JP2007530882A - 位置を自動検出する能動型磁気ベアリング - Google Patents

位置を自動検出する能動型磁気ベアリング Download PDF

Info

Publication number
JP2007530882A
JP2007530882A JP2007504441A JP2007504441A JP2007530882A JP 2007530882 A JP2007530882 A JP 2007530882A JP 2007504441 A JP2007504441 A JP 2007504441A JP 2007504441 A JP2007504441 A JP 2007504441A JP 2007530882 A JP2007530882 A JP 2007530882A
Authority
JP
Japan
Prior art keywords
bearing
magnetic
electromagnets
permeability
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007504441A
Other languages
English (en)
Other versions
JP4768712B2 (ja
Inventor
トラモウダン、ヤン
ブリュヌ、モーリス
シュローダー、ウルリッヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe de Mecanique Magnetique SA
Original Assignee
Societe de Mecanique Magnetique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe de Mecanique Magnetique SA filed Critical Societe de Mecanique Magnetique SA
Publication of JP2007530882A publication Critical patent/JP2007530882A/ja
Application granted granted Critical
Publication of JP4768712B2 publication Critical patent/JP4768712B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • F16C32/0448Determination of the actual position of the moving member, e.g. details of sensors by using the electromagnet itself as sensor, e.g. sensorless magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

位置の自動検出を行なう能動型磁気ベアリング(100)であって、このベアリングは、強磁性体(110)の両側に配置されている、固定子を形成する対向している少なくとも第1及び第2の電磁石を有し、強磁性体(110)は、回転子を形成し、複数の電磁石の間に接触しないで保持される。第1及び第2の電磁石は、各々、第1の強磁性材料により本質的に構成され強磁性体とエアギャップを規定するように協働する磁気回路(121;131)と、電力増幅器から電力供給される励起コイル(122;132)とを有し、この電力増幅器の入力電流は、第1及び第2の電磁石の磁気回路に対する強磁性体の位置に応じてサーボ制御される。この強磁性体(110)の位置は、システムの閉ループ通過帯域よりも大きな周波数の正弦波電流を両方の対向する電磁石に同時に流すことに応じて2つの前記電磁石(120、130)の間で検出されるインダクタンスから測定される。

