JP2007332667A - Method of reinforcing toughness of reinforced concrete columnar structure using carbon fibers - Google Patents

Method of reinforcing toughness of reinforced concrete columnar structure using carbon fibers Download PDF

Info

Publication number
JP2007332667A
JP2007332667A JP2006165932A JP2006165932A JP2007332667A JP 2007332667 A JP2007332667 A JP 2007332667A JP 2006165932 A JP2006165932 A JP 2006165932A JP 2006165932 A JP2006165932 A JP 2006165932A JP 2007332667 A JP2007332667 A JP 2007332667A
Authority
JP
Japan
Prior art keywords
reinforcing
reinforcement
toughness
carbon fiber
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006165932A
Other languages
Japanese (ja)
Other versions
JP5291867B2 (en
Inventor
Hideyuki Komaki
秀之 小牧
Yoshihiro Fukuda
欣弘 福田
Masanori Nakada
昌典 中田
Yasuhiro Mori
康弘 森
Toru Kakio
徹 垣尾
Masayuki Nakase
理至 中瀬
Suminori Takeyama
純徳 竹山
Ryoichi Sato
良一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSEI KENSETSU KK
West Japan Railway Co
Eneos Corp
JR West Japan Consultants Co
Original Assignee
KOSEI KENSETSU KK
Nippon Oil Corp
West Japan Railway Co
JR West Japan Consultants Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSEI KENSETSU KK, Nippon Oil Corp, West Japan Railway Co, JR West Japan Consultants Co filed Critical KOSEI KENSETSU KK
Priority to JP2006165932A priority Critical patent/JP5291867B2/en
Priority to CN2007800221089A priority patent/CN101466906B/en
Priority to PCT/JP2007/061990 priority patent/WO2007145277A1/en
Priority to TW096121702A priority patent/TW200829771A/en
Publication of JP2007332667A publication Critical patent/JP2007332667A/en
Application granted granted Critical
Publication of JP5291867B2 publication Critical patent/JP5291867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reinforcing toughness that satisfies new earthquake resistance standards, wherein the method is implemented by reducing the usage of reinforcing fibers compared with a conventional method and curtailing costs by virtue of optimized winding intervals of a reinforcing member, and facilitates checking of introduction of cracking etc. into concrete even if a moderate-sized earthquake or the like occurs after implementation of the method. <P>SOLUTION: According to the method of reinforcing the toughness of a reinforced concrete columnar structure, the carbon fiber-containing reinforcing members 2 are wound on a toughness reinforcing zone of the reinforced concrete columnar structure 1, extending from each of upper and lower edges of the structure over a length 2D (D is representative of a columnar cross sectional height), at the predetermined winding intervals such that each winding interval (P) is equal to or larger than 5 cm and that a value P/D is set to 1/3 or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コンクリート製の柱、あるいは、橋脚、煙突等のコンクリート製柱状構造物の炭素繊維を用いた補強方法に関し、特にじん性能を向上させる補強方法に関する。   The present invention relates to a reinforcing method using carbon fibers of a concrete column or a concrete columnar structure such as a bridge pier and a chimney, and more particularly to a reinforcing method for improving dust performance.

コンクリート製の柱、あるいは、橋脚、煙突等の既設コンクリート構造物は、経年劣化による耐力の低下もさることながら、建造時の設計基準によっても大きく強度が異なっている。また、先の阪神・淡路大震災においては、昭和56年施行の新耐震設計法の基準を満たす建築物の被害が軽微であったとの経験から、新耐震基準での見直しが行われ、既設構造物についても新耐震基準への適合が求められている。   Concrete pillars, or existing concrete structures such as bridge piers and chimneys, differ in strength depending on design standards at the time of construction, as well as decrease in proof stress due to deterioration over time. In the previous Great Hanshin-Awaji Earthquake, the new earthquake resistance standards were reviewed based on the experience that damage to buildings that met the standards of the new earthquake resistance design law enforced in 1981 was minor. Is also required to comply with the new seismic standards.

既設構造物の場合、取り壊し、新たに建造すれば新耐震基準を満たした構造物も得られるが、建造に長期間を要し、その費用も多大である。したがって、通常は、著しく劣化していない限りは、耐震補強工事が実施される。   In the case of an existing structure, if it is demolished and newly constructed, a structure satisfying the new earthquake resistance standard can be obtained, but it takes a long time to construct and the cost is great. Therefore, normally, seismic reinforcement work is carried out unless it has deteriorated significantly.

このような耐震補強工事として、鋼板接着工法(鋼板を柱に巻き付ける補強工法)が知られている。しかし、鋼板は重量が大きいために、施工性に劣り、また、錆の発生等、長期耐久性に問題があった。   As such seismic reinforcement work, a steel plate bonding method (reinforcing method in which a steel plate is wound around a column) is known. However, since the steel sheet has a large weight, the workability is inferior, and there is a problem in long-term durability such as generation of rust.

一方、軽量で、長期耐久性を有するという観点から、強化繊維を用いた補強材料を使用した補強方法が知られている。強化繊維を用いた補強工事では、まず、補強すべき個所の不陸修正等を行った後、必要によりプライマー層を形成し、強化繊維シートを貼り付け、常温硬化性樹脂を含浸し、硬化させることで、補修・補強面に繊維強化樹脂(FRP)板へ転化させ、当該表面へ固着させる。また、予め硬化させたFRP板を貼り付ける工法も知られている。   On the other hand, from the viewpoint of light weight and long-term durability, a reinforcing method using a reinforcing material using reinforcing fibers is known. In reinforcement work using reinforcing fibers, first, after correcting the unevenness of the parts to be reinforced, a primer layer is formed if necessary, a reinforcing fiber sheet is attached, and a room temperature curable resin is impregnated and cured. Thus, it is converted into a fiber reinforced resin (FRP) plate on the repair / reinforcement surface and fixed to the surface. In addition, a method of attaching a pre-cured FRP plate is also known.

非特許文献1には、炭素繊維シート利用による耐震補強工法を鉄道高架柱に拡大適用することを目的に、その工法及び施工指針が示されている。補強工法としては、部材のせん断耐力の向上を目的としたせん断補強、部材のじん性能の向上を目的としたじん性補強、部材の曲げ耐力の向上を目的とした曲げ補強の3種の工法に分けられている。   Non-Patent Document 1 discloses the construction method and construction guidelines for the purpose of expanding and applying the seismic reinforcement method using carbon fiber sheets to railway elevated columns. There are three types of reinforcement methods: shear reinforcement for the purpose of improving the shear strength of the member, toughness reinforcement for the purpose of improving the toughness of the member, and bending reinforcement for the purpose of improving the bending strength of the member. It is divided.

炭素繊維シートにより耐震補強を行う場合、柱中央部のせん断補強と柱上下端部のじん性補強を組み合わせて行うのが一般的である(図12参照)。せん断補強の補強区間は柱高さLの全区間に及ぶのに対し、じん性補強は、柱上下端部の柱幅D(柱断面高さ)の2倍(2D)の区間に行う。   When performing seismic reinforcement with a carbon fiber sheet, it is common to combine shear reinforcement at the center of the column and toughness reinforcement at the upper and lower ends of the column (see FIG. 12). The reinforcing section of the shear reinforcement extends over the entire section of the column height L, while the toughening is performed in a section twice (2D) the column width D (column cross-section height) at the upper and lower ends of the column.

