder for pressing the hole guide 9 against the side surface of the deformed pipe 1 with a predetermined pressing force P is provided, and the hole guide It is necessary to connect the rod 10 provided in 9 to a stress control device (not shown). The stress control device connected to the rod 10 can have the same configuration as the stress control device 13 shown in FIG.
(Sharpness formation)
In the bending method of the present invention, the feed end of the deformed pipe is moved faster than the moving speed of the work end, and / or the hole guide pressed against the side surface of the deformed pipe is moved faster than the feed speed of the deformed pipe, When bending is performed in a state where compressive stress is applied, it is desirable to form a sharp portion on a part or all of the inner peripheral side of the bending of the deformed pipe by fitting with a rotating bending die.
前述の通り、圧縮応力を付与した状態で曲げ加工を行う場合には、曲げ内周側での圧縮応力による座屈(しわ発生)が生じ易く、これが加工限界を低下させる要因になる。この圧縮応力による座屈(しわ発生)を防止するには、異形管の曲げ加工の内周側に尖り部を形成させるのが有効になる。したがって、テーパ素管に圧縮応力を付与した状態で曲げ加工を行う場合には、曲げ内周側に尖り部を形成させつつ曲げ加工を行うことにより、加工限界を著しく向上させることができる。   As described above, when bending is performed in a state where compressive stress is applied, buckling (wrinkle generation) due to compressive stress tends to occur on the inner side of the bend, and this causes a reduction in the processing limit. In order to prevent buckling (wrinkle generation) due to this compressive stress, it is effective to form a sharp portion on the inner peripheral side of the bending of the deformed pipe. Therefore, when bending is performed in a state where compressive stress is applied to the taper pipe, the bending limit can be remarkably improved by performing bending while forming a sharp portion on the inner side of the bend.
図10は、本発明の曲げ加工方法によって曲げ内周側に尖り部が形成されたリインフォースの外観構成を示す図であり、(a)は外観正面図であり、(b)は曲げ内周側を示す平面図であり、(c)は平面図のX−X矢視による断面図である。同図に示すように、座屈か発生し易い曲げ内周側のB部に尖り部1aを形成することにより、曲げ内周側に発生し易い座屈を防止することができる。曲げ内周側に尖り部1aを形成するには、前記図4(a)に示す回転曲げダイス3の孔型3aに所定寸法の凹み部を設けて、異形管1を孔型3aを有する回転曲げダイス3に嵌合させつつ曲げ加工が行われる。   FIGS. 10A and 10B are diagrams showing an external configuration of a reinforcement in which a sharpened portion is formed on the inner side of the bending by the bending method of the present invention, FIG. 10A is an external front view, and FIG. 10B is an inner side of the bending. (C) is sectional drawing by XX arrow of a top view. As shown in the figure, buckling that is likely to occur on the bending inner peripheral side can be prevented by forming the sharpened portion 1a at the B portion on the bending inner peripheral side where buckling is likely to occur. In order to form the sharpened portion 1a on the inner side of the bend, a hollow portion 3a of the rotary bending die 3 shown in FIG. 4A is provided with a recessed portion of a predetermined size, and the deformed tube 1 is rotated with the hole shape 3a. Bending is performed while being fitted to the bending die 3.
曲げ内周側における座屈発生は、図10(c)に示すように、異形管1の曲げ加工の内周側に形成された尖り部1aの尖り量δの影響を受ける。例えば、尖り量δを1mmから3mmに増加し、尖り角度を増加させることにより、内周側の座屈発生の防止を図ることが有効であり、著しく圧縮曲げの加工限界を向上させることができる。
(端部保持、クランプ方法)
異形管の圧縮曲げ加工の際し、その両端をクランプするのにともない加工端または送り端の移動時にすべりが発生し、曲げ加工部に充分な圧縮応力を付与することができない事態が発生するおそれがある。これに対し、本発明の曲げ加工方法では、圧縮応力を付与するに際し、実操業を想定した場合により実現可能な対策として、異形管の加工端または/および送り端に平行部を設け、この平行部に中子を装着して当該平行部をクランプし、加工端の移動時、または送り端の移動時のすべりを防止する手段を採用できる。
As shown in FIG. 10C, the occurrence of buckling on the bending inner peripheral side is affected by the sharpness amount δ of the sharpened portion 1a formed on the inner peripheral side of the deformed pipe 1 in the bending process. For example, it is effective to prevent the occurrence of buckling on the inner peripheral side by increasing the sharpness amount δ from 1 mm to 3 mm and increasing the sharpness angle, and the processing limit of compression bending can be remarkably improved. .