Description

本発明は、固有のベアリング機能に加えて、誘導型の検出機能も行なわれ、これが、ベアリング機能を実行するために用いられる電子回路や増幅器以外のいかなる電子回路や増幅器を加えることなく行なわれる、能動型磁気ベアリングに関する。
自動検出を行なうベアリングとして既知の能動型磁気ベアリングの中で浮上している物体の位置を検出する機能を内蔵すると、費用、合理化、及び検出の正確さに関して、回転子又はディスクのような浮上している物体の位置が、物体を所定の動作位置に保持するために必要とされる力を生じさせるための駆動ベアリングの複数の部材から別個の複数の位置検出器を用いて測定される従来のシステムと比較して、数多くの好都合な点を示す。
米国特許No.5 844 339(又はFR 2 716 700)には、動作原理が図3に示されているような位置の自動検出を行なう磁気ベアリング装置が記載されている。図3において、回転子1は、2つの対向しているベアリング電磁石により浮上して保持されている。各電磁石は、それぞれ、この回転子1に面している強磁性材料からなる磁気回路12、22を有し、この回転子1それ自身が、強磁性材料から形成されている。電磁石は、また、それぞれ、励起コイル11、21を有し、これら励起コイルは、主入力電流(ベアリング電流)を入力として受ける電力増幅器13、23によりそれぞれ電力供給され、この結果、回転子1をこの回転子の所定の平衡位置に保持するためにために必要とされるエネルギーを、コイル11、21に供給することができる。ベアリング電流は、それぞれのサーボ制御回路31、32から来て、これらサーボ制御回路は、それら自身回転子の現在位置についての情報を受け、基準位置を参照している。
ベアリングの複数の電磁石から別個の位置検出器を用いずに位置情報を取得するために、加算器14、24が、ベアリング電流に重ねあわされる正弦波電流を流すために、それぞれ用いられている。米国特許No.5 844 339に詳細に記載されているように、回転子1の軸XX’に沿った径方向の位置を、励起コイル11、12の複数の端子を横断してそれぞれ測定される電圧U及びUから検出することができる。これら電圧U及びUは、電磁石のインダクタンスL、Lに応じて変化し、一方、これらのインダクタンスは、ベアリングの電磁石の間の回転子の位置に依存して変化する。それから、回転子の位置を示す信号が、複数のコイルの出力で測定されたような電圧U1及びU2の間の相違に対応する電圧Uをフィルタリング42と復調43(流された検出用電流信号の周波数に対応する周波数における)を受けるように発生させることにより、得られることができる。それから、この信号は、サーボ制御回路に入力される基準位置信号と比較される。
この回路は、主に、ターボポンプのような回転機械の回転軸を支持するラジアル磁気ベアリングで用いられる。この結果、軸の径方向の位置が、この軸の径方向の移動に応じて変化する、ベアリングのインダクタンスの変化を測定することにより測定されることができる。
米国特許No.5 844 339に記載されている装置は、満足がいくように動作するが、それにもかかわらず、この装置は、この装置の作動する分野が広がるのを妨げる複数の制限を示す。この装置において、位置を検出するためにベアリングに流される電流信号の搬送周波数は、サーボ制御回路の閉ループ(closed loop)の通過帯域より十分上になるように任意に選択される。この搬送周波数は、フィルタリングの復調の後で、十分な幅(少なくとも1000Hz)の通過帯域を利用可能とするために、典型的には、約20キロヘルツ(kHz)である。加えて、満足のいく信号対雑音比を維持するために、流される電流の大きさiを約20ミリアンペア(mA)として、比icarrier/Imaxは、0.01より大きくなければならない(ここで、Icarrier=搬送波(la porteuse)で流される電流の振幅、Imax=増幅器が供給できる最大電流)。
自動検出のベアリングの利点は、磁気ベアリングの機械的な部分と、製造コストを低減するこの磁気ベアリングが必要とする接続との両方を著しく単純化することであり、製造コスト低減することは、大量生産される設備にとって特に好都合であることを想起されたい。結果として、自動検出のベアリング技術は、この技術により関連するエレクトロニクスに関して、過剰な追加費用を発生させない場合だけ、正当化される。関連するエレクトロニクスの費用は、このエレクトロニクスの複雑さに依存し、また、何よりもベアリングの電力増幅器の必要とされるパフォーマンスに依存する。上述の自動検出のベアリングにとって、増幅器は、回転子の位置を維持するためにベアリングが供給する必要がある電圧に応じてディメンジョンが取られる必要があり、位置を検出するために用いられる信号に応じてディメンジョンが取られる必要はない。不都合なことに、ベアリングからの出力で測定されるような検出電圧Uは、以下の式(1)を用いて計算される。
(1) U=Lbearingωi
ここで、
ω=搬送波の角周波数(定型的には20kHz)
bearing=搬送波の周波数で見た場合の全インダクタンス
i=搬送電流の振幅。
インダクタンスLbearingは、ベアリング自身のサイズ(ディメンジョン)に比例する。搬送波の周波数でみたインダクタンスは、漏れインダクタンス(エアギャップの変化で変化しない)と、エアギャップと共に変化するインダクタンスとの和である。薄い積層物を用いて形成されている、自動検出のラジアルベアリングにとって、搬送波の周波数で見たインダクタンスは、ベアリングの周波数で見たインダクタンスとほぼ同じ値を有する。漏れインダクタンスは、小さい。インダクタンスは、ベアリングそれ自身のサイズと共に増加する。