図13は、塑性ヒンジ領域において鉄筋コンクリート製柱におけるコンクリートが粒塊化した状態を示している。従来のじん性補強における補強方法は、塑性ヒンジ領域において粒塊化したコンクリートが外に逃げ出すのを拘束封じ込むように補強するのが一般的である。従って、炭素繊維シート巻き立てによるじん性補強においても、隙間なく補強材料で覆って補強されている。   FIG. 13 shows a state in which the concrete in the reinforced concrete column is agglomerated in the plastic hinge region. In a conventional reinforcing method in toughness reinforcement, reinforcement is generally performed so as to constrain and prevent the agglomerated concrete from escaping outside in the plastic hinge region. Therefore, even in the toughness reinforcement by winding the carbon fiber sheet, the reinforcing material is covered and reinforced with no gap.

またFRPを所定量全面に貼り付けた場合、過去の実験例においては、終局時に塑性ヒンジ領域となる基部の鉄筋のはらみ出しにより強化繊維が破断し、コンクリート構造物が脆性的に破壊することが知られている。特にFRPの補強量が少ない時、強化繊維の破断は顕著に発生する。   In addition, when a predetermined amount of FRP is pasted on the entire surface, in the past experimental example, the reinforcing fiber breaks due to the protrusion of the base reinforcing bar that becomes the plastic hinge region at the end, and the concrete structure may break brittlely. Are known. In particular, when the amount of reinforcement of FRP is small, breakage of the reinforcing fiber occurs remarkably.

このように、新耐震基準を満たすじん性能を達成するためには、極めて多くのFRPを積層する必要があり、コスト的に現実的ではなく、採用事例も数少ない。   As described above, in order to achieve the dust performance satisfying the new earthquake resistance standard, it is necessary to stack an extremely large number of FRPs, which is not practical in terms of cost and has few examples of adoption.

また、このような方法で施工した場合、施工後は強化繊維板でコンクリート表面が覆われてしまうため、例えば、中規模の地震が発生した場合に、コンクリートにひび割れ等が発生していないかどうかの診断が非常に困難である。   In addition, when constructed in this way, the concrete surface will be covered with a reinforcing fiberboard after construction. For example, if a medium-scale earthquake occurs, whether or not the concrete is cracked. Diagnosis is very difficult.

また、炭素繊維シートによる全面巻き付けでは、段差や突起、不陸等の調整処理は、十分な接着性を得るために必須の処理であり、工程が煩雑となり、コスト増、施工期間の長期化等の原因ともなっている。   In addition, when winding the entire surface with a carbon fiber sheet, adjustment processing for steps, protrusions, unevenness, etc. is indispensable for obtaining sufficient adhesion, making the process complicated, increasing costs, extending the construction period, etc. It is also the cause of.

たとえば、図14は、大きな段差がある場合の下地処理を示すもので、段差上部を削り取り、下部は削り取った面に連続するようにモルタル等を詰めて補修する必要がある。また、型枠目違い等による小さな段差についても、削り取り処理を行った後、プライマ塗布面の指触硬化後にエポキシ系パテ等を用いた平滑処理により炭素繊維シートが柱表面に密着するように整えなければならないとされている。   For example, FIG. 14 shows the ground processing when there is a large level difference, and it is necessary to repair the upper part of the level difference by cutting it off and filling the lower side with a mortar or the like so as to be continuous with the scraped surface. In addition, even for small steps due to differences in formwork, etc., after the scraping treatment, the carbon fiber sheet is arranged so that it adheres to the column surface by smoothing treatment using an epoxy-based putty etc. after the primer coating surface is cured by touch. It is said that it must be.

特許文献1(特開昭62−244977号公報)及び特許文献2(特開昭62−242058号公報には、コンクリート製既存柱の耐震補強方法として、高強度長繊維ストランドをスパイラル状に捲回する工法が示されている。また、特許文献3(特開2000−73586号公報)には、FRP補強テープを用いて袖壁等の障害物があっても補強テープを捲き回す部分の袖壁に開口を設けて捲き回す方法が開示されている。また、特許文献4(特開2002−115403号公報)には、同様に壁付きコンクリート柱を補強するにあたり、壁に柱の長手方向に間隔をあけて複数の貫通孔を形成し、該各貫通孔を通して柱の外周に強化繊維ストランドの束を巻き付けることが提案されている。このような、ストランドやテープ等を用いて補強すれば施工後の確認も可能である。   In Patent Document 1 (Japanese Patent Laid-Open No. Sho 62-244777) and Patent Document 2 (Japanese Patent Laid-Open No. Sho 62-242558), as an earthquake-proof reinforcement method for existing concrete columns, high-strength long fiber strands are spirally wound. In addition, Patent Document 3 (Japanese Patent Laid-Open No. 2000-73586) discloses a sleeve wall of a portion where an FRP reinforcing tape is used to roll around the reinforcing tape even if there is an obstacle such as a sleeve wall. In addition, Patent Document 4 (Japanese Patent Application Laid-Open No. 2002-115403) similarly discloses a method in which a walled concrete column is reinforced in the longitudinal direction of the column. It has been proposed to form a plurality of through-holes and wind a bundle of reinforcing fiber strands around the outer periphery of the pillar through each through-hole. Confirmation of after construction if Re is also possible.

これら特許文献1〜4に記載の工法は、いずれもコンクリート構造物のせん断補強について検討したものであり、新耐震基準を満たすじん性能について何ら言及されていない。
「炭素繊維シートによる鉄道高架橋柱の耐震補強工法設計・施工指針」第3版、(財)鉄道総合技術研究所、平成15年7月4日発行 特開昭62−244977号公報 特開昭62−242058号公報 特開2000−73586号公報 特開2002−115403号公報
These construction methods described in Patent Documents 1 to 4 all examine the shear reinforcement of concrete structures, and do not mention any dust performance that satisfies the new earthquake resistance standards.
"Guidelines for Design and Construction of Seismic Reinforcement Methods for Railway Viaduct Columns Using Carbon Fiber Sheets" Third Edition, Railway Technical Research Institute, issued July 4, 2003 JP-A-62-244977 JP-A-62-242058 JP 2000-73586 A JP 2002-115403 A

本発明の目的は、新耐震基準を満たすじん性能を、補強材の巻き付け間隔を最適化することにより、従来のシート貼り付け工法と同等或いは少ない炭素繊維量で達成でき、また、下地処理のコスト、期間を低減させ、さらに施工後に中規模の地震等が発生した場合にも、コンクリートへのひび割れ等の導入の確認が容易であるじん性補強方法を提供することにある。さらに終局に達しても強化繊維が破断することなくコンクリート構造物の脆性的な破壊を防ぐ補強方法を提供する。   The object of the present invention is to achieve the dust performance satisfying the new earthquake resistance standard by optimizing the winding interval of the reinforcing material, with the same or less carbon fiber amount as the conventional sheet pasting method, and the cost of the ground treatment Another object of the present invention is to provide a toughness reinforcing method that reduces the period and facilitates confirmation of the introduction of cracks or the like into concrete even when a medium-scale earthquake or the like occurs after construction. Further, the present invention provides a reinforcing method for preventing brittle fracture of a concrete structure without breaking the reinforcing fiber even when it reaches the end.

上記課題を解決するべく鋭意検討した結果、本発明者らは、強化繊維として耐環境性に優れ、長期に安定な炭素繊維を用い、これを所定間隔をあけて巻き付けることにより、強化繊維の必要量を低減させ、かつ、従来の炭素繊維シートによる全区間補強に見られた終局時の鉄筋はらみ出しを防止し、かつひび割れ等の導入の確認が容易となる補強方法が提供できることを見いだした。   As a result of intensive studies to solve the above-mentioned problems, the present inventors used a carbon fiber that is excellent in environmental resistance as a reinforcing fiber and is stable over a long period of time. The present inventors have found that a reinforcing method can be provided that reduces the amount, prevents the end of the reinforcing bars from seeing in the entire section reinforcement by the conventional carbon fiber sheet, and facilitates confirmation of the introduction of cracks and the like.

