JP2007335495A - Light emitter and method for manufacturing the same - Google Patents

Light emitter and method for manufacturing the same Download PDF

Info

Publication number
JP2007335495A
JP2007335495A JP2006163266A JP2006163266A JP2007335495A JP 2007335495 A JP2007335495 A JP 2007335495A JP 2006163266 A JP2006163266 A JP 2006163266A JP 2006163266 A JP2006163266 A JP 2006163266A JP 2007335495 A JP2007335495 A JP 2007335495A
Authority
JP
Japan
Prior art keywords
light
phosphor
phosphors
cup
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006163266A
Other languages
Japanese (ja)
Inventor
Shunichiro Hirafune
俊一郎 平船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006163266A priority Critical patent/JP2007335495A/en
Publication of JP2007335495A publication Critical patent/JP2007335495A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitter that can reduce color fluctuation by a single injection and hardening of a resin mixing a fluorescent material, and also to provide a method for manufacturing the same. <P>SOLUTION: The light emitter includes a light emitting element for emitting the light at least in a part of wavelengths ranging from blue ray to ultraviolet ray, a cup-shaped member surrounding the periphery of the light emitting element, and a transparent resin part mixing the fluorescent material filling a concave area of the cup-shaped member. The fluorescent material is activated with the light from the light emitting element, and a mixed light of the light from the light emitting element and the fluorescent light from the fluorescent material or the fluorescent light emitted from the fluorescent material is emitted to the external side. The transparent resin part includes at least two or more kinds of mixed fluorescent materials having different wavelengths of fluorescent light, and a ratio is equal to 10 or less in the value of the square of the grain size of respective fluorescent material × density thereof between fluorescent materials. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、青色発光ダイオード(以下、青色LEDと記す。)などの青色光〜紫外光の少なくとも一部の波長域の光を発する発光素子と蛍光体とを組み合わせ、白色光などの所望の発光色を発するように構成された発光体とその製造方法に関する。   The present invention combines a phosphor and a light emitting element that emits light in at least a part of a wavelength range of blue light to ultraviolet light, such as a blue light emitting diode (hereinafter referred to as blue LED), and desired light emission such as white light. The present invention relates to a light emitter configured to emit color and a method of manufacturing the same.

青色LEDとしてのGaN系LEDの開発以来10年以上が経過して、LED自体の効率向上及び低価格化に伴って、LEDの利用分野が急速に拡大している。特に、青色LEDと蛍光体の組合せによる白色LEDの実現と相まって、照明分野でもLEDが光源として利用されるようになってきている。前記白色LEDは、青色LEDからの青色系の光と、その青色系の光を吸収し補色関係にある黄色系を発光する蛍光体を使用することで、青色系の光と黄色系の光の混色により白色(疑似白色)発光体を実現している。   More than 10 years have passed since the development of GaN-based LEDs as blue LEDs, and the LED application fields are rapidly expanding as the efficiency of LEDs themselves increases and the price decreases. In particular, coupled with the realization of white LEDs by the combination of blue LEDs and phosphors, LEDs have come to be used as light sources in the illumination field. The white LED uses a blue light from a blue LED and a phosphor that absorbs the blue light and emits a yellow light that is in a complementary color relationship. A white (pseudo white) illuminant is realized by color mixing.

従来の疑似白色光は、青+黄色の光の混色であるので、赤色成分が不足しており、照明用途などに使用するには、演色性が低いという問題がある。このため、複数の蛍光体を組み合わせて白色LEDの演色性を改善する技術が提案されている(例えば、特許文献1参照)。   Since the conventional pseudo white light is a mixed color of blue + yellow light, the red component is insufficient, and there is a problem that the color rendering property is low for use in lighting applications. For this reason, the technique which improves the color rendering property of white LED by combining several fluorescent substance is proposed (for example, refer patent document 1).

図1は、青色LEDや近紫外LEDなどの発光素子と蛍光体を用いた一般的な白色発光体10の一例を示す断面図である。この白色発光体10は、擂り鉢状の凹部を有するカップ状部材11と、該カップ状部材11の底面に実装された発光素子12と、カップ状部材11の凹部内に充填された透明樹脂部13とから構成されている。前記透明樹脂部13は、微粒子状の蛍光体14(発光素子からの光を波長変換し、青、緑や黄色もしくは赤色に発光する)を混入した透明樹脂、例えば透明エポキシ樹脂等から構成されている。ここでは図示しないが、発光体として機能させるには、この他に、発光素子への電気供給手段が必要であり、また場合によっては、光を制御するレンズや拡散板、カップ状部材の保護のための部材が付加される。なお、本発明において、「演色性」及び「平均演色評価数」とは、それぞれ次の意味とする。   FIG. 1 is a cross-sectional view showing an example of a general white light emitter 10 using a light emitting element such as a blue LED or a near ultraviolet LED and a phosphor. The white light emitter 10 includes a cup-shaped member 11 having a bowl-shaped concave portion, a light-emitting element 12 mounted on the bottom surface of the cup-shaped member 11, and a transparent resin portion filled in the concave portion of the cup-shaped member 11. 13. The transparent resin portion 13 is composed of a transparent resin, for example, a transparent epoxy resin or the like, in which a fine particle phosphor 14 (wavelength conversion of light from a light emitting element and emission of blue, green, yellow, or red light) is mixed. Yes. Although not shown here, in order to function as a light emitter, in addition to this, a means for supplying electricity to the light emitting element is necessary. In some cases, a lens, a diffusion plate, and a cup-shaped member for controlling light are protected. Additional members are added. In the present invention, “color rendering properties” and “average color rendering index” have the following meanings, respectively.

・演色性
演色とは照明される光源の違いによって色の見え方が異なる現象をいい、その特性を演色性という。一般に、演色性とは、自然光と対比させた光源の性質をあらわすものである。光源の演色性評価方法は、JIS Z8726により決まっている。
-Color rendering The color rendering refers to a phenomenon in which the color looks different depending on the light source that is illuminated, and this characteristic is called color rendering. In general, the color rendering property represents the property of a light source compared with natural light. The color rendering property evaluation method of the light source is determined according to JIS Z8726.

