JP2007330040A - 電動モータ駆動回路の故障判定装置 - Google Patents

電動モータ駆動回路の故障判定装置 Download PDF

Info

Publication number
JP2007330040A
JP2007330040A JP2006159324A JP2006159324A JP2007330040A JP 2007330040 A JP2007330040 A JP 2007330040A JP 2006159324 A JP2006159324 A JP 2006159324A JP 2006159324 A JP2006159324 A JP 2006159324A JP 2007330040 A JP2007330040 A JP 2007330040A
Authority
JP
Japan
Prior art keywords
electric motor
terminal
potential
voltage
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006159324A
Other languages
English (en)
Inventor
Nobuhiro Asai
信博 浅井
Toshimitsu Sugiura
敏充 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2006159324A priority Critical patent/JP2007330040A/ja
Publication of JP2007330040A publication Critical patent/JP2007330040A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

【課題】電動モータ駆動回路の故障判定装置において、コストアップおよび大型化を伴うことなく、かつ、スイッチング素子をオン・オフさせることなく、モータ断線を検出可能とする。
【解決手段】電動モータ駆動回路の故障判定装置において、電動モータ31aの一方の端子は、バッテリ電源51に第1抵抗61を介して接続され、電動モータ31aの他方の端子は、アース52に第2抵抗62を介して接続され、電動モータ31aの一方の端子は、該端子の電圧を検出するための電圧検出回路44を介してマイクロプロセッサ41に接続されている。監視されている端子の電圧が第1の中間電圧値V1である場合には、電動モータ31aは正常であると判定され、また、端子の電圧が第1の中間電圧値V1と異なる第2の中間電圧値V2である場合には、電動モータ31aは故障であると判定される。
【選択図】図2