すなわち、本発明は、鉄筋コンクリート製柱状構造物の上下端部から2D(Dは柱断面高さを示す)以下のじん性補強区間に炭素繊維含有補強材料を柱状構造物の端部より巻き付け間隔(P)が、5cm以上であり、P/Dが1/3以下となるように所定間隔を空けて巻き付け補強することを特徴とする鉄筋コンクリート製柱状構造物のじん性補強方法に関する。   That is, according to the present invention, the carbon fiber-containing reinforcing material is wound from the end of the columnar structure to the toughness reinforcing section 2D (D indicates the height of the column cross section) or less from the upper and lower ends of the reinforced concrete columnar structure. The present invention relates to a method for reinforcing the toughness of a reinforced concrete columnar structure, characterized in that P is 5 cm or more, and is wound and reinforced with a predetermined interval so that P / D is 1/3 or less.

本発明によれば、炭素繊維を所定間隔をあけて巻きつけ、コンクリート構造物にかかる応力を構造物全体に分散させることにより、少ない強化繊維量で所定の変形性能まで補強部材が持ち堪えることができ、かつ従来の炭素繊維シートによる全区間補強に見られた終局時の鉄筋はらみ出しや、補強量が少ない場合の強化繊維の破断も生じることがなくなるため、コンクリート構造物のじん性能を大きく向上させることができる。   According to the present invention, the reinforcing member can withstand a predetermined deformation performance with a small amount of reinforcing fibers by winding the carbon fibers at predetermined intervals and dispersing the stress applied to the concrete structure throughout the structure. In addition, it does not occur at the end of reinforcing bars seen in all-zone reinforcement with conventional carbon fiber sheets, and breakage of reinforcing fibers when the amount of reinforcement is small, greatly improving the dust performance of concrete structures be able to.

また、所定の間隔を空けて巻き付けることにより、特に段差等があったとしても大がかりな下地処理が不要となり、コストの低減、施工期間の短縮を図ることができる。   In addition, by winding at a predetermined interval, even if there is a step or the like, a large amount of ground processing is not necessary, and cost can be reduced and construction period can be shortened.

本発明において、じん性補強に関して使用する用語は、非特許文献1の記載に準拠するものである。せん断余裕度とは、曲げ耐力に対するせん断耐力の比であり、(Vu・a/Mu)で表される。ここで、Vuは柱部材の設計補強せん断耐力、aはせん断スパン、Muは柱部材の設計補強曲げ耐力である。じん性率μは、降伏点の耐力Py(供試体の軸方向引張鉄筋が降伏したときの水平荷重)を保持できる限界変位δlimitを降伏点変位δy(供試体の軸方向引張鉄筋が降伏したときの水平変位)で除した値である。非特許文献1には、炭素繊維シートによるじん性補強の設計補強じん性率μはせん断余裕度に関連する評価式が示されている。 In this invention, the term used regarding toughness reinforcement is based on the description of nonpatent literature 1. The shear margin is a ratio of the shear strength to the bending strength, and is represented by (V u · a / M u ). Here, V u is the design reinforcement shear strength of the column member, a is the shear span, and M u is the design reinforcement bending strength of the column member. The toughness factor μ is the critical displacement δ limit that can hold the yield strength P y (horizontal load when the specimen's axial tensile reinforcement yields), and the yield point displacement δ y (the specimen's axial tensile reinforcement is This is the value divided by the horizontal displacement when yielding. Non-Patent Document 1 shows a design reinforcement toughness ratio μ of toughness reinforcement by a carbon fiber sheet, and an evaluation formula related to the shear margin.

柱部材の設計せん断耐力Vuは、コンクリートの分担分Vcd、せん断補強筋の分担分Vsd、炭素繊維シートの分担分VCFdの和であり、補強される鉄筋コンクリート柱が同じであれば、設計せん断耐力Vuは炭素繊維シートの分担分VCFdによって増減する。じん性補強における炭素繊維シートの曲げ耐力に対する寄与分は、せん断耐力に対する寄与分より小さいため、炭素繊維シートの補強量に応じてせん断余裕度が変化することになる。従って、同じ炭素繊維シートを使用するのであれば、せん断余裕度が低いほど炭素繊維使用量が少なくなる。 The design shear strength V u of the column member is the sum of the share V cd of the concrete, the share V sd of the shear reinforcement, and the share V CFd of the carbon fiber sheet. If the reinforced concrete columns to be reinforced are the same, The design shear strength V u increases or decreases depending on the share V CFd of the carbon fiber sheet. Since the contribution to the bending strength of the carbon fiber sheet in the toughness reinforcement is smaller than the contribution to the shear strength, the shear margin changes depending on the amount of reinforcement of the carbon fiber sheet. Therefore, if the same carbon fiber sheet is used, the amount of carbon fiber used decreases as the shear margin decreases.

本発明の間隔を空けて巻き付けるじん性補強方法では、少ないせん断余裕度において高いじん性能が得られることから、じん性補強設計に際して、あらかじめ低いせん断余裕度に設計しても十分なじん性補強が可能となる。すなわち、炭素繊維の使用量を低減できることになる。特に本発明では、炭素繊維量の削減は、設計じん性率が低い場合に期待できる。   In the toughness reinforcement method of winding the present invention with a gap, high toughness performance can be obtained with a small shear margin. Therefore, sufficient toughness reinforcement is possible even when designing with a low shear margin beforehand. It becomes. That is, the amount of carbon fiber used can be reduced. In particular, in the present invention, a reduction in the amount of carbon fiber can be expected when the design toughness rate is low.

本発明では、じん性補強区間に対し、炭素繊維含有補強材料を所定の間隔を空けて巻き付けて補強する。つまり、じん性補強区間全面に補強材料を巻き付けるのではなく、補強材料を巻き付ける部分と巻き付けない部分とが交互になる。この結果、部材にかかる力が適度に分散し、終局時に鉄筋のはらみ出し自体を防止することができる。従来の炭素繊維シート巻き立てによる全区間補強方法では、主鉄筋の座屈の開始を抑制する効果はあまりないと考えられていた(たとえば、「論文 炭素繊維巻立て補強橋脚の変形性能に関する検討」コンクリート工学年次論文集、Vol.22,No.3,2000,p235-240参照)が、本発明の工法により主鉄筋のはらみ出し(座屈)が抑制できるという効果は、全く予測し得ない効果である。従来の炭素繊維シート巻き立てによる全区間補強では、特に基部から1.5D以下の塑性ヒンジ領域に大きなひずみとなって力が加わり、鉄筋のはらみ出しが生じており、補強部材が少ない場合にはそのはらみ出しにより補強部材が切断され、部材の脆性的破壊をもたらしていた。そのため、設計じん性率が低い場合にも安全性を考慮して多くの炭素繊維量が必要であったが、本発明では少ない補強量で高いじん性能が得られると共に、終局時の鉄筋はらみ出しが防止される結果、脆性的な破壊をも防止できるという優れた効果を有するものである。   In the present invention, the carbon fiber-containing reinforcing material is wound around the toughness reinforcing section with a predetermined interval and is reinforced. That is, the reinforcing material is not wound around the entire toughness reinforcing section, but the portion where the reinforcing material is wound and the portion where the reinforcing material is not wound are alternated. As a result, the force applied to the member is moderately dispersed, and it is possible to prevent the reinforcing bars from protruding at the end. The conventional method for reinforcing all sections by winding a carbon fiber sheet was thought to have little effect on suppressing the start of buckling of the main reinforcing bars (for example, "Study on deformation performance of paper-reinforced carbon fiber reinforced piers" The concrete engineering annual papers, Vol.22, No.3,2000, p235-240), the effect of suppressing the protrusion (buckling) of the main rebar by the method of the present invention cannot be predicted at all. It is an effect. In the all-zone reinforcement by the conventional winding of the carbon fiber sheet, especially when the force is applied to the plastic hinge region of 1.5D or less from the base and the force is applied and the reinforcing bar protrudes, and there are few reinforcing members The protruding member cuts the reinforcing member, resulting in brittle fracture of the member. For this reason, even when the design toughness rate is low, a large amount of carbon fiber is necessary in consideration of safety.In the present invention, high toughness performance can be obtained with a small amount of reinforcement, and the reinforcing bars protrude from the end. As a result, it has an excellent effect of preventing brittle fracture.