実際には、満足のいく信号対雑音比を保ちつづけるために、搬送電流の大きさ(Icarrier)は、増幅器の最大電流の少なくとも1%に対応する(例えば、最大2アンペア(A)まで供給できる増幅器に対してicarrier>20mA)。式(1)は、ベアリングのあるディメンジョンから始めて、インダクタンスLbearingが、ibearing/Imax>0.01を満たすために、回転子の位置を保つために必要とされる電圧よりも大きくなる検出電圧を用いる必要があるような値に到達することを示している。
一般に中実なアバットメントフライホイール(volant de bute’e)と、積層されていないか非常にわずかに積層されている固定子とを用いる軸方向ベアリングでは、搬送波の周波数でみたインダクタンスは、ほぼ漏れインダクタンスである。実際上、エアギャップと共に変化するインダクタンスはない。このような状況で、自動検出のベアリングの原理は、達成が難しい。
さらに、従来の自動検出のベアリングでは、20kHzのインダクタンスとベアリング電流との間にカップリングがある。すなわち、電磁石のインダクタンスは、ベアリングの中に発生された磁場が増加すると共に減少する。実際には、このカップリングにより、位置情報が誤らされ、周波数に応じて検出感度(sensitivity)が増加する(サーボ制御にノイズを発生させる)。それにもかかわらず、エレクトロニクスでこのカップリングの効果を補償することが可能である。しかし、その場合、発生される最大の磁気誘導は、約1テスラ(T)未満のままでなければならない。
本発明は、ラジアル磁気ベアリグングと軸方向磁気ベアリングとの上述の欠点を改善し、十分なレベルの(エアギャップと結合した)インダクタンスを保障し、ベアリングのディメンジョンやベアリングの電流のような周囲のかく乱源から独立してそれを行なう、自動検出を行なう能動型磁気ベアリングの構造を提供することを目的とする。
この目的は、位置の自動検出を行なう能動型磁気ベアリングであって、このベアリングは、強磁性体の両側に配置されている、固定子を形成する対向している少なくとも第1及び第2の電磁石を有し、前記強磁性体は、回転子を形成し、複数の前記電磁石の間に接触しないで保持され、前記第1及び第2の電磁石は、各々、第1の強磁性材料により本質的に構成され前記強磁性体とエアギャップを規定するように協働する磁気回路と、電力増幅器から電力供給される励起コイルとを有し、この電力増幅器の入力電流は、前記第1及び第2の電磁石の磁気回路に対する前記強磁性体の位置に応じてサーボ制御され、この強磁性体の位置は、システムの閉ループ通過帯域よりも大きな周波数の正弦波電流を両方の対向する電磁石に同時に流すことに応じて2つの前記電磁石の間で検出されるインダクタンスから測定され、
前記ベアリングにおいて、本発明に係われば、各電磁石の前記磁気回路は、前記励起コイルの近傍で、このベアリングで発生された高周波数の磁場の通過を促進するように、前記第1の材料の透磁率よりも小さな透磁率を備え、この第1の材料の抵抗率よりも大きな抵抗率を備えている第2の強磁性材料が用いられている部分をさらに有する、能動型磁気ベアリングで達成される。
このように、本発明の磁気ベアリングは、ベアリングにおける位置の自動検出のために用いられる高周波数の磁力線を「通過させる」ように適合されている、透磁率及び抵抗率の部分を有している。このようなベアリング構造の結果、高い周波数で、ベアリングのディメンジョンとベアリングに供給される電流とから独立して明確に規定されたインダクタンスの値を保障することができる。
前記ベアリングの実施形態において、低い透磁率及び高い抵抗率を備えた部分は、一体として(d’une pie`ce)、鉄の複数の粒子のような、磁性材料からなる複数の粒を有する粉末から形成され、これら粒子は、互いに電気的に絶縁されている。
前記回転子を形成する前記強磁性体は、このように、高周波数の磁場の通過を促進するように、この強磁性体(the body)の残りの部分よりもより低い透磁率とより高い抵抗率とを備えた少なくとも1つの部分を有することもでき、この部分は、前記電磁石に形成されている低い透磁率で高い抵抗率の部分にほぼ相対して配置されている。状況に応じて、この部分は、複数の鉄の粒子のような磁性材料からなる複数の粒子を有する粉末からなる部分を用いて形成されることができ、もしくは、薄い厚さの強磁性積層物により形成されることができる。
低い透磁率で高い抵抗率の、前記ベアリングに形成される、前記部分又は複数の前記部分が、約100の相対磁気透磁率及び約50オームメートル(Ωm)の電気抵抗率を示すと好ましい。
上述の能動型磁気ベアリングは、軸方向のタイプのベアリングとラジアルタイプのベアリングとに同じように適用可能である。
本発明の他の特性と有利な点とは、非限定的な例としての、そして、添付されている図面を参照する、本発明の特定の実施例の以下の説明から明らかになる。
