JP2007294512A - Manufacturing method for printed-wiring board - Google Patents

Manufacturing method for printed-wiring board Download PDF

Info

Publication number
JP2007294512A
JP2007294512A JP2006117707A JP2006117707A JP2007294512A JP 2007294512 A JP2007294512 A JP 2007294512A JP 2006117707 A JP2006117707 A JP 2006117707A JP 2006117707 A JP2006117707 A JP 2006117707A JP 2007294512 A JP2007294512 A JP 2007294512A
Authority
JP
Japan
Prior art keywords
wiring board
photosensitive resin
copper plating
printed wiring
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006117707A
Other languages
Japanese (ja)
Other versions
JP4716181B2 (en
Inventor
Osamu Koga
修 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006117707A priority Critical patent/JP4716181B2/en
Publication of JP2007294512A publication Critical patent/JP2007294512A/en
Application granted granted Critical
Publication of JP4716181B2 publication Critical patent/JP4716181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed-wiring board having the laminated structure of two metallic layers or more to be used for a high-density wiring board having 100 pins or more inexpensively. <P>SOLUTION: In the printed-wiring board requiring the wirings having a high density of approximately 100 pins or more, copper wirings are formed on the resin surface of a photo-resist board with one-side copper foil for building up two metallic layers or lower of copper-wiring layers at the low cost. That is, a photo resist is exposed and developed, and a desired via pattern is formed in a manufacturing method for a multilayer printed-wiring board forming a conductor pattern composed of at least an electroless copper plating and an electrolytic copper plating on the resin surface of the photo-resist board with one-side copper foil. A photocatalyst compound is further carried on the surface of the photo resist, and exposed in a plated conductor-pattern shape and a difference is set in the wettabilities of metallic-salt solutions as the nuclei of the electroless copper plating in the manufacturing method for the multilayer printed-wiring board. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、安価な多層プリント配線基板を供給することが可能なプリント配線板の製造方法に関する。   The present invention relates to a method for manufacturing a printed wiring board capable of supplying an inexpensive multilayer printed wiring board.

近年、プリント配線基板は小型軽量化が求められ、小型・多ピン化されたPGA(ピン・グリッド・アレイ)やBGA(ボール・グリッド・アレイ)等の構造を採用することにより、配線の微細化や高密度化を達成し、かつ、低廉化を達成することが要求されてきている。
このような市場の動向において、100ピン程度以下の配線密度に限っては、1メタル構造のプリント配線基板を安価に市場供給するため、高価なフォトレジストの使用を極限まで少なくし、かつ工程数を減少させるべく、感光性樹脂を絶縁層として用いる工法が検討されている(例えば特許文献1〜3参照)。
この工法では、露光、現像工程によりスルーホールを形成することが特徴であり、更なる効果としてアライメント精度の向上、大面積一括形成を可能ならしめ、プリント配線基板をより低コストで大量生産することを実現している。
しかし、このような感光性樹脂をコアにした構造では、コアになる感光性樹脂を露光することができないため、サブトラクト工法による両面銅箔付き基板を製造することは不可能であり、100ピン程度以上の高密度配線には、対応できない問題を抱えていた。
In recent years, printed wiring boards have been required to be smaller and lighter, and by adopting structures such as PGA (pin grid array) and BGA (ball grid array) that have been reduced in size and number of pins, wiring has been miniaturized. In addition, it has been required to achieve high density and low cost.
In such a market trend, in order to supply a printed wiring board having a single metal structure at a low price only for a wiring density of about 100 pins or less, the use of an expensive photoresist is reduced to the limit, and the number of processes is reduced. In order to reduce this, a method using a photosensitive resin as an insulating layer has been studied (see, for example, Patent Documents 1 to 3).
This method is characterized by the formation of through-holes by exposure and development processes. Further effects include improved alignment accuracy and large-area batch formation, and mass production of printed circuit boards at a lower cost. Is realized.
However, in such a structure having a photosensitive resin as a core, it is impossible to expose the photosensitive resin that becomes the core, so it is impossible to manufacture a double-sided copper foil-attached substrate by the subtracting method, and about 100 pins The above high-density wiring has a problem that cannot be dealt with.

一方、従来の2メタル構造の製造プロセスは、大きく分けて二通りの工法が考えられる。一つ目の工法は純然たるサブストラクト工法である。これはまず始めに両面銅箔付き基板の所望する位置にスルーホールを形成し、スルーホールに無電解銅めっき、電解銅めっきをすることで、表裏の銅箔間を導通する導体を形成する。さらにこのスルーホールとアライメントして、表裏の銅箔のパターニングを行い、2メタル構造の多層プリント配線基板を製造する。ここで、このスルーホールを形成する方法としては、レーザー照射によるレーザー工法や、ドリル加工法や金型を用いた打ち抜き工法などの機械加工が実用化されている。   On the other hand, the conventional two-metal structure manufacturing process can be roughly divided into two methods. The first method is a pure substruct method. In this method, first, through holes are formed at desired positions on a substrate with a double-sided copper foil, and electroless copper plating and electrolytic copper plating are formed on the through holes, thereby forming conductors that conduct between the front and back copper foils. Further, by aligning with the through-holes, the front and back copper foils are patterned to produce a multilayer printed wiring board having a two-metal structure. Here, as a method for forming this through hole, mechanical processing such as a laser method using laser irradiation, a drilling method, or a punching method using a mold has been put into practical use.

またもう一つの工法として片面銅箔付き基板の樹脂面に、セミアディティブ工法による2メタル目の配線を形成する工法がある。これは片面銅箔付き基板を用いた一般的なセミアディティブ工法を説明すると、まず始めに樹脂層へレーザーを当て、銅箔層までレーザービアを形成する。さらに樹脂面の樹脂表面とレーザービア加工面にシード銅層となる無電解銅めっきを数1000Å形成する。このシード銅層上にフォトレジストをコートして露光、現像して所望する2メタル配線の型をパターニングする。さらに電解銅めっきを施し、所望する膜厚の銅配線を形成した後、型となったフォトレジストを剥膜する。最後にフォトレジストを剥膜した底に露出した無電解銅めっきをフラッシュエッチングすることで、独立した銅配線を形成する工程である。
特開平9−260808号公報 特開平11−258860号公報 特開2000−141699号公報
As another method, there is a method of forming a second metal wiring by a semi-additive method on the resin surface of a substrate with a copper foil on one side. This explains a general semi-additive method using a substrate with a single-sided copper foil. First, a laser is applied to the resin layer to form a laser via to the copper foil layer. Further, several thousands of electroless copper plating serving as a seed copper layer is formed on the resin surface of the resin surface and the laser via processed surface. A photoresist is coated on the seed copper layer, exposed and developed to pattern a desired two-metal wiring pattern. Further, electrolytic copper plating is performed to form a copper wiring having a desired film thickness, and then the photoresist that has become a mold is peeled off. Finally, it is a step of forming an independent copper wiring by flash-etching the electroless copper plating exposed on the bottom where the photoresist is stripped.
JP-A-9-260808 Japanese Patent Laid-Open No. 11-258860 JP 2000-141699 A

しかしながら、上述したサブストラクト工法では、スルーホールを形成する方法が、いずれもランニングコスト、イニシャルコストが高く、また、設計から加工までの時間が長いことや、デスミヤや切削くずの除去が必要となるなど、一長一短な問題があり、安価な多層プリント配線基板を供給することが難しい。
また、上述したセミアディティブ工法は煩雑な工法であり、安価な多層プリント配線基板を供給することが難しい。
However, in the substruct method described above, the through-hole formation method has a high running cost and initial cost, requires a long time from design to processing, and requires removal of desmear and cutting waste. For example, it is difficult to supply an inexpensive multilayer printed wiring board.
Moreover, the semi-additive construction method described above is a complicated construction method, and it is difficult to supply an inexpensive multilayer printed wiring board.

本発明は、上記従来の問題点を解決するためになされたものであり、その課題とすることは、例えば100ピン以上の高密度配線基板に対して、2メタル層以上の積層構造を有するプリント配線基板を低価格で提供することにある。   The present invention has been made in order to solve the above-described conventional problems, and an object thereof is, for example, a print having a laminated structure of two or more metal layers on a high-density wiring board of 100 or more pins. It is to provide a wiring board at a low price.