所定の間隔を空けて巻き付ける方法としては、図1に示すように、RC柱の材軸方向に直角な方向に縞状に巻き付ける方法(フープ巻き)(同図(a))、柱の材軸方向に斜めに巻き付ける方法があり、斜めに巻き付ける場合には、長尺の補強材料を使用して螺旋状に巻き付ける(スパイラル巻き)こともできる(同図(b))。なお、斜めに螺旋状に巻き付ける場合においても、同図(b)に示すように、開始部と終端部とは、固定を容易にするために材軸方向に直角な方向に巻き付けるのが望ましい。   As a method of winding at a predetermined interval, as shown in FIG. 1, a method of winding in stripes in a direction perpendicular to the material axis direction of the RC pillar (hoop winding) (FIG. 1A), the material axis of the column There is a method of winding obliquely in the direction, and in the case of winding obliquely, a long reinforcing material can be used to wind spirally (spiral winding) ((b) in the figure). Even in the case of winding spirally at an angle, it is desirable that the start portion and the end portion are wound in a direction perpendicular to the material axis direction in order to facilitate fixing, as shown in FIG.

鉄筋コンクリート製柱では、材軸方向に配される主筋と、この主筋を取り巻くように所定間隔で配される帯筋とが配筋されている。帯筋は、旧建築基準においてもD/2以下のピッチで配筋することが規定されていた。本発明では、この帯筋よりも狭いピッチで帯状に炭素繊維含有補強材料で補強する必要がある。本発明ではP/Dが1/3以下となるように補強材料を巻き付ける。また、ピッチPがあまりに狭くなりすぎると、全面補強と差がなくなり、本発明の効果が得られなくなる。従って、5cm以上のピッチで補強を行う。   In a reinforced concrete column, main bars arranged in the direction of the material axis and band bars arranged at predetermined intervals so as to surround the main bars are arranged. In the old building standards, it was stipulated that the streaks be arranged at a pitch of D / 2 or less. In the present invention, it is necessary to reinforce with a carbon fiber-containing reinforcing material in a band shape at a pitch narrower than that of the band. In the present invention, the reinforcing material is wound so that P / D is 1/3 or less. On the other hand, if the pitch P is too narrow, there is no difference from full-scale reinforcement, and the effect of the present invention cannot be obtained. Therefore, reinforcement is performed at a pitch of 5 cm or more.

補強部材の巻き付け幅Wと補強ピッチPとの関係を図2に示す。同図(a)は、補強部材の幅が巻き付け幅Wに一致する場合を示すもので、ここでは炭素繊維シート帯の例を示している。同図(b)は補強部材の巻き付け幅Wよりも狭い部材幅の補強部材で補強した場合を示しており、ここでは、紐状の部材で補強した場合を示している。炭素繊維含有補強材料の巻き付け幅Wは、上記ピッチPにおいて補強部材間に隙間が形成される幅とすればよい。たとえば、最小ピッチの5cmとする場合は、それよりも狭い幅、たとえば3cmの幅とすればよい。ここで、所定の補強量を得るために、ピッチを広くとると各縞の断面を大きくする必要がある。このため、巻き付け幅Wを広げるか、断面高さHを高く(積層数を増やす)する必要がある。断面高さHが巻き付け幅Wにおいて、W/Hで表されるアスペクト比が1以上、好ましくは1.5以上となるように幅Wと高さHを決定すればよい。炭素繊維シート帯を用いる場合、幅1cm〜10cmの範囲内であって、W/Pが1/2以下となる帯をその部材幅で所用枚数使用するのが望ましく、また、組紐等の場合も、巻き付け幅Wが1〜10cmの範囲内であって、W/Pが1/2以下となるように所定数巻き回して巻き付けるのが望ましい。さらには、幅Wを2〜5cmとし、本発明の規定の範囲内でより狭ピッチとすることがより好ましい。   The relationship between the winding width W of the reinforcing member and the reinforcing pitch P is shown in FIG. The figure (a) shows the case where the width | variety of a reinforcement member corresponds with the winding width W, and has shown the example of the carbon fiber sheet | seat band here. FIG. 5B shows a case where the reinforcing member is reinforced with a reinforcing member having a narrower width than the winding width W of the reinforcing member, and here, a case where the reinforcing member is reinforced with a string-like member is shown. The winding width W of the carbon fiber-containing reinforcing material may be a width in which a gap is formed between the reinforcing members at the pitch P. For example, when the minimum pitch is 5 cm, the width may be narrower than that, for example, 3 cm. Here, in order to obtain a predetermined amount of reinforcement, it is necessary to increase the cross section of each stripe when the pitch is wide. For this reason, it is necessary to increase the winding width W or increase the cross-sectional height H (increase the number of layers). The width W and the height H may be determined so that the aspect ratio represented by W / H is 1 or more, preferably 1.5 or more when the cross-sectional height H is the winding width W. When a carbon fiber sheet band is used, it is desirable to use a band having a width of 1 cm to 10 cm and having a W / P of 1/2 or less depending on the width of the member. The winding width W is preferably in the range of 1 to 10 cm, and it is desirable to wind a predetermined number of turns so that W / P is ½ or less. Furthermore, it is more preferable to set the width W to 2 to 5 cm and a narrower pitch within the specified range of the present invention.

<補強材料>
本発明で使用する炭素繊維含有補強材料としては、一方向に配向した炭素繊維シートの帯や、炭素繊維フィラメントを収束させたストランド、ストランドを撚り合わせたロープ及び紐、さらには炭素繊維フィラメントを組み打ちした組紐などが使用できる。
<Reinforcing material>
The carbon fiber-containing reinforcing material used in the present invention includes a carbon fiber sheet band oriented in one direction, strands in which carbon fiber filaments are converged, ropes and strings in which strands are twisted, and carbon fiber filaments. You can use braided braids.

本発明で使用する組紐(「打ち紐」とも呼ばれる)とは、機械製造されるもので、大きく分けて8打(ヤツウチ)、16打(ジュウロクウチ)、金剛打(コンゴウウチ)、その他多数打ち紐に分類される。又、扁平な形状に組む平打ちと、丸く組む丸打ちとがある。図3に、丸打ちにした組紐側面の概略図を示す。特に、組紐を用いると、後述する実施例に示すように、少ないせん断余裕度で極めて高いじん性率を達成することができる。   Braids used in the present invention (also called “strings”) are machine manufactured, and can be broadly divided into 8 strokes (Yatsuuchi), 16 strokes (Dukurokuuchi), hammering (Kongouuchi), and many others. being classified. Also, there are flat punching assembled into a flat shape and round punching assembled into a round shape. FIG. 3 shows a schematic view of the side surface of a braided braid. In particular, when braid is used, a very high toughness rate can be achieved with a small shear margin as shown in the examples described later.