図1は、回転機械で用いられ、回転シャフトの軸方向の位置を制御するためのアバットメント装置のような軸方向ベアリングに適用されるような、本発明の位置の自動検出を行なうベアリング構造の第1の例を示している。軸方向ベアリング100は、シャフト101に固定されているディスクの形状である回転子110の位置を維持するようなよく知られたサーボ制御システムによる電流で駆動されるコイル122、132と、磁気回路121、131とをそれぞれ各々が有し、固定子を形成する、2つの電磁石120、130を有している。
その固有のベアリング機能に加えて、ベアリング100は、このベアリング100に追加的なコイルを加える必要がなく、誘導型の位置検出器として用いられる。この検出機能は、上述のような既知の方法で、すなわち、間に配置された物体(回転子)の移動と実質的に比例していることが保障されているという条件の下で、ベアリングの電磁石のコイルの各々の端子を横断する電圧を測定することにより、実行される。
本発明に従えば、通常は鉄のような強磁性の、単一の材料により構成される中実の構造を有する、各磁気回路121、131は、この場合、異なる磁気的そして電気的な特性を備えている強磁性材料から形成されている2つの部分123及び124と、133及び134とを有している。より正確には、各磁気回路121、131は、それぞれの第1の部分123、133を有し、これら第1の部分は、中実であり、この場合、それぞれ2つの磁極片1211及び1212と、1311及び1312とを備えているU字形状の断面を有している。この第1の部分は、固有のベアリング機能を実行するように形成される低周波数の磁路を与えるように、鉄のような高い磁気透磁率を備えた強磁性材料を用いて形成されている。換言すれば、第1の部分123、133は、ベアリングが電流の制御下にある時に、(一般的には200Hzよりも低い周波数で)低周波数の磁場を通過させる目的で、高い透磁率の中実の固定子の従来の技術を保つ役割を果たしている。
第2の部分124、134は、第1の部分のために用いられている材料の磁気透磁率よりもかなり低い磁気透磁率を示す強磁性材料、すなわち、100のオーダの透磁率係数、好ましくはこれよりも低い透磁率係数を示す材料、を用いて形成されている。加えて、これら第2の部分を構成している材料は、また、例えば、位置を検出するためにコイルに流される正弦波信号の角周波数に対応する約20kHzのような高い周波数の通過を促進するために、高い電気抵抗率(例えば、50Ωm)を示す必要がある。この目的のために、この第2の部分の材料は、電気的には互いに絶縁され、中実の材料の透磁率に比較して小さい透磁率を示す一方で、粒が電気的には互いに絶縁されているために高い抵抗率を有する、鉄の粒のような磁気材料の粒を有する粉末でもよい。電気的に絶縁された粒を有する軟磁性の焼結されたいかなるタイプの材料を用いることも可能である。
第1の部分の固体材料が、高い周波数の場に対してのシールド(誘導電流によるシールド)を構成するため、第2の部分は、この部分で高周波数の磁力線を「通す」ことができるように、コイルの比較的近くに位置していることが好ましい。加えて、この構成では、この第2の部分は、ベアリング電流により発生される低周波数の磁場にたいして全く障害とならず、この磁場は、より透磁率の高い(permeable)物質により構成されている第1の部分に向かって自然に集中される。それにもかかわらず、ベアリングの他の部分は、第2の部分のために用いられてもよい(envisaged)。
このように、本発明の構成で、単一のベアリングの中で、低周波数の磁力線(ベアリング機能)を、高周波数の磁力線(検出器機能)から「分離する」ことが可能である一方で、当然、電磁石ごとにただ1つのコイルと1つの増幅器とを維持している。
軸方向のアバットメント装置において、中実のアバットメントフライホイール(回転子110)を用いることが一般的な慣行である。このような状況で、回転子にも同等な磁力線のパターン、すなわち、低周波数の磁力線(ベアリング機能)と機械的な強度とのために中実な主要な第1の部分と、位置の検出(検出機能)の為に用いられる高周波数の磁場の通過を促進するより低い透磁率及び高い抵抗率の第2の部分、を与えることも必要である。図1に示されているように、回転子110は、鉄のような中実な材料からなる第1の部分111と、例えば、固定子の部分124のために用いられるのと同じタイプの粉末から形成されている第2の部分112とを有している。
上述された、アバットメント装置に用いられるような軸方向ベアリングのためのベアリングの構成を、ラジアルベアリングにも適用することができる。図2は、本発明による構造を有しているラジアルベアリング200の実施形態を示している。このラジアルベアリング200は、互いに回転する固定子210及び回転子201を有している。固定子210には、複数の電磁石220が取り付けられ、各々の電磁石は、励起コイル222により囲まれている1つの強磁性の積層物により構成されている磁気回路221を有している。各電磁石は、浮上している回転子201を所定の径方向の位置に維持するために、既知のサーボ制御システムによる電流駆動で駆動されている。回転子201の径方向の移動は、米国特許No.US 5 844 339に詳細に説明されているように、ベアリングの複数の各コイルの端子を横断する電圧を所定の周波数で測定することにより検出される。
回転子201には軸方向の長さに渡って延び、磁気回路221の積層物2210の長さよりわずかに長い、1つの強磁性の積層物202が取り付けられている。この回転子201は、固定子210に配置されている複数の電磁石220により発生された磁場により保持されている。