(End holding, clamping method)
When compressing and bending a deformed pipe, both ends of the deformed pipe are clamped and slipping occurs when the processing end or feed end moves, which may cause a situation where sufficient compressive stress cannot be applied to the bent portion There is. On the other hand, in the bending method of the present invention, when applying compressive stress, as a measure that can be realized when actual operation is assumed, a parallel portion is provided at the processing end or / and the feeding end of the deformed pipe, and this parallel processing is performed. It is possible to employ a means for attaching a core to the part and clamping the parallel part to prevent slipping when the machining end moves or when the feed end moves.
図11は、本発明の曲げ方法で採用できる保持工具とその装着要領を説明する斜視図である。より現実的な方法として、テーパ素管1の両端のうち、小周長側端部または大周長側端部に拘わらず、加工端または/および送り端に平行部1bを設け、内面に円筒状の中子15を装着する。そして、曲げ加工にともなって、金型クランプ4および締め付けダイス5で平行部1bをクランプすることにより、テーパ素管1の加工端または/および送り端がすべらず良好な曲げ加工ができる。   FIG. 11 is a perspective view for explaining a holding tool that can be employed in the bending method of the present invention and how to attach the holding tool. As a more practical method, a parallel portion 1b is provided at the machining end or / and the feed end regardless of the small circumferential end or the large circumferential end of both ends of the taper tube 1, and the inner surface is cylindrical. A core 15 is attached. As the bending process is performed, the parallel part 1b is clamped by the mold clamp 4 and the clamping die 5, so that the processed end or / and the feed end of the taper pipe 1 are not slipped, and a favorable bending process can be performed.
図11に示す構成では、小周長側端部を加工端とし、この加工端に平行部1bを設けている。そして、図示するように、中子15を保持工具として用いれば、テーパ素管1の小周長側端部の管端から中子を挿入することができ、作業能率を落とすことなく曲げ加工を行うことができる。   In the configuration shown in FIG. 11, the end portion on the small circumferential length side is the processing end, and the parallel portion 1b is provided at the processing end. Then, as shown in the figure, if the core 15 is used as a holding tool, the core can be inserted from the tube end of the small circumferential side end portion of the taper pipe 1, and bending can be performed without reducing the work efficiency. It can be carried out.
図12は、本発明が採用する芯金の断面構成を示す図である。本発明の圧縮曲げ加工方法では、図7に示すような異形管の内面形状に略一致した曲げに追従可能な芯金16を用いることによって、異形管の内面を拘束しつつ圧縮曲げ加工を行うことができる。このため、芯金16の追従作用により曲げ加工限界を大幅に拡大することが可能になる。   FIG. 12 is a diagram showing a cross-sectional configuration of a core bar adopted by the present invention. In the compression bending method of the present invention, the compression bending process is performed while constraining the inner surface of the deformed pipe by using the cored bar 16 that can follow the bending substantially conforming to the inner surface shape of the deformed pipe as shown in FIG. be able to. For this reason, the bending limit can be greatly expanded by the following action of the cored bar 16.
さらに、本発明に適用できる芯金は、図12に示す構造の芯金16に限定されず、例えば、ウレタンゴムや複層にした弾性体を異形管の内面形状に略一致した形状に加工し、それを芯金として用いることもできる。   Furthermore, the core metal applicable to the present invention is not limited to the core metal 16 having the structure shown in FIG. 12, but, for example, urethane rubber or a multilayered elastic body is processed into a shape that substantially matches the inner surface shape of the deformed tube. It can also be used as a mandrel.
本発明の圧縮曲げ加工方法では、高強度で、かつ成形加工後の曲げ精度に優れることから、自動車用部品を曲げ成形に最適であり、例えば、図2に示すレインフォースの他にも、ブレーキペダルおよびシートフレームなどの車体基材としても適用することができる。   In the compression bending method of the present invention, because it has high strength and excellent bending accuracy after forming, it is optimal for bending automobile parts. For example, in addition to the reinforcement shown in FIG. It can also be applied as a vehicle body substrate such as a pedal and a seat frame.
本発明の曲げ加工方法による効果を確認するため、表1に示す特性の薄鋼板を用いて、供試用の異形管として3種類のテーパ管を作製した。そのうち薄鋼板Cはテーラード鋼板とし、先端板厚を1.2mm、後端板厚を3.0mmとした。   In order to confirm the effect of the bending method of the present invention, three types of taper pipes were produced as deformed pipes for test using thin steel sheets having the characteristics shown in Table 1. Among them, the thin steel plate C was a tailored steel plate, the tip plate thickness was 1.2 mm, and the rear plate thickness was 3.0 mm.