Description

本発明は、スイッチング素子により構成されたブリッジ回路の平衡点に電動モータを接続した可逆回転型の電動モータ駆動回路の故障判定装置に関する。
この種の電動モータ駆動回路の故障判定装置として、特許文献1に示されているものが知られている。特許文献1の図4に示されているように、故障判定装置においては、モ−タMの両側に位置する端子M+,M−の端子電位はそれぞれ専用のモニタ回路101,102を介して例えば8ビットマイクロコンピュ−タで構成されるCPU103のポ−トP(M+),P(M−)へと供給されるようになっている。このCPU103は、あらかじめ用意されたいくつかの測定条件にしたがって、図示しない4個の専用出力ポ−トからスイッチング素子Q1〜Q4のそれぞれに対して測定用オンオフ信号を供給し、それぞれの測定条件ごとにポ−トP(M+),P(M−)からモ−タMの両側端子電位を測定する。しかるのち、与えられた測定条件とそれに対応して測定される両側端子電位とを所定の故障診断アルゴリズムに当て嵌めることによって、モ−タ駆動回路100の故障箇所並びに故障内容を判定するのである。
かかる構成の故障判定装置においては、モ−タMの断線故障の診断を次のように行っている。すなわち、スイッチング素子Q1〜Q4を順に一つずつオンさせ、その度にモ−タMの両側に位置する端子M+,M−の電位を測定する。このとき、モ−タMの両側に位置する端子M+,M−のいずれか一方の電位がVBもしくはGNDであるのに対し、他方の端子の電位がフロ−ティング状態にあれば、モ−タMが断線故障を起こしているものと判定するようにしている。
また、特許文献1の図2に示されているように、故障判定装置においては、モ−タMのあらかじめ決められた片側端子M+の電位のみが専用のモニタ回路101を介して測定されている。この故障判定装置においては、与えられた測定条件となるようにブリッジ回路を構成するスイッチング素子(Q1〜Q4)を操作し、モータMのあらかじめ決められた片側端子(M+)の電位を測定し、前記測定条件とそれに対応して測定される前記片側端子の電位とに基づいて、前記モータ駆動回路の故障個所を判定するようにしている。
また、他の一形式として、特許文献2に示されているものが知られている。特許文献2の図2に示されているように、故障判定装置においては、電圧検出部25,30を電動モータ4を挟んで前,後の位置に配設することにより、メインMPU18は、電圧検出部25,30における検出電圧V1,V2を比較することによって電動モータ4の断線を検出できるようになっている。これによれば、全てのFET11〜14を開成した状態で、すなわちスイッチング素子をスイッチングすることなく、電動モータ4の断線を検出することができるようになっている。
特開平10−20001号公報 特開2002−272177号公報
上記特許文献1の図2および図4に記載された電動モータ駆動回路の故障判定装置においては、いずれの場合においても、スイッチング素子を作動させる(オン・オフさせる)ことにより、電動モータMの断線を検出している。したがって、常時モータの断線を監視するためには、スイッチング素子をオン・オフさせる必要が生じる。スイッチング素子をオン・オフさせると、電動モータMを外来ノイズから保護するために電動モータの端子に設けられたコンデンサへの充放電がなされることとなって、ノイズが生じる。このノイズが車載ラジオなどの音響製品へ影響を及ぼすという問題があった。
また、上記特許文献2に記載された電動モータ駆動回路の故障判定装置においては、スイッチング素子をオン・オフさせることなく、電動モータ4の断線を検出することができるものの、電圧検出部が2つ必要であるため、装置がコストアップとなり、大型化となるという問題があった。
本発明は、上述した各問題を解消するためになされたもので、電動モータ駆動回路の故障判定装置において、コストアップおよび大型化を伴うことなく、かつ、スイッチング素子をオン・オフさせることなく、モータ断線を検出可能とすることを目的とする。
上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、スイッチング素子により構成されたブリッジ回路の平衡点に電動モータを接続した可逆回転型の電動モータ駆動回路に適用される故障判定装置において、電動モータの一方の端子は、電位が第1の電位である第1接続先に第1抵抗を介して接続され、電動モータの他方の端子は、電位が第1の電位と異なる第2の電位である第2接続先に第2抵抗を介して接続され、電動モータの一方の端子は、該端子の電圧を検出するための電圧検出回路に接続されるとともに、該端子の電圧を該電圧検出回路を介して監視する電圧監視手段に接続され、電圧監視手段が監視している端子の電圧が第1の電位と第2の電位との間にある第1の中間電圧値である場合には、電動モータは正常であると判定し、また、端子の電圧が第1の電位と第2の電位との間にあり第1の中間電圧値と異なる第2の中間電圧値である場合には、電動モータは故障であると判定することである。
請求項2に係る発明の構成上の特徴は、請求項1において、電動モータの一方の端子は、第1抵抗を介して電動モータ用の電源に接続されていることである。
請求項3に係る発明の構成上の特徴は、請求項1又は請求項2において、電動モータの他方の端子は、第2抵抗を介して接地されていることである。
請求項4に係る発明の構成上の特徴は、請求項1乃至請求項3の何れか一項において、第1および第2抵抗は同一抵抗値であることである。
上記のように構成した請求項1に係る発明においては、電動モータが断線していない場合には、電位差がある第1接続先と第2接続先との間には第1抵抗、電動モータおよび第2抵抗が直列に接続されることになり、第1および第2接続先の各電位と第1抵抗と電圧検出回路および第2抵抗に基づいて電動モータの端子の電位が決定される。この決定された電位が第1の中間電圧値に相当するものであり、電圧監視手段が監視している端子の電圧が第1の中間電圧値である場合には、電動モータは正常であると判定することができる。