使用する強化繊維は、炭素繊維を使用するが、ガラス繊維、アラミド繊維、その他有機繊維等を問題のない範囲で混合して使用することができ、その用途に応じて適宜選択することができる。使用する炭素繊維としては、例えば、JIS K 7073に準拠した炭素繊維強化プラスチックの引張試験方法において、高強度タイプでは、2.45×105N/mm2、中弾性タイプでは4.40×105N/mm2、高弾性タイプでは6.40×105N/mm2の引張弾性率を有する材料を使用する。 Carbon fibers are used as the reinforcing fibers to be used, and glass fibers, aramid fibers, other organic fibers, and the like can be mixed and used within a range that does not cause any problem, and can be appropriately selected according to the application. As the carbon fiber to be used, for example, in the tensile test method of carbon fiber reinforced plastic according to JIS K7073, the high strength type is 2.45 × 10 5 N / mm 2 , and the middle elastic type is 4.40 × 10. 5 N / mm 2, the high modulus type using a material having a tensile modulus of 6.40 × 10 5 N / mm 2 .

さらに本発明では、炭素繊維等の強化繊維に熱硬化性樹脂を含浸して補強材料とする。含浸する樹脂は、常温硬化型あるいは熱硬化型のエポキシ樹脂、ポリエステル系樹脂などの熱硬化性樹脂、メチルメタクリレート等のラジカル反応系樹脂などが使用できる。特に、常温硬化型のエポキシ系樹脂を用いるのが好ましく、例えば、コニシ(株)製の商品名「ボンドE2500」シリーズ、「ボンドE206」シリーズなどが使用できる。   Furthermore, in the present invention, a reinforcing material such as carbon fiber is impregnated with a thermosetting resin to obtain a reinforcing material. As the resin to be impregnated, a room temperature curable epoxy resin, a thermosetting epoxy resin, a thermosetting resin such as a polyester resin, a radical reaction resin such as methyl methacrylate, or the like can be used. In particular, it is preferable to use a room temperature curing type epoxy resin. For example, trade names “Bond E2500” series and “Bond E206” series manufactured by Konishi Corporation can be used.

<補強方法>
本発明では、炭素繊維含有補強材料を柱などのコンクリート構造物の周囲に所定の間隔を空けて巻き付けて補強を行う。補強量は、非特許文献1のじん性補強設計に示されているように、構造物の降伏震度、等価固有周期から設計塑性率(設計じん性率)を求め、非特許文献1の設計補強じん性率の評価式に準拠して、安全側に設計される。従来の全区間補強では、終局時の鉄筋はらみ出しによる強化繊維の破断を加味して、設計じん性率が比較的低くても良い場合でも、評価式から計算される補強量よりも多めに補強する必要があるが、本発明では評価式から計算される補強量で十分以上の効果を有しており、評価式から計算される補強量よりも少ない補強量でも高いじん性補強効果を示す。後述の実施例に示すように、本発明ではせん断余裕度2.2でじん性率7を達成できることから、これを目安に補強量の低減を図ることができる。
<Reinforcing method>
In the present invention, the carbon fiber-containing reinforcing material is reinforced by winding it around a concrete structure such as a pillar at a predetermined interval. As shown in the toughness reinforcement design of Non-Patent Document 1, the amount of reinforcement is calculated from the yield seismic intensity of the structure and the equivalent natural period, and the design plastic ratio (design toughness ratio) is obtained. Designed on the safe side according to the toughness rate evaluation formula. In the conventional all-section reinforcement, even if the design toughness ratio may be relatively low, taking into account the breakage of the reinforcing fibers due to the protrusion of the reinforcing bars at the end, reinforcement is greater than the amount of reinforcement calculated from the evaluation formula However, in the present invention, the reinforcement amount calculated from the evaluation formula has an effect that is more than sufficient, and even a reinforcement amount smaller than the reinforcement amount calculated from the evaluation formula shows a high toughness reinforcement effect. As shown in the examples described later, in the present invention, a toughness ratio of 7 can be achieved with a shear margin of 2.2. Therefore, the amount of reinforcement can be reduced using this as a guide.

鉄筋コンクリート製の柱をじん性補強するには、非特許文献1に記載されるように、柱の上下端部から2Dのじん性補強区間に対して施工を行う。2Dのじん性補強区間を越えてせん断補強区間に及んだとしても問題はないが、せん断補強を行うには、じん性補強の補強量ではオーバースペックとなるため、無駄となる。たとえば、3cm幅の炭素繊維シートを用いてその部材幅を巻き付け幅Wとし、10cmピッチで補強する場合、じん性率10を達成するには約5層のまき付けが必要となるが、必要なせん断性能を達成するには、同じピッチでまき付けを行うと約0.2層となる。つまり、25倍も補強量が異なっている。しかしながら、本発明においても、従来と同様に、じん性補強とせん断補強とを併せて行うことは好ましい。じん性補強区間を除くせん断補強区間の補強方法は、特に限定されるものではなく、従来の方法が適用できる。特に、柱全体に応力を分散させるためには、せん断補強部分にも間隔を空けて補強を行う工法を適用することが好ましい。たとえば、図4に示すように、じん性補強区間に対しては本発明の工法によるじん性補強を施し、じん性補強区間を除くせん断補強区間には、ピッチを広げたり、積層回数を減らすなどして補強量を減らしてせん断補強を行うことができる。   In order to reinforce the column made of reinforced concrete, as described in Non-Patent Document 1, construction is performed from the upper and lower ends of the column to the 2D toughness reinforcing section. There is no problem even if it extends beyond the 2D toughness reinforcement section to reach the shear reinforcement section, but in order to perform shear reinforcement, the amount of toughening reinforcement is over-specification, which is useless. For example, when a carbon fiber sheet having a width of 3 cm is used and the width of the member is set as a winding width W and reinforced at a pitch of 10 cm, it is necessary to wind about 5 layers to achieve a toughness ratio of 10, but this is necessary. In order to achieve the shearing performance, when plating is performed at the same pitch, about 0.2 layers are obtained. That is, the amount of reinforcement is different by 25 times. However, also in the present invention, it is preferable to perform toughness reinforcement and shear reinforcement together, as in the past. The reinforcement method of the shear reinforcement section excluding the toughness reinforcement section is not particularly limited, and a conventional method can be applied. In particular, in order to disperse the stress throughout the column, it is preferable to apply a method of reinforcing the shear reinforcement portion with a space. For example, as shown in FIG. 4, toughness reinforcement sections are subjected to toughness reinforcement according to the method of the present invention, and in the shear reinforcement sections excluding the toughness reinforcement sections, the pitch is increased or the number of laminations is reduced. Thus, the amount of reinforcement can be reduced and shear reinforcement can be performed.

又、柱等の断面が矩形の場合、角部に面取り処理を施し、R形状を形成しておくことが好ましい。さらに、表面の美観を保持したり、補強部材の耐久性をさらに向上するために、補強部材を巻き付けた表面に仕上げ用モルタルを塗ったり、塗料などを吹き付けたりして仕上げを行うことができる。又、巻き付け部の柱に浅い溝を穿設し、該溝に補強部材を埋め込むように巻回した後モルタル等で埋め込むことで、柱の外観形状を保持したままで補強することもできる。なお、本発明では、従来のシート貼り付け工法において行われていた段差処理等の大がかりな下地処理は不要となるため、そのような段差のある構造物に対しては、その分、工期及びコストの低減が図れる。   Moreover, when the cross section of a pillar etc. is a rectangle, it is preferable to chamfer a corner | angular part and to form R shape. Furthermore, in order to maintain the aesthetics of the surface or to further improve the durability of the reinforcing member, finishing can be performed by applying a finishing mortar or spraying paint on the surface around which the reinforcing member is wound. Further, it is possible to reinforce the column while maintaining the external shape of the column by forming a shallow groove in the column of the winding portion, winding the groove so as to embed the reinforcing member, and embedding with a mortar or the like. In the present invention, since large-scale base processing such as step processing performed in the conventional sheet pasting method is not necessary, for a structure having such a step, the construction period and cost are increased accordingly. Can be reduced.