(実施例1)
表1に示す薄鋼板A、Bを用いて、UO成形ののちレーザ溶接を行い、小周長側端部がφ26mm、大周長側端部がφ48mmで、管長さが420mmのテーパ管を作製した。これらのテーパ管を高さ25mmの矩形断面(コーナR約6mm)を有する角管のテーパ管に成形し曲げの素材(以下、「テーパ管A、B」という)とした。 得られたテーパ管A、Bを用いて、表2および表3に示す各条件で前記図2に示す車体骨格部材のリインフォースの曲げ加工を実施し、曲げ加工後の表面状況を目視観察した。
(Example 1)
Using thin steel plates A and B shown in Table 1, UO forming followed by laser welding to produce a tapered tube with a small circumference end of φ26mm, a large circumference end of φ48mm, and a tube length of 420mm did. These tapered tubes were formed into a rectangular tube tapered tube having a rectangular cross section (corner R: about 6 mm) having a height of 25 mm and used as bending materials (hereinafter referred to as “tapered tubes A and B”). The taper tubes A and B thus obtained were subjected to reinforcement bending of the vehicle body skeleton member shown in FIG. 2 under the conditions shown in Tables 2 and 3, and the surface condition after bending was visually observed.
表2に示す条件でリインフォースの曲げ加工するに際しては、前記図11に示すように、小周長側端部を加工端とし、この加工端に平行部1bを設け、中子15を保持工具として管端から挿入した。また、リインフォースの内周側に尖り部を形成する場合にはその尖り量δは3mmとした。また、表3に示す条件でリインフォースの曲げ加工するに際しては、前記図12に示す芯金を用いた。目視観察の結果を表4に示す。   When the reinforcement is bent under the conditions shown in Table 2, as shown in FIG. 11, the end portion on the small circumference side is used as the processing end, the parallel portion 1b is provided at the processing end, and the core 15 is used as the holding tool. Inserted from the end of the tube. In addition, when the sharpened portion is formed on the inner peripheral side of the reinforcement, the sharpened amount δ is set to 3 mm. Further, when the reinforcement was bent under the conditions shown in Table 3, the cored bar shown in FIG. 12 was used. The results of visual observation are shown in Table 4.
表4に示す結果から、従来法(押し付け曲げ加工)では、いずれのテーパ管も外周側に割れが発生したが、発明法(1)〜(6)によれば、供試されたテーパ管の強度レベルに拘わらず、外周側に割れを発生することがなく、良好な加工精度で曲げ成形が可能になることが分かる。   From the results shown in Table 4, in the conventional method (pressing bending process), cracks occurred in any of the tapered tubes on the outer peripheral side. However, according to the invention methods (1) to (6), the tested tapered tube It can be seen that, regardless of the strength level, the outer peripheral side is not cracked and bending can be performed with good processing accuracy.
特に、曲げ内周側に尖り部を形成する発明法(2)、(4)は、高強度で薄肉であるテーパ管Aにおいても、内周側にしわ状の模様を生ずることもなく、良好な圧縮曲げの成形状況であった。
(実施例2)
図13は、実施例2でテーラード鋼板を用いたテーパ管から曲げ加工したレインフォースの形状を示す図であり、(a)は全長に亘る外観形状および端面形状を、(c)は全長に亘る板厚構成を示している。表1に示す薄鋼板Cを用いて、UO成形ののちレーザ溶接を行い、小周長側端部がφ22mm、大周長側端部がφ51mmで、管長さが440mmのテーパ管を作製した。
In particular, the invention methods (2) and (4) for forming the sharpened portion on the inner peripheral side of the bending are good without causing a wrinkled pattern on the inner peripheral side even in the tapered tube A having a high strength and a thin wall. It was a state of molding with a good compression bending.
(Example 2)
FIG. 13 is a view showing the shape of a reinforcement formed by bending a tapered tube using a tailored steel plate in Example 2, wherein (a) shows the appearance shape and end face shape over the entire length, and (c) shows the entire length. The plate thickness configuration is shown. Using the thin steel plate C shown in Table 1, laser welding was performed after UO forming to produce a tapered tube having a small circumferential length side end of φ22 mm, a large circumferential length side end of φ51 mm, and a tube length of 440 mm.
作製されたテーパ管を高さ20mmの矩形断面(コーナR約5mm)を有する角管のテーパ管に成形し曲げの素材(以下、「テーパ管C」という)とした。テーパ管Cは板厚1.2mmと板厚3.0mmのテーラード鋼板を用い、先端部(細径部)板厚tを12mm、テーパ管の後端部(大径部)板厚tをとした。 The produced taper tube was formed into a rectangular tube taper tube having a rectangular cross section (corner R: about 5 mm) having a height of 20 mm to obtain a bending material (hereinafter referred to as “taper tube C”). The tapered tube C uses a tailored steel plate having a plate thickness of 1.2 mm and a plate thickness of 3.0 mm, the tip portion (thin diameter portion) plate thickness t 0 is 12 mm, and the rear end portion (large diameter portion) plate thickness t 1 of the taper tube. It was said.