・平均演色評価数(Ra)
演色性は、一般的には、自然光のようなものを基準にして、「よい」「わるい」というが、その自然光に近い照明を基準光として、JISに定められている試験色を基準として調べ、照明のその演色性を評価する。演色評価数には、平均演色評価数と特殊演色評価数があり、平均演色評価数とは、試験色を、試料光源と基準光で照明したときの色ずれの大きさを数値化したもので、基準光で見た時を100とし、色ずれが大きくなるに従って数値が小さくなる。平均演色評価数(Ra)は、基準光No.1〜8の演色評価数値の平均値として表される。
CIE(国際照明委員会)による演色評価数の基準において、望ましい平均演色評価数は、次の通りである。
Ra≧90・・・色比較・検査、臨床試験、美術館。
90>Ra≧80・・・住宅、ホテル、レストラン、店舗、オフィス、学校、病院など。
80>Ra≧60・・・一般的作業の工場。
このように一般の照明用途に使用するには、平均演色評価数80程度が必要となる。
特開2003−101081号公報
・ Average color rendering index (Ra)
Color rendering is generally referred to as “good” or “bad” with reference to natural light, but the illumination close to that natural light is used as the reference light, and the test color specified in JIS is used as the reference. Evaluate its color rendering of lighting. The color rendering index includes an average color rendering index and a special color rendering index. The average color rendering index is a numerical value of the amount of color shift when the test color is illuminated with the sample light source and the reference light. When viewed with reference light, the value is 100, and the numerical value decreases as the color shift increases. The average color rendering index (Ra) is the reference light No. It is expressed as an average value of 1 to 8 color rendering evaluation values.
In the standard of the color rendering index by the CIE (International Lighting Commission), desirable average color rendering index is as follows.
Ra ≧ 90 ... Color comparison / inspection, clinical trial, museum.
90> Ra ≧ 80... House, hotel, restaurant, store, office, school, hospital, etc.
80> Ra ≧ 60: Factory for general work.
As described above, an average color rendering index of about 80 is required for use in general lighting applications.
JP 2003-101081 A

しかしながら、特許文献1に記載されているように、高演色性の白色光を得るために、少なくとも2種類以上の蛍光体と青色LEDなどの発光素子とを組み合わせて白色発光体を構成する場合、個々の白色発光体の色バラツキが大きくなってしまう問題があった。
この対策として、透明樹脂をそれぞれの蛍光体が混合された複数種類用意し、まず、一つ目の蛍光体入りの樹脂をカップ状部材凹部に注入し硬化させ、その後違う蛍光体入りの樹脂を一つ目の蛍光体の上側に注入し硬化させるということを繰り返す方式を検討した。
However, as described in Patent Document 1, in order to obtain white light with high color rendering properties, when a white light emitter is configured by combining at least two kinds of phosphors and a light emitting element such as a blue LED, There has been a problem that the color variation of individual white light emitters becomes large.
As a countermeasure, prepare multiple types of transparent resin mixed with each phosphor. First, the resin containing the first phosphor is injected into the cup-shaped member recess and cured, and then a resin containing another phosphor is added. A method of repeating injection and curing on the upper side of the first phosphor was studied.

この方法により、色バラツキは低減し、問題ないレベルになったが、この方式では蛍光体の実装及び硬化を複数回行う必要が生じる。このため、ディスペンサ等の蛍光体塗布装置および硬化させるためのオーブン等が通常の数倍必要となり、また、製作に掛かる時間や工数も増大し、コストアップとなる。   By this method, the color variation is reduced to a level with no problem, but in this method, it is necessary to mount and cure the phosphor several times. For this reason, a phosphor coating device such as a dispenser and an oven for curing are required several times as usual, and the time and man-hours required for production increase, resulting in an increase in cost.

本発明は前記事情に鑑みてなされ、1回の蛍光体混入樹脂の注入及び硬化によって色バラツキを低減することが可能な発光体とその製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light emitting body capable of reducing color variation by a single injection and curing of a phosphor-mixed resin, and a method for manufacturing the same.

前記目的を達成するため、本発明は、青色光〜紫外光の少なくとも一部の波長域の光を発する発光素子と、該発光素子の周りを包囲するカップ状部材と、カップ状部材の凹部内に充填される蛍光体が混入された透明樹脂部とを有してなり、発光素子からの光により蛍光体を励起させ、発光素子からの光と蛍光体から発する蛍光との混色光または蛍光体から発する蛍光を外部に出射する発光体であって、透明樹脂部に、蛍光の波長が異なる少なくとも2種類以上の蛍光体が混合されており、それぞれの蛍光体の粒径の2乗×密度の値の各蛍光体間の比が10以下であることを特徴とする発光体を提供する。   To achieve the above object, the present invention provides a light emitting element that emits light in a wavelength region of at least a part of blue light to ultraviolet light, a cup-shaped member that surrounds the light-emitting element, and a recess in the cup-shaped member. And a transparent resin portion mixed with a phosphor filled therein, and the phosphor is excited by the light from the light emitting element, and the mixed color light or phosphor of the light from the light emitting element and the fluorescence emitted from the phosphor A phosphor that emits fluorescence emitted from the outside, wherein at least two kinds of phosphors having different fluorescence wavelengths are mixed in the transparent resin portion, and the square of the particle diameter of each phosphor × density. Provided is a light emitter characterized in that the ratio between the respective phosphors of the value is 10 or less.

本発明の発光体において、少なくとも1種類の蛍光体の見かけ上の密度を変化させたことが好ましい。   In the phosphor of the present invention, it is preferable that the apparent density of at least one kind of phosphor is changed.

本発明の発光体において、使用している全ての蛍光体がカップ深さの8割よりも上の部分に存在することが好ましい。   In the light-emitting body of the present invention, it is preferable that all the phosphors used are present in a portion above 80% of the cup depth.

