JP2007312274A - 受信機 - Google Patents

受信機 Download PDF

Info

Publication number
JP2007312274A
JP2007312274A JP2006141243A JP2006141243A JP2007312274A JP 2007312274 A JP2007312274 A JP 2007312274A JP 2006141243 A JP2006141243 A JP 2006141243A JP 2006141243 A JP2006141243 A JP 2006141243A JP 2007312274 A JP2007312274 A JP 2007312274A
Authority
JP
Japan
Prior art keywords
interference wave
frequency
unit
variable filter
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006141243A
Other languages
English (en)
Inventor
Naho Hamada
奈穂 浜田
Kenichi Horiguchi
健一 堀口
Kenichi Tajima
賢一 田島
Ryoji Hayashi
亮司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006141243A priority Critical patent/JP2007312274A/ja
Publication of JP2007312274A publication Critical patent/JP2007312274A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)
  • Noise Elimination (AREA)

Abstract

【課題】利用効率の低い周波数を検出し、その周波数を使用することによって効率的に通信を行うことができる受信機を得る。
【解決手段】複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、復調経路において干渉波が含まれる受信信号から干渉波のレベル及び周波数情報を検出する干渉波検出部8と、前記干渉波検出部8により検出された干渉波のレベル及び周波数情報に基づいて前記復調経路の回路特性を制御するとともに、検出された干渉波のレベル及び周波数情報に基づいて干渉波の影響が少ない周波数を使用周波数として選択する制御部9とを設けた。
【選択図】図1