得られたテーパ管Cを用いて、図13に示すレインフォースの曲げ加工を実施し、圧縮応力を制御する場合と圧縮応力を制御しない場合の曲げ加工後の表面状況を目視観察した。このときの基準曲げ半径Rを120mmとした。なお、先端部のクランプ長は40mm、後端部のクランプ長は60mmとしている。   Using the obtained tapered tube C, the bending of the reinforcement shown in FIG. 13 was performed, and the surface condition after bending when the compressive stress was controlled and when the compressive stress was not controlled was visually observed. The reference bending radius R at this time was 120 mm. In addition, the clamp length of the front-end | tip part is 40 mm, and the clamp length of the rear-end part is 60 mm.
圧縮応力を制御する場合では、先端部は小さい張力からスタートし、後部側に進むにつれ座屈を発生させない大きな圧縮力(スタート時の2.5倍)を高めるように制御した。その結果、良好な曲げ加工の結果であった。   In the case of controlling the compressive stress, the tip portion was controlled to start with a small tension and to increase a large compressive force (2.5 times that at the start) that does not cause buckling as it progresses toward the rear side. As a result, it was a result of a favorable bending process.
一方、圧縮応力を制御しない場合では、後部側の外周側が割れを発生させない大きな圧縮力を先端側から後端側に至るまで一定値で付与した。その結果、レインフォースの先端側内周部に座屈が大きく発生し、製品として不良判定であった。   On the other hand, in the case where the compressive stress is not controlled, a large compressive force that does not cause cracks on the outer peripheral side on the rear side is applied at a constant value from the front end side to the rear end side. As a result, large buckling occurred in the inner peripheral portion on the tip side of the reinforcement, and the product was judged to be defective.
本発明の異形管の曲げ加工方法によれば、バックブースタータイプの加工方法、またはサイドブースタータイプの加工方法、さらにこれらの組み合わせの加工方法によって、圧縮応力を付与した状態で曲げ加工を行うことにより、さらに望ましくは圧縮応力を制御し、また曲げ加工の内周側の一部または全面に尖り部を形成させつつ曲げ加工を行うことにより、高強度(引張強さが440MPa級以上)の異形管を成形加工する場合であっても、曲げ外周側で発生する破断(割れ発生)や、曲げ内周側で発生する座屈(しわ発生)を抑制し、曲げ加工限界を大幅に向上させることができる。   According to the method for bending a deformed pipe according to the present invention, the back booster type processing method, the side booster type processing method, or a combination of these processing methods is used to perform bending processing in a state where compressive stress is applied. More preferably, the deformed pipe having high strength (tensile strength of 440 MPa class or more) is controlled by controlling the compressive stress and bending while forming a sharp portion on the inner peripheral side of the bending or the entire surface. Even in the case of forming, it is possible to suppress the breakage (cracking) that occurs on the outer periphery of the bend and the buckling (wrinkle) that occurs on the inner periphery of the bend, thereby significantly improving the bending limit. it can.
しかも、成形加工後の曲げ精度に優れ、加工欠陥の少ない自動車用部品を曲げ成形できる。これにより、一層、車体の軽量化とともにコスト低減が図れ、益々、高度化する自動車用部品に対する要求レベルにも対応することができるので、自動車用部品の加工技術として広く適用できる。   Moreover, it is possible to bend and form automotive parts that have excellent bending accuracy after forming and have few processing defects. As a result, the weight of the vehicle body can be further reduced, the cost can be reduced, and the level of demand for increasingly sophisticated automotive parts can be met. Therefore, it can be widely applied as a processing technique for automotive parts.