上述されている軸方向のベアリングのように、磁気回路221は、強磁性の積層物2210に対応している第1の部分よりも低い磁気透磁率を示す強磁性材料で形成されている第2の部分223を有している。この第2の部分を形成するために用いられている材料が約100の透磁率係数を示せば好ましく、より小さな値の透磁率係数を示せば好ましい。さらに、この材料は、また、ベアリングに流される検出信号を流す場合に用いられる典型的に約20kHzである高い周波数を容易に通過させるために、高い電気抵抗率を(例えば、50Ωm)を備えていなければならない。この目的のために、第2の部分223を、中実の材料の抵抗率よりも高い抵抗率を示す一方でやはり小さな透磁率を示す鉄の粉末からなるワッシャ2230から形成することもできる。強磁性の積層物2210は、鉄の粉末のワッシャ2230と協働し、スチール、青銅、又はアルミニウムのような非磁性材料からなる2つのリング211、212により保持されることができるサンドウィッチ構造を形成する。これら2つのリングは、この構造の夫々の側に位置している。
回転子210は、この回転子に高速回転が与えられると、粉末部分で強度が制限されているという問題に直面する。このような状況で、強磁性粉末の代わりに、高周波数の磁場に感度が高い部分を形成するために、薄い薄さの強磁性の積層物を用いることが可能である。軸方向ベアリングのために用いられる回転子の中実の構造と異なり、回転子201には、固定子210の複数の電磁石により発生される磁場を搬送するための強磁性積層物202が取り付けられている。高い周波数の磁場と低い周波数の磁場との間で分離させることは、既に固定子において達成されている。したがって、固定子、すなわち、低周波数の場のための主要な第1の部分(ベアリング機能)と、高周波数の場の通過を促進するための比較的小さな透磁率及び高い抵抗率の第2の部分(検出機能)、で規定されている磁力線パターンと同等な磁力線パターンを作るために、薄い積層物を用いることで満足することができる。図2に示されているように、回転子は、各層が、回転子の積層の残りに用いられている積層物202の厚さよりも薄い厚さを示す、1つの強磁性積層物203を有してもよい。このように、固定子の部分223に面している回転子の部分に対応する軸方向の長さに渡ってロータの積層物の厚さを減少させることにより、小さな透磁率(薄い積層物の厚さ)と、高い抵抗率(積層物の間の間隔)とを示す部分が形成される。回転子の主要な部分のために用いられている、低周波数の磁場を受け入れる、強磁性積層物202の厚さは、例えば、約0.2mmである。このような状況で、そして、例として、高周波数の磁場を搬送する第2の部分に対して、その半分の厚さ、すなわち、示した例では約0.1mm、を有する積層物203を選択することが可能である。
図1及び図2の特定の実施形態に対する、上述されたような低周波数の磁路と高周波数の磁路とを固定子と回転子との中で「分離すること」の原理は、いかなるタイプの能動型磁気ベアリングにも一般化されることができる。小さな透磁率と高い抵抗率とを備える部分は、ディメンジョンの点から標準化されることができ、もしくは、いずれにしても、固定子並びに/もしくは回転子のディメンジョンにかかわりなく、サイズが限定され得る。固定子並びに/もしくは回転子のサイズは、ベアリングの必要とされる荷重負担能力に応じて規定される必要がある。本発明のこの特徴は、ディメンジョンが高周波数(例えば、20kHz)で測定されるインダクタンスの値に直接の影響を与える、中実の部分に対して特に好都合である。
このように、図1及び図2の不連続線により示されているように、ベアリングの固定子及び回転子部分のディメンジョンは、高周波数の場を通過させるために取られる特定の部分のディメンジョンを増加させる必要なく、より大きくされることができる。ベアリングがこのような部分を有している場合、ベアリングの増幅器が検出目的で供給する高周波数の電圧は、もはやベアリングのサイズとは関連付けられず、ベアリングの小さな透磁率及び大きな抵抗率の部分のサイズとだけ関連付けられる。結果として、ベアリングのディメンジョンにかかわりなく、明確に規定されたインダクタンスを保障するために十分な小さな透磁率及び大きな抵抗率の部分に対する標準的なディメンジョンを規定すれば十分である。このように、検出信号のための周波数と振幅とを選択することができる。このような選択は、検出電圧の周波数と振幅とがベアリングの必要条件(ベアリング機能)により規定される、従来の位置の自動検出を行なうベアリングでは、不可能であった。
さらに、本発明のベアリングの2つの透磁率の構造のために、検出周波数(例えば、20kHz)とベアリング電流とで見たインダクタンスの間のカップリングは、著しく減少する。これは、低周波数の部分の透磁率は、低周波数の行路に飽和現象が現れたとしても、常に高周波数の検出部分の透磁率よりも大きいからである。こうして、誘導の限界を1Tを越えて押し返すことができ、結果としてベアリングのサイズを小さくさせることができる。
本発明の実施形態に係る位置の自動検出を行なう軸方向磁気ベアリングの構造の軸方向の半断面図である。 本発明の実施形態に係る位置の自動検出を行なうラジアル磁気ベアリングの構造の軸方向の半断面図である。 ベアリング用の複数の電磁石を用いる位置検出システムを内蔵している従来技術の能動型磁気ベアリングの機能図である。