又、補強部位には補強部材とコンクリートとの接着性を向上するため、プライマー処理を施すことは好ましい態様である。プライマーとしては、補強部材への含浸樹脂と同様に、常温硬化型あるいは熱硬化型のエポキシ樹脂、ポリエステル系樹脂などの熱硬化型接着剤などが好ましく使用できる。例えば、コニシ(株)製商品名「ボンドE800」シリーズなどのプライマーが好ましい。   In order to improve the adhesion between the reinforcing member and the concrete, it is preferable to apply a primer treatment to the reinforcing portion. As the primer, a thermosetting adhesive such as a room temperature curing type or a thermosetting type epoxy resin, a polyester resin, or the like can be preferably used as in the case of the resin impregnated into the reinforcing member. For example, primers such as “Bond E800” series manufactured by Konishi Co., Ltd. are preferable.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例においては、補強効果を確認するために、以下の試験方法により評価を行った。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples. In the following examples, evaluation was performed by the following test methods in order to confirm the reinforcing effect.

<試験体>
試験体は図5に示すように、符号12で示されるスタブ部分1200mm×1200mm×500mm、柱部分300mm×300mm×1000mm(主筋13:12−D19,帯筋14:6φ@200)のRC柱11を使用した。試験体の作成には、鋼製型枠を使用し、コンクリート打設後7日間で脱型した後、屋内で養生を行った。この試験体のコーナー部はR=20mmの面取りを行ったのち、炭素繊維による補強を行った。
<Test body>
As shown in FIG. 5, the test specimen is an RC pillar 11 having a stub portion 1200 mm × 1200 mm × 500 mm indicated by reference numeral 12 and a column portion 300 mm × 300 mm × 1000 mm (main bar 13: 12-D19, belt bar 14: 6φ @ 200). It was used. For the preparation of the test body, a steel formwork was used. After demolding in 7 days after placing the concrete, curing was performed indoors. The corner portion of this test body was chamfered with R = 20 mm and then reinforced with carbon fiber.

<補強部材>
使用した炭素繊維は、東レ製商品名「トレカT700S-12K」(引張強度=4900MPa、引張弾性率=230GPa、TEX=800g/km)を使用し、組紐には、5本7束で組み上げ、幅15mm、重量30g/mとした。又、帯には同じ炭素繊維を用いて、幅30mm、重量30g/mの直線状の帯を作製した。
<Reinforcing member>
The carbon fiber used is Toray-made "Treka T700S-12K" (Tensile strength = 4900MPa, Tensile modulus = 230GPa, TEX = 800g / km). The thickness was 15 mm and the weight was 30 g / m. Also, the same carbon fiber was used for the band, and a linear band having a width of 30 mm and a weight of 30 g / m was produced.

このように作製した組紐及び帯に、エポキシ系樹脂(コニシ(株)製商品名「ボンドE2500」)を含浸し、補強部材を作製した。各作製された補強部材の物性を下記表1に示す。   The braid and band thus produced were impregnated with an epoxy resin (trade name “Bond E2500” manufactured by Konishi Co., Ltd.) to produce a reinforcing member. The physical properties of each produced reinforcing member are shown in Table 1 below.

Figure 2007332667
Figure 2007332667

<載荷試験>
試験体の補強区間全面にプライマー(コニシ(株)製商品名「ボンドE810L」)を塗布し、縞状(フープ巻)に補強部材を巻き付けた。補強部材の巻き付け量は、(財)鉄道総合技術研究所「炭素繊維シートによる鉄道高架橋柱の耐震補強工法 設計・施工指針」に準拠(設計式は μ=2.8+1.15×(Vu・a/Mu))して決定した。載荷試験は、CF組紐、CF帯を施工後、室温で7日間養生した後に実施した。各組合せについて表2に示す。
<Load test>
A primer (trade name “Bond E810L” manufactured by Konishi Co., Ltd.) was applied to the entire reinforcing section of the test body, and the reinforcing member was wound around the stripe (hoop winding). The winding amount of the reinforcing member conforms to the Railway Technical Research Institute “Design and Construction Guidelines for Seismic Reinforcement of Railway Viaduct Columns Using Carbon Fiber Sheets” (design formula is μ = 2.8 + 1.15 × (Vu · a / Mu )) And decided. The loading test was conducted after the CF braid and the CF belt were applied and after curing for 7 days at room temperature. It shows in Table 2 about each combination.

試験体はスタブ部分をPC鋼棒によって反力床に固定し、頂部に圧縮応力1N/mm2に相当する一定軸力の鉛直載荷を加え、柱高さ800mmの位置で水平方向に正負交番繰返し載荷を行った。 The stub part is fixed to the reaction bed with a PC steel bar, and a vertical load with a constant axial force corresponding to a compressive stress of 1 N / mm 2 is applied to the top of the test body. Repeatedly in the horizontal direction at a column height of 800 mm. Loaded.

Figure 2007332667
Figure 2007332667

計測は、載荷荷重をロードセルで、試験体の変位を変位計で柱各所の変位を測定した。計測は試験体が破壊に至るまで、あるいは試験機の変形性能の限界(15δ)まで荷重を付与して実施した。試験終了時の挙動について、表3に示す。又、変位と荷重との関係を示す荷重−変位曲線を、図6〜10にそれぞれ示す。   For the measurement, the load was measured with a load cell, and the displacement of each specimen was measured with a displacement meter. The measurement was carried out by applying a load until the specimen was broken or until the limit of deformation performance of the testing machine (15δ). Table 3 shows the behavior at the end of the test. Moreover, the load-displacement curve which shows the relationship between a displacement and a load is shown in FIGS.

Figure 2007332667
Figure 2007332667

図11に、せん断余裕度と最大じん性能実験値との関係を示す。図11には、非特許文献1の設計補強じん性率の評価式もあわせて示す。図11から明らかなとおり、CF帯を使用した試験体(No.2〜4)では、炭素繊維シートで設計した最大じん性能とほぼ匹敵する結果が得られた。組紐状CFを使用した試験体(No.5)では、炭素繊維シートで設計した最大じん性能より格段に優れた結果となった。また本発明を適用した試験体(No.2〜5)では、いずれも終局時に主鉄筋のはらみ出しは見られず、CF補強材の破断、脆性的な破壊は生じなかった。また、何れの場合も試験後の表面状態の確認が容易であった。   FIG. 11 shows the relationship between the shear margin and the maximum dust performance experimental value. In FIG. 11, the evaluation formula of the design reinforcement toughness rate of Non-Patent Document 1 is also shown. As is clear from FIG. 11, in the specimens (Nos. 2 to 4) using the CF band, a result almost equal to the maximum dust performance designed with the carbon fiber sheet was obtained. In the test body (No. 5) using braided CF, the result was much better than the maximum dust performance designed with the carbon fiber sheet. Further, in the test specimens (Nos. 2 to 5) to which the present invention was applied, no protrusion of the main reinforcing bar was observed at the end, and neither the CF reinforcing material nor the brittle fracture occurred. In any case, confirmation of the surface condition after the test was easy.