Description

この発明は、利用効率の低い周波数を検出し、その周波数を使用することによって効率的に通信を行う受信機に関するものである。
現在、多種多様の無線通信システムが提案されている。そのような無線通信システムを一つの無線装置で利用することを目的に、複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモードの無線装置が開発されている。通常、マルチバンド、マルチモード無線装置には使用する周波数またはシステム毎にハードウェア回路がそれぞれ備えられており、それらを切り替えて通信を行う。その場合、面積の増加やコスト上昇といった問題があり、無線装置のマルチバンド、マルチモード化にはソフトウェア無線技術を用いる必要がある。
ソフトウェア無線技術とは、高周波増幅器、周波数変換器、AD変換器、DA変換器及びディジタル信号処理器などのハードウェア回路を共通とし、フィルタ、変復調部などの処理機能をプログラマブル化することであり、ソフトウェアの書き換えによって変調方式、送受信周波数、帯域幅、伝送速度などシステム固有の無線仕様を必要に応じて変更することを可能とするものである。
理想的なソフトウェア無線の受信機は、アンテナに直結するAD変換器とディジタル信号処理部の組み合わせである。しかし、このような構成では高レベルの干渉波がアンテナ端より入力した場合、AD変換器の入力信号が飽和し希望信号を正確に再生することができない。そのため、受信機にはAD変換器の前段に干渉波を減衰するための受信フィルタが必要となる。図19に、一般的な従来の受信機の構成を示す。図19において、この従来の受信機は、信号を受信するためのアンテナ901と、アンテナ901の出力信号を増幅するための低雑音電力増幅器903と、局部発振器910と、ミキサ回路911と、Anti-Aliasingフィルタ912と、Anti-Aliasingフィルタ912の出力信号をアナログディジタル変換するためのAD変換器906と、AD変換器906の出力信号に対して復調処理を行うための復調部907とが設けられている。
ソフトウェア無線では希望信号の帯域がシステム毎に変化し、それに応じてAD変換器及びディジタル処理の標本化周波数が変わる。また、システム毎に干渉が位置する周波数も異なる。上記の受信フィルタの特性が可変でない場合は決められた周波数の妨害波しか減衰できない。その場合、AD変換器の出力で希望信号チャネルに高レベルの干渉波が折り返さないためにAD変換器の標本化周波数を非常に大きくしなくてはならない。しかし、これは現段階では現実的ではない。そのため、受信フィルタの特性を可変とし折返し信号を効果的に抑制することで、AD変換器の標本化周波数への要求を緩和しなければならない。したがって、ソフトウェア無線の受信機においては受信フィルタの特性可変化が必須となる。
一方、多種多様の無線通信システムが提案されることにより、電波資源不足の問題が生じている。現在、無線通信システムにはシステム毎に個別の周波数帯が割り当てられている。その利用効率は場所、時間帯、システムによって大きく異なり、一方では利用効率が低い状況が存在するに対し、他方では利用効率が高い状況も存在する。利用効率が高い状況において通信を行う場合は、所望の通信性能を満たした通信を行うことができない場合がある。そのため、周波数割り当ての大幅な再配分が不可欠となっている。しかしながら、無線通信システムの利用周波数帯のニーズは一部の周波数帯に集中する傾向があり、周波数割り当ての大幅な再配分が行われたとしても、再び同様の問題が生じる可能性がある。その解決案として、電波の隙間の利用を徹底し、利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線が提案されている。
このコグニティブ無線とは、通信認知技術とも呼ばれ、場所、周波数、時間毎の利用効率を踏まえ動的に利用周波数を割り振ることにより、誰でもいつでもどんな場所でも所望の通信速度で通信を行える環境を構築しようとするものである。コグニティブ無線の実現のためには、ソフトウェア無線技術を利用し、無線装置が自動的に周囲の電波利用環境を認識する必要がある。その際、認識した環境下で効率的に、かつ良好に通信をすることが可能な使用周波数やシステムを決定し、決定した周波数やシステムで通信を行うことができるように無線装置の回路を切り替える。そのため、電波利用環境を認識するためには、無線装置において使用周波数周辺の干渉波の検出が必須となる。
複数の無線通信システムを受信できる別の従来の受信機について図20を参照しながら説明する(例えば、特許文献1参照)。図20は、複数の無線通信システムを受信できる別の従来の受信機の構成を示すブロック図である。
図20において、別の従来の受信機は、信号を受信するためのアンテナ901と、アンテナ901の出力信号に対してフィルタリングを行うRFフィルタ902と、RFフィルタ902の出力信号を増幅するための低雑音電力増幅器903と、低雑音電力増幅器903の出力信号に対して周波数変換を行う周波数変換部904と、周波数変換部904の出力信号をフィルタリングするための可変フィルタ部905と、可変フィルタ部905の出力信号をアナログディジタル変換するためのAD変換器906と、AD変換器906の出力信号に対して復調処理を行うための復調部907と、復調部907の処理過程の信号データに対して電力検出を行うための電力検出部908と、電力検出部908による検出電力に基づいて可変フィルタ部905を制御するための制御部909とが設けられている。
次に、別の従来の受信機の動作について説明する。アンテナ901より受信された干渉波は、RFフィルタ902によってフィルタリングされ、低雑音電力増幅器903に入力する。低雑音電力増幅器903によって増幅された干渉波は、周波数変換部904で周波数変換され、可変フィルタ部905に入力される。可変フィルタ部905に入力された干渉波は、可変フィルタ部905によってフィルタリングされ、AD変換器906に入力する。AD変換器906でアナログディジタル変換された干渉波は、復調部907に入力する。復調部907では、復調部907内のディジタルフィルタでチャネル選択処理などが施されるが、このディジタルフィルタの入力または出力の信号レベルを電力検出部908で検出する。制御部909では、電力検出部908によって検出された信号レベルに基づいて可変フィルタ部905のカットオフ周波数、次数、雑音特性など可変フィルタ部905の回路パラメータのうち少なくとも1つを決定し、可変フィルタ部905を制御する。干渉信号レベルが小さい場合は、次数を小さくするなどして可変フィルタ部905を制御し、干渉信号レベルが大きい場合は、次数を大きくするなどして可変フィルタ部905を制御する。一般的に、マルチバンド、マルチモード対応の受信機は、受信状態が悪い場合を想定した動作を前提として設計される。そのため、干渉信号レベルに適応してフィルタ特性を変更することによって、消費電力を抑えることが可能となる。
特開2001−16121号公報 Jiren Yuan, "A charge sampling mixer with embedded filter function for wireless applications", Microwave and Millimeter Wave Technology, 2000, 2nd International Conference on. ICMMT 2000 14-16 Sept. 2000 Page(s):315 - 318
しかしながら、上述した別の従来の受信機では、ある周波数範囲に存在する全体の干渉波のレベルは検出できるが、干渉波の周波数情報は検出することができない。コグニティブ無線を前提とした場合は電波環境の利用効率を把握するために、検出する干渉波の周波数情報の取得は必須である。そのため、上述した別の従来の受信機ではコグニティブ無線に対応させることが困難であるという問題点があった。