先行技術である押し付け曲げ加工の内容を説明する図であり、(a)はローラ2とダイス3との間の溝空間にテーパ丸管(異形管)1を挿入した状態を示し、(b)は曲げ加工の進行状態を示し、(c)は曲げ加工が終了した状態を示している。It is a figure explaining the content of the press bending process which is a prior art, (a) shows the state which inserted the taper round pipe (deformed pipe) 1 in the groove space between the roller 2 and the die | dye 3, (b) Indicates the progress of bending, and (c) indicates the state after bending. 異形管の曲げ加工方法によって加工されたレインフォースの外観構成を示す図である。It is a figure which shows the external appearance structure of the reinforcement processed by the bending method of the deformed pipe. 本発明の曲げ加工方法を実施するための装置構成を示す図であり、(a)は曲げ加工前に異形管をセットした状態を示し、(b)は曲げ加工が進行している状態を示している。It is a figure which shows the apparatus structure for enforcing the bending method of this invention, (a) shows the state which set the deformed pipe before the bending process, (b) shows the state which the bending process is advancing. ing. 本発明が採用する加工装置の回転曲げダイス、締め付けダイおよび孔型ガイドの構成を示す斜視図であり、(a)は回転曲げダイスの構成、(b)は締め付けダイの構成、(c)孔型ガイドの構成をそれぞれ示している。It is a perspective view which shows the structure of the rotation bending die of the processing apparatus which this invention employ | adopts, a clamping die, and a hole-type guide, (a) is a structure of a rotation bending die, (b) is a structure of a clamping die, (c) Hole The configuration of the mold guide is shown respectively. 異形管の断面形状が、幅方向の厚みTが一定であり、かつ異形管の外周側がフラットにセットできる場合の構成を説明する図である。It is a figure explaining the structure in case the cross-sectional shape of a deformed pipe has the constant thickness T of the width direction, and the outer peripheral side of a deformed pipe can be set flat. 異形管の断面形状が、幅方向の厚みTが一定であり、かつ異形管の外周側がテーパである場合の構成を説明する図である。It is a figure explaining the structure when the cross-sectional shape of a deformed pipe has the constant thickness T of the width direction, and the outer peripheral side of a deformed pipe is a taper. 異形管の断面形状が、幅方向の厚みTが一定であり、かつ異形管の外周側がテーパである場合に適用できる他の構成を説明する図である。It is a figure explaining the other structure applicable when the cross-sectional shape of a deformed pipe has the constant thickness T of the width direction, and the outer peripheral side of a deformed pipe is a taper. 異形管の断面形状が曲げ内周側から曲げ外周側に亘り厚みTが増大する場合に適用できる構成を説明する図である。It is a figure explaining the structure applicable when the cross-sectional shape of a deformed pipe increases in thickness T from a bending inner peripheral side to a bending outer peripheral side. 本発明のバックブースタータイプの加工方法に適用できる圧縮応力の制御装置の構成例を示す図である。It is a figure which shows the structural example of the control apparatus of the compressive stress applicable to the back booster type processing method of this invention. 本発明の曲げ加工方法によって曲げ内周側に尖り部が形成されたリインフォースの外観構成を示す図であり、(a)は外観正面図であり、(b)は曲げ内周側を示す平面図であり、(c)は平面図のX−X矢視による断面図である。It is a figure which shows the external appearance structure of the reinforcement in which the sharp part was formed in the bending inner peripheral side by the bending method of this invention, (a) is an external appearance front view, (b) is a top view which shows a bending inner peripheral side (C) is a cross-sectional view taken along the line XX of the plan view. 本発明の曲げ方法で採用できる保持工具とその装着要領を説明する斜視図である。It is a perspective view explaining the holding tool which can be employ | adopted with the bending method of this invention, and its attachment point. 本発明が採用する芯金の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the metal core which this invention employ | adopts. 実施例2でテーラード鋼板を用いたテーパ管から曲げ加工したレインフォースの形状を示す図であり、(a)は全長に亘る外観形状および端面形状を、(c)は全長に亘る板厚構成を示している。It is a figure which shows the shape of the reinforcement bent from the taper pipe | tube which used the tailored steel plate in Example 2, (a) is the external appearance shape and end surface shape covering the full length, (c) is the board thickness structure covering the full length. Show.
符号の説明Explanation of symbols
1:異形管、テーパ管、 2:ロール
3:ダイス、回転曲げダイス、 4:金型クランプ
5、締め付けダイ、 6:保持装置
7:ロッド、 8:後端クランプダイ
9:孔型ガイド、 10:ロッド
11:保持工具、 12:ストッパー
15:中子、 16:芯金
1a:尖り部、 1b:平行部
1: deformed tube, tapered tube, 2: roll 3: die, rotary bending die, 4: mold clamp 5, clamping die, 6: holding device 7: rod, 8: rear end clamp die 9: hole guide, 10 : Rod 11: Holding tool, 12: Stopper 15: Core, 16: Metal core 1a: Pointed portion, 1b: Parallel portion

Claims (10)

  1. 軸方向の一方から他方にかけて周長が漸次増加または減少する異形管の曲げ加工方法であって、
    当該異形管の加工端およびその対極の送り端からなる両端を保持し、
    前記異形管をその曲げ加工後の形状と略同一の孔型を有する回転曲げダイスに嵌合させつつ、前記異形管の加工端を前記回転曲げダイスの回転に同調して移動させるとともに、
    前記異形管の送り端を加工端の移動速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とする異形管の曲げ加工方法。
    A method of bending a deformed pipe in which the circumference gradually increases or decreases from one to the other in the axial direction,
    Hold both ends consisting of the processed end of the deformed pipe and the feed end of its counter electrode,
    While fitting the deformed pipe to a rotary bending die having a hole shape substantially the same as the shape after bending, the processed end of the deformed pipe is moved in synchronization with the rotation of the rotating bending die,
    A bending method for a deformed pipe, wherein the bending end is bent in a state where compressive stress is applied by moving the feed end of the deformed pipe faster than the moving speed of the working end.