Claims (11)

  1. 位置の自動検出を行なう能動型磁気ベアリング(100)であって、このベアリングは、強磁性体(110)の両側に配置されている、固定子を形成する対向している少なくとも第1及び第2の電磁石(120、130)を有し、前記強磁性体(110)は、回転子を形成し、複数の前記電磁石の間に接触しないで保持され、前記第1及び第2の電磁石(120、130)は、各々、第1の強磁性材料により本質的に構成され前記強磁性体とエアギャップを規定するように協働する磁気回路(121;131)と、電力増幅器から電力供給される励起コイル(122;132)とを有し、この電力増幅器の入力電流は、前記第1及び第2の電磁石の磁気回路に対する前記強磁性体の位置に応じてサーボ制御され、この強磁性体(110)の位置は、システムの閉ループ通過帯域よりも大きな周波数の正弦波電流を両方の対向する電磁石に同時に流すことに応じて2つの前記電磁石(120、130)の間で検出されるインダクタンスから測定されるベアリングにおいて、
    各電磁石の前記磁気回路(121;131)は、前記励起コイル(122;132)の近傍で、このベアリングで発生された高周波数の磁場の通過を促進するように、前記第1の材料の透磁率よりも小さな透磁率を備え、この第1の材料の抵抗率よりも大きな抵抗率を備えている第2の強磁性材料が用いられている部分(124;134)をさらに有することを特徴とするベアリング。
  2. 小さな透磁率及び大きな抵抗率の前記部分(124;134)は、電気的に互いに絶縁されている磁性材料の複数の粒子を有する粉末から形成されている部分により形成されていることを特徴とする請求項1に係るベアリング。
  3. 前記粉末は、電気的に互いに絶縁されている鉄の複数の粒子を有することを特徴とする請求項2に係るベアリング。
  4. 前記回転子を形成する前記強磁性体(110)は、高周波数の磁場の通過を促進するように、この本体の残りの部分よりも小さい透磁率及びこの本体の残りの部分よりも大きい抵抗率の、少なくとも1つの部分(112)を有し、この部分は前記電磁石に形成されている小さな透磁率及び大きな抵抗率の前記部分(124;134)にほぼ相対して配置されていることを特徴とする請求項1乃至3のいずれか1に係るベアリング。
  5. 前記回転子を形成する本体(110)の小さい透磁率及び大きい抵抗率の前記部分(112)は、電気的に互いに絶縁されている磁性材料の複数の粒子を有している粉末からなる部分により形成されることを特徴とする請求項4に係るベアリング。
  6. 前記粉末は、電気的に互いに絶縁された鉄の複数の粒子を有することを特徴とする請求項5に係るベアリング。
  7. 前記回転子を形成する本体(201)は、1つの重なり(202)の強磁性積層物を有し、小さい透磁率及び大きい抵抗率の前記部分(223)に存在するこの積層物は、前記重なり(202)の他の積層物の厚さよりも薄い厚さを示すことを特徴とする請求項4に記載のベアリング。
  8. 小さい透磁率及び大きい抵抗率の前記部分は、約100の磁気透磁率を示すことを特徴とする請求項1乃至7のいずれか1に記載のベアリング。
  9. 小さい透磁率及び大きい抵抗率の前記部分は、約50Ωmの電気抵抗率を示すことを特徴とする請求項1乃至8のいずれか1に記載のベアリング。
  10. 前記能動型磁気ベアリング(100)は、軸方向タイプであることを特徴とする請求項1乃至9のいずれか1に記載のベアリング。
  11. 前記能動型磁気ベアリング(200)は、ラジアルタイプであることを特徴とする請求項1乃至9のいずれか1に記載のベアリング。
JP2007504441A 2004-03-22 2005-03-16 位置を自動検出する能動型磁気ベアリング Active JP4768712B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0402902 2004-03-22
FR0402902A FR2867819B1 (fr) 2004-03-22 2004-03-22 Palier magnetique actif a auto-detection de position
PCT/FR2005/000626 WO2005103517A1 (fr) 2004-03-22 2005-03-16 Palier magnetique actif a auto-detection de position

