JP2007506080A5 - - Google Patents

Download PDF

Info

Publication number
JP2007506080A5
JP2007506080A5 JP2006526616A JP2006526616A JP2007506080A5 JP 2007506080 A5 JP2007506080 A5 JP 2007506080A5 JP 2006526616 A JP2006526616 A JP 2006526616A JP 2006526616 A JP2006526616 A JP 2006526616A JP 2007506080 A5 JP2007506080 A5 JP 2007506080A5
Authority
JP
Japan
Prior art keywords
microchannel
solution
flow
microfluidic system
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006526616A
Other languages
English (en)
Other versions
JP2007506080A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2004/010733 external-priority patent/WO2005026665A2/en
Publication of JP2007506080A publication Critical patent/JP2007506080A/ja
Publication of JP2007506080A5 publication Critical patent/JP2007506080A5/ja
Pending legal-status Critical Current

Links

Claims (42)

  1. 電流測定流れ監視手段を組み込んだ電気化学的な流れ監視デバイスであって、
    入口と出口を有する少なくとも1つのカバー付きのマイクロ流路を備えたマイクロフルイディックシステムと、
    前記マイクロフルイディックシステムの前記入口と前記出口の間に差圧を加え、前記カバー付きのマイクロ流路内の溶液の流れを発生する手段と、
    前記マイクロ流路の壁部に組み込まれた少なくとも1つの電極と、を備え、前記電極が、精密な寸法と精密な前記マイクロ流路内の配置とを有し、
    前記組み込まれた電極が、前記組み込まれた電極での溶液の流れを電流測定又は電気伝導性測定によって監視するようにされ、前記組み込まれた電極が、更に、分析対象物質を電気化学的に検出するようにされた、
    電気化学的な流れ監視デバイス。
  2. 前記溶液が、電流測定によって前記組み込まれた電極での前記溶液の流れを監視するレポーター分子を備える、請求項1に記載のデバイス。
  3. 前記差圧が重力によって、すなわち前記カバー付きのマイクロ流路の入口と出口の間の溶液の高さの差によって発生する、請求項1又は請求項2に記載のデバイス。
  4. 前記マイクロフルイディックシステムが支持剛体の上に又は支持剛体の中に設置され、当該支持剛体は傾斜することができ、前記カバー付きのマイクロ流路の前記入口と前記出口の間の溶液の前記高さの差を発生する、請求項3に記載のデバイス。
  5. 前記マイクロフルイディックシステムが、ポンピング手段なしで前記カバー付きのマイクロ流路内の溶液の流れを発生するようにされた、請求項3又は請求項4に記載のデバイス。
  6. 前記差圧を加える手段が外部アクチュエーターを備える、請求項1又は請求項2に記載のデバイス。
  7. 前記外部アクチュエーターが前記マイクロ流路の入口に、及び/又はマイクロ流路内に存在する流体に圧力をかける手段を備え、これによって前記マイクロフルイディックシステム内の溶液の流れを発生させる、請求項6に記載のデバイス。
  8. 前記外部アクチュエーターが前記マイクロ流路の前記出口において負圧をかける手段を備え、これによって前記マイクロ流路内の前記溶液の吸引を可能とする、請求項6に記載のデバイス。
  9. 前記レポーター分子がフェロセン、フェロセンカルボキシル酸、ヘキサシアノ鉄酸及び酸素のうちのいずれか1つである、請求項2に記載のデバイス。
  10. 前記マイクロフルイディックシステムがポリマー、ガラス、セラミック、他の流れに結びついた材料、及びこれらの組み合わせ、から選ばれた材料を備える、請求項1から9のいずれか1項に記載のデバイス。
  11. 前記マイクロフルイディックシステムが多層の本体を備える、請求項1から10のいずれか1項に記載のデバイス。
  12. 前記マイクロフルイディックシステムが光透過性材料を備える、請求項1から11のいずれか1項に記載のデバイス。
  13. 前記マイクロフルイディックシステムがプラズマエッチング、レーザーフォトアブレーション、エンボス加工、射出成形、UV−liga、ポリマー鋳造、シリコンエッチング、及びこれらの組み合わせの中から選ばれたプロセスによって製造される、請求項1から12のいずれか1項に記載のデバイス。
  14. 前記少なくとも1つの電極が前記マイクロ流路内の前記溶液と直接接触しない、請求項1から13のいずれか1項に記載のデバイス。
  15. 前記マイクロフルイディックシステムがマイクロ流路のネットワークを構成する、請求項1から14のいずれか1項に記載のデバイス。
  16. 前記マイクロ流路が、前記マイクロ流路の上に固定され外部圧力によって保持されたラミネーション、シール板、板の1つでカバーされている、請求項1から15のいずれか1項に記載のデバイス。
  17. 前記少なくとも1つの電極が、金属面、カーボン、液/液インターフェイスから選ばれた伝導性のある表面で構成されている、請求項1から16のいずれか1項に記載のデバイス。