  2. 前記回転曲げダイスと、異形管の形状と略同一の孔型を有する孔型ガイドとで前記異形管を挟持して曲げ加工を行うことを特徴とする請求項1に記載の異形管の曲げ加工方法。   The deformed pipe bending process according to claim 1, wherein the deformed pipe is bent by sandwiching the deformed pipe with the rotary bending die and a hole guide having a hole shape substantially the same as the shape of the deformed pipe. Method.
  3. 軸方向の一方から他方にかけて周長が漸次増加または減少する異形管の曲げ加工方法であって、
    当該異形管の加工端およびその対極の送り端からなる両端を保持し、
    前記異形管をその曲げ加工後の形状と略同一の孔型を有する回転曲げダイスに嵌合させつつ、前記異形管の加工端を前記回転曲げダイスの回転に同調して移動させるとともに、
    前記異形管の側面に押し当てられた、当該異形管の形状と略同一の孔型を有する孔型ガイドを前記異形管の送り速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とする異形管の曲げ加工方法。
    A method of bending a deformed pipe in which the circumference gradually increases or decreases from one to the other in the axial direction,
    Hold both ends consisting of the processed end of the deformed pipe and the feed end of its counter electrode,
    While fitting the deformed pipe to a rotary bending die having a hole shape substantially the same as the shape after bending, the processed end of the deformed pipe is moved in synchronization with the rotation of the rotating bending die,
    Bending is performed in a state where compressive stress is applied by moving a hole guide, which is pressed against the side surface of the deformed pipe, and having a hole shape substantially the same as the shape of the deformed pipe faster than the feed speed of the deformed pipe. A method of bending a deformed pipe, characterized in that:
  4. 軸方向の一方から他方にかけて周長が漸次増加または減少する異形管の曲げ加工方法であって、
    当該異形管の加工端およびその対極の送り端からなる両端を保持し、
    前記異形管をその曲げ加工後の形状と略同一の孔型を有する回転曲げダイスに嵌合させつつ、前記異形管の加工端を前記回転曲げダイスの回転に同調して移動させるとともに、
    前記異形管の送り端を加工端の移動速度より速く移動させ、かつ前記異形管の側面に押し当てられた、当該異形管の形状と略同一の孔型を有する孔型ガイドを前記異形管の送り速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とする異形管の曲げ加工方法。
    A method of bending a deformed pipe in which the circumference gradually increases or decreases from one to the other in the axial direction,
    Hold both ends consisting of the processed end of the deformed pipe and the feed end of its counter electrode,
    While fitting the deformed pipe to a rotary bending die having a hole shape substantially the same as the shape after bending, the processed end of the deformed pipe is moved in synchronization with the rotation of the rotating bending die,
    A hole guide having a hole shape substantially the same as the shape of the deformed tube, which is moved faster than the moving speed of the machining end and is pressed against the side surface of the deformed tube, is formed on the deformed tube. A bending method for a deformed pipe, wherein bending is performed in a state where compressive stress is applied by moving the feed pipe faster than a feeding speed.
  5. 前記異形管の割れを防止するように前記圧縮応力を制御することを特徴とする請求項1〜4のいずれかに記載の異形管の曲げ加工方法。   The method for bending a deformed pipe according to claim 1, wherein the compressive stress is controlled so as to prevent cracking of the deformed pipe.
  6. 前記異形管の曲げ加工の内周側の一部または全部に尖り部を形成させつつ、圧縮応力を付与した状態で曲げ加工を行うことを特徴とする請求項1〜5のいずれかに記載の異形管の曲げ加工方法。   6. The bending process according to claim 1, wherein the bending process is performed in a state in which a compressive stress is applied while forming a sharp portion on a part or all of the inner peripheral side of the bending process of the deformed pipe. Bending method for deformed pipe.