一方、電動モータが断線している場合には、電位差がある第1接続先と第2接続先とは電動モータを介して電気的に接続されないで、第1接続先は電圧検出回路にのみ接続されることになり、第1接続先の電位と第1抵抗と電圧検出回路に基づいて電動モータの端子の電位が決定される。この決定された電位は、電動モータが断線していない場合と比較して第2接続先の電位および第2抵抗を考慮しないで決定されるので、第1の中間電圧値と異なる第2の中間電圧値に相当することになる。したがって、電圧監視手段が監視している端子の電圧が第2の中間電圧値である場合には、電動モータは断線であると判定することができる。
これにより、従来のように電圧検出部を2つ設けないで、1つの電圧検出回路だけで電動モータの断線の有無を確実に検出することができ、かつ、スイッチング素子をオン・オフさせることなく電動モータの断線の有無を確実に検出することができる。したがって、電動モータ駆動回路の故障判定装置において、コストアップおよび大型化を伴うことなく、かつ、スイッチング素子をオン・オフさせることなく、モータ断線を検出可能とする。
上記のように構成した請求項2に係る発明においては、請求項1に係る発明において、電動モータの一方の端子は、第1抵抗を介して電動モータ用の電源に接続されているので、安定した電位を有する電動モータ用の電源に電動モータの一方の端子が接続されることとなり、電動モータの断線判定を安定かつ確実に実施することができる。
上記のように構成した請求項3に係る発明においては、請求項1又は請求項2に係る発明において、電動モータの他方の端子は、第2抵抗を介して接地されているので、安定した電位を有するアースに電動モータの他方の端子が接続されることとなり、電動モータの断線判定を安定かつ確実に実施することができる。
上記のように構成した請求項4に係る発明においては、請求項1乃至請求項3の何れか一項に係る発明において、第1および第2抵抗は同一抵抗値であるので、電動モータの端子の電位が第1の電位と第2の電位との間にあるときにはこの電位を第1または第2接続先の電位に極端に近づける(振る)ことなく、第1および第2接続先の両電位の略中央の電圧監視手段が監視しやすい適当なレンジに設定することができる。
以下、本発明による電動モータ駆動回路の故障判定装置の一実施形態について図面を参照して説明する。図1は電動モータ駆動回路の故障判定装置を適用したブレーキ制御ECUを搭載した車両の概要を示す概要模式図であり、図2はブレーキ制御ECUの電動モータを駆動するための回路を主として示す概要ブロック図である。
車両Mは、前輪駆動車であり、エンジン11の駆動力が変速機、ディファレンシャルなどを一体化したトランスアクスル12およびドライブシャフト13l、13rを介して駆動輪である前輪Wfl,Wfrに伝達されるようになっている。また、車両Mは、前輪駆動車だけでなく他の駆動方式例えば後輪駆動車、4輪駆動車でもよい。
また、車両Mは、各車輪(左右前後輪)Wfl,Wrr,Wrl,Wfrに制動力を付与して車両を制動させるブレーキ制御装置Aを備えている。このブレーキ制御装置Aは、ブレーキ液圧によって制動力を付与するものである。ブレーキ制御装置Aは、各車輪Wfl,Wrr,Wrl,Wfrに独立して制動力を付与する機能、例えばABS(アンチロックブレーキシステム)機能を有するものである。
ブレーキ制御装置Aは、図1に示すように、車輪Wfl,Wrr,Wrl,Wfrの回転を規制するホイールシリンダWCfl,WCfr,WCrl,WCrrに対してブレーキペダル21の踏込状態に応じた液圧のブレーキ液を供給するマスタシリンダ20と、ブレーキ液を貯蔵するとともにマスタシリンダ20へ補給するリザーバタンク22と、ブレーキペダル21の踏み込み力を助勢する負圧式ブースタ23と、マスタシリンダ20とホイールシリンダWCfl,WCfr,WCrl,WCrrとの間に設けられてホイールシリンダWCfl,WCfr,WCrl,WCrrに供給される液圧(すなわち車輪Wfl,Wfr,Wrl,Wrrの制動力)を独立に制御する制動力制御装置24と、を備えている。
各ホイールシリンダWCfl,WCfr,WCrl,WCrrは、各キャリパCLfl,CLfr,CLrl,CLrrに設けられており、液密に摺動するピストン(図示省略)を収容している。各ホイールシリンダWCfl,WCfr,WCrl,WCrrに液圧が供給されると、各ピストンが一対のブレーキパッドを押圧して、各車輪Wfl,Wfr,Wrl,Wrrと一体回転するディスクロータDRfl,DRfr,DRrl,DRrrを両側から挟んでその回転を停止させるようになっている。なお、本実施形態においては、ディスク式ブレーキを採用するようにしたが、ドラム式ブレーキを採用するようにしてもよい。
制動力制御装置24は、各車輪Wfl,Wfr,Wrl,Wrrに対応してそれぞれ設けられた保持弁および減圧弁、内蔵リザーバタンク、ポンプならびに電動モータ(何れも図示省略)などから構成されている。これら電動モータおよび各電磁弁は、ブレーキ制御ECU40からの指令信号に基づいて制御されるようになっている。
また、ブレーキ制御装置Aは、各車輪Wfl,Wrr,Wrl,Wfrの付近に設けられてそれらの車輪速度をそれぞれ検出する車輪速度センサSfl,Srr,Srl,Sfrを備えている。それら車輪速度を示す検出信号はブレーキ制御ECU40に送信されるようになっている。
また、車両Mは、電動パーキングブレーキ装置(以下、電動PKB装置という。)30を備えている。電動PKB装置30は、電動モータ31aの駆動によって車両Mのパーキングブレーキ33(33L,33R)を駆動することにより車両Mを駐車状態と解除状態に切り替えるものである。
電動PKB装置30は、パーキングブレーキアクチュエータ部31(以下、PKBアクチュエータ部という)、ワイヤ構成部32、左右後輪Wrl,Wrrに備えられた左右一対のパーキングブレーキ33L,33R、ブレーキ制御ECU40などから構成されている。
PKBアクチュエータ部31は、電動駆動手段としての正・逆回転可能な電動モータ31a、電動モータ31aの駆動力がワイヤ構成部32に伝達され得る一方でワイヤ構成部32からの張力に基く力が電動モータ31aに伝達されないように構成された複数の歯車列からなる力伝達遮断機構としての減速機構31bと、から構成されている。電動モータ31aは、ブレーキ制御ECU40のオン・オフ信号に基づいて制御されている。