  18. 前記少なくとも1つの電極が、電流測定によって分析対象物質を検出するようにされた、請求項1から17のいずれか1項に記載のデバイス。
  19. 前記組み込まれた電極が、電気化学によって分析対象物質を検出し、同時に、電流測定によって前記溶液の流れを監視するようにされた、請求項1から18のいずれか1項に記載のデバイス。
  20. 前記マイクロ流路内の溶液の流れが、分析対象物質の検出に先立つ分析アッセイの全工程の間、前記組み込まれた電極で、電流測定によって連続的に監視される、請求項1から19のいずれか1項に記載のデバイス。
  21. 前記カバー付きのマイクロ流路がバイオロジカルな化合物を含む、請求項1から20のいずれか1項に記載のデバイス。
  22. 前記バイオロジカルな化合物が酵素、抗体、抗原、オリゴヌクレオチド、DNA、DNAストレイン又はDNAセルから選択された、請求項21に記載のデバイス。
  23. 前記バイオロジカルな化合物が前記カバー付きのマイクロ流路内に固定されている、請求項21又は請求項22に記載のデバイス。
  24. 前記差圧の付加を停止することができる、請求項1から23のいずれか1項に記載のデバイス。
  25. 前記差圧の付加の停止が、前記マイクロ流路の前記入口及び前記出口のうちの1つを機械的にブロックすることによって行われる、請求項24に記載のデバイス。
  26. 前記差圧の付加の停止が、前記入口及び前記出口のうちの少なくとも1つに前記溶液と混合しない液体を加えることによって行われる、請求項24に記載のデバイス。
  27. 前記溶液の流れが、アフィニティー吸着体アッセイにおいて前記マイクロ流路内の溶液のインキュベーション及び/又は前記マイクロ流路の洗浄を行うために利用される、請求項1から26のいずれか1項に記載のデバイス。
  28. 電流測定流れ監視を備えたマイクロフルイディックシステム内で、分析アッセイを行う方法であって、
    (a) 入口と出口を有する少なくとも1つのカバー付きのマイクロ流路を備え、更に前記マイクロ流路の壁部に組み込まれた少なくとも1つの電極を備え、前記電極が、精密な寸法と精密な前記マイクロ流路内の配置とを有する、マイクロフルイディックシステムを供給する工程と、
    (b) 前記カバー付きのマイクロ流路の入口に溶液を充填する工程と、
    (c) 前記マイクロ流路の前記入口と出口の間に差圧を加え、前記マイクロ流路内の前記溶液の流れを生じさせる工程と、
    (d) 前記溶液の流れを、前記組み込まれた電極で、電流測定によって監視する工程と、
    (e) 前記組み込まれた電極によって、分析対象物質を電気化学的に検出する工程と、を備える、
    分析アッセイを行う方法。
  29. 工程b)から d)までが多段階アッセイを行うために繰り返される、請求項28に記載の方法。
  30. 前記溶液の流れが、多段階アッセイの間、前記分析対象物質の電気化学的検出の間を除いて連続的に監視される、請求項29に記載の方法。
  31. 前記差圧が、マイクロフルイディックシステムに加速度を加えることにより発生される、請求項28から30のいずれか1項に記載の方法。
  32. 前記加速度が、前記マイクロフルイディックシステム又は前記マイクロフルイディックシステムが支持剛体の上又は中に設置されている当該支持剛体の変位によって発生する、請求項31に記載の方法。
  33. 前記変位が、前記マイクロフルイディックシステム又は前記マイクロフルイディックシステムの支持剛体の回転又は垂直上昇からなり、それぞれ重力又は遠心力を発生させる、請求項32に記載の方法。
  34. 前記カバー付きのマイクロ流路内の溶液の流れが、ポンピング手段なしで発生される、請求項31から33のいずれか1項に記載の方法。
  35. 前記分析対象物質の電気化学的検出の前に前記差圧の付加を停止する工程を備えた、請求項28から33のいずれか1項に記載の方法。
  36. 差圧の付加を停止する前記工程が、前記マイクロ流路の前記入口及び前記出口の1つを機械的にブロックする工程を備えた、請求項35に記載の方法。
  37. 差圧の付加を停止する前記工程が、前記入口及び前記出口のうちの少なくとも1つに前記溶液と混合しない液体を加える工程を備えた、請求項35に記載の方法。
  38. 前記アッセイにおいて検出された分析対象物質が、前記分析対象物質を含む前記溶液の電気化学的特性を測定することにより前記溶液の流れを監視するのに直接利用される、請求項28から37のいずれか1項に記載の方法。
  39. 分析対象物質が、前記少なくとも1つの組み込まれた電極で、電流測定によって検出される、請求項28から38のいずれか1項に記載の方法。
  40. 前記溶液の流れの監視及び分析対象物質の検出が、前記組み込まれた電極での電流測定によって同時に行われる、請求項39に記載の方法。
  41. 化学的及び/又はバイオロジカルな分析を、電気化学的検出によって行う、請求項28から40のいずれか1項に記載の方法。
  42. 免疫学的アッセイ、オリゴヌクレオチドアッセイ、交配アッセイ、及び蛋白質相互作用アッセイの中から選択されたアフィニティーアッセイを行う、請求項41に記載の方法。
JP2006526616A 2003-09-15 2004-09-15 流れ監視マイクロフルイディックデバイス Pending JP2007506080A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50361603P 2003-09-15 2003-09-15
PCT/EP2004/010733 WO2005026665A2 (en) 2003-09-15 2004-09-15 Microfluidic flow monitoring device