また本発明は、カップ状部材の凹部内に青色光〜紫外光の少なくとも一部の波長域の光を発する発光素子を実装し、次いで該凹部内に蛍光の波長が異なる少なくとも2種類以上の蛍光体が混入された透明樹脂を充填し、硬化させて発光体を得る製造方法であって、透明樹脂に、蛍光の波長が異なり、それぞれの蛍光体の粒径の2乗×密度の値の各蛍光体間の比が10以下である少なくとも2種類以上の蛍光体を混合した混合材を1回の塗布作業により凹部内に充填することを特徴とする発光体の製造方法を提供する。   In the present invention, a light emitting element that emits light in a wavelength region of at least a part of blue light to ultraviolet light is mounted in the concave portion of the cup-shaped member, and then at least two types of fluorescent light having different fluorescence wavelengths are formed in the concave portion. A method for producing a phosphor by filling a transparent resin mixed with a body and curing the transparent resin, each having a wavelength of fluorescence different from that of each phosphor, Provided is a method of manufacturing a light emitting device, wherein a recess is filled with a mixed material in which at least two kinds of phosphors having a ratio between phosphors of 10 or less are mixed by one coating operation.

本発明の発光体の製造方法において、カップ状部材の凹部に混合材を充填後、硬化するまでの時間を、使用する蛍光体のうち一番移動量の大きい蛍光体の移動量が凹部深さの2割以内とした、少なくとも2種類以上の蛍光体を1回の塗布作業により充填することが好ましい。   In the method for manufacturing a light emitter according to the present invention, the amount of movement of the phosphor having the largest movement amount among the phosphors to be used after the filling material is filled in the concave portion of the cup-shaped member and cured is the depth of the concave portion. It is preferable to fill at least two kinds of phosphors within 20% of the above by one coating operation.

本発明の発光体の製造方法において、使用する蛍光体の粒径や密度から、カップ状部材に混合材を充填後、硬化するまでの時間を定めた少なくとも2種類以上の蛍光体を1回の塗布作業により塗布することが好ましい。   In the method for producing a luminescent material of the present invention, at least two kinds of phosphors each having a predetermined time from filling of the cup-shaped member to curing after the particle size and density of the phosphor to be used are determined once. It is preferable to apply by an application operation.

本発明の発光体の製造方法において、放置時間の制限から使用する蛍光体の粒径や密度を定めた少なくとも2種類以上の蛍光体を1回の塗布作業により塗布することが好ましい。   In the method for producing a luminescent material of the present invention, it is preferable to apply at least two or more types of phosphors, each of which defines the particle size and density of the phosphor to be used due to the limitation of the standing time, by a single coating operation.

本発明によれば、1回の蛍光体混入樹脂の注入及び硬化によって色バラツキを低減することが可能な発光体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light-emitting body which can reduce color variation by one injection | pouring and hardening | curing of fluorescent substance mixing resin can be provided.

本発明の発光体は、図2(a)に示すように、擂り鉢状の凹部を有するカップ状部材11と、該カップ状部材11の底面に実装された発光素子12と、カップ状部材11の凹部内に充填された透明樹脂部13とから構成された発光体10において、透明樹脂部13に、蛍光の波長が異なる少なくとも2種類以上の蛍光体15,16が混合されており、それぞれの蛍光体15,16の粒径の2乗×密度の値の各蛍光体間の比が10以下であることを特徴としている。   As shown in FIG. 2A, the light emitter of the present invention includes a cup-shaped member 11 having a bowl-shaped recess, a light-emitting element 12 mounted on the bottom surface of the cup-shaped member 11, and a cup-shaped member 11. In the luminous body 10 composed of the transparent resin portion 13 filled in the recess, at least two types of phosphors 15 and 16 having different fluorescence wavelengths are mixed in the transparent resin portion 13. The ratio between the phosphors 15 and 16 of the particle size squared density value of each phosphor is 10 or less.

前記発光素子12としては、青色光〜紫外光の少なくとも一部の波長域の光を発するLED素子、例えば青色LED素子、紫色LED素子、近紫外LED素子から選択されるいずれかのLED素子とすることができる。
透明樹脂13としては、例えば透明シリコーン樹脂などを用いることができる。
前記蛍光体15、16としては、発光素子12からの光を波長変換し、青、緑や黄色もしくは赤色に発光する微粒子状の蛍光体を用いることができる。
The light emitting element 12 is an LED element that emits light in a wavelength region of at least a part of blue light to ultraviolet light, for example, any LED element selected from a blue LED element, a purple LED element, and a near ultraviolet LED element. be able to.
As the transparent resin 13, for example, a transparent silicone resin or the like can be used.
As the phosphors 15 and 16, fine particle phosphors that convert the wavelength of light from the light emitting element 12 and emit blue, green, yellow, or red light can be used.

本実施形態の発光体10において、それぞれの蛍光体15,16は、粒径の2乗×密度の値の各蛍光体間の比が10以下となるように組み合わせており、これによって両方の蛍光体15,16が透明樹脂層13においてほぼ均一に存在し、発光体発光時の色バラツキを低減させることができる。各蛍光体間の前記比が10を超えると、図2(b)に示すように、一方の蛍光体16が他方の蛍光体15よりも硬化前の透明樹脂中で速く沈降し、これらの蛍光体15,16が凹部深さH方向に分かれて硬化樹脂中に存在することになり、発光体10の色バラツキが生じてしまうために好ましくない。   In the light emitter 10 of the present embodiment, the phosphors 15 and 16 are combined so that the ratio between the phosphors of the squared particle size × density value is 10 or less. The bodies 15 and 16 are present almost uniformly in the transparent resin layer 13, and color variation at the time of light emission of the light emitter can be reduced. When the ratio between the phosphors exceeds 10, as shown in FIG. 2B, one phosphor 16 settles faster in the transparent resin before curing than the other phosphor 15, and these fluorescences. Since the bodies 15 and 16 are separated in the recess depth H direction and are present in the cured resin, the color variation of the light emitting body 10 occurs, which is not preferable.