上述の課題を達成するため、本発明のプリント配線板の製造方法は、片側銅箔付き感光性樹脂基板の樹脂面に、少なくとも無電解銅めっき及び電解銅めっきからなる導体パターンを形成する多層プリント配線基板の製造方法であって、前記感光性樹脂を露光、現像し、所望とするビアパターンを形成した後、前記感光性樹脂表面に光触媒化合物を担持させ、めっきする導体パターン状に露光し、無電解銅めっきの核となる金属塩溶液の濡れ性に差を設けることを特徴とする。   In order to achieve the above-described problems, the printed wiring board manufacturing method of the present invention is a multilayer printed circuit in which a conductive pattern made of at least electroless copper plating and electrolytic copper plating is formed on the resin surface of a photosensitive resin substrate with a copper foil on one side. A method for producing a wiring board, wherein the photosensitive resin is exposed and developed to form a desired via pattern, and then a photocatalytic compound is supported on the surface of the photosensitive resin and exposed to a conductive pattern to be plated, It is characterized in that a difference is provided in the wettability of the metal salt solution which is the core of electroless copper plating.

本発明に係るプリント配線板の製造方法によれば、高価なフォトレジストの使用量を半減し、感光性樹脂からなる樹脂絶縁層と無電解銅めっき膜が接する表面との密着強度が優れた無電解銅めっき及び電解銅めっきからなる銅配線パターンを直接形成し、信頼性に優れた高密度多層プリント配線板を容易かつ安価に提供することができる。   According to the method for producing a printed wiring board according to the present invention, the amount of expensive photoresist used is reduced by half, and the adhesion strength between the resin insulating layer made of a photosensitive resin and the surface in contact with the electroless copper plating film is excellent. A copper wiring pattern made of electrolytic copper plating and electrolytic copper plating can be directly formed, and a high-density multilayer printed wiring board excellent in reliability can be provided easily and inexpensively.

本発明の実施の形態は、配線が100ピン程度以上の高密度が要求されるプリント配線基板において、2メタル目以降の銅配線層を安価にビルドアップするために、片側銅箔付き感光性樹脂基板の樹脂面に、銅配線を形成する目的で高価なフォトレジストを使用しない(セミアディティブでない)ことが特徴である。
ここで用いられる感光性樹脂としては、紫外線硬化型アクリル樹脂、紫外線硬化型エポキシ樹脂、またこれらの重合構造である紫外線硬化型エポキシアクリレートが用いられ、紫外線により、直接重縮合の架橋反応や紫外線による酸発生添加物による架橋反応によってアルカリ現像が可能になるものである。
そこで、このような化学反応を利用し、ビアを形成する工程からスタートする。まず始めに感光性樹脂を露光して架橋した部分を残すように、アルカリ現像液をスプレーして未露光未架橋部分を溶解させ、銅箔がビア内から見えるように露出させる。
The embodiment of the present invention is a photosensitive resin with a copper foil on one side in order to build up a copper wiring layer of the second metal and later at a low cost in a printed wiring board where the wiring is required to have a high density of about 100 pins or more. The feature is that expensive photoresist is not used (not semi-additive) for the purpose of forming copper wiring on the resin surface of the substrate.
As the photosensitive resin used here, an ultraviolet curable acrylic resin, an ultraviolet curable epoxy resin, or an ultraviolet curable epoxy acrylate having a polymerization structure thereof is used. Alkali development is enabled by a crosslinking reaction with an acid generating additive.
Therefore, the process starts from the step of forming a via using such a chemical reaction. First, an alkaline developer is sprayed to dissolve the unexposed uncrosslinked portion so as to leave a crosslinked portion by exposing the photosensitive resin to expose the copper foil so that the copper foil can be seen from the via.

ここで本発明者は、紫外線架橋しただけの本感光性樹脂は、吸湿率が高い状態であることに着目した。本来、紫外線架橋させ、現像した本感光樹脂をポストベークすることにより完全架橋させる。紫外線架橋だけでは、完全架橋の40〜50%程度しか架橋が進んでいないため、吸湿率が高いことが分かった。
このように紫外線架橋しただけの感光性樹脂を光触媒化合物水溶液に浸漬させ、光触媒化合物が加水分解したものを感光性樹脂の極表面に浸透担持させ、180°C程度の熱風オーブンで脱水反応させ、酸化チタンを形成する。ここで、光触媒化合物水溶液の例として、光励起率の高い酸化チタンに転化しやすい有機チタネート(チタン含有有機金属化合物)が好ましく、テトライソプロピルチタネート、ポリブチルチタネート、テトラ−n−ブチルチタネート、テトライソプロピルチタネート、テトラ(2-エチルヘキシル)チタネート、チタンアセチルアセトナート、チタンテトラアセチルアセトナート、チタンオクチレングリコレート、チタンエチルアセトアセテート、チタンラクテート、チタントリエタノールアミネートなどを組み合わせた水溶液を用いることが可能である。また、酸化チタンの光励起率を向上させるため、光触媒化合物水溶液に光増感剤を添加することも好ましい。光増感剤としては、色素、有機酸、有機酸塩、有機アミンからなる水溶性化合物などが挙げられ、それらの組み合わせでも構わない。
Here, the present inventor has paid attention to the fact that the present photosensitive resin that has only undergone UV crosslinking has a high moisture absorption rate. Originally, it is UV-crosslinked and completely crosslinked by post-baking the developed photosensitive resin. It has been found that the moisture absorption rate is high because the crosslinking proceeds only by 40 to 50% of the complete crosslinking only by the ultraviolet crosslinking.
In this way, the photosensitive resin that has only been UV-crosslinked is immersed in the photocatalyst compound aqueous solution, the photocatalyst compound hydrolyzed is permeated and supported on the extreme surface of the photosensitive resin, and dehydrated in a hot air oven at about 180 ° C., Titanium oxide is formed. Here, as an example of the aqueous photocatalyst compound solution, an organic titanate (titanium-containing organometallic compound) that easily converts to titanium oxide having a high photoexcitation rate is preferable, and tetraisopropyl titanate, polybutyl titanate, tetra-n-butyl titanate, tetraisopropyl titanate. , Tetra (2-ethylhexyl) titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium octylene glycolate, titanium ethylacetoacetate, titanium lactate, titanium triethanolaminate, etc. can be used. is there. In order to improve the photoexcitation rate of titanium oxide, it is also preferable to add a photosensitizer to the aqueous photocatalytic compound solution. Examples of the photosensitizer include water-soluble compounds composed of dyes, organic acids, organic acid salts, and organic amines, and combinations thereof may be used.

次に、感光性樹脂のビアをアライメントして、所望する銅配線パターン状に露光し、光触媒を励起させ、金属塩溶液(例えば塩化パラジウム溶液)のミストを噴霧し、続いて50〜90°C程度で乾燥させる。露光され励起した箇所は金属塩水溶液の濡れ性が良いため、乾燥させた後には感光性樹脂表面の所望する銅配線パターン状のパラジウムが析出される。
さらに続いて、無電解銅めっき槽に浸漬することで、銅配線パターン状にパラジウムが析出された所に数1000Åのパターニングされたシード銅層が析出する。更に、電解銅めっき浴にてシード銅層をめっきアップさせ、所望する膜厚の銅配線パターン(第二の銅配線パターン)を形成する。
Next, the photosensitive resin vias are aligned, exposed to a desired copper wiring pattern, the photocatalyst is excited, and a mist of a metal salt solution (for example, palladium chloride solution) is sprayed, followed by 50 to 90 ° C. Let dry to a degree. Since the exposed and excited locations have good wettability with the aqueous metal salt solution, the desired copper wiring pattern-like palladium on the surface of the photosensitive resin is deposited after drying.
Subsequently, by immersing in an electroless copper plating tank, a patterned seed copper layer having a thickness of several thousand is deposited where palladium is deposited in a copper wiring pattern. Further, the seed copper layer is plated up in an electrolytic copper plating bath to form a copper wiring pattern (second copper wiring pattern) having a desired film thickness.