Publications (2)

Publication Number Publication Date
JP2007506080A JP2007506080A (ja) 2007-03-15
JP2007506080A5 true JP2007506080A5 (ja) 2007-10-18

Family

ID=34312444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006526616A Pending JP2007506080A (ja) 2003-09-15 2004-09-15 流れ監視マイクロフルイディックデバイス

Country Status (5)

Country Link
US (1) US20070039835A1 (ja)
EP (1) EP1673595A2 (ja)
JP (1) JP2007506080A (ja)
AU (1) AU2004272746B2 (ja)
WO (1) WO2005026665A2 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070116585A (ko) * 2005-01-18 2007-12-10 바이오셉트 인코포레이티드 패턴화된 포스트를 갖는 마이크로채널을 이용하는 세포분리법
WO2007014336A1 (en) * 2005-07-27 2007-02-01 President And Fellows Of Harvard College Pressure determination in microfluidic systems
US7344679B2 (en) * 2005-10-14 2008-03-18 International Business Machines Corporation Method and apparatus for point of care osmolarity testing
GB0607205D0 (en) * 2006-04-10 2006-05-17 Diagnoswiss Sa Miniaturised biosensor with optimized anperimetric detection
US8980561B1 (en) 2006-08-22 2015-03-17 Los Alamos National Security, Llc. Nucleic acid detection system and method for detecting influenza
US20090047673A1 (en) 2006-08-22 2009-02-19 Cary Robert B Miniaturized lateral flow device for rapid and sensitive detection of proteins or nucleic acids
US8173071B2 (en) * 2006-08-29 2012-05-08 International Business Machines Corporation Micro-fluidic test apparatus and method
FR2922023A1 (fr) * 2007-10-05 2009-04-10 Univ Paris 7 Denis Diderot Methode et installation de detection electrochimique d'un compose biologique
CN101978260B (zh) * 2008-03-17 2014-12-17 美迪恩斯生命科技株式会社 电分析方法
US20110137596A1 (en) * 2008-04-30 2011-06-09 The Board Of Regents Of The University Of Texas System Quality control method and micro/nano-channeled devices
JP2011522521A (ja) 2008-05-05 2011-08-04 ロスアラモス ナショナル セキュリティ,エルエルシー 高度に単純化された側方流動ベースの核酸サンプル調製および受動的流体流動制御
EP2326419B1 (en) 2008-06-29 2021-04-07 Realbio Technologies Ltd. Liquid transfer device particularly useful as a capturing device in a biological assay process
FR2933490B1 (fr) 2008-07-02 2010-08-27 Commissariat Energie Atomique Procede de mesure du debit d'un liquide en ecoulement dans un canal fluidique et dispositif de mise en oeuvre
EP2180317A1 (de) 2008-10-24 2010-04-28 Roche Diagnostics GmbH System zur Messung einer Analytkonzentration und Verfahren zur Überwachung eines Flüssigkeitsstroms
GB2469071A (en) * 2009-03-31 2010-10-06 Diamatrix Ltd Electrochemical test device
WO2010135382A1 (en) * 2009-05-18 2010-11-25 Brigham Young University Integrated microfluidic device for serum biomarker quantitation using either standard addition or a calibration curve
US8323521B2 (en) * 2009-08-12 2012-12-04 Tokyo Electron Limited Plasma generation controlled by gravity-induced gas-diffusion separation (GIGDS) techniques
US10114020B2 (en) * 2010-10-11 2018-10-30 Mbio Diagnostics, Inc. System and device for analyzing a fluidic sample