透明樹脂に蛍光体15,16を混合した混合材をカップ状部材11の凹部に流し込む時点では、各蛍光体15,16の濃度のバラツキを小さくして充填が可能であるが、充填後の放置時間(樹脂を硬化させるまでの時間)が、ある限界を超えると、色バラツキが大きくなることがわかった。特に、バッチ式に透明樹脂と蛍光体15,16を混合した混合材を少量ずつカップ状部材11の凹部内に流し込む方式を繰り返して製造する場合においては、バラツキがバッチ内の前半と後半とで相違することがわかった。   At the time when the mixed material in which the phosphors 15 and 16 are mixed with the transparent resin is poured into the concave portion of the cup-shaped member 11, the concentration of the phosphors 15 and 16 can be reduced and the filling can be performed. It has been found that when the time (time until the resin is cured) exceeds a certain limit, the color variation increases. In particular, in the case of manufacturing by repeating the method of pouring a mixed material in which the transparent resin and the phosphors 15 and 16 are mixed into the concave portion of the cup-shaped member 11 little by little in a batch type, the variation is between the first half and the second half in the batch. I found it different.

これらのバラツキは、それぞれの蛍光体の密度と粒径が違うために生じることがわかった。図2(a)は、透明樹脂と蛍光体15,16の混合材をカップ状部材11の凹部内に流し込んだ直後の模式図であり、また図2(b)は混合材を流し込んだものを放置して置いた状態の模式図である。ここでは、第1の蛍光体15よりも第2の蛍光体16の粒径が大きい場合を示している。このように粒径の大きな、または密度の高い蛍光体16が、混合材を流し込んだ後に放置しておく(硬化させるまでに時間が経つ)ことで、カップ状部材の凹部の下部に集まってしまう。   These variations were found to occur due to the different densities and particle sizes of the respective phosphors. FIG. 2A is a schematic view immediately after the mixed material of the transparent resin and the phosphors 15 and 16 is poured into the concave portion of the cup-shaped member 11, and FIG. 2B is a diagram in which the mixed material is poured. It is a schematic diagram of the state left to stand. Here, a case where the particle diameter of the second phosphor 16 is larger than that of the first phosphor 15 is shown. Thus, the phosphor 16 having a large particle size or high density is collected after pouring the mixed material and is left standing (it takes time until it is cured), so that the phosphor 16 gathers in the lower part of the concave portion of the cup-shaped member. .

このような、粒径の大きな、または密度の高い粒子が下部に集まることを抑えるには、混合材を流し込んだ直後に硬化を行うことで防ぐことが可能である。であるが、一般的にはカップ状部材を数十個から数百個単位でまとめて、混合材を流し込み、その後、硬化を行うバッチ式を採用しているため、混合材を流し込んだのちに連続的に1個づつ硬化を行うことは、新たな装置が必要となりコストが掛かるという問題がある。
また、装置へのカップ状部材の取り付けや取り外しに掛かる時間がかならず生じるため、単位時間に作製可能なLEDの数が少なくなるため、どうしてもコストが高いことになる。こうして、混合材を流し込んだ直後に硬化を行う方法は、色バラツキの低減の効果は期待できるが、新たな装置が必要になる、生産性が劣るなどでコストが高くなるという問題がある。
また、透明樹脂粘度を非常に高くすることで、粒径の大きな、または密度の高い粒子が下部に集まることを抑えるを防ぐことが可能なるが、粘度が高い場合には、樹脂に蛍光体を均一に混ぜ込むことが非常に難しくなる。これは、例えば、蛍光体を混ぜ込む際には、粘度が低い状態にしておいて、その後、熱処理を行うなどの方法で粘度をあげて、カップ状部材に流し込む方法も考えられるが、カップ状部材に流し込む際に、粘度が高い場合には、気泡を巻き込む、カップ状部材と発光素子との境界まで樹脂が流れずに空隙が残るなどの信頼性の面で問題が生じる。また、当然ながら、これまで使用していた樹脂よりも高い粘度の樹脂をカップ状部材に流し込むためには、新たな装置が必用になるなどのコストが掛かるという問題が生じる。
これまで述べたような、コストが高くなる問題もなく、また、信頼性の問題もない方法でこの分離を抑えるには、密度が大きい蛍光体(一般的には無機系の蛍光体)の粒径を小さくして、密度が小さい蛍光体の粒径を大きくすることで低減が可能であり、これによって発光体の色バラツキをある程度低減することができる。
更に検討を進め、色バラツキの低減可能な条件としては、それぞれの蛍光体の粒径の2乗×蛍光体の密度の差を10倍以内にすることで、色バラツキをさらに低減できることが分かった。
In order to suppress such particles having a large particle size or a high density from being collected in the lower part, it is possible to prevent the particles from being hardened immediately after pouring the mixed material. However, in general, a batch type in which cup-shaped members are gathered in units of several tens to several hundred pieces and the mixed material is poured and then cured is adopted, so after pouring the mixed material Continuous curing one by one has the problem that a new apparatus is required and costs increase.
In addition, since it takes time to attach and detach the cup-shaped member to and from the apparatus, the number of LEDs that can be manufactured per unit time is reduced, and the cost is inevitably high. Thus, the method of curing immediately after pouring the mixed material can be expected to reduce the color variation, but there is a problem that a new apparatus is required and the cost is increased due to inferior productivity.
Also, by making the viscosity of the transparent resin very high, it is possible to prevent particles having a large particle size or high density from being collected in the lower part, but if the viscosity is high, a phosphor is added to the resin. It becomes very difficult to mix evenly. For example, when mixing phosphors, a method in which the viscosity is kept low and then the viscosity is increased by a method such as heat treatment is poured into the cup-shaped member. When the viscosity is high at the time of pouring into the member, there arises a problem in terms of reliability such as entrainment of bubbles, and a resin does not flow to the boundary between the cup-shaped member and the light emitting element, leaving a void. Of course, in order to flow a resin having a viscosity higher than that of the resin used so far into the cup-shaped member, there arises a problem that a new device is required and costs are increased.
In order to suppress this separation by a method that does not increase the cost and does not have a problem of reliability as described above, particles of phosphors having a high density (generally inorganic phosphors) are required. This can be reduced by reducing the diameter and increasing the particle diameter of the phosphor having a low density, and this can reduce the color variation of the light emitter to some extent.
Further investigations have shown that the color variation can be further reduced by reducing the difference between the square of the particle diameter of each phosphor and the density of the phosphor within 10 times. .