Publications (2)

Publication Number Publication Date
JP2007530882A true JP2007530882A (ja) 2007-11-01
JP4768712B2 JP4768712B2 (ja) 2011-09-07

Family

ID=34896676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007504441A Active JP4768712B2 (ja) 2004-03-22 2005-03-16 位置を自動検出する能動型磁気ベアリング

Country Status (8)

Country Link
US (1) US7719151B2 (ja)
EP (1) EP1727998B1 (ja)
JP (1) JP4768712B2 (ja)
CA (1) CA2560620C (ja)
DE (1) DE602005015428D1 (ja)
ES (1) ES2329487T3 (ja)
FR (1) FR2867819B1 (ja)
WO (1) WO2005103517A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2589827A1 (en) * 2011-11-04 2013-05-08 ETH Zürich Rotating electrical machine and method for measuring a displacement of a rotating electrical machine
JP6079090B2 (ja) 2011-12-08 2017-02-15 株式会社島津製作所 磁気浮上式真空ポンプおよび磁気浮上装置
JP5673564B2 (ja) 2012-01-06 2015-02-18 株式会社島津製作所 センサレス磁気浮上式真空ポンプおよびセンサレス磁気浮上装置
RU2566671C1 (ru) * 2014-03-28 2015-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Система управления электромагнитным подвесом ротора
US10177627B2 (en) 2015-08-06 2019-01-08 Massachusetts Institute Of Technology Homopolar, flux-biased hysteresis bearingless motor
US10833570B2 (en) 2017-12-22 2020-11-10 Massachusetts Institute Of Technology Homopolar bearingless slice motors

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983214U (ja) * 1982-11-29 1984-06-05 三菱重工業株式会社 回転体
JPS59174920A (ja) * 1983-03-23 1984-10-03 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン 磁気センサ兼アクチユエ−タ装置
JPH04249304A (ja) * 1991-02-04 1992-09-04 Murata Mfg Co Ltd 積層コア
JPH09510280A (ja) * 1994-02-28 1997-10-14 ソシエテ ド メカニク マニェティク 自動位置検出機能を備えた能動磁気軸受
JP2002242931A (ja) * 2001-02-14 2002-08-28 Nsk Ltd 磁気軸受装置
JP2003013955A (ja) * 2001-07-02 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd 磁気軸受用ステータコア
JP2003534656A (ja) * 2000-05-19 2003-11-18 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 誘導部品とその製造方法
JP2003347141A (ja) * 2002-05-27 2003-12-05 Denso Corp 圧粉ステータへの樹脂成型方法及び樹脂成型装置
JP2004063951A (ja) * 2002-07-31 2004-02-26 Jfe Steel Kk 電磁アクチュエータ用ハイブリッドコア