なお、本発明の請求項1に記載した構成は、上記工程で第二の銅配線パターンを製造することを特徴とするものであり、請求項2に記載した構成は、第二の銅配線パターンを形成した後、感光性樹脂を140°C以上でポストベークすることにより、熱架橋を促進して感光性樹脂を完全架橋させることを特徴とするものである。
感光性樹脂を露光・現像したところで、すなわち、感光性樹脂を140℃以上の加熱で熱架橋する前に光触媒化合物を担持させることで、より良く光触媒化合物が感光性樹脂の極表面に浸透するので、より効果的に金属塩溶液の濡れ性に差をつけることができる。
In addition, the structure described in Claim 1 of this invention is characterized by manufacturing a 2nd copper wiring pattern at the said process, The structure described in Claim 2 is a 2nd copper wiring pattern After forming the film, the photosensitive resin is post-baked at 140 ° C. or higher to promote thermal crosslinking to completely crosslink the photosensitive resin.
When the photosensitive resin is exposed and developed, that is, by supporting the photocatalyst compound before thermally crosslinking the photosensitive resin by heating at 140 ° C. or higher, the photocatalyst compound penetrates the surface of the photosensitive resin better. Thus, the wettability of the metal salt solution can be more effectively differentiated.

もし、光触媒化合物水溶液に浸漬する前にポストベークした場合には光触媒化合物がほとんど担持されないことがある。また光触媒化合物水溶液に浸漬した直後にポストベークした場合には、光触媒化合物が分解され、期待する効果ほどの光触媒反応が得られず、パラジウムが所望する銅配線パターン状に析出されない問題ある。
また、いわゆる光触媒反応を有する代表的な酸化チタン(TiO)の他、ZnO、SrTiOP、CdS、CdO、CaP、InP、In、CaAs、BaTiO、KNbO、Fe、Ta、WO、NiO、CuO、SiC、SiO、MoS、InSb、RuO、CeO等が知られている。
一般に、光触媒金属化合物は、光を照射することにより電子と正孔が生成され、その付近の水分子を還元・酸化することにより強力な酸化力をもつ・OHやO2-を生成する。たとえばCdSeに光を照射すると、生成した電子は水分子を還元し水素を発生させるが、正孔は水分子を酸化する代わりに、自己を酸化し、Cd2+が溶出してくる。このような現象は他の多くの光触媒金属化合物にも認められる。
しかしながら、酸化チタンは自己溶出現象を起こさない光触媒金属化合物として特異的であり、それ故、酸化チタンは、 光触媒として最も有用である。当初、酸化チタンの微粒子をフィラーとして、直接感光性樹脂に添加することを検討したが、ビア現像時のパターニング性が劣化していることや、感光性樹脂と第一の銅箔との密着性が低下するなどいろいろな問題が生じる。
If it is post-baked before being immersed in the aqueous photocatalytic compound solution, the photocatalytic compound may be hardly supported. Further, when post-baking immediately after being immersed in the photocatalyst compound aqueous solution, the photocatalyst compound is decomposed, the photocatalytic reaction as expected is not obtained, and palladium is not deposited in the desired copper wiring pattern.
In addition to typical titanium oxide (TiO 2 ) having a so-called photocatalytic reaction, ZnO, SrTiOP 3 , CdS, CdO, CaP, InP, In 2 O 3 , CaAs, BaTiO 3 , K 2 NbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , NiO, Cu 2 O, SiC, SiO 2 , MoS 3 , InSb, RuO 2 , CeO 2 and the like are known.
Generally, a photocatalytic metal compound generates electrons and holes when irradiated with light, and generates OH and O 2− having a strong oxidizing power by reducing and oxidizing water molecules in the vicinity thereof. For example, when CdSe is irradiated with light, the generated electrons reduce water molecules to generate hydrogen, but holes oxidize themselves instead of oxidizing water molecules, and Cd 2+ is eluted. Such a phenomenon is also observed in many other photocatalytic metal compounds.
However, titanium oxide is specific as a photocatalytic metal compound that does not cause a self-elution phenomenon, and therefore titanium oxide is most useful as a photocatalyst. Initially, we considered adding fine particles of titanium oxide as a filler directly to the photosensitive resin, but the patternability during via development has deteriorated and the adhesion between the photosensitive resin and the first copper foil Various problems occur, such as lowering.

また、本発明の請求項3及び請求項4に記載の構成は、ビアが形成された感光性樹脂の表面だけに、光触媒が必要であることを鑑み、チタン含有有機金属化合物の水溶液を用いて製造することを特徴とし、露光された部分が光励起され濡れ性が向上することを特徴とする。
上記のように露光された部分が光励起され、塩化パラジウム水溶液ミストが濡れ性の向上した部分に付着する。このまま乾燥すると無電解銅めっきの触媒に使用されるパラジウムがパターン形成される。なお、本発明の請求項5に記載の構成は、このように無電解銅めっき、電解銅めっきと連続して銅配線を形成することを特徴とする。
またここで、従来の両面銅箔付き基板の所望する位置にスルーホールを形成し、スルーホールに表裏の銅箔間に導体を形成する工法は、スルーホールと銅箔配線の位置ずれを吸収させるため、一般的にスルーホールより半径が0.1mm程度大きなランドが必要である。このため、ピン数にもよるがスルーホールのランド間に配線数の設計自由度が向上される。
Moreover, the structure of Claim 3 and Claim 4 of this invention uses the aqueous solution of a titanium containing organometallic compound in view of requiring a photocatalyst only for the surface of the photosensitive resin in which the via | veer was formed. It is characterized in that the exposed portion is photoexcited and wettability is improved.
The exposed portion is photoexcited as described above, and the palladium chloride aqueous solution mist adheres to the portion with improved wettability. When this is dried, the palladium used as a catalyst for electroless copper plating is patterned. In addition, the structure of Claim 5 of this invention is characterized by forming a copper wiring continuously with electroless copper plating and electrolytic copper plating in this way.
Also, here, the method of forming a through hole at a desired position on a conventional double-sided copper foil substrate and forming a conductor between the front and back copper foils in the through hole absorbs the misalignment between the through hole and the copper foil wiring. Therefore, in general, a land having a radius about 0.1 mm larger than that of the through hole is required. For this reason, although it depends on the number of pins, the degree of freedom in designing the number of wirings between the lands of the through holes is improved.