CN102183669B (zh) * 2011-02-15 2013-07-17 中国科学院化学研究所 一种活体在线同时测定抗坏血酸与镁离子的微流控芯片及其制备方法
EP2699698B9 (en) 2011-04-20 2020-07-15 Mesa Biotech, Inc. Oscillating amplification reaction for nucleic acids
EP2794107B1 (en) 2011-12-22 2021-08-11 Life Technologies Corporation Sequential lateral flow capillary device for analyte determination
CN102559488A (zh) * 2012-01-16 2012-07-11 福建医科大学 集成电化学检测技术的定量pcr微流控芯片一体化装置
US20150057513A1 (en) * 2012-05-14 2015-02-26 Arizona Board Of Regents On Behalf Of Arizona State University Minimally Invasive Stress Sensors and Methods
US9557250B2 (en) * 2012-05-17 2017-01-31 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for separating particles
EP4282532A3 (en) 2015-04-24 2024-02-28 Mesa Biotech, Inc. Fluidic test cassette
CN108025904B (zh) * 2015-06-12 2021-10-15 芯易诊有限公司 用于多分析物分析的流体单元和流体卡式盒
US10634602B2 (en) 2015-06-12 2020-04-28 Cytochip Inc. Fluidic cartridge for cytometry and additional analysis
WO2017011554A1 (en) 2015-07-14 2017-01-19 Cytochip Inc. Volume sensing in fluidic cartridge
WO2017066241A1 (en) * 2015-10-14 2017-04-20 Sfc Fluidics, Inc Measurement of electric signals to detect presence or flow of electroactive species in solution
KR102357587B1 (ko) * 2016-06-10 2022-02-07 유니레버 글로벌 아이피 리미티드 기계 내에 도입되는 유체 배합물의 품질을 검출함으로써 기계 또는 공정을 제어하기 위한 장치를 포함하는 기계, 및 상응하는 방법
US11491487B2 (en) 2017-10-23 2022-11-08 Cytochip Inc. Devices and methods for measuring analytes and target particles
JP7022164B2 (ja) * 2020-02-28 2022-02-17 京セラ株式会社 センサパッケージおよびセンサモジュール
JP7535651B2 (ja) 2021-03-15 2024-08-16 株式会社日立ハイテク 自動分析装置およびその流路確認方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992820A (en) * 1997-11-19 1999-11-30 Sarnoff Corporation Flow control in microfluidics devices by controlled bubble formation
US6416642B1 (en) * 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US6743399B1 (en) * 1999-10-08 2004-06-01 Micronics, Inc. Pumpless microfluidics
GB0010957D0 (en) * 2000-05-05 2000-06-28 Novartis Ag Compound & method
GB0103516D0 (en) * 2001-02-13 2001-03-28 Cole Polytechnique Federale De Apparatus for dispensing a sample
US7037417B2 (en) * 2001-03-19 2006-05-02 Ecole Polytechnique Federale De Lausanne Mechanical control of fluids in micro-analytical devices
GB0111438D0 (en) * 2001-05-10 2001-07-04 Cole Polytechnique Federale De Polymer bonding by means of plasma activation
GB0116384D0 (en) * 2001-07-04 2001-08-29 Diagnoswiss Sa Microfluidic chemical assay apparatus and method
WO2003008102A1 (en) * 2001-07-18 2003-01-30 The Regents Of The University Of Michigan Microfluidic gravity pump with constant flow rate
GB0121189D0 (en) * 2001-08-31 2001-10-24 Diagnoswiss Sa Apparatus and method for separating an analyte
GB0226160D0 (en) * 2002-11-08 2002-12-18 Diagnoswiss Sa Apparatus for dispensing a sample in electrospray mass spectrometers
GB0300820D0 (en) * 2003-01-14 2003-02-12 Diagnoswiss Sa Membrane-microchannel strip