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557629A (en) * 1968-04-10 1971-01-26 Sperry Rand Corp Pick-off and torquing device
US5216308A (en) * 1989-05-25 1993-06-01 Avcon-Advanced Controls Technology, Inc. Magnetic bearing structure providing radial, axial and moment load bearing support for a rotatable shaft
NZ232333A (en) * 1990-02-01 1993-12-23 Cadac Holdings Ltd Motor stator wound with high permeability material.
US5250865A (en) * 1992-04-30 1993-10-05 Avcon - Advanced Controls Technology, Inc. Electromagnetic thrust bearing for coupling a rotatable member to a stationary member
WO2002006689A1 (en) * 2000-07-13 2002-01-24 Rolls-Royce Plc Magnetic bearings
US6770995B1 (en) * 2001-09-22 2004-08-03 Gerald K. Foshage Passive radial magnetic bearing
GB0127087D0 (en) * 2001-11-10 2002-01-02 Rolls Royce Plc Shaft bearings

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983214U (ja) * 1982-11-29 1984-06-05 三菱重工業株式会社 回転体
JPS59174920A (ja) * 1983-03-23 1984-10-03 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン 磁気センサ兼アクチユエ−タ装置
JPH04249304A (ja) * 1991-02-04 1992-09-04 Murata Mfg Co Ltd 積層コア
JPH09510280A (ja) * 1994-02-28 1997-10-14 ソシエテ ド メカニク マニェティク 自動位置検出機能を備えた能動磁気軸受
JP2003534656A (ja) * 2000-05-19 2003-11-18 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 誘導部品とその製造方法
JP2002242931A (ja) * 2001-02-14 2002-08-28 Nsk Ltd 磁気軸受装置
JP2003013955A (ja) * 2001-07-02 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd 磁気軸受用ステータコア
JP2003347141A (ja) * 2002-05-27 2003-12-05 Denso Corp 圧粉ステータへの樹脂成型方法及び樹脂成型装置
JP2004063951A (ja) * 2002-07-31 2004-02-26 Jfe Steel Kk 電磁アクチュエータ用ハイブリッドコア

Also Published As

Publication number Publication date
WO2005103517A1 (fr) 2005-11-03
JP4768712B2 (ja) 2011-09-07
DE602005015428D1 (de) 2009-08-27
CA2560620C (en) 2014-01-21
US7719151B2 (en) 2010-05-18
FR2867819B1 (fr) 2006-06-02
CA2560620A1 (en) 2005-11-03
ES2329487T3 (es) 2009-11-26
FR2867819A1 (fr) 2005-09-23
EP1727998B1 (fr) 2009-07-15
EP1727998A1 (fr) 2006-12-06
US20070195479A1 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
US8847451B2 (en) Combination radial/axial electromagnetic actuator with an improved axial frequency response
US8482174B2 (en) Electromagnetic actuator
JP4938468B2 (ja) ロータを磁気的に浮上させるための装置
US4620752A (en) Magnetic bearing having triaxial position stabilization
US8796894B2 (en) Combination radial/axial electromagnetic actuator
US8564281B2 (en) Noncontact measuring of the position of an object with magnetic flux
JP4768712B2 (ja) 位置を自動検出する能動型磁気ベアリング
US6563244B1 (en) Composite-type electromagnet and radial magnetic bearing
US8169118B2 (en) High-aspect-ratio homopolar magnetic actuator
JP5025505B2 (ja) 磁気軸受装置
FI127944B (en) Magnetic actuator for magnetic support system
US9065309B2 (en) Magnetic levitation type vacuum pump and magnetic levitation device
JP3041342B2 (ja) 磁気軸受装置
JP5895578B2 (ja) 非接触温度センサ
US9683601B2 (en) Generating radial electromagnetic forces
JP5364031B2 (ja) 回転角センサ
JP2961117B2 (ja) 磁気軸受装置
CN104141717B (zh) 一种用于抑制转子振动的大阻尼混合式磁阻尼器
JP5432860B2 (ja) Dcブラシレスモータ
Allaire et al. Low cost active magnetic bearings-concepts and examples
JP6744607B2 (ja) 角度検出装置
JPH07139545A (ja) 磁気軸受装置
Filatov et al. General explanation of how magnetic bearings work
JPS58130761A (ja) シリンダモ−タ用回転子マグネツト
CN100511929C (zh) 直流无刷马达及其磁性补偿方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Ref document number: 4768712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250