ワイヤ構成部32は、一端が減速機構31bに接続された基本ワイヤ32aと、基本ワイヤ32aの他端が一側の中央部に接続されたバランサ32bと、バランサ32bの他側の両端にそれぞれの一端が接続されるとともにそれぞれの他端が左右一対のパーキングブレーキ33L,33Rに接続された左ワイヤ32cL,右ワイヤ32cRと、から構成されている。
バランサ32bは、左ワイヤ32cLの長さと右ワイヤ32cRの長さとの間において初期寸法のばらつき、経年変化等により相違が生じていても、左ワイヤ32cLの張力と右ワイヤ32cRの張力とが常に同一の大きさとなるように適宜、車両のヨー方向に傾動するようになっている。
左右一対のパーキングブレーキ33L,33Rは、それぞれ上述したディスク式ブレーキに操作機構を組み込んだ一体型のパーキングブレーキである。パーキングブレーキ33L,33Rは、左ワイヤ32cL,右ワイヤ32cRの張力に応じた(即ち、基本ワイヤ32aの張力に応じた)ブレーキ力を左右後輪Wrl,Wrrにそれぞれ発生するように構成されている。従って、前記したバランサ32bの作用により、左右一対のパーキングブレーキ33L,33Rには同一のブレーキ力が発生するようになっている。
ブレーキ制御ECU40は、マイクロプロセッサ41を有しており(図2参照)、マイクロプロセッサ41は、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも図示省略)を備えている。CPUは、制動力制御装置24を構成する電動モータおよび電磁弁を作動させて車輪Wfl,Wfr,Wrl,Wrrをロックさせないで安定したブレーキを実施するABS制御を実施し、また、電動モータ31aを制御してパーキングブレーキ33を駆動するとともに、電動モータの駆動回路43や電動モータ31aの故障を判定している。RAMは制御プログラム(例えばABS制御プログラム、電動PKB装置の制御プログラム)の実行に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。
このように構成した電動PKB装置30によれば、例えば図示しない作動スイッチが運転者によってオンされて、電動モータ31aが正回転駆動されると、基本ワイヤ32aの一端が車両前方向に引張られることによりワイヤ構成部32に働く張力が増大し、その結果、左右一対のパーキングブレーキ33L,33Rに働くブレーキ力が増大するようになっている。一方、例えば図示しない解除スイッチが運転者によってオンされて、電動モータ31aが逆回転駆動されると、基本ワイヤ32aの一端が車両後方向に戻されることによりワイヤ構成部32に働く張力が減少し、その結果、左右一対のパーキングブレーキ33L,33Rに働くブレーキ力が減少するようになっている。また、前記した減速機構31bの作用により、電動モータ31aが駆動されていない状態では、その時点でワイヤ構成部32に働いている張力がそのまま保持されて、左右一対のパーキングブレーキ33L,33Rに働くブレーキ力もその時点での大きさのまま保持されるようになっている。
さらにブレーキ制御ECU40について、図2を参照して詳述する。ブレーキ制御ECU40は、マイクロプロセッサ41と、マイクロプロセッサ41からの制御指令信号を入力し、電動モータ31aを駆動させる駆動信号であるオン・オフ信号を形成してモータ駆動回路43に送信するモータ駆動回路制御部42と、電動モータ31aを駆動させるモータ駆動回路43と、電動モータ31aの一方の端子31a1の電圧を検出するための電圧検出回路44と、第1および第2抵抗61,62を有している。
モータ駆動回路43は、電動モータ31aを正逆転させるH型ブリッジ回路である。このモータ駆動回路43は、モータ駆動回路制御部42からそれぞれ独立して供給されるオン・オフ信号に応じて電動モータ31aの駆動電圧をオン・オフする4個のスイッチング素子(例えばMOSFET(MOS型電界効果トランジスタ))43a,43b,43c,43dから構成されている。スイッチング素子43a,43bはバッテリ電源51(例えば12V)とアース52との間に直列に接続されて配置され、また、スイッチング素子43c,43dはスイッチング素子43a,43bに並列に配置されバッテリ電源51とアース52との間に直列に接続されて配置されている。
すなわち、スイッチング素子43aおよび43cのドレインは、バッテリ電源51にそれぞれ接続されている。スイッチング素子43aおよび43cのソースは、スイッチング素子43bおよび43dのドレインにそれぞれ接続されている。スイッチング素子43bおよび43dのソースは接地されている。スイッチング素子43a〜43dの各ゲートは、モータ駆動回路制御部42の各出力ポートにそれぞれ接続されている。
また、スイッチング素子43aとスイッチング素子43bの間の接続点53a、およびスイッチング素子43cとスイッチング素子43dの間の接続点53bは、電動モータ31aの一方および他方の端子31a1,31a2にそれぞれ接続されている。なお、これら接続点53a,53bはブリッジ回路における正側スイッチング素子と負側スイッチング素子との接続点のことであり、この接続点を平衡点とする。
このようなモータ駆動回路43においては、スイッチング素子43aおよび43dがオンされるとともにスイッチング素子43bおよび43cがオフされると、電流が接続点53aから53bに向けて流れて電動モータ31aが正回転駆動される。また、スイッチング素子43aおよび43dがオフされるとともにスイッチング素子43bおよび43cがオンされると、電流が接続点53bから53aに向けて流れて電動モータ31aが逆回転駆動される。また、モータ駆動回路制御部42からのオン・オフ信号をPWM信号として供給しそのデューティ比を変更して電流量を制御することにより、電動モータ31aの回転速度を調整することができる。
また、マイクロプロセッサ41は、そのA/D変換機能を有する入力ポート41aを有しており、その入力ポート41aは電圧検出回路44を介して電動モータ31aの一方の端子31a1に接続されている。したがって、マイクロプロセッサ41は、端子31a1の電圧VM+を電圧検出回路44を介して監視する電圧監視手段として機能する。