  7. 前記異形管の加工端または/および送り端に平行部を設け、この平行部に中子を装着して当該平行部をクランプし、加工端の移動時、または送り端の移動時のすべりを防止することを特徴とする請求項1〜6のいずれかに記載の異形管の曲げ加工方法。   A parallel part is provided at the machined end and / or feed end of the deformed pipe, and a core is attached to the parallel part to clamp the parallel part to prevent slipping when the machined end moves or the feed end moves. The method for bending a deformed pipe according to any one of claims 1 to 6.
  8. 前記異形管の内面に芯金を装着して内面を拘束しつつ、曲げ加工を行うことを特徴とする請求項1〜6のいずれかに記載の異形管の曲げ加工方法。   The method for bending a deformed pipe according to any one of claims 1 to 6, wherein a bending process is performed while a cored bar is attached to the inner surface of the deformed pipe to constrain the inner surface.
  9. 請求項1〜4のいずれかに記載の異形管の曲げ加工方法を用いる装置であって、
    前記異形管の曲げ加工後の形状と略同一の孔型を有する回転曲げダイスと、
    前記異形管の形状と略同一の孔型を有する孔型ガイドと、
    前記孔型ガイドを前記異形管の側面に押し当てながら所定の速度で当該孔型ガイドを移動可能とする移動手段と、
    前記異形管の加工端を前記回転曲げダイスに嵌合させ、これと同調して移動させる加工端の保持手段と、
    前記異形管の送り端を所定の速度で移動可能とする送り端の保持手段と具備し、
    前記送り端の保持手段を前記加工端の保持手段の移動速度より速く移動させ、または/および前記孔型ガイドの移動手段を前記加工端の保持手段の移動速度より速く移動させることによって圧縮応力を付与した状態で曲げ加工を行うことを特徴とする異形管の曲げ加工装置。
    An apparatus using the method for bending a deformed pipe according to any one of claims 1 to 4,
    A rotating bending die having a hole shape substantially the same as the shape after bending of the deformed pipe;
    A hole guide having a hole shape substantially the same as the shape of the deformed tube;
    Moving means for moving the hole guide at a predetermined speed while pressing the hole guide against a side surface of the deformed pipe;
    The processing end of the deformed pipe is fitted to the rotary bending die, and the processing end holding means is moved in synchronization with the processing end.
    A feed end holding means that enables the feed end of the deformed pipe to move at a predetermined speed;
    By moving the holding means of the feed end faster than the moving speed of the holding means of the machining end and / or moving the moving means of the hole guide faster than the moving speed of the holding means of the machining end, An apparatus for bending a deformed pipe, wherein bending is performed in the applied state.
  10. 請求項1〜8のいずれかに記載の曲げ加工方法によって加工され、ブレーキペダルおよびシートフレームなどの車体基材、またはリインフォースなどの車体骨格部材に用いられることを特徴とする自動車用部品。
    An automotive part that is processed by the bending method according to any one of claims 1 to 8 and is used for a vehicle body base material such as a brake pedal and a seat frame, or a vehicle body skeleton member such as reinforcement.
JP2006177071A 2006-06-27 2006-06-27 Bending method and apparatus for deformed pipe, and processed automotive parts Active JP4946206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177071A JP4946206B2 (en) 2006-06-27 2006-06-27 Bending method and apparatus for deformed pipe, and processed automotive parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177071A JP4946206B2 (en) 2006-06-27 2006-06-27 Bending method and apparatus for deformed pipe, and processed automotive parts

Publications (2)

Publication Number Publication Date
JP2008006450A true JP2008006450A (en) 2008-01-17
JP4946206B2 JP4946206B2 (en) 2012-06-06

Family

ID=39065138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177071A Active JP4946206B2 (en) 2006-06-27 2006-06-27 Bending method and apparatus for deformed pipe, and processed automotive parts

Country Status (1)

Country Link
JP (1) JP4946206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022402A1 (en) * 2008-05-06 2009-11-19 Ps Werkzeuge Vorrichtungen Metallbearbeitungs Gmbh Support core for the production of hollow profiles

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877442A (en) * 1972-01-20 1973-10-18
JPS55136520A (en) * 1979-04-11 1980-10-24 Sankei Giken Kogyo Kk Bending method for taper pipe
JPS60166124A (en) * 1984-02-07 1985-08-29 Dai Ichi High Frequency Co Ltd Plaited bent tube and its manufacturing device
JPS60231527A (en) * 1984-04-27 1985-11-18 Sumitomo Metal Ind Ltd Bending method of pipe
JPH04220120A (en) * 1990-12-20 1992-08-11 Osugaa Mach:Kk Method for bending pipe in minimum radius of curvature
JPH07155851A (en) * 1993-12-06 1995-06-20 Kobe Steel Ltd Bending method
JPH08267152A (en) * 1995-03-30 1996-10-15 Chiyoda Corp Method for bending metallic pipe and device therefor