以下、本発明の多層プリント配線板の製造方法について図面を用いて具体的に説明する。
ここでは、樹脂表面に形成する第二の銅配線パターンの形成方法を詳細に説明する。
図1及び図2は本発明の実施例1による第二配線パターン構成及びその製造工程を示す断面図である。
まず感光性樹脂材料として、ビスフェノールA型エポキシアクリレート(リポキシVR-90;昭和高分子社製)52重量部と無水フタル酸15重量部をプロピレングリコールモノメチルエーテルアセテート溶媒中で110°C、30分撹拌してアルカリ現像型感光性樹脂ワニス原料を調製した。
更に、前記アルカリ現像型感光性樹脂ワニス原料を50重量部(固形分)、脂環式エポキシ類化合物(EHPE3150;ダイセル化学社製)17重量部、光硬化型エポキシ樹脂(サイクロマーM100;ダイセル化学社製)30重量部、光開始剤(LucirinTPO;BASF社製)3重量部に、プロピレングリコールモノメチルエーテルアセテート溶剤を加えて連続式横型サンドミルにて約3時間分散させて、アルカリ現像型感光性樹脂ワニスを作製した。
第一銅箔(工程[1a]、1a2)上に、前記アルカリ現像型感光性樹脂ワニスをスリットコーターにて塗布し、70°C、20分乾燥して、約25μm厚のBステージ状の感光性樹脂(1a1)を形成した。Bステージ状の感光性樹脂(1a1)表面に、19μm厚のPETフィルム(1a3)を貼り合わせて、片側銅箔付き感光性樹脂基板を形成した。
Hereinafter, the manufacturing method of the multilayer printed wiring board of this invention is demonstrated concretely using drawing.
Here, the formation method of the 2nd copper wiring pattern formed in the resin surface is demonstrated in detail.
1 and 2 are sectional views showing a second wiring pattern configuration and its manufacturing process according to the first embodiment of the present invention.
First, as a photosensitive resin material, 52 parts by weight of bisphenol A type epoxy acrylate (Lipoxy VR-90; manufactured by Showa Polymer Co., Ltd.) and 15 parts by weight of phthalic anhydride were stirred in propylene glycol monomethyl ether acetate solvent at 110 ° C. for 30 minutes. Thus, an alkali development type photosensitive resin varnish raw material was prepared.
Furthermore, 50 parts by weight (solid content) of the alkali development type photosensitive resin varnish raw material, 17 parts by weight of an alicyclic epoxy compound (EHPE3150; manufactured by Daicel Chemical Industries), a photocurable epoxy resin (Cyclomer M100; Daicel Chemical). 30 parts by weight), 3 parts by weight of a photoinitiator (Lucirin TPO; manufactured by BASF), a propylene glycol monomethyl ether acetate solvent is added and dispersed in a continuous horizontal sand mill for about 3 hours to obtain an alkali developing photosensitive resin. A varnish was prepared.
On the first copper foil (steps [1a] and 1a2), the alkali-developable photosensitive resin varnish is applied with a slit coater, dried at 70 ° C. for 20 minutes, and B-shaped photosensitive film having a thickness of about 25 μm. Resin (1a1) was formed. A 19 μm-thick PET film (1a3) was bonded to the surface of the B-stage-like photosensitive resin (1a1) to form a photosensitive resin substrate with one side copper foil.

この片側銅箔付き感光性樹脂基板の感光性樹脂面に、φ200μmのビアパターンが描画されたフォトマスクを密着させ、超高圧水銀灯により500mJ/cm露光して、光架橋させた。次いで、19μm厚のPETフィルムをセパレートした後、約5%有機アミン系アルカリ水溶液にて現像、水洗し、90°Cの熱風オーブンで充分乾燥させ、約200μmのビアを有する片側銅箔付き樹脂基板(工程[1b]、1b1)を形成した。
次に、常温のテトライソプロピルチタネート水溶液(5%水溶液)に、ビアを有する片側銅箔付き樹脂基板を浸漬、吸着させたあと、180°Cの熱風オーブンで約1時間ポストベークして、感光性樹脂の未架橋部分を完全に熱架橋させる(工程[1c]、1c1)。またこのポストベークによって、テトライソプロピルチタネートが加水分解したものを脱水反応させ、酸化チタン(工程[1c]、1c4)を析出させる。
さらに所望する第二の銅配線パターンが描画されたフォトマスク(1d6)をビアパターンにアライメントして密着させ、超高圧水銀灯(1d7)により500mJ/cm露光した(工程[1d])。
A photomask on which a φ200 μm via pattern was drawn was brought into intimate contact with the photosensitive resin surface of the photosensitive resin substrate with a copper foil on one side, and was exposed to light at 500 mJ / cm 2 with an ultrahigh pressure mercury lamp for photocrosslinking. Next, after separating a PET film having a thickness of 19 μm, developing with about 5% organic amine alkaline aqueous solution, washing with water, sufficiently drying in a hot air oven at 90 ° C., and a resin substrate with one side copper foil having a via of about 200 μm (Steps [1b] and 1b1) were formed.
Next, after immersing and adsorbing a resin substrate with a copper foil on one side in a tetraisopropyl titanate aqueous solution (5% aqueous solution) at room temperature, it is post-baked in a hot air oven at 180 ° C. for about 1 hour. The uncrosslinked portion of the resin is completely thermally crosslinked (steps [1c] and 1c1). Also, post-baking causes the hydrolyzed tetraisopropyl titanate to undergo a dehydration reaction, thereby precipitating titanium oxide (steps [1c] and 1c4).
Further, a photomask (1d6) on which a desired second copper wiring pattern was drawn was aligned and brought into close contact with the via pattern, and was exposed to 500 mJ / cm 2 with an ultrahigh pressure mercury lamp (1d7) (step [1d]).

そして、この露光後、塩化パラジウム0.6g、塩酸1mLをイオン交換水1Lで希釈したパラジウム触媒溶液を二流体スプレー装置でスプレーした。ここで、先ほど第二の銅配線パターン状に露光された部分(1d4)は光励起されており、このパラジウム触媒溶液が第二の銅配線パターン状に塗れている状態のまま、120°Cのホットプレートで充分乾燥させた(工程[1e])。
活性化したパラジウム触媒(1e8)を担持させた片側銅箔付き樹脂基板を、無電解銅めっき浴に約10分浸漬して、約0.5μm厚の無電解銅めっき膜(工程[1f]、1f9)を形成した。無電解銅めっき浴は、ホルムアルデヒドを還元剤とする0.02mol/dmCu(II)-EDTA 浴を用いた。
100g/Lの希塩酸にてパラジウム触媒を除去した後、約30分電解銅めっきを行って、片側銅箔付き樹脂基板の樹脂面上約12μm厚の第二の銅配線パターンを形成した(工程[1g]、1g10)。また、電解銅めっき浴は、0.1mol/dmCu(II)-EDTA 浴を用いた。
以上の工程で、本発明の多層プリント配線板に用いられる第二の銅配線パターンが得られた。
After this exposure, a palladium catalyst solution obtained by diluting 0.6 g of palladium chloride and 1 mL of hydrochloric acid with 1 L of ion-exchanged water was sprayed with a two-fluid spray device. Here, the portion (1d4) previously exposed in the second copper wiring pattern is photoexcited, and the palladium catalyst solution is still applied in the second copper wiring pattern, and a hot temperature of 120 ° C. The plate was sufficiently dried (step [1e]).
A resin substrate with one-sided copper foil supporting an activated palladium catalyst (1e8) is immersed in an electroless copper plating bath for about 10 minutes, and an electroless copper plating film having a thickness of about 0.5 μm (step [1f], 1f9) was formed. As the electroless copper plating bath, a 0.02 mol / dm 3 Cu (II) -EDTA bath using formaldehyde as a reducing agent was used.
After removing the palladium catalyst with 100 g / L dilute hydrochloric acid, electrolytic copper plating was performed for about 30 minutes to form a second copper wiring pattern having a thickness of about 12 μm on the resin surface of the resin substrate with one side copper foil (step [ 1g], 1g10). The electrolytic copper plating bath used was a 0.1 mol / dm 3 Cu (II) -EDTA bath.
Through the above steps, a second copper wiring pattern used for the multilayer printed wiring board of the present invention was obtained.

上記銅配線パターンを半田浴(260°C)中に約20秒間浸漬したが、変化は認められなかった。また、JIS-C6481に基づき1cm幅のピールテストパターンを作製し、ピール強度を90度剥離試験によって測定したところ約1.2kg/cmであった。
絶縁耐性試験(PCBT)はプレッシャークッカー(PCT)にてJIS-C6481の対向電極パターンを用い層間のパターンについて行い、印加電圧25V、120°C、85%、100時間経過の絶縁抵抗値の変化が10%以内であり問題ないことが確認された。
The copper wiring pattern was immersed in a solder bath (260 ° C.) for about 20 seconds, but no change was observed. A peel test pattern having a width of 1 cm was prepared based on JIS-C6481, and the peel strength measured by a 90-degree peel test was about 1.2 kg / cm.
The insulation resistance test (PCBT) is performed on the interlayer pattern using the counter electrode pattern of JIS-C6481 in the pressure cooker (PCT), and the change in the insulation resistance value after 100 hours is applied voltage 25V, 120 ° C, 85%. It was confirmed that it was within 10% and there was no problem.