電圧検出回路44は、電動モータ31aの一方の端子31a1(接続点53a)とマイクロプロセッサ41の入力ポート41aとの間に直列に接続された抵抗44aと、入力ポート41a(抵抗44a)とアース52との間に直列に接続された抵抗44bと、から構成されている。マイクロプロセッサ41は、抵抗44a,44bの間の電圧(Vxとする)を直接的に監視している。一方、各抵抗44a,44b,61,62の抵抗値、およびバッテリ電源51の電圧値は予めわかっているので、これらの値と直接的に監視している抵抗44a,44bの間の電圧とに基づいて電動モータ31aの一方の端子31a1の電圧VM+は導出可能である。したがって、マイクロプロセッサ41は、電動モータ31aの端子31a1の電圧VM+を電圧検出回路44を介して監視することが可能である。
第1抵抗61は、電動モータ31aの一方の端子31a1(または接続点53a)と第1接続先であるバッテリ電源51との間に直列に接続される抵抗である。バッテリ電源51の電位は第1の電位であるバッテリ電圧VB(=12V)である。第2抵抗62は、電動モータ31aの他方の端子31a2(または接続点53b)と第2接続先であるアース52との間に直列に接続される抵抗である。第2接続先の電位は、第1接続先の第1の電位と異なる第2の電位である。本実施形態においては、アース52の電位は第1の電位と異なる第2の電位である0Vである。
第1および第2抵抗61,62の抵抗値R1,R4は、同一抵抗値であることが好ましい。これによれば、例えば各スイッチング素子43a〜43dがオフ状態にあるときなど、電動モータ31aの端子(31a1または31a2)の電位が上記第1の電位と第2の電位との間にあるときにはこの電位を第1または第2接続先51,52の電位に極端に近づける(振る)ことなく、第1および第2接続先51,52の両電位の略中央のレンジであって電圧監視手段(マイクロプロセッサ41)が監視しやすい適当なレンジに設定することができる。
また、抵抗値R1,R4は、電動モータ31aの内部抵抗(数Ω)より十分大きい値(数十kΩ)に設定されることが好ましい。これによれば、例えばバッテリ電源51の電位が12Vである場合、電動モータ31aに流れる電流は数mAであり、電動モータ31aを駆動させない程度の微電流に抑制することができる。
また、各抵抗値R1〜R4は、マイクロプロセッサ41の入力ポート41aの読み込み可能な電圧範囲に抵抗44a,44bの間の電圧Vxが収まるように設定されることが好ましい。
上述したマイクロプロセッサ41、モータ駆動回路制御部42、モータ駆動回路43、電圧検出回路44、第1および第2抵抗61,62、第1および第2接続先51,52から、電動モータ駆動回路43に適用される故障判定装置が構成されている。
次に、このように構成された電動モータ駆動回路の故障判定装置の故障判定について説明する。まず、電動モータ31aが正常である場合、すなわち電動モータ31aが断線していない場合の判定について説明する。この場合、すべてのスイッチング素子43a〜43dが、マイクロプロセッサ41からの制御指令信号によってオフ状態にされているものとすると、電動モータ31aが断線していない場合、バッテリ電源51とアース52との間には、第1抵抗61、電動モータ31aおよび第2抵抗62が直列に接続されているとともに、第1抵抗61とアース52との間には、電圧検出回路44の抵抗44a,44bが直列に接続されている。したがって、バッテリ電源51とアース52の電位差、および各抵抗61,62,44a,44bの抵抗値に基づいて電動モータ31aの端子31a1の電位VM+が決定され得る。
すなわち、各抵抗61,62,44a,44bの抵抗値をR1,R4,R2,R3とすると、電動モータ31aが断線していない場合のVM+は下記数1で表される。
Figure 2007330040
ここで、Rxは下記数2で表される。
Figure 2007330040
また、マイクロプロセッサ41が直接監視する抵抗44a,44bの間の電圧(電位)Vxは下記数3で表される。
Figure 2007330040
このように導出された電動モータ31aの端子31a1の電位VM+は、第1の中間電圧値V1に相当するものである。そして、電圧監視手段であるマイクロプロセッサ41が監視している端子31a1の電位(電圧)VM+が第1の中間電圧値V1である場合には、故障判定装置は電動モータ31aが正常であると判定することができる。
次に、電動モータ31aが故障である場合、すなわち電動モータ31aが断線している場合の判定について説明する。この場合も、電動モータ31aが断線していない場合と同様にすべてのスイッチング素子43a〜43dがオフ状態にされているものとすると、電動モータ31aが断線している場合、バッテリ電源51とアース52との間は電動モータ31aを介して接続されないで、バッテリ電源51は第1抵抗61および電圧検出回路44のみを介してアース52に接続されることになる。すなわち、バッテリ電源51とアース52との間には、第1抵抗61、電圧検出回路44の抵抗44a,44bが直列に接続されている。したがって、バッテリ電源51とアース52の電位差、および各抵抗61,44a,44bの抵抗値に基づいて電動モータ31aの端子31a1の電位VM+が決定され得る。
すなわち、電動モータ31aが断線している場合のVM+は下記数4で表される。
Figure 2007330040
また、マイクロプロセッサ41が直接監視する抵抗44a,44bの間の電圧(電位)Vxは下記数5で表される。
Figure 2007330040
このように導出された電動モータ31aの端子31a1の電位VM+は、第2の中間電圧値V2に相当するものである。そして、電圧監視手段であるマイクロプロセッサ41が監視している端子31a1の電位(電圧)VM+が第2の中間電圧値V2である場合には、故障判定装置は電動モータ31aが断線であると判定することができる。
第1および第2の中間電圧値V1,V2は、それぞれ第1および第2接続先の電位の範囲(例えば、0<V1<VB、0<V2<VB)内にあり、かつ互いに異なる値である。第1および第2の中間電圧値V1,V2は、所定の固定値だけでなく、所定の範囲でもよい。この所定の範囲は、抵抗の誤差、VBの変動幅などを考慮して決定すればよい。また、第2の中間電圧値V2は、電動モータ31aが断線していない場合と比較して第2接続先の電位および第2抵抗を考慮しないで決定されるので、すなわち、第2抵抗62がある場合(電動モータ31aが断線していない場合)に比べて端子31a1とアース52間の抵抗値が大きくなるので、第1の中間電圧値V1より大きい値となる。