実験値のじん性率を満足するために必要な炭素繊維量を仕様書評価式から計算すると下表のとおりとなる。No.4の結果からは、最大じん性能が低くても良い場合には、炭素繊維量の削減効果が確認できた。なお、炭素繊維シートによる全面補強の実際の施工にあたっては、終局時の鉄筋のはらみ出しによるシート破断を考慮して、さらに多くの炭素繊維が使用されることを考慮すれば、本発明の方法では、この数値以上の削減効果が期待できる。また、組紐状CFを用いたNo.5でも、炭素繊維量の削減効果が確認された。   The amount of carbon fiber required to satisfy the toughness rate of the experimental value is calculated from the specification evaluation formula as shown in the table below. From the result of No.4, when the maximum dust performance may be low, the effect of reducing the carbon fiber amount was confirmed. In the actual construction of the full-scale reinforcement by the carbon fiber sheet, in consideration of the sheet breakage due to the protruding of the reinforcing bar at the end, considering that more carbon fiber is used, in the method of the present invention Therefore, a reduction effect higher than this value can be expected. In addition, No. using braided CF. 5 also confirmed the effect of reducing the carbon fiber content.

Figure 2007332667
Figure 2007332667

補強部材の巻き付け方法を説明する図であり、(a)は縞状に、(b)は螺旋状に巻いた状態を示す。It is a figure explaining the winding method of a reinforcement member, (a) shows a striped state, (b) shows the state wound spirally. 補強部材の巻き付け幅Wと巻き付け間隔Pとの関係を説明する図であり、(a)は帯状の補強部材を用いた場合、(b)は紐状の補強部材を用いた場合を示す。It is a figure explaining the relationship between the winding width W of a reinforcement member, and the winding space | interval P, (a) shows the case where a strip | belt-shaped reinforcement member is used, (b) shows the case where a string-like reinforcement member is used. 組紐状炭素繊維補強部材の概略側面図を示す。The schematic side view of a braided carbon fiber reinforcing member is shown. 本発明によるじん性補強方法とせん断補強方法とを組み合わせた補強方法を示す図である。It is a figure which shows the reinforcement method which combined the toughness reinforcement method and shear reinforcement method by this invention. 実施例で使用した試験体(コンクリート柱)を説明する図である。It is a figure explaining the test body (concrete column) used in the Example. 試験体No.1(無補強時)の荷重−変位曲線を示すグラフである。Specimen No. It is a graph which shows the load-displacement curve of 1 (at the time of unreinforced). 試験体No.2(帯、5cmピッチ)の荷重−変位曲線を示すグラフである。Specimen No. 2 is a graph showing a load-displacement curve of 2 (band, 5 cm pitch). 試験体No.3(帯、10cmピッチ)の荷重−変位曲線を示すグラフである。Specimen No. 3 is a graph showing a load-displacement curve of 3 (band, 10 cm pitch). 試験体No.4(帯、10cmピッチ)の荷重−変位曲線を示すグラフである。Specimen No. 4 is a graph showing a load-displacement curve of 4 (band, 10 cm pitch). 試験体No.5(組紐、10cmピッチ)の荷重−変位曲線を示すグラフである。Specimen No. 5 is a graph showing a load-displacement curve of 5 (braid, 10 cm pitch). せん断余裕度とじん性率との関係を示すグラフである。It is a graph which shows the relationship between a shear margin and a toughness rate. 柱部材のじん性補強区間とせん断補強区間を説明する図である。It is a figure explaining the toughness reinforcement area and the shear reinforcement area of a column member. RC柱の終局時の破壊状況を説明する図である。It is a figure explaining the destruction situation at the time of the end of RC pillar. 従来工法(シート工法)における下地処理(段差処理)を説明する図である。It is a figure explaining the ground treatment (step difference process) in a conventional construction method (sheet construction method).

符号の説明Explanation of symbols

1、11 鉄筋コンクリート(RC)柱
2 補強部材
12 スタブ
13 主筋
14 帯筋
P ピッチ
W 巻き付け幅
H 巻き付け高さ
DESCRIPTION OF SYMBOLS 1, 11 Reinforced concrete (RC) pillar 2 Reinforcement member 12 Stub 13 Main reinforcement 14 Band reinforcement P Pitch W Winding width H Winding height

Claims (3)

鉄筋コンクリート製柱状構造物の上下端部から2D(Dは柱断面高さを示す)以下のじん性補強区間に炭素繊維含有補強材料を柱状構造物の端部より巻き付け間隔(P)が、5cm以上であり、P/Dが1/3以下となるように所定間隔を空けて巻き付け補強することを特徴とする鉄筋コンクリート製柱状構造物のじん性補強方法。   The carbon fiber-containing reinforcing material is wound from the end of the columnar structure to the toughness reinforcing section below 2D (D indicates the height of the column cross section) from the upper and lower ends of the reinforced concrete columnar structure. A method for reinforcing the toughness of a reinforced concrete columnar structure, wherein the reinforcement is wound and reinforced with a predetermined interval so that P / D is 1/3 or less. 前記炭素繊維含有補強材料として、幅(W)が1cm〜10cmの範囲内であって、W/Pが1/2以下となる炭素繊維を一方向に配向した炭素繊維シート帯を用い、その部材幅で所用枚数巻き付けることを特徴とする請求項1に記載の鉄筋コンクリート製柱状構造物のじん性補強方法。   As the carbon fiber-containing reinforcing material, a carbon fiber sheet band in which carbon fibers having a width (W) in the range of 1 cm to 10 cm and W / P of 1/2 or less are oriented in one direction is used. The method for reinforcing toughness of a reinforced concrete columnar structure according to claim 1, wherein a desired number is wound by a width. 前記炭素繊維含有補強材料として、組紐状炭素繊維含有補強材料を用い、所定数巻き回して幅(W)が1cm〜10cmの範囲内であって、W/Pが1/2以下となるように巻き付けることを特徴とする請求項1に記載の鉄筋コンクリート製柱状構造物のじん性補強方法。   As the carbon fiber-containing reinforcing material, a braided carbon fiber-containing reinforcing material is used, and a predetermined number of turns are wound so that the width (W) is within a range of 1 cm to 10 cm, and W / P is ½ or less. The method for reinforcing toughness of a reinforced concrete columnar structure according to claim 1, wherein the toughness is wound.
JP2006165932A 2006-06-15 2006-06-15 Toughness reinforcement method for reinforced concrete columnar structures using carbon fiber Active JP5291867B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006165932A JP5291867B2 (en) 2006-06-15 2006-06-15 Toughness reinforcement method for reinforced concrete columnar structures using carbon fiber
CN2007800221089A CN101466906B (en) 2006-06-15 2007-06-14 Method of reinforcing toughness of reinforced concrete columnar structure using carbon fibers
PCT/JP2007/061990 WO2007145277A1 (en) 2006-06-15 2007-06-14 Method of fortifying toughness of reinforced concrete columnar structure with use of carbon fiber
TW096121702A TW200829771A (en) 2006-06-15 2007-06-15 Method of strengthening reinforced concrete column structures using carbon fibe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165932A JP5291867B2 (en) 2006-06-15 2006-06-15 Toughness reinforcement method for reinforced concrete columnar structures using carbon fiber

Publications (2)

Publication Number Publication Date
JP2007332667A true JP2007332667A (en) 2007-12-27
JP5291867B2 JP5291867B2 (en) 2013-09-18

Family

ID=38831791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165932A Active JP5291867B2 (en) 2006-06-15 2006-06-15 Toughness reinforcement method for reinforced concrete columnar structures using carbon fiber

Country Status (4)

Country Link
JP (1) JP5291867B2 (en)
CN (1) CN101466906B (en)
TW (1) TW200829771A (en)
WO (1) WO2007145277A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153452A (en) * 2010-01-27 2011-08-11 Jfe Steel Corp Method of reinforcing tower-like structure
JP2012012870A (en) * 2010-07-02 2012-01-19 Sumitomo Mitsui Construction Co Ltd Method for reinforcing structure
KR101499820B1 (en) * 2013-09-09 2015-03-12 (주)아리터 Device for Reforcing the Performance of Concrete Structure and Reforcing Method using the Same
JP2015178765A (en) * 2014-02-27 2015-10-08 電源開発株式会社 Reinforcement structure of steel hollow cylindrical structure
JP2016014312A (en) * 2014-06-10 2016-01-28 株式会社熊谷組 Deformation control method and belt-like fastening member for reinforcing steel plate used on reinforced concrete column
JP2018178555A (en) * 2017-04-14 2018-11-15 川田工業株式会社 Method for repairing and reinforcing vertical joining part in structural steelwork, and reinforcing material for vertical joining part
JP2020012252A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Concrete column

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672110B (en) * 2009-09-18 2011-08-10 北京筑福建筑事务有限责任公司 Method and structure for enhancing brickwork structure and improving earthquake resistant performance of structure by using carbon fiber
TWI596264B (en) * 2011-06-02 2017-08-21 Formosa Taffeta Co Ltd Reinforcement jacket and concrete columns of the reinforcement method
KR101086853B1 (en) * 2011-09-02 2011-11-25 계명대학교 산학협력단 Structure for strengthening of building column structures
CN104481082B (en) * 2014-12-08 2016-02-24 中国能源建设集团广东省电力设计研究院有限公司 Carbon fiber composite steel tube concrete column and construction method thereof
KR101641657B1 (en) * 2015-06-29 2016-07-21 김경욱 Construction Method for Repairing and Strengthening Structure of Decrepit Facilities
CN105781143A (en) * 2016-04-29 2016-07-20 华北水利水电大学 Device and method for reinforcing concrete shear wall by FRP (fiber reinforced plastics)
CN113039332A (en) * 2018-11-19 2021-06-25 欧文斯科宁知识产权资产有限公司 Composite steel bar

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151371A (en) * 1984-12-26 1986-07-10 Ohbayashi Corp Reinforcement of existing pillar
JPH04360944A (en) * 1991-06-07 1992-12-14 Mitsui Constr Co Ltd Reinforcing material for column member
JPH06288099A (en) * 1993-04-02 1994-10-11 Mitsui Constr Co Ltd Repairing method for concrete structure
JPH11280268A (en) * 1998-03-30 1999-10-12 Toda Constr Co Ltd Construction method for reinforcing wall column
JP2001262842A (en) * 2000-03-15 2001-09-26 Yokohama Rubber Co Ltd:The Earthquake-resistant reinforcing structure for concrete structure
JP2002106176A (en) * 2000-09-29 2002-04-10 Toho Tenax Co Ltd Unidirectionally reinforced fiber sheet for reinforcing/ repairing concrete
JP2006083612A (en) * 2004-09-16 2006-03-30 Sumitomo Mitsui Construction Co Ltd Method of reinforcing bridge pier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786341A (en) * 1986-04-15 1988-11-22 Mitsubishi Chemical Industries Limited Method for manufacturing concrete structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151371A (en) * 1984-12-26 1986-07-10 Ohbayashi Corp Reinforcement of existing pillar
JPH04360944A (en) * 1991-06-07 1992-12-14 Mitsui Constr Co Ltd Reinforcing material for column member
JPH06288099A (en) * 1993-04-02 1994-10-11 Mitsui Constr Co Ltd Repairing method for concrete structure
JPH11280268A (en) * 1998-03-30 1999-10-12 Toda Constr Co Ltd Construction method for reinforcing wall column
JP2001262842A (en) * 2000-03-15 2001-09-26 Yokohama Rubber Co Ltd:The Earthquake-resistant reinforcing structure for concrete structure
JP2002106176A (en) * 2000-09-29 2002-04-10 Toho Tenax Co Ltd Unidirectionally reinforced fiber sheet for reinforcing/ repairing concrete
JP2006083612A (en) * 2004-09-16 2006-03-30 Sumitomo Mitsui Construction Co Ltd Method of reinforcing bridge pier

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153452A (en) * 2010-01-27 2011-08-11 Jfe Steel Corp Method of reinforcing tower-like structure
JP2012012870A (en) * 2010-07-02 2012-01-19 Sumitomo Mitsui Construction Co Ltd Method for reinforcing structure
KR101499820B1 (en) * 2013-09-09 2015-03-12 (주)아리터 Device for Reforcing the Performance of Concrete Structure and Reforcing Method using the Same
JP2015178765A (en) * 2014-02-27 2015-10-08 電源開発株式会社 Reinforcement structure of steel hollow cylindrical structure
JP2016014312A (en) * 2014-06-10 2016-01-28 株式会社熊谷組 Deformation control method and belt-like fastening member for reinforcing steel plate used on reinforced concrete column
JP2018178555A (en) * 2017-04-14 2018-11-15 川田工業株式会社 Method for repairing and reinforcing vertical joining part in structural steelwork, and reinforcing material for vertical joining part
JP2020012252A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Concrete column
JP7199859B2 (en) 2018-07-13 2023-01-06 清水建設株式会社 concrete pillar

Also Published As

Publication number Publication date
JP5291867B2 (en) 2013-09-18
WO2007145277A1 (en) 2007-12-21
CN101466906A (en) 2009-06-24
TW200829771A (en) 2008-07-16
CN101466906B (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5291867B2 (en) Toughness reinforcement method for reinforced concrete columnar structures using carbon fiber
Hadhood et al. Axial load–moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: Experimental and theoretical investigations
Al-Mahaidi et al. Rehabilitation of concrete structures with fiber-reinforced polymer
JP2014502319A (en) Reinforcing bar and method for manufacturing the same
CN105464288A (en) Composite bar-reinforced ECC and concrete composite beam and construction method thereof
JP2008240427A (en) Existing rc member reinforcing method and existing rc member reinforcing panel
Nordin Fibre reinforced polymers in civil engineering: flexural strengthening of concrete structures with prestressed near surface mounted CFRP rods
Seliem et al. Case study on the restoration of flexural capacity of continuous one-way RC slabs with cutouts
Oshima et al. Highly durable ultra-high Strength prestressing strand system with large diameter
Nordin Strengthening structures with externally prestressed tendons
JP6247897B2 (en) Composite structure construction method and composite structure
JP4647340B2 (en) Reinforcement method for existing foundation with single bar arrangement for low-rise housing
KR101155930B1 (en) Reinforcing structure of slab-column junction having improved punching shear capacity and reinforcing method of slab-column junction
KR101790166B1 (en) Composite Plate Eeinforcement Structure and Construction Method thereof
JP2007113346A (en) Shearing reinforcement method for concrete structure using braid-like carbon fiber
JP5182929B2 (en) Reinforcing method for existing concrete structures
JP4663800B2 (en) Brick wall reinforcement method
Nordin Strengthening structures with externally prestressed tendons: literature review
Prota et al. Innovative technique for seismic upgrade of RC square columns
KR101846009B1 (en) Repair method of wood structure using FRP bar and wood
KR101151395B1 (en) High strength reinforced for concrete structure
JP2013256788A (en) Structure body and lining method using fiber-reinforced cementitious composite with multiple fine cracks
KR20020016662A (en) Rope Type Composite Bar to Replace Tie and Spiral Reinforcing Bar and Stirrup
JP6688441B1 (en) Short fiber reinforced concrete structure using continuous fiber reinforcement
Rai et al. Fiber Reinforced Polymer Composites, A novel way for strengthening structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20120112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5291867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250