次に図3に簡単な工程フローを示し、多層プリント配線基板の製造方法を説明する。
まず実施例1と同様にしてアルカリ現像型感光性樹脂溶液を調製した。
感光性樹脂材料として、ビスフェノールA型エポキシアクリレート(リポキシVR-90;昭和高分子社製)52重量部と無水フタル酸15重量部をプロピレングリコールモノメチルエーテルアセテート溶媒中で110°C、30分撹拌してアルカリ現像型感光性樹脂ワニス原料を調製した。
更に、前記アルカリ現像型感光性樹脂ワニス原料を50重量部(固形分)、脂環式エポキシ類化合物(EHPE3150;ダイセル化学社製)17重量部、光硬化型エポキシ樹脂(サイクロマーM100;ダイセル化学社製)30重量部、光開始剤(LucirinTPO;BASF社製)3重量部に、プロピレングリコールモノメチルエーテルアセテート溶剤を加えて連続式横型サンドミルにて約3時間分散させて、アルカリ現像型感光性樹脂ワニスを作製した。
第一銅箔上に、前記アルカリ現像型感光性樹脂ワニスをスリットコーターにて塗布し、70°C、20分乾燥して、約25μm厚の感光性樹層を形成した。Bステージ状の感光性樹層表面に、19μm厚のPETフィルムを貼り合わせて、片側銅箔付き感光性樹脂基板を形成した(S1)。
Next, a simple process flow is shown in FIG. 3, and a method for manufacturing a multilayer printed wiring board will be described.
First, an alkali development type photosensitive resin solution was prepared in the same manner as in Example 1.
As a photosensitive resin material, 52 parts by weight of bisphenol A type epoxy acrylate (Lipoxy VR-90; manufactured by Showa Polymer Co., Ltd.) and 15 parts by weight of phthalic anhydride were stirred in propylene glycol monomethyl ether acetate solvent at 110 ° C. for 30 minutes. Thus, an alkali development type photosensitive resin varnish raw material was prepared.
Furthermore, 50 parts by weight (solid content) of the alkali development type photosensitive resin varnish raw material, 17 parts by weight of an alicyclic epoxy compound (EHPE3150; manufactured by Daicel Chemical Industries), a photocurable epoxy resin (Cyclomer M100; Daicel Chemical). 30 parts by weight), 3 parts by weight of a photoinitiator (Lucirin TPO; manufactured by BASF), a propylene glycol monomethyl ether acetate solvent is added and dispersed in a continuous horizontal sand mill for about 3 hours to obtain an alkali developing photosensitive resin. A varnish was prepared.
On the first copper foil, the alkali development type photosensitive resin varnish was applied with a slit coater and dried at 70 ° C. for 20 minutes to form a photosensitive resin layer having a thickness of about 25 μm. A 19 μm-thick PET film was bonded to the surface of the B-stage-like photosensitive resin layer to form a photosensitive resin substrate with one side copper foil (S1).

この片側銅箔付き感光性樹脂基板の銅箔面に、ネガ型のフォトレジスト液(重クロム酸カリウムを感光剤としたPVA(ポリビニルアルコール)水溶液)をロールコートし、フォトレジスト膜を形成した(S2)。また片側銅箔付き感光性樹脂基板の銅箔上のフォトレジスト面上に第一の銅配線パターンが描画されたフォトマスクを、片側銅箔付き感光性樹脂基板の感光性樹脂面に、所望するビアパターンが描画されたフォトマスクを、二枚のフォトマスクのアライメントを合わせて、フォトレジストがコートされた片側銅箔付き感光性樹脂基板に密着させ、500mJ/cmの露光量を超高圧水銀灯により両面一括露光して、フォトレジスト膜と感光性樹脂の所望する部分を光架橋させた。
次いで、約5%有機アミン系アルカリ水溶液にて、現像、水洗し、90°Cの熱風オーブンで充分乾燥させた。銅箔面にはPVAのフォトレジスト膜が第一の銅配線パターン状に形成され、感光性樹脂には、約200μmのビアを有するフォトレジスト膜が形成された片側銅箔付き樹脂基板を形成した(S3)。
ここで、フォトレジスト膜を保護するため、ロールラミネーターを用いて、粘着材つきポリプロピレンフィルム(ヒタレックスL−3320;日立化成製)をフォトレジスト膜上に貼った(S4)。
A negative photoresist solution (PVA (polyvinyl alcohol) aqueous solution using potassium dichromate as a photosensitizer) was roll-coated on the copper foil surface of the photosensitive resin substrate with one side copper foil to form a photoresist film ( S2). Moreover, the photomask by which the 1st copper wiring pattern was drawn on the photoresist surface on the copper foil of the photosensitive resin substrate with one side copper foil is desired on the photosensitive resin surface of the photosensitive resin substrate with one side copper foil. The photomask on which the via pattern is drawn is aligned with the two photomasks and brought into close contact with the photosensitive resin substrate with copper foil coated with the photoresist, and an exposure amount of 500 mJ / cm 2 is applied to the ultrahigh pressure mercury lamp. Were subjected to double-sided batch exposure to photocrosslink desired portions of the photoresist film and the photosensitive resin.
Subsequently, it was developed with about 5% organic amine alkali aqueous solution, washed with water, and sufficiently dried in a hot air oven at 90 ° C. On the copper foil surface, a PVA photoresist film was formed in the shape of a first copper wiring pattern, and on the photosensitive resin, a resin substrate with a copper foil on one side formed with a photoresist film having a via of about 200 μm was formed. (S3).
Here, in order to protect the photoresist film, a polypropylene film with an adhesive (Hitalex L-3320; manufactured by Hitachi Chemical Co., Ltd.) was pasted on the photoresist film using a roll laminator (S4).

次に、常温のテトライソプロピルチタネート水溶液(5%水溶液)に、ビアを有する片側銅箔付き樹脂基板を浸漬、吸着させた後、180°Cの熱風オーブンで約1時間ポストベークして、感光性樹脂の未架橋部分を完全に熱架橋させる(S5、S6)。またこのポストベークによって、テトライソプロピルチタネートが加水分解したものを脱水反応させ、酸化チタンを析出させる。
さらに所望する第二の銅配線パターンが描画されたフォトマスクをビアパターンにアライメントして密着させ、超高圧水銀灯により500mJ/cm露光した(S7)。露光後、塩化パラジウム0.6g、塩酸1mLをイオン交換水1Lで希釈したパラジウム触媒溶液を二流体スプレー装置でスプレーした(S8)。ここで先ほど第二の銅配線パターン状に露光された部分は光励起されており、このパラジウム触媒溶液が第二の銅配線パターン状に塗れている状態のまま、120°Cのホットプレートで充分乾燥させた。
Next, after immersing and adsorbing a resin substrate with a copper foil on one side in a tetraisopropyl titanate aqueous solution (5% aqueous solution) at room temperature, it is post-baked in a hot air oven at 180 ° C. for about 1 hour. The uncrosslinked portion of the resin is completely thermally crosslinked (S5, S6). In addition, by post-baking, the hydrolyzed tetraisopropyl titanate is dehydrated to precipitate titanium oxide.
Further, a photomask on which a desired second copper wiring pattern was drawn was aligned and brought into close contact with the via pattern, and was exposed to 500 mJ / cm 2 with an ultrahigh pressure mercury lamp (S7). After the exposure, a palladium catalyst solution obtained by diluting 0.6 g of palladium chloride and 1 mL of hydrochloric acid with 1 L of ion-exchanged water was sprayed with a two-fluid spray device (S8). Here, the portion exposed in the second copper wiring pattern is photoexcited, and this palladium catalyst solution is sufficiently dried on a hot plate at 120 ° C. while being applied in the second copper wiring pattern. I let you.