また、電動モータ駆動回路の故障判定装置は、上述した電動モータの断線判定だけでなく、スイッチング素子43a〜43dの故障も判定することができる。すべてのスイッチング素子43a〜43dがオフ状態にされているにも拘わらず、電動モータ31aの端子31a1の電位VM+がVBであることを検出した場合には、故障判定装置は、スイッチング素子43a及び43cの少なくとも何れか一方が短絡していると判定する。
また、すべてのスイッチング素子43a〜43dがオフ状態にされているにも拘わらず、電動モータ31aの端子31a1の電位VM+が0Vであることを検出した場合には、故障判定装置は、スイッチング素子43b及び43dの少なくとも何れか一方が短絡していると判定する。
上述した説明から明らかなように、本実施形態によれば、電動モータ31aが断線していない場合には、電位差がある第1接続先(バッテリ電源51)と第2接続先(アース52)との間には第1抵抗61、電動モータ31aおよび第2抵抗62が直列に接続されることになり、第1および第2接続先の各電位と第1抵抗61、電圧検出回路44および第2抵抗62の抵抗値とに基づいて電動モータ31aの端子31a1の電位VM+が決定される。この決定された電位VM+が第1の中間電圧値V1に相当するものであり、電圧監視手段(マイクロプロセッサ41)が監視している端子31a1の電圧が第1の中間電圧値V1である場合には、電動モータ31aは正常であると判定することができる。
一方、電動モータ31aが断線している場合には、電位差がある第1接続先(バッテリ電源51)と第2接続先(アース52)とは電動モータ31aを介して電気的に接続されないで、第1接続先は電圧検出回路44にのみ接続されることになり、第1接続先の電位と第1抵抗61及び電圧検出回路44の抵抗値とに基づいて電動モータ31aの端子31a1の電位VM+が決定される。この決定された電位VM+は、電動モータ31aが断線していない場合と比較して第2接続先の電位および第2抵抗62を考慮しないで決定されるので、第1の中間電圧値V1と異なる第2の中間電圧値V2に相当することになる。したがって、電圧監視手段(マイクロプロセッサ41)が監視している端子31a1の電圧が第2の中間電圧値V2である場合には、電動モータ31aは断線であると判定することができる。
これにより、従来のように電圧検出部を2つ設けないで、1つの電圧検出回路44だけで、すなわちシンプルな回路構成により電動モータ31aの断線の有無を確実に検出することができ、かつ、スイッチング素子をオン・オフさせることなく電動モータ31aの断線の有無を確実に検出することができる。したがって、電動モータ駆動回路の故障判定装置において、コストアップおよび大型化を伴うことなく、かつ、スイッチング素子をオン・オフさせることなく、モータ断線を検出可能とする。
他方、従来においては、電動モータ31aの非作動時、電動PKB装置30の非作動時に故障判定を行っていたものの、判定する際にはスイッチング素子をオン・オフさせなければならず、これによりノイズが発生するおそれがあった。その点、本実施形態においては、スイッチング素子をオン・オフしなくても電動モータ31aの非作動時、電動PKB装置30の非作動時であればいつでも故障判定をすることができる。したがって、故障が発生した場合、早期に検出することができる。
また、電動モータ31aの一方の端子31a1は、第1抵抗61を介して電動モータ用の電源であるバッテリ電源51に接続されているので、安定した電位を有する電動モータ用の電源に電動モータ31aの一方の端子31a1が接続されることとなり、VM+の決定要因であるバッテリ電圧VBを安定化することにより、電動モータ31aの断線判定を安定かつ確実に実施することができる。
また、電動モータ31aの他方の端子31a2は、第2抵抗62を介して接地されているので、安定した電位を有するアース52に電動モータ31aの他方の端子31a2が接続されることとなり、電動モータ31aの断線判定を安定かつ確実に実施することができる。
なお、上述した実施形態において、スイッチング素子はバイポーラトランジスタ、静電誘導型トランジスタでもよい。
また、上述した実施形態においては、電圧検出回路44は、第1接続先に接続されている電動モータ31aの一方の端子31a1の電圧を検出することができる回路であれば、上述した構成のものに限られない。
また、上述した実施形態においては、第1接続先および第2接続先は、それぞれ互いに異なる電位を有し、かつ、電位差が生じるものであれば、電源、アース以外の他の電位(例えば電源とアースの間の任意の電位)でもよい。
本発明による電動モータ駆動回路の故障判定装置を適用したブレーキ制御ECUを搭載した車両の概要を示す概要模式図である。 図1に示すブレーキ制御ECUの電動モータを駆動するための回路を主として示す概要ブロック図である。
符号の説明
11…エンジン、12…トランスアクスル、20…マスタシリンダ、21…ブレーキペダル、22…リザーバタンク、23…負圧式ブースタ、24…制動力制御装置、30…電動パーキングブレーキ装置(電動PKB装置)、31…パーキングブレーキアクチュエータ部、31a…電動モータ、32…ワイヤ構成部、33L,33R…パーキングブレーキ、40…ブレーキ制御ECU(故障判定装置)、41…マイクロプロセッサ(電圧監視手段)、42…モータ駆動回路制御部、43…モータ駆動回路、43a〜43d…スイッチング素子、44…電圧検出回路、44a,44b…抵抗、51…第1接続先、52…第2接続先、53a,53b…接続点(平衡点)、61…第1抵抗、62…第2抵抗、A…ブレーキ制御装置、CLfl,CLfr,CLrl,CLrr…キャリパ、DRfl,DRfr,DRrl,DRrr…ディスクロータ、Sfl,Sfr,Srl,Srr…車輪速センサ、WCfl,WCfr,WCrl,WCrr…ホイールシリンダ、Wfl,Wfr,Wrl,Wrr…車輪、M…車両。

Claims (4)

  1. スイッチング素子(43a〜43d)により構成されたブリッジ回路の平衡点(53a,53b)に電動モータ(31a)を接続した可逆回転型の電動モータ駆動回路(43)に適用される故障判定装置において、
    前記電動モータの一方の端子(31a1)は、電位が第1の電位である第1接続先(51)に第1抵抗(61)を介して接続され、
    前記電動モータの他方の端子(31a2)は、電位が前記第1の電位と異なる第2の電位である第2接続先(52)に第2抵抗(62)を介して接続され、
    前記電動モータの一方の端子は、該端子の電圧を検出するための電圧検出回路(44)に接続されるとともに、該端子の電圧を該電圧検出回路を介して監視する電圧監視手段(41)に接続され、
    前記電圧監視手段が監視している前記端子の電圧(VM+)が前記第1の電位と前記第2の電位との間にある第1の中間電圧値(V1)である場合には、前記電動モータは正常であると判定し、また、前記端子の電圧(VM+)が前記第1の電位と前記第2の電位との間にあり前記第1の中間電圧値と異なる第2の中間電圧値(V2)である場合には、前記電動モータは故障であると判定することを特徴とする電動モータ駆動回路の故障判定装置。
  2. 請求項1において、前記電動モータの一方の端子は、前記第1抵抗を介して前記電動モータ用の電源に接続されていることを特徴とする電動モータ駆動回路の故障判定装置。
  3. 請求項1又は請求項2において、前記電動モータの他方の端子は、前記第2抵抗を介して接地されていることを特徴とする電動モータ駆動回路の故障判定装置。
  4. 請求項1乃至請求項3の何れか一項において、前記第1および第2抵抗は同一抵抗値であることを特徴とする電動モータ駆動回路の故障判定装置。
JP2006159324A 2006-06-08 2006-06-08 電動モータ駆動回路の故障判定装置 Pending JP2007330040A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159324A JP2007330040A (ja) 2006-06-08 2006-06-08 電動モータ駆動回路の故障判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159324A JP2007330040A (ja) 2006-06-08 2006-06-08 電動モータ駆動回路の故障判定装置