JP2001047141A (en) * 1999-08-10 2001-02-20 Taiyo:Kk Bending device of tapered tube
JP2001105035A (en) * 1999-10-05 2001-04-17 Toyota Motor Corp Method for deciding bending condition of metallic tube
JP2001205350A (en) * 2000-01-24 2001-07-31 Nissan Motor Co Ltd Manufacturing method for tube stock for hydroforming and pipe bender
JP2001232420A (en) * 2000-02-23 2001-08-28 Watanabe Seisakusho:Kk Tube material bending apparatus
JP2002263738A (en) * 2001-03-09 2002-09-17 Komatsu Ltd Non-circular tube bending method, and bending device therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877442A (en) * 1972-01-20 1973-10-18
JPS55136520A (en) * 1979-04-11 1980-10-24 Sankei Giken Kogyo Kk Bending method for taper pipe
JPS60166124A (en) * 1984-02-07 1985-08-29 Dai Ichi High Frequency Co Ltd Plaited bent tube and its manufacturing device
JPS60231527A (en) * 1984-04-27 1985-11-18 Sumitomo Metal Ind Ltd Bending method of pipe
JPH04220120A (en) * 1990-12-20 1992-08-11 Osugaa Mach:Kk Method for bending pipe in minimum radius of curvature
JPH07155851A (en) * 1993-12-06 1995-06-20 Kobe Steel Ltd Bending method
JPH08267152A (en) * 1995-03-30 1996-10-15 Chiyoda Corp Method for bending metallic pipe and device therefor
JP2001047141A (en) * 1999-08-10 2001-02-20 Taiyo:Kk Bending device of tapered tube
JP2001105035A (en) * 1999-10-05 2001-04-17 Toyota Motor Corp Method for deciding bending condition of metallic tube
JP2001205350A (en) * 2000-01-24 2001-07-31 Nissan Motor Co Ltd Manufacturing method for tube stock for hydroforming and pipe bender
JP2001232420A (en) * 2000-02-23 2001-08-28 Watanabe Seisakusho:Kk Tube material bending apparatus
JP2002263738A (en) * 2001-03-09 2002-09-17 Komatsu Ltd Non-circular tube bending method, and bending device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022402A1 (en) * 2008-05-06 2009-11-19 Ps Werkzeuge Vorrichtungen Metallbearbeitungs Gmbh Support core for the production of hollow profiles
US8881572B2 (en) 2008-05-06 2014-11-11 Thyssenkrupp Steel Europe Ag Supporting core for producing hollow profiled elements

Also Published As

Publication number Publication date
JP4946206B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US6941786B1 (en) Component specific tube blanks for hydroforming body structure components
EP1852196B1 (en) Method of manufacturing a metal member with through hole
US7484393B2 (en) Profile mother pipe for hydraulic bulging, hydraulic bulging apparatus using the same, hydraulic bulging method, and hydraulic bulged product
JP4993951B2 (en) Pipe bending method and apparatus
JP2006142365A (en) Roll-forging apparatus and roll-forging method
JP2006326637A (en) Pipe bending machine and pipe bending method
JP4907080B2 (en) Method for tensile bending of deformed pipe and processed automotive parts
EP2143508A1 (en) Method of hydroforming work
JP4946206B2 (en) Bending method and apparatus for deformed pipe, and processed automotive parts
JP5040189B2 (en) Bending method of deformed pipe and processed automotive parts
JP2817620B2 (en) Mechanical expander head
JP2001334316A (en) Tubular product of special form and its manufacturing method
JP2001321844A (en) Method for hydroforming metal tube and die
US6807837B1 (en) Method and apparatus for producing variable wall thickness tubes and hollow shafts
JP4544468B2 (en) Spinning method
JPWO2007132799A1 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
JP2007185697A (en) Machining method and machining device for metallic tube
JP5037020B2 (en) Manufacturing method of metal pipe parts
DE10044880A1 (en) Method for manufacturing specially shaped hollow metal bodies involves reforming workpiece using several radially acting kneading tools to produce intermediate body which is then plastically reformed through internal pressure
JPH08132140A (en) Working method for hollow formed material
JP5121040B2 (en) Hydroform molding method
JP2010179319A (en) Method of manufacturing different diameter steel tube
JP2016073988A (en) Manufacturing method and manufacturing device of hydroforming product
JP2020175393A (en) Metallic curved pipe manufacturing method
Liu et al. Optimization of process and tool development for hydroformed frame rail using fem simulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4946206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350