この発明は、上述のような課題を解決するためになされたもので、その目的は、利用効率の低い周波数を検出し、その周波数を使用することによって効率的に通信を行うことができる受信機を得るものである。
この発明に係る受信機は、複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、復調経路において干渉波が含まれる受信信号から干渉波のレベル及び周波数情報を検出する干渉波検出部と、前記干渉波検出部により検出された干渉波のレベル及び周波数情報に基づいて前記復調経路の回路特性を制御するとともに、検出された干渉波のレベル及び周波数情報に基づいて干渉波の影響が少ない周波数を使用周波数として選択する制御部とを設けたものである。
この発明に係る受信機は、利用効率の低い周波数を検出し、その周波数を使用することによって効率的に通信を行うことができるという効果を奏する。
実施の形態1.
この発明の実施の形態1に係る受信機について図1から図12までを参照しながら説明する。図1は、この発明の実施の形態1に係る受信機の構成を示すブロック図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
図1において、この発明の実施の形態1に係る受信機は、複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、受信信号を受信するためのアンテナ1と、アンテナ1の出力信号に対してフィルタリングを行うRFフィルタ2と、RFフィルタ2の出力信号を電力増幅するための低雑音電力増幅器3と、低雑音電力増幅器3の出力信号に対して周波数変換を行う周波数変換部4と、周波数変換部4の出力信号をフィルタリングするため可変フィルタ部5と、可変フィルタ部5の出力信号をアナログ信号からディジタル信号へと変換するAD変換器6と、AD変換器6の出力信号に対して復調処理を行う復調部7と、復調部7の処理過程のデータを用いて干渉波のレベルと周波数情報を検出する干渉波検出部8と、干渉波検出部8の検出情報に基づいて周波数変換部4と可変フィルタ部5のうち少なくとも1つを制御する制御部9とが設けられている。
つぎに、この実施の形態1に係る受信機の動作について図面を参照しながら説明する。図2は、この発明の実施の形態1に係る受信機の動作開始から送信側との通信開始までの動作を示すフローチャートである。また、図5は、この発明の実施の形態1に係る受信機の干渉波検出に関する動作を示すフローチャートである。
受信機は、送信側と通信を行う前にまず周辺環境の電波利用状況を把握するために、干渉波の検出を行う。図1において、受信信号は、アンテナ1によって受信され、RFフィルタ2によりフィルタリングされる。RFフィルタ2によってフィルタリングされた信号は、低雑音電力増幅器3によって増幅され、周波数変換部4に入力され周波数変換される。このとき、周波数変換部4における変換周波数は、制御部9によって初期設定に制御をされている(ステップ101)。周波数変換部4によってIF信号またはベースバンド信号に変換された信号は、可変フィルタ部5に入力する。このとき、可変フィルタ部5は、フィルタ特性を変化させる回路パラメータを制御部9により初期設定に制御されている(ステップ101)。可変フィルタ部5によってフィルタリングされた信号は、AD変換器6に入力しアナログ信号からディジタル信号に変換される。ディジタル信号に変換された信号は、復調部7に入力し復調処理が施される。
復調処理ではディジタルフィルタによるチャネル選択処理、検波処理、変調波復調処理などが行われるが、ディジタルフィルタの入力信号または出力信号など復調部7の処理過程の信号を用いて、干渉波検出部8は、干渉波のレベルと周波数情報を検出する(ステップ102)。制御部9は、検出された干渉波レベルと周波数情報に基づき利用効率の低い周波数を判断し、その周波数を使用して送信側と通信を行う。このとき、制御部9は、使用周波数において回避できない干渉波を十分に減衰するために可変フィルタ部5の回路パラメータと周波数変換部4における変換周波数のうち少なくとも1つを決定し、可変フィルタ部5、周波数変換部4を制御する(ステップ103〜104)。
送信側との通信を開始した受信機において、アンテナ1によって送信側から受信された受信信号は、RFフィルタ2によりフィルタリングされ、低雑音電力増幅器3で電力増幅される。低雑音電力増幅器3の出力信号は、周波数変換部4で周波数変換され、可変フィルタ部5に入力される。このとき、使用している周波数において回避できない干渉波を十分に減衰するように、周波数変換部4と可変フィルタ部5は、制御部9によって制御されている。可変フィルタ部5によってフィルタリングされた信号は、AD変換器6に入力しディジタル信号に変換され、復調部7によって復調処理が施される。
次に、この実施の形態1に係る受信機における干渉波検出に関わる動作について詳細に説明する。干渉波検出部8では、復調部7の処理過程の時間信号データに対して高速フーリエ変換(FFT)処理を施し周波数信号データに変換する(ステップ151)。ここで、AD変換器6のサンプリング周波数をfadc[Hz]とすると、FFT処理がされた周波数信号データはfadc/2[Hz]の範囲に折り返されたデータである。そのため、検出された干渉波の周波数情報は一意的に決定されるのではなく、複数の周波数情報予測値となる。図3にそのときの一例を示す。
図3は、この発明の実施の形態1に係る受信機において検出された干渉波及び予測干渉波を示す図である。図3において、検出された干渉波81と、周波数情報予測値における予測干渉波82〜85を示す。
制御部9は、この周波数情報予測値に基づいて可変フィルタ部5の特性を決定する回路パラメータ及び周波数変換部4の変換周波数を決定し、再制御する(ステップ152〜153)。そうして、上記と同様に再度干渉波の検出を行う。干渉波検出部8は、制御部9による再制御前後での検出された干渉波のレベルを比較する(ステップ154)。可変フィルタ部5の周波数特性及び周波数変換部4の変換周波数は既知の情報であるため、各周波数情報予測値における妨害波の減衰量も既知である。そのため、再制御前後の干渉波レベルを比較することによって、複数存在する周波数情報予測値の中から一意的に周波数情報を決定することが可能となる(ステップ155)。図4にそのときの一例を示す。
図4は、この発明の実施の形態1に係る受信機において再制御後に検出された干渉波及び予測干渉波を示す図である。図4において、再制御後に検出された干渉波81Aと、再制御前の周波数情報予測値における予測干渉波82A〜85Aと、再制御後の可変フィルタ部5の周波数特性86を示す。
図3及び図4より、再制御前後において検出された干渉波に対して、再制御後の可変フィルタ部5の周波数特性86に応じて減衰しているのは、予測干渉波84Aであるとわかる。このように干渉波のレベルと周波数情報を検出することが可能となる。
以上のように、復調部7の処理過程の受信信号を用いて干渉波のレベルと周波数情報を検出することによって、周波数効率のよい通信が可能となる。その上で、検出情報に基づいて可変フィルタ部5の回路パラメータと周波数変換部4における変換周波数を制御することによって、使用周波数において回避できない干渉波を十分に減衰し、良好な状態で通信することが可能となる。
可変フィルタ部5をサンプリングフィルタとすることによって、広帯域に渡り可変フィルタ部5の特性を変更することが可能となる。
ここで、サンプリングフィルタについて説明する。サンプリングフィルタは、スイッチトキャパシタ技術を用いた特性可変のフィルタである。サンプリングフィルタでは、コンデンサの両側に配置されたスイッチを周期的に開閉することによってキャパシタが充放電され、電荷の移動が起こりパルス状の電流が流れる。電流の量は、キャパシタの容量とスイッチング時間という2つのパラメータによって決定され、これにより電流が制御可能となる。電流が制御可能であるということは、抵抗が制御可能であるということと等価である。つまり、フィルタの特性が可変であるということである。すなわち、スイッチトキャパシタ技術を用いてフィルタを構築した場合、キャパシタの容量またはスイッチングの時間を変更することによってフィルタの周波数応答を広帯域に渡り変えることができる。