Publications (1)

Publication Number Publication Date
JP2007330040A true JP2007330040A (ja) 2007-12-20

Family

ID=38930118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159324A Pending JP2007330040A (ja) 2006-06-08 2006-06-08 電動モータ駆動回路の故障判定装置

Country Status (1)

Country Link
JP (1) JP2007330040A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254199A (ja) * 2008-04-10 2009-10-29 Denso Corp モータ駆動回路およびモータの異常判定方法
JP2014238133A (ja) * 2013-06-07 2014-12-18 株式会社デンソー シフトバイワイヤ制御装置
US9425715B2 (en) 2014-08-04 2016-08-23 Hyundai Mobis Co., Ltd. Motor driving circuit of EPB system for reducing dark current
US10006783B2 (en) 2015-05-28 2018-06-26 Denso Corporation Resolver signal detection circuit
JP2019151137A (ja) * 2018-02-28 2019-09-12 株式会社デンソー ワイパ制御装置
US11070683B2 (en) 2019-12-13 2021-07-20 Canon Finetech Nisca Inc. Rotation drive control apparatus, sheet processing apparatus and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215649A (ja) * 1991-07-31 1993-08-24 Robert Bosch Gmbh 車両の電気負荷を監視する装置
JPH1020001A (ja) * 1996-06-27 1998-01-23 Nec Home Electron Ltd モータ駆動回路の故障診断方法及び装置
JP2004297873A (ja) * 2003-03-26 2004-10-21 Showa Corp 直流モータ駆動ブリッジ回路の故障検知装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215649A (ja) * 1991-07-31 1993-08-24 Robert Bosch Gmbh 車両の電気負荷を監視する装置
JPH1020001A (ja) * 1996-06-27 1998-01-23 Nec Home Electron Ltd モータ駆動回路の故障診断方法及び装置
JP2004297873A (ja) * 2003-03-26 2004-10-21 Showa Corp 直流モータ駆動ブリッジ回路の故障検知装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254199A (ja) * 2008-04-10 2009-10-29 Denso Corp モータ駆動回路およびモータの異常判定方法
JP2014238133A (ja) * 2013-06-07 2014-12-18 株式会社デンソー シフトバイワイヤ制御装置
US9425715B2 (en) 2014-08-04 2016-08-23 Hyundai Mobis Co., Ltd. Motor driving circuit of EPB system for reducing dark current
US10006783B2 (en) 2015-05-28 2018-06-26 Denso Corporation Resolver signal detection circuit
JP2019151137A (ja) * 2018-02-28 2019-09-12 株式会社デンソー ワイパ制御装置
JP7102779B2 (ja) 2018-02-28 2022-07-20 株式会社デンソー ワイパ制御装置
US11479211B2 (en) 2018-02-28 2022-10-25 Denso Corporation Wiper control device
US11070683B2 (en) 2019-12-13 2021-07-20 Canon Finetech Nisca Inc. Rotation drive control apparatus, sheet processing apparatus and image forming apparatus

Similar Documents

Publication Publication Date Title
US9802596B2 (en) Method for furnishing a sensor in the braking system in a vehicle
JP5830554B2 (ja) 四輪操舵車両の制御方法
CN100515848C (zh) 用于通过判定异常减小控制量的车辆用控制系统
WO2015072384A1 (ja) アンチロックブレーキ制御装置
JP2007330040A (ja) 電動モータ駆動回路の故障判定装置
CN104080645A (zh) 电动汽车
US20220289161A1 (en) Brake device, in particular for electrically driven motor vehicles
JP2004518583A (ja) 車両のブレーキ装置のための電子制御システム
US9227561B2 (en) Sensor arrangement and method for transmitting an item of braking operation information
US20120253602A1 (en) Vehicle control apparatus
CN104276155B (zh) 一种基于左右电动轮差动/制动控制的电动汽车控制方法
JP4193706B2 (ja) 路面摩擦係数検出装置
JP2010525986A (ja) 調整装置
JP2008247053A (ja) 車両の制御装置
CN114641415A (zh) 车辆用制动装置及车辆用制动系统
JPH10322809A (ja) 車 輌
WO2018181806A1 (ja) 車両用ブレーキシステム
JP2001525289A (ja) 自動車の運転状態を制御するための結合システム
JP2005096553A (ja) スピードメータ制御システムおよびスピードメータ制御方法
JP2008247052A (ja) 車両の制御装置
JP2000344087A (ja) 車輪速異常検出装置
JP4479228B2 (ja) 車輪加速度検出装置
JP4876834B2 (ja) 車両用ブレーキ制御装置
JP7334350B2 (ja) 車両のためのセンサ装置、及び、多回路ブレーキシステム
JP3988968B2 (ja) トラクション制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807