Similar Documents

Publication Publication Date Title
JP2007506080A5 (ja)
Pumera et al. New materials for electrochemical sensing VII. Microfluidic chip platforms
Goral et al. Electrochemical microfluidic biosensor for the detection of nucleic acid sequences
Pan et al. Electrochemical resistive-pulse sensing
Chen et al. Palladium film decoupler for amperometric detection in electrophoresis chips
US20070039835A1 (en) Microfluidic flow monitoring device
Zimmerman Electrochemical microfluidics
Qiu et al. Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector
Yamada et al. Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices
Ordeig et al. On-chip electric field driven electrochemical detection using a poly (dimethylsiloxane) microchannel with gold microband electrodes
Sassa et al. Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures
Xu et al. Electrochemical detection method for nonelectroactive and electroactive analytes in microchip electrophoresis
JP2008519969A (ja) オーム抵抗の最小化を伴うマイクロ流体装置
JP2009533658A (ja) 最適化電流測定検出を用いる小型バイオセンサー
Schoch et al. Electrical detection of fast reaction kinetics in nanochannels with an induced flow
Morier et al. Gravity‐induced convective flow in microfluidic systems: Electrochemical characterization and application to enzyme‐linked immunosorbent assay tests
JP2012073269A (ja) 対象液体を捕捉するための局在化区域を備える作業装置
Yang et al. Integrated microfluidic device for serum biomarker quantitation using either standard addition or a calibration curve
van den Brink et al. Miniaturization of electrochemical cells for mass spectrometry
WO2002065821A2 (en) Methods and systems for enhanced delivery of electrical currents to fluidic systems
Ordeig et al. Dual photonic-electrochemical lab on a chip for online simultaneous absorbance and amperometric measurements
Carano et al. Scanning electrochemical microscopy. 49. Gas-phase scanning electrochemical microscopy measurements with a Clark oxygen ultramicroelectrode
JP4531055B2 (ja) 対象液体の小滴を表面上に分配する方法
US9493812B2 (en) Method for detecting a target analyte that exhibits protease enzyme activity
JP2005031049A (ja) 分析用マイクロリアクター