さらに以上の方式に加え、例えば、生産性を上げるためにバッチ式(透明樹脂と蛍光体を混合した混合材を少量ずつカップ状部材の凹部内に流し込み、複数個のカップ状部材をまとめて硬化させる)の製造方法を用いる場合には、バッチの最初の方と最後の方に流し込んだものとでは、放置時間が異なるために色の違いが生じる。これは、放置時間の差により、蛍光体のカップ状部材の凹部内での状態が変化するためである。例えば、図2(a)がバッチの最後の方の状態とすると、バッチの最初の方は図2(b)のような状態になってしまう。なぜならば、最後に流し込んだものが、図2(b)に示すように下部に全ての蛍光体が沈殿してしまうためである。   In addition to the above methods, for example, in order to increase productivity, a batch type (a mixture of transparent resin and phosphor is poured into the concave portion of the cup-shaped member little by little, and a plurality of cup-shaped members are cured together. In the case of using the manufacturing method (1), a difference in color occurs between the one poured into the first and the last of the batch because the standing time is different. This is because the state of the phosphor in the recess of the cup-shaped member changes due to the difference in the standing time. For example, if FIG. 2 (a) is in the last state of the batch, the first one in the batch will be in the state as shown in FIG. 2 (b). This is because the last material poured in is that all the phosphor is deposited at the bottom as shown in FIG.

対策としては、使用する蛍光体の中で一番動く(粒径が大きい、密度が高い)ものが、放置時間の差により一番状態が変化するので、その蛍光体の状態変化により放置時間の限界を決めることで、色バラツキを所定の範囲に収めることが可能となる。
検討を重ねた結果、一番動く蛍光体の移動量をカップ状部材凹部の深さの2割以内にすることで、色バラツキを大幅に低減できることが分かった。つまり、図3(a)に示すように、蛍光体17が混合材を流し込んだカップ状部材11の凹部深さHの8割の深さh(h=0.8×H)よりも上の部分にあるうちに硬化させることが必要である。
As a countermeasure, the most moving phosphor (the particle size is large and the density is high) of the phosphor to be used changes its state most due to the difference in the leaving time. By determining the limit, it is possible to keep the color variation within a predetermined range.
As a result of repeated studies, it was found that the color variation can be greatly reduced by setting the moving amount of the most moving phosphor within 20% of the depth of the cup-shaped member recess. In other words, as shown in FIG. 3A, the phosphor 17 is above the depth h (h = 0.8 × H) that is 80% of the recess depth H of the cup-shaped member 11 into which the mixed material has been poured. It must be cured while in the part.

この移動量を数値でなく、カップ状部材の凹部深さで規定しているのは、密度や粒径により動く速度が変化するためである。また、発光体10の発光色の変化は、凹部深さHが変化した場合には、移動量も変化することが検討によりわかったためである。   The reason why the amount of movement is defined not by the numerical value but by the depth of the concave portion of the cup-shaped member is that the moving speed changes depending on the density and the particle size. The change in the emission color of the illuminant 10 is because the amount of movement also changes when the recess depth H changes, as a result of examination.

使用する蛍光体の密度がわかっていれば、それに応じて蛍光体の粒径を変化させることで、(その範囲は蛍光体の粒径の2乗と密度の比を10倍以内にすること)色バラツキの低減が可能である。
一般的には、色バラツキの程度を調べるだけでは数百〜数千程度の試作を行う必要があり、色バラツキが大きいためそれを低減させるための検討を行うとその数倍の数の試作が必要となる。本発明により、試作に要する時間、及び費用の大幅な低減が可能となる。
If the density of the phosphor to be used is known, the particle diameter of the phosphor is changed accordingly (the range is to make the ratio of the square of the phosphor particle diameter to the density within 10 times). Color variation can be reduced.
In general, it is necessary to make hundreds to thousands of prototypes just by examining the degree of color variation, and since there are large variations in color, studies to reduce this result in several times as many prototypes. Necessary. According to the present invention, it is possible to significantly reduce the time and cost required for trial production.

また、蛍光体の密度についても、例えば、蛍光体を造粒(小さい粉を粒にする)したり密度の低いものでコーティングすることで、見掛け上密度を変化させる方法もある。   As for the density of the phosphor, for example, there is a method of changing the apparent density by granulating the phosphor (making a small powder into particles) or coating it with a low density.

さらに、通常の製造方法では、放置時間(凹部内に樹嫉妬蛍光体の混合物を流し込んでから硬化させるまでの時間)が生じるが、使用する粒径が大きい(密度が高い)場合には、放置時間を短く(1バッチの量を少なく)し、粒径が小さい(密度が低い)場合には、放置時間を長くすることが可能となり、1バッチ時間にかけられる時間の無駄がなくなり、生産性が向上する。   Furthermore, in a normal manufacturing method, a standing time (a time from pouring the mixture of the tree phosphor into the concave portion until it is cured) occurs, but if the particle size to be used is large (the density is high), the standing time is left. If the time is shortened (the amount of one batch is small) and the particle size is small (the density is low), it is possible to lengthen the standing time, and there is no waste of time spent on one batch time, and productivity is improved. improves.

逆に1バッチの時間が決まっている場合、例えば、複数のカップ上部材がフレームにより繋がっており、蛍光体入り樹脂を流し込んだ後に分割する場合や使用する蛍光体が変化した場合などにおいて、試作の回数を低減することが可能になるため、試作時間や試作費用の削減に非常に有効である。   On the contrary, when the time for one batch is determined, for example, when a plurality of cup upper members are connected by a frame and divided after pouring the phosphor-containing resin, or when the phosphor used changes This is very effective in reducing trial production time and trial production costs.