活性化したパラジウム触媒を担持させた片側銅箔付き樹脂基板を、無電解銅めっき浴に約10分浸漬して、約0.5μm厚の無電解銅めっき膜を形成した(S9)。無電解銅めっき浴は、ホルムアルデヒドを還元剤とする0.02mol/dmCu(II)-EDTA 浴を用いた。100g/Lの希塩酸にてパラジウム触媒を除去した後、約30分電解銅めっきを行って、片側銅箔付き樹脂基板の樹脂面上約12μm厚の第二の銅配線パターンを形成した(S10、S11)。また、電解銅めっき浴は、0.1mol/dmCu(II)-EDTA 浴を用いた。
さらに、この第二の銅配線パターンを銅箔エッチングから保護するため、ロールラミネーターを用いて、粘着材つきポリプロピレンフィルム(ヒタレックスL−3320;日立化成製)をフォトレジスト膜上に貼った(S12)。続いて銅箔上のフォトレジスト膜を保護していたポリプロピレンフィルムを取り除いた後(S13)、塩化第二鉄液(50°C、密度1.450g/cm)をスプレーして銅箔をエッチングし(S14)、次いで、80°Cの10%水酸化カリウム剥膜液でPVAフォトレジストを剥膜し、第一の銅配線パターンを形成した(S15)。
ここで、第二の銅配線パターンを保護するポリプロピレンフィルムを取った後、180°Cの熱風オーブンで約1時間ポストベークして、感光性樹脂の未架橋部分を完全に熱架橋させた(S16)。
The resin substrate with one-sided copper foil supporting the activated palladium catalyst was immersed in an electroless copper plating bath for about 10 minutes to form an electroless copper plating film having a thickness of about 0.5 μm (S9). As the electroless copper plating bath, a 0.02 mol / dm 3 Cu (II) -EDTA bath using formaldehyde as a reducing agent was used. After removing the palladium catalyst with 100 g / L dilute hydrochloric acid, electrolytic copper plating was performed for about 30 minutes to form a second copper wiring pattern having a thickness of about 12 μm on the resin surface of the resin substrate with one side copper foil (S10, S11). The electrolytic copper plating bath used was a 0.1 mol / dm 3 Cu (II) -EDTA bath.
Furthermore, in order to protect this second copper wiring pattern from copper foil etching, a polypropylene film with adhesive (Hitalex L-3320; manufactured by Hitachi Chemical Co., Ltd.) was pasted on the photoresist film using a roll laminator (S12). . Subsequently, after removing the polypropylene film that protected the photoresist film on the copper foil (S13), ferric chloride solution (50 ° C, density 1.450 g / cm 3 ) was sprayed to etch the copper foil. Next, the PVA photoresist was stripped with a 10% potassium hydroxide stripping solution at 80 ° C. to form a first copper wiring pattern (S15).
Here, after removing the polypropylene film protecting the second copper wiring pattern, it was post-baked in a hot air oven at 180 ° C. for about 1 hour to completely thermally crosslink the uncrosslinked portion of the photosensitive resin (S16). ).

さらに感光性ソルダーレジストインク(PFR−800 FLX201Y;太陽インキ製造製)を樹脂基板上にスクリーン印刷し(S17)、90°Cでプリベークした後、アライメントを合わせてフォトマスクを密着露光させる。次いで30°Cの有機アルカリ現像液で外部接続端子部が露出するように現像を行う(S18)。この工程を表裏異なるパターンのフォトマスクを用いて行う。
さらに、電解ニッケルめっき、電解金めっきを行う(S19)。電解ニッケルめっき浴、電解金めっき浴などは、一般的に良く知られているもので構わない。
以上の工程で、第一の銅配線パターンは、サブストラクト工法で製造し、第二の銅配線パターンは、アディティブ工法で製造することを特徴とする本発明の多層プリント配線板が得られた。
Further, a photosensitive solder resist ink (PFR-800 FLX201Y; manufactured by Taiyo Ink Manufacturing Co., Ltd.) is screen-printed on a resin substrate (S17), pre-baked at 90 ° C., and aligned, and a photomask is closely exposed. Next, development is performed with an organic alkali developer at 30 ° C. so that the external connection terminal portion is exposed (S18). This step is performed using photomasks with different patterns.
Further, electrolytic nickel plating and electrolytic gold plating are performed (S19). An electrolytic nickel plating bath, an electrolytic gold plating bath, and the like may be generally well known.
Through the above steps, a multilayer printed wiring board according to the present invention was obtained, wherein the first copper wiring pattern was manufactured by a substruct method, and the second copper wiring pattern was manufactured by an additive method.

<比較例1>ここでは、一般的に良く使われるセミアディティブ工法による第二の銅配線パターンの形成方法を説明する。
図4〜図6は比較例による第二配線パターン構成及びその製造工程を示す断面図である。
まず感光性樹脂材料として、ビスフェノールA型エポキシアクリレート(リポキシVR-90;昭和高分子社製)52重量部と無水フタル酸15重量部をプロピレングリコールモノメチルエーテルアセテート溶媒中で110°C、30分撹拌してアルカリ現像型感光性樹脂ワニス原料を調製した。
更に、前記アルカリ現像型感光性樹脂ワニス原料を50重量部(固形分)、脂環式エポキシ類化合物(EHPE3150;ダイセル化学社製)17重量部、光硬化型エポキシ樹脂(サイクロマーM100;ダイセル化学社製)30重量部、光開始剤(LucirinTPO;BASF社製)3重量部に、プロピレングリコールモノメチルエーテルアセテート溶剤を加えて連続式横型サンドミルにて約3時間分散させて、アルカリ現像型感光性樹脂ワニスを作製した。
第一銅箔(工程[3a]、3a2)上に、前記アルカリ現像型感光性樹脂ワニスをスリットコーターにて塗布し、70°C、20分乾燥して、約25μm厚の感光性樹脂(3a1)を形成した。Bステージ状の感光性樹脂表面に、19μm厚のPETフィルム(3a3)を貼り合わせて、片側銅箔付き感光性樹脂基板を形成した。
<Comparative Example 1> Here, a method of forming a second copper wiring pattern by a commonly used semi-additive method will be described.
4 to 6 are sectional views showing a second wiring pattern configuration and a manufacturing process thereof according to a comparative example.
First, as a photosensitive resin material, 52 parts by weight of bisphenol A type epoxy acrylate (Lipoxy VR-90; manufactured by Showa Polymer Co., Ltd.) and 15 parts by weight of phthalic anhydride were stirred in propylene glycol monomethyl ether acetate solvent at 110 ° C. for 30 minutes. Thus, an alkali development type photosensitive resin varnish raw material was prepared.
Furthermore, 50 parts by weight (solid content) of the alkali developing photosensitive resin varnish raw material, 17 parts by weight of an alicyclic epoxy compound (EHPE3150; manufactured by Daicel Chemical Industries), a photocurable epoxy resin (Cyclomer M100; Daicel Chemical) 30 parts by weight), 3 parts by weight of a photoinitiator (Lucirin TPO; manufactured by BASF), a propylene glycol monomethyl ether acetate solvent is added and dispersed in a continuous horizontal sand mill for about 3 hours to obtain an alkali developing photosensitive resin. A varnish was prepared.
On the first copper foil (steps [3a] and 3a2), the alkali-developable photosensitive resin varnish is applied with a slit coater, dried at 70 ° C. for 20 minutes, and photosensitive resin (3a1 having a thickness of about 25 μm). ) Was formed. A 19 μm-thick PET film (3a3) was bonded to the surface of the B-stage photosensitive resin to form a photosensitive resin substrate with one side copper foil.