サンプリングフィルタの一例について図面を参照して説明する。このサンプリングフィルタは、非特許文献1に示されたものが知られている。
図6は、非特許文献1記載のサンプリングフィルタの回路構成を示す図である。図6において、このサンプリングフィルタは、信号が入力するための入力端子501と、入力端子501より入力された電圧信号を電流信号へ変換するための電圧電流変換部502と、電圧電流変換部502に対して出力側へ接続切り替えを行うためのスイッチ503と、スイッチ503がオン状態の場合に流れた電流に応じて電荷を充電するためのキャパシタ504と、キャパシタ504に電荷が充電されることによって生じる電位差をスイッチングすることによって離散信号として出力するためのスイッチ505と、信号を出力するための出力端子506と、キャパシタ504に充電された電荷を放電するためのスイッチ507とが設けられている。
次に、このサンプリングフィルタの動作について説明する。入力端子501より入力された連続時間の電圧信号は、電圧電流変換部502において電流信号に変換されスイッチ503に入力する。スイッチ503、スイッチ505、スイッチ507のオン状態とオフ状態の遷移に関して図7を用いて説明する。
図7は、図6のサンプリングフィルタの動作を説明するための図である。スイッチ503がオン状態の場合、スイッチ505及びスイッチ507はオフ状態である。このとき、電圧電流変換部502の出力電流によってキャパシタ504に電荷が充電される。スイッチ503がオン状態、スイッチ505及びスイッチ507がオフ状態の時間Trの間、この状態は維持される。続いて、スイッチ503がオフ状態に切り替わり、スイッチ505がオン状態に切り替わる。このとき、キャパシタ504に充電されることによって生じた電位差の電圧信号が出力端子506に読み出される。最後に、スイッチ505がオフ状態に切り替わり、スイッチ507がオン状態に切り替わることによって、キャパシタ504に充電されている電荷が放電され次の入力に備える。これらの動作が周期的に行われる。
上述したサンプリングフィルタにおけるインパルス応答は、図8に示すように、時間Trの矩形波であるため、周波数応答は、図9に示すように、振幅が周波数1/Tr毎に急峻な減衰のヌル点をもつsincの形状である。図8は、サンプリングフィルタのインパルス応答を示す図である。また、図9は、サンプリングフィルタの周波数応答を示す図である。
上述したサンプリングフィルタは、重みが一定の有限インパルスレスポンスフィルタのフィルタリングを行うフィルタであり、スイッチ503のスイッチング時間に伴ってフィルタの周波数応答の可変化が可能なフィルタである。このように、連続時間信号を入力し有限インパルスレスポンスフィルタのフィルタリングを行うフィルタは、一般的に連続時間有限インパルスレスポンスフィルタ(連続時間FIRフィルタ)と呼ばれている。
可変フィルタ部5に上記の連続時間FIRフィルタを用いた場合において、受信機の干渉波検出後の可変フィルタ部5と周波数変換部4の制御動作について説明する。制御部9は、利用効率の低い周波数で送信側と通信を行うために使用する周波数を決定する。また、制御部9は、可変フィルタ部5である連続時間FIRフィルタと周波数変換部4を制御し、使用周波数において回避できない干渉波の影響を十分に小さくする。
ここで、図面を用いて説明する。図10は、この発明の実施の形態1に係る受信機の周波数変換部の出力における所望波と干渉波を示す図である。図10において、所望波41と、干渉波42を示す。
制御部9は、検出した干渉波42のレベルと周波数情報に基づいて可変フィルタ部5の回路パラメータと周波数変換部4の変換周波数を決定する。前述のとおり、サンプリングフィルタの回路パラメータにはスイッチング時間つまりサンプリング周波数やキャパシタの容量値などがある。
可変フィルタ部5の回路パラメータであるサンプリング周波数を制御した場合について説明する。可変フィルタ部5が図6の連続時間FIRフィルタの場合、可変フィルタ部5の周波数特性は、周波数1/Tr毎にヌル点をもつ。周波数1/Trが可変フィルタ部5のサンプリング周波数に相当する。ここで、図9のフィルタ特性において周波数1/Trの位置で干渉波を減衰させる場合、検出した干渉波の周波数と周波数1/Trが同じになるように、制御部9は、可変フィルタ部5のサンプリング周波数を制御する。
図11は、この発明の実施の形態1に係る受信機の可変フィルタ部(=連続時間FIRフィルタ)の通過前後の所望波と干渉波を示す図である。図11において、可変フィルタ部5の通過前の所望波51、干渉波52を(a)に示すとともに、可変フィルタ部5の通過後の所望波53、干渉波54を(b)に示す。なお、可変フィルタ部5の周波数特性55を(a)に示す。このように、制御部9が可変フィルタ部5のサンプリング周波数を決定し、制御することによって、使用周波数において回避不可能であった干渉波の影響を十分に小さくすることが可能となる。
サンプリングフィルタに用いられるサンプリングクロックは、ある基準クロックの整数倍で動作する。そのため、干渉波の周波数によっては、可変フィルタ部5のフィルタ特性を干渉波に対してうまく調節できずに、所望の減衰量を得ることができない場合がある。このようにサンプリング周波数をうまく調節できない場合は、周波数変換部4における変換周波数を制御し、周波数変換後の所望波および干渉波の周波数を調節することによって、干渉波に対してフィルタ特性を調節することが可能である。
図12は、この発明の実施の形態1に係る受信機の可変フィルタ部(サンプリング周波数をうまく調節できない場合に周波数変換部における変換周波数を制御した場合)の通過前後の所望波と干渉波を示す図である。図12において、可変フィルタ部5の通過前の所望波51A、干渉波52Aを(a)に示すとともに、可変フィルタ部5の通過後の所望波53A、干渉波54Aを(b)に示す。なお、可変フィルタ部5のフィルタ特性55Aを(a)に示す。
このように、可変フィルタ部5に上記の連続時間FIRフィルタを用いても、十分に干渉波を減衰させることは可能であり、広帯域に特性を変更することが可能なサンプリングフィルタを用いることによって、広帯域でのマルチバンド、マルチモードの通信を可能とする。
また、フェージング状況下では、干渉波検出部8における検出処理を時間平均化することによって、上記と同様に干渉波の検出を行うことが可能である。なお、干渉波検出部8は、AD変換器6の出力信号を用いて干渉波のレベルと周波数情報を検出してもよい。
この実施の形態1に係る受信機によれば、受信信号より干渉波のレベルと周波数情報を検出し、検出した情報に基づいて使用周波数を決定する。また、上記検出した情報に基づいて可変フィルタ部5と周波数変換部4のうち少なくともどちらか一つを制御することによって回避できない干渉波を減衰する。これにより、効率的でかつ良好な通信を可能とする。
実施の形態2.
この発明の実施の形態2に係る受信機について図13から図16までを参照しながら説明する。図13は、この発明の実施の形態2に係る受信機の構成を示すブロック図である。
図13において、この発明の実施の形態2に係る受信機は、複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、受信信号を受信するためのアンテナ1と、アンテナ1の出力信号に対してフィルタリングを行うRFフィルタ2と、RFフィルタ2の出力信号を電力増幅するための低雑音電力増幅器3と、低雑音電力増幅器3の出力信号に対して周波数変換を行う周波数変換部4と、周波数変換部4の出力信号をフィルタリングするための可変フィルタ部5と、可変フィルタ部5の出力信号をアナログ信号からディジタル信号へと変換するAD変換器6と、AD変換器6の出力信号に対して復調処理を行う復調部7と、可変フィルタ部5の出力信号を用いて干渉波のレベルを検出する電力検出部10と、電力検出部10の検出情報に基づいて干渉波の周波数情報を決定し、周波数変換部4と可変フィルタ部5のうち少なくとも1つを制御する制御部9とが設けられている。
つぎに、この実施の形態2に係る受信機の動作について図面を参照しながら説明する。図14は、この発明の実施の形態2に係る受信機の可変フィルタ部のカットオフ周波数と検波電力の関係を示す図である。また、図15は、この発明の実施の形態2に係る受信機の電力検出部の干渉波検出に関する動作を示すフローチャートである。さらに、図16は、この発明の実施の形態2に係る受信機の可変フィルタ部のサンプリング周波数と検波電力の関係を示す図である。
受信機は、送信側と通信を行う前にまず周辺環境の電波利用状況を把握するために、干渉波の検出を行う。図13において、受信信号はアンテナ1によって受信され、RFフィルタでフィルタリングされる。RFフィルタ2によってフィルタリングされた信号は、低雑音電力増幅器3によって増幅され、周波数変換部4に入力され、周波数変換される。このとき、周波数変換部4における変換周波数を制御部9によって初期設定に制御をされている。周波数変換部4によってIF信号またはベースバンド信号に変換された信号は、可変フィルタ部5に入力する。このとき、可変フィルタ部5は、制御部9によって回路パラメータを初期設定に制御をされている。
可変フィルタ部5によってフィルタリングされた信号は、電力検出部10において干渉波のレベルを検出する。制御部9は、可変フィルタ部5の回路パラメータと周波数変換部4における変換周波数のうち少なくとも1つを変更し、再度干渉波のレベルを検出する。このように、可変フィルタ部5の回路パラメータと周波数変換部4における変換周波数を変化させながら電力検出を行うことによって、干渉波の周波数情報を検出する。制御部9は、検出された干渉波レベルと周波数情報に基づき、利用効率の低い周波数を判断し、その周波数を使用して送信側と通信を行う。このとき、制御部9は、使用周波数において回避できない干渉波を十分に減衰するために、可変フィルタ部5の回路パラメータと周波数変換部4における変換周波数を決定し、制御する。
送信側との通信を開始した受信機において、アンテナ1によって送信側から受信された受信信号は、RFフィルタ2でフィルタリングされ、低雑音電力増幅器3で電力増幅される。低雑音電力増幅器3の出力信号は、周波数変換部4で周波数変換され、可変フィルタ部5に入力される。このとき、使用している周波数において回避できない干渉波を十分に減衰するように、周波数変換部4と可変フィルタ部5は、制御部9によって制御されている。可変フィルタ部5によってフィルタリングされた信号は、AD変換部6に入力しディジタル信号に変換され、復調部7によって復調処理が施される。
次に、この実施の形態2における干渉波の検出について詳細に説明する。可変フィルタ部5の出力信号を用いて、電力検出部10は、干渉波のレベルの検出を行う(ステップ201)。制御部9は、可変フィルタ部5の回路パラメータと周波数変換部4における変換周波数を変化させながら、電力検出部10は、干渉波のレベルの検出を行う(ステップ202〜205)。これを繰り返すことによって、可変フィルタ部5の回路パラメータまたは周波数変換部4における変換周波数と検波電力の関係が示される。
制御部9にとって可変フィルタ部5の特性および周波数変換部4における変換周波数は既知の情報である。そのため、図14の検波電力の変動特性によって干渉波のレベルと周波数情報を予測することは可能である。
以上ように、可変フィルタ部5と周波数変換部4を制御しながら可変フィルタ部5の出力信号を検出することによって、干渉波のレベルと周波数情報を検出することが可能となる。検出情報を用いて比較的利用効率の低い周波数を使用周波数とすることにより。周波数効率のよい通信が可能となる。その上で、検出した情報に基づいて可変フィルタ部5の回路パラメータと周波数変換部4における変換周波数を制御することによって、使用周波数において回避できない干渉波を十分に減衰し、良好な状態で通信することが可能となる。
可変フィルタ部5に上記の連続時間FIRフィルタを用いた場合の干渉波検出について説明する。可変フィルタ部5の出力信号を用いて、電力検出部10は、レベルの検出を行う。制御部9は、可変フィルタ部5の回路パラメータであるサンプリング周波数と周波数変換部4における変換周波数を変化させながら、電力検出部10は、レベルの検出を行う。これを繰り返すことによって、可変フィルタ部5の回路パラメータと周波数変換部4における変換周波数と検波電力の関係が示される。
制御部9にとって可変フィルタ部5の周波数特性は既知情報である。そのため、図16の特性より干渉波のレベルと周波数情報を予測することは可能である。例えば、ここでの可変フィルタ部5である連続時間FIRフィルタの周波数特性はサンプリング周波数である周波数1/Tr毎にヌル点をもつため、干渉波の周波数とヌル点が同じとなった場合は、図16のように、検波電力が減少するため、予めヌル点における減衰量を計算しておくことにより干渉波のレベルと周波数情報を取得することができる。制御部9は、検出された干渉波レベルと周波数情報に基づき利用効率の低い周波数を判断し、その周波数を使用して送信側と通信を行う。このとき、制御部9は、使用する周波数において回避できない干渉波を十分に減衰することが可能となるように、可変フィルタ部5の回路パラメータと周波数変換部4における変換周波数を決定し、制御する。妨害波検出後は、上記の実施の形態1と同様に受信機は動作する。
このように、可変フィルタ部5に上記の連続時間FIRフィルタを用いても、干渉波のレベルと周波数情報の検出は可能であり、広帯域に特性を変更することが可能なサンプリングフィルタを用いることによって、広帯域でのマルチバンド、マルチモードの通信を可能とする。
また、フェージング状況下では、電力検出部10における検出レベルを時間平均化することによって上記と同様に干渉波の検出を行うことが可能である。
この実施の形態2に係る受信機によれば、可変フィルタ部5の回路パラメータと周波数変換部4の変換周波数を変更しながら、可変フィルタ部5の出力側の受信信号レベルを検出することによって、その検出レベルの変動より干渉波の周波数に関する情報を取得することを可能とし、干渉波レベルと周波数情報を検出することを可能とする。
実施の形態3.
この発明の実施の形態3に係る受信機について図17を参照しながら説明する。図17は、この発明の実施の形態3に係る受信機の構成を示すブロック図である。
図17において、この発明の実施の形態3に係る受信機は、複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、受信信号を復調する第1の経路と、干渉波を検出するための第2の経路とが設けられている。
第1の経路と第2の経路の共通部分には、受信信号を受信するためのアンテナ1と、アンテナ1の出力信号に対してフィルタリングを行うRFフィルタ2とが設けられている。
第1の経路には、RFフィルタ2の出力信号を電力増幅するための第1の低雑音電力増幅器3Aと、第1の低雑音電力増幅器3Aの出力信号に対して周波数変換を行う第1の周波数変換部4Aと、第1の周波数変換部4Aの出力信号をフィルタリングするため第1の可変フィルタ部5Aと、第1の可変フィルタ部5Aの出力信号をアナログ信号からディジタル信号へと変換する第1のAD変換器6Aと、第1のAD変換器6Aの出力信号に対して復調処理を行う復調部7とが設けられている。
第2の経路には、RFフィルタ2の出力信号を電力増幅するための第2の低雑音電力増幅器3Bと、第2の低雑音電力増幅器3Bの出力信号に対して周波数変換を行う第2の周波数変換部4Bと、第2の周波数変換部4Bの出力信号をフィルタリングするための第2の可変フィルタ部5Bと、第2の可変フィルタ部5Bの出力信号をアナログ信号からディジタル信号へと変換する第2のAD変換器6Bと、第2のAD変換器6Bの出力信号を用いて干渉波のレベルと周波数情報を検出する干渉波検出部8と、干渉波検出部8の検出情報に基づいて第1の周波数変換部4Aと第1の可変フィルタ部5Aのうち少なくとも1つを制御し、第2の周波数変換部4Bと第2の可変フィルタ部5Bのうち少なくとも1つを制御する制御部9とが設けられている。
この実施の形態3は、上記の実施の形態1に対して、受信信号を復調するための経路と干渉波を検出するための経路を別経路とした構成である。制御部9によって第2の周波数変換部4Bや第2の可変フィルタ部5Bを制御し、第2のAD変換器6Bの出力信号を用いて干渉波検出部8において干渉波のレベルと周波数情報を検出する。検出した情報を用いて使用周波数を決定する。また、検出情報に基づいて第1の可変フィルタ部5Aの回路パラメータと第1の周波数変換部4Aにおける変換周波数を制御部9によって制御することによって、使用周波数において回避できない干渉波を十分に減衰する。通信後も干渉波の検出を行い、突発的な干渉波のレベル変動に対しても、使用周波数の変更や第1の可変フィルタ部5Aの回路パラメータや第1の周波数変換部4Aにおける変換周波数の変更によって適応的に周波数環境変化に対応する。
以上により、本実施の形態3では、送信側と通信を開始したあとも周波数環境を監視する。それにより、動的に変化する周波数環境に応じて受信機を制御することを可能とし、通信品質を落とすことなく良好な状態で通信を継続することができる。所望波を復調する経路と干渉波を検出する経路を別経路とすることによって、常時、干渉波の検出を行うことを可能とし、動的に変化する電波環境に対して適応的に動作することを可能とする。
実施の形態4.
この発明の実施の形態4に係る受信機について図18を参照しながら説明する。図18は、この発明の実施の形態4に係る受信機の構成を示すブロック図である。
図18において、この発明の実施の形態4に係る受信機は、複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、受信信号を復調する第1の経路と干渉波を検出するための第2の経路とが設けられている。
第1の経路と第2の経路の共通部分には、受信信号を受信するためのアンテナ1と、アンテナ1の出力信号に対してフィルタリングを行うRFフィルタ2とが設けられている。
第1の経路には、RFフィルタ2の出力信号を電力増幅するための第1の低雑音電力増幅器3Aと、第1の低雑音電力増幅器3Aの出力信号に対して周波数変換を行う第1の周波数変換部4Aと、第1の周波数変換部4Aの出力信号をフィルタリングするため第1の可変フィルタ部5Aと、第1の可変フィルタ部5Aの出力信号をアナログ信号からディジタル信号へと変換するAD変換器6と、AD変換器6の出力信号に対して復調処理を行う復調部7とが設けられている。
第2の経路には、RFフィルタ2の出力信号を電力増幅するための第2の低雑音電力増幅器3Bと、第2の低雑音電力増幅器3Bの出力信号に対して周波数変換を行う第2の周波数変換部4Bと、第2の周波数変換部4Bの出力信号をフィルタリングするための第2の可変フィルタ部5Bと、第2の可変フィルタ部5Bの出力信号を用いて干渉波のレベルを検出する電力検出部10と、電力検出部10の検出情報に基づいて干渉波周波数情報を決定し、第1の周波数変換部4Aと第1の可変フィルタ部5Aのうち少なくとも1つを制御し、第2の周波数変換部4Bと第2の可変フィルタ部5Bとのうち少なくとも1つを制御する制御部9とが設けられている。
この実施の形態4は、上記の実施の形態2に対して、受信信号を復調するための経路と干渉波を検出するための経路を別経路とした構成である。第2の可変フィルタ部5Bと第2の周波数変換部4Bを制御しながら、第2の可変フィルタ部5Bの出力信号を検出することによって干渉波レベルと周波数情報を検出する。検出した情報を用いて使用周波数を決定する。また、検出情報に基づいて第1の可変フィルタ部5Aの回路パラメータと第1の周波数変換部4Aにおける変換周波数を制御部9によって制御することによって、使用周波数において回避できない干渉波を十分に減衰する。送信側との通信開始後も干渉波の検出を行い、突発的な干渉波のレベル変動に対しても、使用周波数の変更や第1の可変フィルタ部5Aの回路パラメータや第1の周波数変換部4Aにおける変換周波数の変更によって適応的に周波数環境変化に対応する。
以上により、本実施の形態4では、送信側と通信を開始したあとも周波数環境を監視する。それにより、動的に変化する周波数環境に応じて受信機を制御することを可能とし、通信品質を落とすことなく良好な状態で通信を継続することができる。所望波を復調する経路と干渉波を検出する経路を別経路とすることによって、常時、干渉波の検出を行うことを可能とし、動的に変化する電波環境に対して適応的に動作することを可能とする。
なお、上記の実施の形態3及び実施の形態4では、第2の経路のフィルタを可変フィルタ部5Bとしているが、本フィルタは可変でなくてもよく、固定フィルタでもよい。
また、上記の実施の形態3及び実施の形態4では、第1の経路及び第2の経路それぞれに第1の周波数変換部4Aと第2の周波数変換部4Bを有しているが、これらは第1の経路及び第2の経路で共有化とし、その両方の機能を有している1つの周波数変換部としてもよい。
この発明の実施の形態1に係る受信機の構成を示すブロック図である。 この発明の実施の形態1に係る受信機の動作開始から送信側との通信開始までの動作を示すフローチャートである。 この発明の実施の形態1に係る受信機において検出された干渉波及び予測干渉波を示す図である。 この発明の実施の形態1に係る受信機において再制御後に検出された干渉波及び予測干渉波を示す図である。 この発明の実施の形態1に係る受信機の干渉波検出に関する動作を示すフローチャートである。 サンプリングフィルタの回路構成を示す図である。 サンプリングフィルタの動作を説明するための図である。 サンプリングフィルタのインパルス応答を示す図である。 サンプリングフィルタの周波数応答を示す図である。 この発明の実施の形態1に係る受信機の周波数変換部の出力における所望波と干渉波を示す図である。 この発明の実施の形態1に係る受信機の可変フィルタ部(=連続時間FIRフィルタ)の通過前後の所望波と干渉波を示す図である。 この発明の実施の形態1に係る受信機の可変フィルタ部(サンプリング周波数をうまく調節できない場合に周波数変換部における変換周波数を制御した場合)の通過前後の所望波と干渉波を示す図である。 この発明の実施の形態2に係る受信機の構成を示すブロック図である。 この発明の実施の形態2に係る受信機の可変フィルタ部のカットオフ周波数と検波電力の関係を示す図である。 この発明の実施の形態2に係る受信機の電力検出部の干渉波検出に関する動作を示すフローチャートである。 この発明の実施の形態2に係る受信機の可変フィルタ部のサンプリング周波数と検波電力の関係を示す図である。 この発明の実施の形態3に係る受信機の構成を示すブロック図である。 この発明の実施の形態4に係る受信機の構成を示すブロック図である。 一般的な従来の受信機の構成を示すブロック図である。 複数の無線通信システムを受信できる別の従来の受信機の構成を示すブロック図である。
符号の説明
1 アンテナ、2 RFフィルタ、3、3A、3B 低雑音電力増幅器、4、4A、4B 周波数変換部、5、5A、5B 可変フィルタ部、6、6A、6B AD変換器、7 復調部、8 干渉波検出部、9 制御部、10 電力検出部、501 入力端子、502 電圧電流変換部、503 スイッチ、504 キャパシタ、505 スイッチ、506 出力端子、507 スイッチ。

Claims (13)

  1. 複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、
    復調経路において干渉波が含まれる受信信号から干渉波のレベル及び周波数情報を検出する干渉波検出部と、
    前記干渉波検出部により検出された干渉波のレベル及び周波数情報に基づいて前記復調経路の回路特性を制御するとともに、検出された干渉波のレベル及び周波数情報に基づいて干渉波の影響が少ない周波数を使用周波数として選択する制御部と
    を備えたことを特徴とする受信機。
  2. 前記復調経路は、
    受信信号をフィルタリングする可変フィルタ部と、
    受信信号に対して復調処理を行う復調部とを有し、
    前記干渉波検出部は、前記復調部の処理過程のデータを用いて干渉波のレベル及び周波数情報を検出し、
    前記制御部は、前記干渉波検出部により検出された干渉波のレベル及び周波数情報に基づいて前記可変フィルタ部を制御する
    ことを特徴とする請求項1記載の受信機。
  3. 前記復調経路は、
    干渉波が含まれる受信信号に対して周波数変換を行う周波数変換部と、
    受信信号に対して復調処理を行う復調部とを有し、
    前記干渉波検出部は、前記復調部の処理過程のデータを用いて干渉波のレベル及び周波数情報を検出し、
    前記制御部は、前記干渉波検出部により検出された干渉波のレベル及び周波数情報に基づいて前記周波数変換部を制御する
    ことを特徴とする請求項1記載の受信機。
  4. 複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、
    復調経路において干渉波が含まれる受信信号から干渉波のレベルを検出する電力検出部と、
    前記電力検出部により検出された干渉波のレベルに基づいて干渉波の周波数情報を決定し前記復調経路の回路特性を制御するとともに、検出された干渉波のレベル及び周波数情報に基づいて干渉波の影響が少ない周波数を使用周波数として選択する制御部と
    を備えたことを特徴とする受信機。
  5. 前記復調経路は、
    受信信号をフィルタリングする可変フィルタ部を有し、
    前記電力検出部は、前記可変フィルタ部の出力信号を用いて干渉波のレベルを検出し、
    前記制御部は、前記電力検出部により検出された干渉波のレベルに基づいて干渉波の周波数情報を決定し前記可変フィルタ部を制御する
    ことを特徴とする請求項4記載の受信機。
  6. 前記復調経路は、
    干渉波が含まれる受信信号に対して周波数変換を行う周波数変換部と、
    前記周波数変換部の出力信号をフィルタリングする可変フィルタ部とを有し、
    前記電力検出部は、前記可変フィルタ部の出力信号を用いて干渉波のレベルを検出し、
    前記制御部は、前記電力検出部により検出された干渉波のレベルに基づいて干渉波の周波数情報を決定し前記周波数変換部を制御する
    ことを特徴とする請求項4記載の受信機。
  7. 複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、
    干渉波が含まれる受信信号に対して周波数変換を行う周波数変換部と、
    前記周波数変換部の出力信号をフィルタリングする可変フィルタ部と、
    前記可変フィルタ部の出力信号をアナログ信号からディジタル信号へと変換するAD変換器と、
    前記AD変換器の出力信号に対して復調処理を行う復調部と、
    前記復調部の処理過程のデータを用いて干渉波のレベル及び周波数情報を検出する干渉波検出部と、
    前記干渉波検出部により検出された干渉波のレベル及び周波数情報に基づいて前記可変フィルタ部、前記周波数変換部のうちの少なくとも1つを制御するとともに、検出された干渉波のレベル及び周波数情報に基づいて干渉波の影響が少ない周波数を使用周波数として選択する制御部と
    を備えたことを特徴とする受信機。
  8. 複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、
    干渉波が含まれる受信信号に対して周波数変換を行う周波数変換部と、
    前記周波数変換部の出力信号をフィルタリングする可変フィルタ部と、
    前記可変フィルタ部の出力信号を用いて干渉波のレベルを検出する電力検出部と、
    前記電力検出部により検出された干渉波のレベルに基づいて干渉波の周波数情報を決定し前記可変フィルタ部、前記周波数変換部のうちの少なくとも1つを制御するとともに、検出された干渉波のレベルに基づいて干渉波の影響が少ない周波数を使用周波数として選択する制御部と
    を備えたことを特徴とする受信機。
  9. 複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、
    受信信号に対して復調処理を行うための第1の経路と、
    前記受信信号に対して干渉波を検出するための第2の経路とを備えた受信機であって、
    前記第1の経路は、
    干渉波が含まれる受信信号に対して周波数変換を行う第1の周波数変換部と、
    前記第1の周波数変換部の出力信号をフィルタリングする第1の可変フィルタ部と、
    前記第1の可変フィルタ部の出力信号をアナログ信号からディジタル信号へと変換する第1のAD変換器と、
    前記第1のAD変換器の出力信号に対して復調処理を行う復調部とを有するとともに、
    前記第2の経路は、
    干渉波が含まれる受信信号に対して周波数変換を行う第2の周波数変換部と、
    前記第2の周波数変換部の出力信号をフィルタリングする第2の可変フィルタ部と、
    前記第2の可変フィルタ部の出力信号をアナログ信号からディジタル信号へと変換する第2のAD変換器と、
    前記第2のAD変換器の出力信号を用いて干渉波のレベル及び周波数情報を検出する干渉波検出部と、
    前記干渉波検出部により検出された干渉波のレベル及び周波数情報に基づいて前記第1の可変フィルタ部、前記第1の周波数変換部のうちの少なくとも1つを制御するとともに、前記第2の可変フィルタ部、前記第2の周波数変換部のうちの少なくとも1つを制御するとともに、検出された干渉波のレベル及び周波数情報に基づいて干渉波の影響が少ない周波数を使用周波数として選択する制御部とを有する
    ことを特徴とする受信機。
  10. 複数の周波数及び複数のシステムを処理することが可能なマルチバンド、マルチモード、並びに利用効率の低い周波数、時間帯を積極的に利用するコグニティブ無線を採用した受信機であって、
    受信信号に対して復調処理を行うための第1の経路と、
    前記受信信号に対して干渉波を検出するための第2の経路とを備えた受信機であって、
    前記第1の経路は、
    干渉波が含まれる受信信号に対して周波数変換を行う第1の周波数変換部と、
    前記第1の周波数変換部の出力信号をフィルタリングする第1の可変フィルタ部と、
    前記第1の可変フィルタ部の出力信号をアナログ信号からディジタル信号へと変換するAD変換器と、
    前記AD変換器の出力信号に対して復調処理を行う復調部とを有するとともに、
    前記第2の経路は、
    干渉波が含まれる受信信号に対して周波数変換を行う第2の周波数変換部と、
    前記第2の周波数変換部の出力信号をフィルタリングする第2の可変フィルタ部と、
    前記第2の可変フィルタ部の出力信号を用いて干渉波のレベルを検出する電力検出部と、
    前記電力検出部により検出された干渉波のレベルに基づいて干渉波の周波数情報を決定し前記第1の可変フィルタ部、前記第1の周波数変換部のうちの少なくとも1つを制御するとともに、前記第2の可変フィルタ部、前記第2の周波数変換部のうちの少なくとも1つを制御するとともに、検出された干渉波のレベルに基づいて干渉波の影響が少ない周波数を使用周波数として選択する制御部とを有する
    ことを特徴とする受信機。
  11. 前記可変フィルタ部は、サンプリングフィルタである
    ことを特徴とする請求項2又は請求項5から請求項10までのいずれかに記載の受信機。
  12. 前記第2の可変フィルタ部は、固定フィルタである
    ことを特徴とする請求項9又は10記載の受信機。
  13. 前記第1及び第2の周波数変換部は、共有化された1つの周波数変換部である
    ことを特徴とする請求項9又は10記載の受信機。
JP2006141243A 2006-05-22 2006-05-22 受信機 Pending JP2007312274A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141243A JP2007312274A (ja) 2006-05-22 2006-05-22 受信機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141243A JP2007312274A (ja) 2006-05-22 2006-05-22 受信機