[実施例1]
図2(a)に示すような表面実装型パッケージを用いて試作を行った。透明樹脂は信越化学製のLED用シリコーン樹脂(KJR-9022)を使用した。発光素子として青色LED素子を用い、青色LED+緑色蛍光体+黄色蛍光体にて、白色発光体を作製した。
蛍光体にはアルファサイアロンとベータサイアロンを用いた。これらの蛍光体は公知の材料である。
アルファサイアロン黄色蛍光体
・特許第3668770号「希土類元素を付活させた酸窒化物蛍光体」
・Rong-Jun Xie et al., Appl. Phys. Lett., Vol.84, pp.5404-5406
ベータサイアロン緑色蛍光体
・Naoto Hirosaki et al., Appl. Phys. Lett., Vol.86, 211905
[Example 1]
A prototype was made using a surface mount package as shown in FIG. As the transparent resin, Shin-Etsu Chemical's silicone resin for LEDs (KJR-9022) was used. A blue LED element was used as the light-emitting element, and a white light-emitting body was produced using blue LED + green phosphor + yellow phosphor.
Alpha sialon and beta sialon were used as phosphors. These phosphors are known materials.
Alphasialon yellow phosphor ・ Patent No. 3668770 “Oxynitride phosphor activated by rare earth elements”
・ Rong-Jun Xie et al., Appl. Phys. Lett., Vol.84, pp.5404-5406
Beta Sialon Green Phosphor ・ Naoto Hirosaki et al., Appl. Phys. Lett., Vol.86, 211905

製造手順としては、第一の工程では、パッケージ電極(素子載置用)に発光素子を導電性ペーストを用いてダイボンディングした。第二の工程では、発光ダイオード素子ともう一方のパッケージ電極とを金細線でワイヤボンディングした。第三の工程では、蛍光体粉末を混合分散させた樹脂を、発光素子および金細線を覆うように、パッケージの凹部にディスペンサ等で滴下注入しオーブンで樹脂を硬化させる。   As a manufacturing procedure, in the first step, the light emitting element was die-bonded to the package electrode (for element mounting) using a conductive paste. In the second step, the light emitting diode element and the other package electrode were wire-bonded with a fine gold wire. In the third step, a resin in which the phosphor powder is mixed and dispersed is dropped into a concave portion of the package with a dispenser or the like so as to cover the light emitting element and the fine gold wire, and the resin is cured in an oven.

この第三の工程において、2種類の蛍光体の粒径の2乗×密度の比を変化させてそれぞれの色バラツキを調べた。アルファサイアロンとベータサイアロンの密度は、ほとんど等しく、約3.2g/cmであるので、粒径を変化させた。粒径を揃える方法としては、ふるい分けで行い、CILAS 製 粒度計 Model 1064(測定条件Standard L)にて測定し確認を行った。以下に述べる粒径は、粒度計にて測定したd50(重量中央粒径)である。今回の調査では、アルファサイアロンの粒径を変化させて行った。
色バラツキを表す指標として、2種類の蛍光体の粒径の2乗×密度の比が1のときの色度xおよびyの標準偏差を基準として、比率を変化させたときの標準偏差の変化を用いた。結果を表1に示す
In this third step, the color variation of each of the two types of phosphors was examined by changing the ratio of the square of the particle diameter to the density. Since the density of alpha sialon and beta sialon was almost equal, about 3.2 g / cm 3 , the particle size was varied. As a method of aligning the particle diameter, screening was performed, and measurement was performed using a CILAS particle size meter Model 1064 (measurement condition Standard L). The particle size described below is d50 (weight median particle size) measured with a particle size meter. In this survey, the particle size of alpha sialon was changed.
The standard deviation when the ratio is changed based on the standard deviation of chromaticity x and y when the ratio of the square of the particle size of the two phosphors to the density is 1 as an index representing the color variation Was used. The results are shown in Table 1.

Figure 2007335495
Figure 2007335495

また、密度が変わった場合を調べるために、化成オプトニクス株式会社から市販されているP46Y3黄色蛍光体(密度約4.6g/cm)とベータサイアロン緑色蛍光体を使用した場合も調べた。この場合は、ベータサイアロン緑色蛍光体の粒径を変化させた。この場合も、同様に色バラツキを表す指標として、2種類の蛍光体の粒径の2乗×密度の比が1のときの色度xおよびyの標準偏差を基準として、比率を変化させたときの標準偏差の変化を用いた。結果を表2に示す。 Moreover, in order to investigate the case where a density changed, the case where P46Y3 yellow fluorescent substance (density about 4.6 g / cm < 3 >) marketed from Kasei Optonics Co., Ltd. and beta sialon green fluorescent substance was used was also investigated. In this case, the particle size of the beta sialon green phosphor was changed. In this case as well, the ratio was changed with reference to the standard deviation of chromaticity x and y when the ratio of the square of the particle size of the two types of phosphors to the density is 1, as an index representing the color variation. When the standard deviation change was used. The results are shown in Table 2.

Figure 2007335495
Figure 2007335495

表1および表2から、2種類の蛍光体の粒径の2乗×密度の比が10以下であれば、色バラツキが小さくなることがわかる。   From Table 1 and Table 2, it can be seen that if the ratio of the squared particle size x density of the two types of phosphors is 10 or less, the color variation becomes small.

[実施例2]
透明樹脂は信越化学製のLED用シリコーン樹脂(KJR-9022)を使用し、蛍光体にはアルファサイアロンとベータサイアロンを用いた。まず、粒径を変化させた蛍光体の移動量と放置時間をあらかじめ調べた。これは、透明樹脂に蛍光体を混合した混合材を作り、それをカップ状部材に流し混む。その後の放置時間を変化させて加熱硬化させる。硬化後の樹脂をカップ状部材ごと半分に切断し、蛍光体の移動量を調査した。
なお、樹脂の粘度により移動量が変化するために、室温を合わせた。また、透明樹脂の主材と硬化剤を混合してからの経過時間は、粘度が大きく変化しない範囲で合わせている。次に、実施例1と同様に白色発光体を作製し、それらの樹脂を流し込んだ後の放置時間と色バラツキの関係を調べた。深さの異なる2種類のパッケージ(凹部深さ0.6mmのパッケージ1と凹部深さ1.0mmのパッケージ2)についてそれぞれ調べ、その結果を表3に記す。なお、放置時間が短い方が色バラツキが小さいため、色度変化の基準は移動量0.05としている。
[Example 2]
The transparent resin used was a silicone resin for LED (KJR-9022) manufactured by Shin-Etsu Chemical, and alpha sialon and beta sialon were used for the phosphor. First, the amount of movement and the standing time of the phosphor having a changed particle size were examined in advance. This makes a mixed material in which a fluorescent material is mixed with a transparent resin, and flows the mixture into a cup-shaped member to be mixed. Thereafter, the standing time is changed and heat-cured. The cured resin was cut in half together with the cup-shaped member, and the amount of movement of the phosphor was investigated.
In addition, since the amount of movement changes depending on the viscosity of the resin, the room temperature was adjusted. Moreover, the elapsed time after mixing the main material of a transparent resin and a hardening | curing agent is match | combined in the range in which a viscosity does not change a lot. Next, white light emitters were prepared in the same manner as in Example 1, and the relationship between the standing time after pouring these resins and the color variation was examined. Two types of packages having different depths (package 1 having a recess depth of 0.6 mm and package 2 having a recess depth of 1.0 mm) were examined, and the results are shown in Table 3. Since the color variation is smaller when the leaving time is shorter, the reference for the change in chromaticity is 0.05.

Figure 2007335495
Figure 2007335495

表3から、蛍光体移動量が凹部深さ比0.2以内であれば、蛍光体の色バラツキが小さいことがわかった。   From Table 3, it was found that if the amount of movement of the phosphor is within the recess depth ratio of 0.2, the color variation of the phosphor is small.

一般的な発光体の構造を示す断面図である。It is sectional drawing which shows the structure of a common light-emitting body. 本発明の発光体の製造方法の一例を示し、凹部内に2種類の蛍光体と透明樹脂との混合材を充填した直後に硬化させた場合(a)と、混合材を充填後に放置したために蛍光体の不均一な沈降が生じた後に硬化させた場合(b)で得られた発光体の構造を示す断面図である。An example of the method for producing a light emitter according to the present invention is shown in the case of curing immediately after filling a mixture of two kinds of phosphors and a transparent resin in the recess (a), and because it was left after filling with the mixture It is sectional drawing which shows the structure of the light-emitting body obtained by making it harden | cure after non-uniform sedimentation of fluorescent substance arises. 本発明の発光体の製造方法の他の例を示し、蛍光体が凹部深さHの8割の深さhまで沈降しないうちに樹脂を硬化させた場合(a)と、蛍光体が凹部深さHの8割の深さhより下に沈降した後に樹脂を硬化させた場合(b)で得られた発光体の構造を示す断面図である。Another example of the method for manufacturing a light emitter according to the present invention is shown, in which the phosphor is not recessed to the depth h (80) of the recess depth H (a), and the phosphor has a recess depth. It is sectional drawing which shows the structure of the light-emitting body obtained by (b) when resin is hardened after settling below the depth h of 80% of depth H.

符号の説明Explanation of symbols

10…発光体、11…カップ状部材、12…発光素子、13…透明樹脂部、14,15,16,17…蛍光体。
DESCRIPTION OF SYMBOLS 10 ... Luminescent body, 11 ... Cup-shaped member, 12 ... Light emitting element, 13 ... Transparent resin part, 14, 15, 16, 17 ... Phosphor.

Claims (7)

青色光〜紫外光の少なくとも一部の波長域の光を発する発光素子と、該発光素子の周りを包囲するカップ状部材と、カップ状部材の凹部内に充填される蛍光体が混入された透明樹脂部とを有してなり、発光素子からの光により蛍光体を励起させ、発光素子からの光と蛍光体から発する蛍光との混色光または蛍光体から発する蛍光を外部に出射する発光体であって、
透明樹脂部に、蛍光の波長が異なる少なくとも2種類以上の蛍光体が混合されており、それぞれの蛍光体の粒径の2乗×密度の値の各蛍光体間の比が10以下であることを特徴とする発光体。
A light-emitting element that emits light in a wavelength range of at least a part of blue light to ultraviolet light, a cup-shaped member that surrounds the light-emitting element, and a transparent material in which a phosphor filled in the concave portion of the cup-shaped member is mixed A phosphor that excites the phosphor by the light from the light emitting element and emits the mixed color light of the light from the light emitting element and the fluorescence emitted from the phosphor or the fluorescence emitted from the phosphor to the outside. There,
At least two types of phosphors having different fluorescence wavelengths are mixed in the transparent resin portion, and the ratio between the phosphors, which is the square of the particle size of each phosphor × density value, is 10 or less. A light emitter characterized by the following.
少なくとも1種類の蛍光体の見かけ上の密度を変化させたことを特徴とする請求項1に記載の発光体。   2. The light emitting body according to claim 1, wherein an apparent density of at least one phosphor is changed. 使用している全ての蛍光体がカップ深さの8割よりも上の部分に存在することを特徴とする請求項1又は2に記載の発光体。   The phosphor according to claim 1 or 2, wherein all the phosphors used are present in a portion above 80% of the cup depth. カップ状部材の凹部内に青色光〜紫外光の少なくとも一部の波長域の光を発する発光素子を実装し、次いで該凹部内に蛍光の波長が異なる少なくとも2種類以上の蛍光体が混入された透明樹脂を充填し、硬化させて発光体を得る製造方法であって、
透明樹脂に、蛍光の波長が異なり、それぞれの蛍光体の粒径の2乗×密度の値の各蛍光体間の比が10以下である少なくとも2種類以上の蛍光体を混合した混合材を1回の塗布作業により凹部内に充填することを特徴とする発光体の製造方法。
A light emitting element that emits light in at least a part of the wavelength range of blue light to ultraviolet light is mounted in the concave portion of the cup-shaped member, and then at least two kinds of phosphors having different fluorescence wavelengths are mixed in the concave portion. A manufacturing method for obtaining a light emitter by filling a transparent resin and curing it,
1 is a mixture of transparent resin and at least two kinds of phosphors having different fluorescence wavelengths and the ratio of the square of the particle size of each phosphor to the value of density is 10 or less. A method of manufacturing a light emitter, wherein the recess is filled by a single coating operation.
カップ状部材の凹部に混合材を充填後、硬化するまでの時間を、使用する蛍光体のうち一番移動量の大きい蛍光体の移動量が凹部深さの2割以内とした、少なくとも2種類以上の蛍光体を1回の塗布作業により充填することを特徴とする請求項4に記載の発光体の製造方法。   At least two types of the time required for curing after filling the concave portion of the cup-shaped member with the moving amount of the phosphor having the largest moving amount within 20% of the concave portion depth among the phosphors to be used. The phosphor according to claim 4, wherein the phosphor is filled by a single coating operation. 使用する蛍光体の粒径や密度から、カップ状部材に混合材を充填後、硬化するまでの時間を定めた少なくとも2種類以上の蛍光体を1回の塗布作業により塗布することを特徴とする請求項5に記載の発光体の製造方法。   It is characterized in that at least two or more types of phosphors having a predetermined time until curing after being filled with a mixed material in a cup-shaped member are applied by a single coating operation based on the particle size and density of the phosphor to be used. The manufacturing method of the light-emitting body according to claim 5. 放置時間の制限から使用する蛍光体の粒径や密度を定めた少なくとも2種類以上の蛍光体を1回の塗布作業により塗布することを特徴とする請求項5に記載の発光体の製造方法。


6. The method of manufacturing a luminescent material according to claim 5, wherein at least two or more types of phosphors having a determined particle size and density of the phosphor to be used due to limitation of the standing time are applied by a single coating operation.


JP2006163266A 2006-06-13 2006-06-13 Light emitter and method for manufacturing the same Pending JP2007335495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163266A JP2007335495A (en) 2006-06-13 2006-06-13 Light emitter and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163266A JP2007335495A (en) 2006-06-13 2006-06-13 Light emitter and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007335495A true JP2007335495A (en) 2007-12-27

Family

ID=38934705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163266A Pending JP2007335495A (en) 2006-06-13 2006-06-13 Light emitter and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007335495A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114217A (en) * 2008-11-05 2010-05-20 Toshiba Corp Fluorescer solution, light-emitting device, and method for manufacturing it
JP2013163724A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
KR20160005769A (en) 2013-05-21 2016-01-15 샌트랄 글래스 컴퍼니 리미티드 Broadband emission material and white light emission material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119838A (en) * 2002-09-27 2004-04-15 Toshiba Corp Method of manufacturing optical semiconductor device
JP2005019662A (en) * 2003-06-26 2005-01-20 Nichia Chem Ind Ltd Light emitting device
JP2005277332A (en) * 2004-03-26 2005-10-06 Kyocera Corp Light emitting device and lighting device
JP2005340512A (en) * 2004-05-27 2005-12-08 Fujikura Ltd Light emitting device and method for manufacturing the same
WO2006033239A1 (en) * 2004-09-22 2006-03-30 Kabushiki Kaisha Toshiba Light emitting device, and back light and liquid crystal display employing it
JP2006114637A (en) * 2004-10-13 2006-04-27 Toshiba Corp Semiconductor light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119838A (en) * 2002-09-27 2004-04-15 Toshiba Corp Method of manufacturing optical semiconductor device
JP2005019662A (en) * 2003-06-26 2005-01-20 Nichia Chem Ind Ltd Light emitting device
JP2005277332A (en) * 2004-03-26 2005-10-06 Kyocera Corp Light emitting device and lighting device
JP2005340512A (en) * 2004-05-27 2005-12-08 Fujikura Ltd Light emitting device and method for manufacturing the same
WO2006033239A1 (en) * 2004-09-22 2006-03-30 Kabushiki Kaisha Toshiba Light emitting device, and back light and liquid crystal display employing it
JP2006114637A (en) * 2004-10-13 2006-04-27 Toshiba Corp Semiconductor light-emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114217A (en) * 2008-11-05 2010-05-20 Toshiba Corp Fluorescer solution, light-emitting device, and method for manufacturing it
US8039858B2 (en) 2008-11-05 2011-10-18 Kabushiki Kaisha Toshiba Fluorescer solution, light-emitting device, and method for manufacturing same
JP2013163724A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
KR20160005769A (en) 2013-05-21 2016-01-15 샌트랄 글래스 컴퍼니 리미티드 Broadband emission material and white light emission material
US9663397B2 (en) 2013-05-21 2017-05-30 Central Glass Company, Limited Broadband emission material and white light emission material

Similar Documents

Publication Publication Date Title
JP5290368B2 (en) LIGHT EMITTING SEMICONDUCTOR ELEMENT HAVING LUMINANCE CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, LED LIGHTING DEVICE, LIGHT SOURCE
Tran et al. Studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes
TW507387B (en) Light emitting diode with light conversion by dielectric phosphor powder
KR101201266B1 (en) Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet
JP5470618B2 (en) Light emitting device
EP1178544A2 (en) Semiconductor light emitting device and method for manufacturing same
KR100693463B1 (en) Light diffusion type light emitting diode
AU2014347188B2 (en) LED package with red-emitting phosphors
JP2002261328A (en) Light-emitting diode having optical conversion material using scattered optical medium
JP2016063001A (en) Light-emitting device
DE102013207308B4 (en) Method for manufacturing an optoelectronic assembly and optoelectronic assembly
JP2015130459A (en) Phosphor-containing multilayer film sheet and light-emitting device
KR20130093640A (en) Method for generating a luminescence conversion material layer, composition therefor and component comprising such a luminescence conversion material layer
CN105633248B (en) LED lamp and preparation method thereof
KR20160140822A (en) Hydrophobized phosphor, and light-emitting device
JP2007335495A (en) Light emitter and method for manufacturing the same
CN106716653A (en) Substrate for color conversion of light-emitting diode and manufacturing method therefor
JP2007059758A (en) Light emitting device
JP2010206208A (en) Light emitting diode package structure and manufacturing method therefor
JP6783987B2 (en) Light emitting device
JP4868960B2 (en) Light emitting device and manufacturing method thereof
JP2006019677A (en) Rgb light emitting diode package having improved color mixing property
KR20040017926A (en) Light-mixing layer and method
CN103840057B (en) Light emitting diode and manufacture method thereof
JP2014041985A (en) Wavelength conversion material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925