この片側銅箔付き感光性樹脂基板の感光性樹脂面に、所望するビアパターンが描画されたフォトマスクを密着させ、超高圧水銀灯により500mJ/cm露光して、光架橋させた。次いで、19μm厚のPETフィルムをセパレートした後、約5%有機アミン系アルカリ水溶液にて現像、水洗し、90°Cの熱風オーブンで充分乾燥させ、約200μmのビアを有する片側銅箔付き樹脂基板を形成した(工程[3b])。
次に、感光性樹脂表面にパラジウム触媒を担持させるため、塩化パラジウム、塩化すず溶液からなるキャタリスト浴に浸漬し、パラジウム−すずコロイドを感光性樹脂表面に担持させた。次のアクセラレーター浴において、スズが除去されると同時に、パラジウム粒子(3c4)が感光性樹脂表面に固着される(工程[3c])。固着したパラジウム粒子は、触媒として担持され、片側銅箔付き樹脂基板を無電解銅めっき浴に約10分浸漬して、約0.5μm厚の無電解銅めっき膜(3d5)を形成した(工程[3d])。無電解銅めっき浴は、ホルムアルデヒドを還元剤とする0.02mol/dmCu(II)-EDTA 浴を用いた。
A photomask on which a desired via pattern was drawn was brought into close contact with the photosensitive resin surface of the photosensitive resin substrate with a copper foil on one side, and was exposed to light at 500 mJ / cm 2 with an ultrahigh pressure mercury lamp for photocrosslinking. Next, after separating a PET film having a thickness of 19 μm, developing with about 5% organic amine alkaline aqueous solution, washing with water, sufficiently drying in a hot air oven at 90 ° C., and a resin substrate with one side copper foil having a via of about 200 μm Was formed (step [3b]).
Next, in order to support the palladium catalyst on the surface of the photosensitive resin, it was immersed in a catalyst bath composed of palladium chloride and tin chloride solution to support the palladium-tin colloid on the surface of the photosensitive resin. In the next accelerator bath, at the same time as the removal of tin, palladium particles (3c4) are fixed to the surface of the photosensitive resin (step [3c]). The fixed palladium particles are supported as a catalyst, and a resin substrate with one side copper foil is immersed in an electroless copper plating bath for about 10 minutes to form an electroless copper plating film (3d5) having a thickness of about 0.5 μm (process) [3d]). As the electroless copper plating bath, a 0.02 mol / dm 3 Cu (II) -EDTA bath using formaldehyde as a reducing agent was used.

ここで、100g/Lの希塩酸にてパラジウム触媒を除去した後、無電解銅めっき膜上にロールコートにより、ネガ型フォトレジスト(PMER;東京応化工業製)(3e6)をロールコートし、90°Cでプレベークした。所望する第二の銅配線パターンのフォトマスク(3f7)を介して、200mJ/cmで露光し(工程[3f])、有機アルカリ水溶液で現像し、所望する第二の銅配線パターンの枠(3g6)を形成した(工程[3g])。
さらに、電解銅めっきが第一の銅箔表面に析出させないようにするため、ロールラミネーターを用いて、粘着材つきポリプロピレンフィルム(ヒタレックスL−3320;日立化成製)を第一の銅箔表面上に貼った。その後、電解銅めっきを約30分行って、片側銅箔付き樹脂基板の樹脂面およびビアから露出した第一の銅箔上に、約12μm厚の銅箔(3h9)を形成した(工程[3h])。また、電解銅めっき浴は、0.1mol/dmCu(II)-EDTA 浴を用いた。
またさらに、80°Cの10%水酸化ナトリウム剥膜液でネガ型フォトレジストを溶解剥膜した(工程[3i])。
次いで、剥膜したネガ型フォトレジスト跡から露出している無電解銅めっき部分をフラッシュエッチングすることにより、第二の銅配線パターンを形成した(工程[3j])。
以上のような一般的なセミアディティブ工程で、多層プリント配線板に用いられる第二の銅配線パターンを得ることができる。しかしこの工法は、高価なアルカリ溶解タイプのフォトレジストを必要とする工程、不要な無電解めっきをエッチングするフラッシュエッチング工程など工程数が、かなり多くなってしまう。故に、収率の低下、材料費が嵩むなど、安価な多層プリント配線板を市場に供給することが難しい。
Here, after removing the palladium catalyst with dilute hydrochloric acid of 100 g / L, a negative photoresist (PMER; manufactured by Tokyo Ohka Kogyo Co., Ltd.) (3e6) was roll-coated on the electroless copper plating film by 90 °. Pre-baked with C. It is exposed at 200 mJ / cm 2 through a photomask (3f7) of the desired second copper wiring pattern (step [3f]), developed with an organic alkaline aqueous solution, and a frame of the desired second copper wiring pattern ( 3g6) was formed (step [3g]).
Furthermore, in order to prevent electrolytic copper plating from being deposited on the surface of the first copper foil, a polypropylene film with an adhesive (Hitalex L-3320; manufactured by Hitachi Chemical) is used on the surface of the first copper foil using a roll laminator. pasted. Thereafter, electrolytic copper plating was performed for about 30 minutes to form a copper foil (3h9) having a thickness of about 12 μm on the resin surface of the resin substrate with one side copper foil and the first copper foil exposed from the via (step [3h ]). The electrolytic copper plating bath used was a 0.1 mol / dm 3 Cu (II) -EDTA bath.
Furthermore, the negative photoresist was dissolved and stripped with 10% sodium hydroxide stripping solution at 80 ° C. (step [3i]).
Next, a second copper wiring pattern was formed by flash-etching the electroless copper plating portion exposed from the stripped negative photoresist trace (step [3j]).
The second copper wiring pattern used for the multilayer printed wiring board can be obtained by the general semi-additive process as described above. However, this method requires a considerable number of processes such as a process that requires an expensive alkali-dissolving photoresist and a flash etching process that etches unnecessary electroless plating. Therefore, it is difficult to supply an inexpensive multilayer printed wiring board to the market due to a decrease in yield and an increase in material costs.

本発明の実施例1による第二配線パターン構成及びその製造工程を示す断面図である。It is sectional drawing which shows the 2nd wiring pattern structure by Example 1 of this invention, and its manufacturing process. 本発明の実施例1による第二配線パターン構成及びその製造工程を示す断面図である。It is sectional drawing which shows the 2nd wiring pattern structure by Example 1 of this invention, and its manufacturing process. 本発明の実施例2による多層プリント配線板の工程フローチャート図である。It is a process flowchart figure of the multilayer printed wiring board by Example 2 of this invention. 比較例による第二配線パターン構成及びその製造工程を示す断面図である。It is sectional drawing which shows the 2nd wiring pattern structure by the comparative example, and its manufacturing process. 比較例による第二配線パターン構成及びその製造工程を示す断面図である。It is sectional drawing which shows the 2nd wiring pattern structure by the comparative example, and its manufacturing process. 比較例による第二配線パターン構成及びその製造工程を示す断面図である。It is sectional drawing which shows the 2nd wiring pattern structure by the comparative example, and its manufacturing process.

符号の説明Explanation of symbols

1a1……Bステージ状感光性樹脂、1a2……第一銅箔層、1a3……PETセパレータ、1b1……光架橋した感光性樹脂、1c1……光熱架橋した感光性樹脂、1c4……酸化チタン、1d4……励起した酸化チタン、1d5……励起しなかった酸化チタン、1d6……第二の銅配線パターンを有するフォトマスク、1d7……紫外線、1e8……パラジウム触媒、1f9……無電解銅めっき、1g10……電解銅めっき、1g11……電解銅めっき用対向電極。
1a1 ... B-stage photosensitive resin, 1a2 ... first copper foil layer, 1a3 ... PET separator, 1b1 ... photocrosslinked photosensitive resin, 1c1 ... photothermal crosslinked photosensitive resin, 1c4 ... titanium oxide 1d4 …… Excited titanium oxide, 1d5 …… Unexcited titanium oxide, 1d6 …… Photomask with second copper wiring pattern, 1d7 …… UV, 1e8 …… Palladium catalyst, 1f9 …… Electroless copper Plating, 1g10 …… Electrolytic copper plating, 1g11 …… Counter electrode for electrolytic copper plating.