Publications (1)

Publication Number Publication Date
JP2007312274A true JP2007312274A (ja) 2007-11-29

Family

ID=38844686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141243A Pending JP2007312274A (ja) 2006-05-22 2006-05-22 受信機

Country Status (1)

Country Link
JP (1) JP2007312274A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010097865A1 (ja) * 2009-02-25 2010-09-02 三菱電機株式会社 受信装置
WO2010097866A1 (ja) * 2009-02-25 2010-09-02 三菱電機株式会社 受信装置
WO2013140779A1 (ja) 2012-03-23 2013-09-26 日本電気株式会社 無線通信端末、モバイルアドホックネットワーク、ネットワーク加入方法
KR101498086B1 (ko) * 2010-08-16 2015-03-03 엘지전자 주식회사 무선 통신 시스템에서 idc 간섭을 회피하는 방법 및 이를 위한 장치
JP2020167630A (ja) * 2019-03-29 2020-10-08 Necプラットフォームズ株式会社 通信システム、及び妨害波検出方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8494471B2 (en) 2009-02-25 2013-07-23 Mitsubishi Electric Corporation Receiver
WO2010097866A1 (ja) * 2009-02-25 2010-09-02 三菱電機株式会社 受信装置
CN102318199A (zh) * 2009-02-25 2012-01-11 三菱电机株式会社 接收装置
CN102334297A (zh) * 2009-02-25 2012-01-25 三菱电机株式会社 接收装置
US8326247B2 (en) 2009-02-25 2012-12-04 Mitubishi Electric Corporation Receiver
JP5214018B2 (ja) * 2009-02-25 2013-06-19 三菱電機株式会社 受信装置
JP5264987B2 (ja) * 2009-02-25 2013-08-14 三菱電機株式会社 受信装置
WO2010097865A1 (ja) * 2009-02-25 2010-09-02 三菱電機株式会社 受信装置
CN102318199B (zh) * 2009-02-25 2014-06-18 三菱电机株式会社 接收装置
DE112009004422B4 (de) 2009-02-25 2018-06-14 Mitsubishi Electric Corporation Empfänger
US9854464B2 (en) 2010-08-16 2017-12-26 Lg Electronics Inc. Method of avoiding IDC interference in a wireless communication system and apparatus for same
KR101498086B1 (ko) * 2010-08-16 2015-03-03 엘지전자 주식회사 무선 통신 시스템에서 idc 간섭을 회피하는 방법 및 이를 위한 장치
US9237452B2 (en) 2010-08-16 2016-01-12 Lg Electronics Inc. Method of avoiding IDC interference in a wireless communication system and apparatus for same
WO2013140779A1 (ja) 2012-03-23 2013-09-26 日本電気株式会社 無線通信端末、モバイルアドホックネットワーク、ネットワーク加入方法
US9622154B2 (en) 2012-03-23 2017-04-11 Nec Corporation Radio communication terminal, mobile ad hoc network, and network participation method
JP2020167630A (ja) * 2019-03-29 2020-10-08 Necプラットフォームズ株式会社 通信システム、及び妨害波検出方法

Similar Documents

Publication Publication Date Title
JP3690889B2 (ja) 受信回路
US7986966B2 (en) Wireless communication device and signal detection circuit
JP4719281B2 (ja) 無線通信装置
US20050147192A1 (en) High frequency signal receiver and semiconductor integrated circuit
WO2000051253A1 (fr) Unite de poste de radio
JP4287488B2 (ja) 受信回路
JP2005526426A (ja) エネルギー変動を検出することによる無線ローカルエリアネットワークの存在を示すための方法及び装置
US8335285B2 (en) Communication apparatus
JP4079197B1 (ja) 受信装置とこれを用いた受信システム
JP2007312274A (ja) 受信機
CN102694575B (zh) 无线通信装置以及无线通信方法
WO2008065877A1 (fr) Dispositif de réception
JP3411208B2 (ja) デジタル無線受信装置
WO2011104804A1 (ja) 信号処理回路、無線通信装置及び信号処理方法
US20040228426A1 (en) Apparatus and method for cancelling narrow-band interference in a mobile communication system
CN108696291A (zh) 无线电接收器以及中间频率选择方法
EP1083673A1 (en) Radio device and transmitting/receiving method
JP2012191266A (ja) 受信装置、および、プログラム
JP4598978B2 (ja) 無線受信機
CN110311821B (zh) 基于软件定义的数据传输方法及通信设备
JPH05304485A (ja) 受信機
JP2009177568A (ja) 受信装置とこれを用いた電子機器
WO2015008802A1 (ja) 無線受信回路、無線受信方法および無線受信プログラム
JP3389146B2 (ja) 可変伝送レート受信装置
JP2019009497A (ja) 半導体装置及びその方法