Claims (6)

片側銅箔付き感光性樹脂基板の樹脂面に、少なくとも無電解銅めっき及び電解銅めっきからなる導体パターンを形成する多層プリント配線基板の製造方法であって、
前記感光性樹脂を露光、現像し、所望とするビアパターンを形成した後、前記感光性樹脂表面に光触媒化合物を担持させ、めっきする導体パターン状に露光し、無電解銅めっきの核となる金属塩溶液の濡れ性に差を設ける、
ことを特徴とするプリント配線板の製造方法。
On the resin surface of the photosensitive resin substrate with copper foil on one side, a method for producing a multilayer printed wiring board that forms a conductive pattern consisting of at least electroless copper plating and electrolytic copper plating,
After exposing and developing the photosensitive resin to form a desired via pattern, a photocatalytic compound is supported on the surface of the photosensitive resin, exposed to a conductive pattern to be plated, and becomes a core of electroless copper plating Make a difference in the wettability of the salt solution,
A printed wiring board manufacturing method characterized by the above.
前記感光性樹脂が140°C以上の加熱により熱架橋する前に、前記光触媒化合物を担持させることを特徴とする請求項1記載のプリント配線板の製造方法。   The method for producing a printed wiring board according to claim 1, wherein the photocatalytic compound is supported before the photosensitive resin is thermally crosslinked by heating at 140 ° C. or higher. 前記光触媒化合物が、チタン含有有機金属化合物であることを特徴とする請求項1または2記載のプリント配線板の製造方法。   The method for producing a printed wiring board according to claim 1, wherein the photocatalytic compound is a titanium-containing organometallic compound. 前記光触媒化合物に紫外線を露光することにより励起され、金属塩溶液の濡れ性が向上することを特徴とする請求項1〜3のいずれか1項記載のプリント配線板の製造方法。   The method for producing a printed wiring board according to any one of claims 1 to 3, wherein the photocatalyst compound is excited by exposure to ultraviolet rays to improve the wettability of the metal salt solution. 前記金属塩溶液が、少なくともパラジウム塩溶液を含むことを特徴とし、無電解銅めっきの核としてシード銅層を形成し、さらに電解銅めっきによって導体パターンを形成することを特徴とする請求項1〜4のいずれか1項記載のプリント配線板の製造方法。   The metal salt solution includes at least a palladium salt solution, a seed copper layer is formed as a nucleus of electroless copper plating, and a conductor pattern is further formed by electrolytic copper plating. 5. The method for producing a printed wiring board according to any one of 4 above. 前記感光性樹脂が、紫外線硬化型エポキシアクリレートであり、前記光触媒化合物が、テトライソプロピルチタネートであり、前記パラジウム塩溶液が、塩化パラジウムであることを特徴とする請求項5に記載のプリント配線板の製造方法。
6. The printed wiring board according to claim 5, wherein the photosensitive resin is an ultraviolet curable epoxy acrylate, the photocatalytic compound is tetraisopropyl titanate, and the palladium salt solution is palladium chloride. Production method.
JP2006117707A 2006-04-21 2006-04-21 Method for manufacturing printed wiring board Expired - Fee Related JP4716181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117707A JP4716181B2 (en) 2006-04-21 2006-04-21 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117707A JP4716181B2 (en) 2006-04-21 2006-04-21 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2007294512A true JP2007294512A (en) 2007-11-08
JP4716181B2 JP4716181B2 (en) 2011-07-06

Family

ID=38764862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117707A Expired - Fee Related JP4716181B2 (en) 2006-04-21 2006-04-21 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP4716181B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205388A (en) * 1989-02-03 1990-08-15 Hitachi Chem Co Ltd Manufacture of printed circuit by electroless plating using semiconductor optical catalyst
JPH08186119A (en) * 1994-12-27 1996-07-16 Sharp Corp Manufacture of circuit board
JPH0936522A (en) * 1995-07-14 1997-02-07 Fuji Kiko Denshi Kk Formation of circuit of printed-wiring board
JPH11344804A (en) * 1997-08-08 1999-12-14 Dainippon Printing Co Ltd Pattern forming body and pattern forming method therefor
JP2001335951A (en) * 2000-05-26 2001-12-07 Murata Mfg Co Ltd Method for forming conductor and electronic parts
JP2003234573A (en) * 2002-02-07 2003-08-22 Fujitsu Ltd Method of manufacturing multilayer wiring board, and multilayer wiring board manufactured by the same
JP2004056018A (en) * 2002-07-23 2004-02-19 Sumitomo Bakelite Co Ltd Wiring board and its manufacturing method, and multilayer interconnection board
JP2005085898A (en) * 2003-09-05 2005-03-31 Toyota Motor Corp Manufacturing method of printed-circuit substrate
JP2005085900A (en) * 2003-09-05 2005-03-31 Toyota Motor Corp Printed circuit substrate and its manufacturing method
JP2005183969A (en) * 2003-12-16 2005-07-07 Samsung Electronics Co Ltd Method of forming metal pattern with low resistance
JP2005243991A (en) * 2004-02-27 2005-09-08 International Display Technology Kk Metal wiring forming method and metal wiring circuit formed thereby
JP2006041029A (en) * 2004-07-23 2006-02-09 Shinko Electric Ind Co Ltd Wiring substrate, manufacturing method thereof, and electronic device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205388A (en) * 1989-02-03 1990-08-15 Hitachi Chem Co Ltd Manufacture of printed circuit by electroless plating using semiconductor optical catalyst
JPH08186119A (en) * 1994-12-27 1996-07-16 Sharp Corp Manufacture of circuit board
JPH0936522A (en) * 1995-07-14 1997-02-07 Fuji Kiko Denshi Kk Formation of circuit of printed-wiring board
JPH11344804A (en) * 1997-08-08 1999-12-14 Dainippon Printing Co Ltd Pattern forming body and pattern forming method therefor
JP2001335951A (en) * 2000-05-26 2001-12-07 Murata Mfg Co Ltd Method for forming conductor and electronic parts
JP2003234573A (en) * 2002-02-07 2003-08-22 Fujitsu Ltd Method of manufacturing multilayer wiring board, and multilayer wiring board manufactured by the same
JP2004056018A (en) * 2002-07-23 2004-02-19 Sumitomo Bakelite Co Ltd Wiring board and its manufacturing method, and multilayer interconnection board
JP2005085898A (en) * 2003-09-05 2005-03-31 Toyota Motor Corp Manufacturing method of printed-circuit substrate
JP2005085900A (en) * 2003-09-05 2005-03-31 Toyota Motor Corp Printed circuit substrate and its manufacturing method
JP2005183969A (en) * 2003-12-16 2005-07-07 Samsung Electronics Co Ltd Method of forming metal pattern with low resistance
JP2005243991A (en) * 2004-02-27 2005-09-08 International Display Technology Kk Metal wiring forming method and metal wiring circuit formed thereby
JP2006041029A (en) * 2004-07-23 2006-02-09 Shinko Electric Ind Co Ltd Wiring substrate, manufacturing method thereof, and electronic device

Also Published As

Publication number Publication date
JP4716181B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US8143533B2 (en) Method for forming resist pattern, method for producing circuit board, and circuit board
JP2005322868A (en) Method for electrolytic gold plating of printed circuit board
JP2003008199A (en) Method for roughening copper surface of printed wiring board and printed wiring board and its producing method
JP2003273498A (en) Method of manufacturing printed-wiring board
JP2006073984A (en) Resistor built-in printed circuit board and its manufacturing method
JP2008205331A (en) Method for manufacturing multilayered wiring board and multilayered wiring board
JP2006310689A (en) Manufacturing method of double-access flexible circuit board
TW200407057A (en) Method for the manufacture of printed circuit boards with integral plated resistors
JP4716181B2 (en) Method for manufacturing printed wiring board
JP3500977B2 (en) Manufacturing method of double-sided circuit board
CN101765297B (en) Method for forming insulating layer and conducting layer on conducting layer as well as forming electric connection between conducting layers and method for producing corresponding multi-layer circuit board
JPH10215072A (en) Manufacture of multilayer printed wiring board
JP2001015934A (en) Multilayer printed wiring board and its manufacture
WO2018128037A1 (en) Manufacturing method for printed wiring board
JP4705972B2 (en) Printed wiring board and manufacturing method thereof
JP2560948B2 (en) Method for manufacturing multilayer printed wiring board having blind holes
JP4676376B2 (en) Circuit board manufacturing method
JP3593351B2 (en) Method for manufacturing multilayer wiring board
JP2004218033A (en) Etching product and etching method
JP2008140827A (en) Method for manufacturing printed circuit board, and printed circuit board
JP4687084B2 (en) Method for manufacturing printed wiring board with built-in passive element
JPH08204339A (en) Manufacture of printed wiring board
JP3178677B2 (en) Method for manufacturing multilayer wiring board
JP2531466B2 (en) Method for manufacturing printed wiring board
JP4582277B2 (en) Method for forming columnar metal body and method for manufacturing multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees